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Abstract

Background: The identification of genes underlying complex traits has been aided by
quantitative trait locus (QTL) mapping approaches, which in turn have benefited from advances in
mammalian genome research. Most recently, whole-genome draft sequences and assemblies have
been generated for mouse strains that have been used for a large fraction of QTL mapping
studies. Here we show how such strain-specific mouse genome sequence databases can be used
as part of a high-throughput pipeline for the in silico discovery of gene-coding variations within
murine QTLs. As a test of this approach we focused on two QTLs on mouse chromosomes 1
and 13 that are involved in physical dependence on alcohol. 

Results: Interstrain alignment of sequences derived from the relevant mouse strain genome
sequence databases for 199 QTL-localized genes spanning 210,020 base-pairs of coding sequence
identified 21 genes with different coding sequences for the progenitor strains. Several of these
genes, including four that exhibit strong phenotypic links to chronic alcohol withdrawal, are
promising candidates to underlie these QTLs. 

Conclusions: This approach has wide general utility, and should be applicable to any of the
several hundred mouse QTLs, encompassing over 60 different complex traits, that have been
identified using strains for which relatively complete genome sequences are available.
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Background 
The discovery of genes underlying multigenic diseases and

traits is one of the most important challenges currently

facing genetic researchers. This effort has been aided by

quantitative trait locus (QTL) mapping methods, which have

now been applied to numerous complex phenotypes in a

range of species, including many behavioral phenotypes of

high interest. A QTL is a chromosomal region that contains a

gene or genes that influence a quantitative trait. The power

of this approach was first demonstrated in plants [1] and

later in yeast [2], flies [3], livestock [4,5], rodents [6-9] and

humans [10-12].

Historically, a typical approach to going from QTL to gene

has been to select one or a few of the best biological candi-

date genes from within the QTL interval and search for

sequence differences that predict differential expression

and/or structure of the gene product. An alternative strategy
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is to carry out comparative sequencing of large numbers of

potential candidate genes located within the QTL interval,

which is feasible given the automated sequencing methods

now available [13]. However, these approaches are limited

because the gene underlying a QTL may not be recognized as

a good candidate gene if little is known about the gene’s

function and/or if a QTL region is large, in which case

sequencing every gene within the QTL requires considerable

time, cost and labor to complete.

The recent development of murine whole-genome draft

sequences [14] should speed the process of identifying

disease genes underlying QTLs because several of the strains

used for genome sequencing are the same as those that have

been used to develop the majority of mouse QTLs so far

identified. The public mouse genome sequencing effort used

C57BL/6J (B6) mice, while the private effort by Celera has

sequenced the mouse genome in four strains: DBA/2J (D2),

A/J, 129X1/SvJ, and 129S1/SvImJ. Combinations of these

strains, for example B6xD2 and B6xA/J, have been used for

the identification of over 250 murine QTLs. Because of these

resources, we reasoned that sequence variations in QTL

genes might now be identified simply by direct in silico

alignment of the sequences obtained directly from the data-

bases of the two relevant strains, obviating much of the need

for de novo sequencing. We show that, once several factors

were addressed, such as sequencing error detection and dis-

crimination between closely related genes, a high-through-

put pipeline could be developed that allows large numbers of

gene-coding regions from QTL intervals to be rapidly com-

pared in silico and interstrain allelic sequence differences

quickly identified and targeted for further hypothesis-driven

analyses. We also believe that this strategy has considerable

general utility, and should be applicable to any QTL as long

as the strains used are those for which relatively complete

genome sequences are available.

While our work was in progress, Celera incorporated the

public B6 sequence into its mouse genome assembly and

developed a searchable database of mouse single nucleotide

polymorphisms (SNPs) [15]. Comparison of the gene vari-

ants identified by our approach to the SNPs identified by a

search of Celera’s SNP database indicates that the latter sig-

nificantly underestimates the number of SNPs present and

that the method described here provides the most complete

and accurate compilation of QTL gene variants.

We tested this approach on two QTLs involved in physical

dependence on ethanol; these are located on murine chromo-

somes 1 and 13 and were identified using two mapping

populations derived from the B6 and D2 progenitor strains.

The well documented difference in susceptibility to with-

drawal after chronic ethanol exposure between the B6 and

D2 inbred mouse strains provided an excellent starting point

for dissecting genetic influences involved in physical depen-

dence on ethanol and to study how common allele variants

influence genetic predisposition to physical dependence on

ethanol. Genome-wide evaluations of chronic ethanol with-

drawal convulsions identified QTLs on murine chromo-

somes 1, 13, 19 and 4 [16]. The QTLs on chromosome 1 and

chromosome 13 (a sex-limited QTL) were detected in two

mapping populations, that is, the BXD recombinant inbred

strains and a B6D2 F2 intercross [16,17]. 

Results 
A flow chart showing the steps involved in the in silico com-

parison of the coding region of genes within the two alcohol

withdrawal QTLs is shown in Figure 1. The National Center

for Biotechnology Information (NCBI)/Mouse Genome

Database (MGD) human/mouse homology map and the

Celera mouse genome assembly were searched to obtain a

list of genes and predicted genes within each QTL. The

selected genes included plausible candidate genes that have

been implicated in functions relevant to alcohol action, as

well as genes whose functions are not well understood or

were not previously suspected to be related to alcohol action.

For the QTL on chromosome 1, a list of 121 genes was

Figure 1
Strategy for in silico identification of coding-sequence variations within
QTLs.
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selected, most of which are within 4 million bases (Mb)

upstream or 4 Mb downstream of the peak log of odds (LOD)

score (approximately 18-24 centimorgans (cM) from the

centromere). For chromosome 13, a list of 78 genes was

selected, most of which are within 2 Mb upstream or 2 Mb

downstream of the peak LOD score (approximately 37 cM

from the centromere). The complete coding region of each

gene, as available, was retrieved either from Celera or NCBI

to be used as the query for subsequent strain-specific BLAST

searches [18]. B6 sequences were retrieved from the mmtrace

database at NCBI using a MegaBLAST search, and D2

sequences were retrieved from Celera by BLAST search of the

All Mouse Fragments (masked) database. All data were

retrieved from Celera and NCBI between August 2001 and

April 2002. Two in-house programs were used to parse the

BLAST results and remove any hits with low nucleotide-simi-

larity scores or an insignificant e-value. The filtered BLAST

results from the B6 and D2 strains were then aligned using

AutoAssembler and allelic sequence variations were detected.

On proximal chromosome 1, 121 genes covering 125,385

base-pairs (bp) were selected and the sequences aligned, and

for chromosome 13, 78 genes covering 84,635 bp were

selected and aligned. Altogether, the alignment encom-

passed 199 genes spanning 210,020 bp. Because of some

gaps that remain in the available genome sequences for the

B6 and D2 strains, complete coding regions were sometimes

not available and in such cases the coverage was therefore

incomplete. Our calculations indicate that the in silico cover-

age of the coding region of the 199 genes for the B6 and D2

strains was 86% and 69%, respectively. The lower percent

coverage of the D2 genome is likely to be due to the fact that

it is only one out of four mouse strains used to generate Cel-

era’s 5.2x coverage of the mouse genome. When the B6 and

D2 data are combined, 61% of the length of the coding

regions was covered by both genome sequences (Table 1).

Previous efforts to identify human SNPs by database mining

found it important to filter results in order to eliminate the

false detection of SNPs [19]. With this in mind, we took the

following steps to ensure the quality of SNPs detected in our

data. First, to avoid the inclusion of sequences from

additional closely related paralogous genes, we used a BLAST

hit cutoff of 98%, so that only reads at least 98% similar to

the query sequence were selected. Furthermore, reads that

potentially affected amino acid sequence were used for a

BLAST search against the mouse genome and removed from

the B6/D2 alignment if the best BLAST hit was on a sequence

scaffold located in another part of the genome. Second, to

avoid the inclusion of changes due to poor-quality sequence,

Phred [20] scores of individual B6 reads were checked at

changed nucleotide positions and poor-quality changes

(Phred score � 10) eliminated. This step was not done with

D2 sequences because individual sequence traces and Phred

scores were not available from Celera. Third, by in-house

sequencing of 44 gene coding variations found in the in silico

alignments of three genes from B6, D2, A/J, 129X1/SvJ, and

129S1/SvImJ DNA, we verified that Celera had not mislabeled

the strain from which sequence reads were derived and

showed that no mix-up or cross-contamination of samples

had occurred. Even after the above steps were taken, there

were still instances where some reads had one sequence and

other reads had a slightly different sequence for the same

strain. In-house sequencing of B6 and D2 DNA for a subset

of interstrain frame shifts (10% of the total) showed that all

the apparent differences were false. In-house sequencing for

a subset of intrastrain single base-pair substitutions (21% of

the total) was also carried out. This analysis showed that

when two different intrastrain sequences (for example, in

the D2 strain) were detected, the correct sequence was

always identical to the other strain (for example, B6), so that

no interstrain variant appeared at that position. On the basis

of this in-house sequence analysis we chose to operationally

classify all frameshifts as false and interstrain substitutions

present in 50%, or fewer than 50%, of the reads for one

strain as false.

The number of nonsynonymous changes was totaled from all

199 genes within the chronic alcohol withdrawal QTLs on

proximal chromosome 1 and mid-chromosome 13 for which

allelic sequences were aligned, together covering 7 cM and

12 Mb of the mouse genome and representing 210,019 bp of

coding region. In total, 21 of the 199 genes surveyed from the

chromosome 1 and 13 QTL regions showed nonsynonymous

Table 1

Summary of genes surveyed within chronic alcohol withdrawal QTLs on proximal chromosome 1 and chromosome 13

Number Base-
% Coverage*

Number of Number of genes with 
of genes pairs B6 D2 Both amino-acid changes† at least one amino-acid change†

Chromosome 1 121 125,385 84 (85) 77 (80) 67 (70) 8 (8) 6 (6)

Chromosome 13 78 84,635 89 (90) 57 (59) 52 (55) 36 (45) 15 (19)

Total 199 210,020 86 (87) 69 (71) 61 (64) 44 (53) 21 (25)

*The first number listed indicates in silico percent coverage; numbers in parentheses indicate percent coverage after in-house sequencing was done to fill
in gaps in the in silico alignment. †The first number indicates changes where multiple reads were available in each strain or the change has been verified by
in-house sequencing; the number in parentheses includes changes where only one read was available for either B6 or D2.



changes in their coding regions between B6 and D2 animals

(Table 1). A search of Celera’s SNP database found approxi-

mately half of the nonsynonymous B6/D2 sequence changes

which we identified by multiple alignment of BLAST hits. Of

the nonsynonymous changes that we identified by multiple

alignment of BLAST hits and verified by in-house sequenc-

ing, fewer than half are listed in the SNP database. 

On chromosome 1, where 121 genes were compared, eight

amino-acid changes were identified in six genes (Table 2). Of

these, two are known genes and four are based only on com-

putational predictions by Celera. One of the two known

genes for which allelic variation was identified within its

coding region sequence was Slc5a7. This encodes a high-

affinity choline transporter expressed in the brain and spinal

cord and may be considered a plausible candidate gene for

underlying the QTL (see Discussion). 

On chromosome 13, when looking only at changes that have

multiple read coverage or were verified by in-house sequenc-

ing, 36 amino-acid changes were detected within 15 genes

(Table 2). Nine additional changes in four other genes within

the chromosome 13 QTL were also identified, but these were

all of limited reliability in that only a single sequence read

was available for either the B6 or D2 allele. Of the in silico

predicted changes based on single-read coverage that were

sequenced in house, approximately half were proven false.

The proteins showing allelic differences with multiple read

coverage span a range of functional classes and include a

zinc metalloprotease, 60S ribosomal protein, hyaluronic acid

binding protein (gene Habp4), developmental related

protein (gene Ptch), transport system kinase and several

genes for which no functional assignments have yet been

made. As discussed below, three genes for which allelic

variations were detected, Srd5a1, Nrif-2, and Hsd17b3 are

thought to be particularly promising biological candidates to

underlie the chromosome 13 QTL. 

Discussion 
While other studies have mined EST databases to detect

SNPs [19], the work presented here is the first demonstration

of the use of strain-specific genome sequence databases to

discover gene-coding variants for murine QTLs. Whereas

previous studies have focused on detection of SNPs in

expressed sequence tags (ESTs) that map to locations

throughout the genome for use as genetic markers, the

present work searched strain-specific genomic sequence

databases for coding-region SNPs underlying disease-related

QTLs. In this first application of the strategy, we surveyed 199

QTL-localized genes covering approximately 7 cM and 12 Mb

of the mouse genome and identified 21 genes that had altered

coding regions between the B6 and D2 progenitor strains.

At least one of the allelically variant genes - Slc5a7, detected

within the proximal chromosome 1 QTL interval - is a

promising biological candidate gene. Slc5a7 encodes a high-

affinity choline transporter expressed in cholinergic neurons

in the brain and spinal cord. Prolonged ethanol exposure

decreases high-affinity choline uptake in rat cerebral cortex

[21], and acute ethanol exposure decreases choline transport

in erythrocytes [22]. There was a single amino-acid change

of arginine (B6) to histidine (D2) at position 38, which is

located in the first cytoplasmic loop of the transporter, with

the arginine also being conserved in rat and human.

However, while synteny data between human and mouse

suggest that the gene is within the QTL, data from Celera

apparently places it on another chromosome. Therefore the

question of whether Slc5a7 remains a good candidate for the

proximal 1 QTL must await resolution of this issue. 

Three genes for which allelic variations were detected -

Srd5a1, Nrif-2 and Hsd17b3 - appear to be particularly

promising biological candidates to underlie the chromosome

13 QTL. The most compelling of these is Srd5a1, which

encodes a steroid 5�-reductase 1 and is expressed in brain

and is consequently termed a neurosteroid. 5�-reduced

metabolites of the neurosteroids are thought to be involved in

myelination [23], and one of the key features of alcoholism is

the loss of cerebral white matter [24]. Steroid 5�-reductase is

also required for the reduction of progesterone to 5�-dihy-

droprogesterone, which is further metabolized to 3�,5�-prog-

esterone (allopregnanolone), which has neuroactivity at

GABAA receptors [25]. Some symptoms of ethanol with-

drawal appear to be produced through neuroadaptive

changes in GABA-mediated neurotransmission [26]. It is

known that many neuroactive steroids have anticonvulsant

activity [27], and during ethanol withdrawal the B6 and D2

mice have differential sensitivity to the anticonvulsant effects

of allopregnanolone [28]. We identified three amino acid

changes within this gene between the B6 and D2 strains, one

of which occurs at position 7 with arginine (B6) being

replaced by cysteine (D2). Unlike arginine, cysteine can par-

ticipate in disulfide bridge formation and thus has the poten-

tial to produce a marked difference in the functional activity

of 5�-reductase 1 in B6 compared to D2 animals.

Another candidate gene is Nrif-2, a Krüppel-type zinc finger

protein thought to function as a transcriptional repressor

[29]. One of the identified amino-acid changes replaces the

arginine at position 593 in the D2 strain with a glutamine

residue in B6 mice, and this occurs within a known binding

site for the intracellular domain of the neurotrophin receptor

p75NTR [30]. The Nrif-2 gene is expressed in brain and

several other tissues, but expression is highest in testis. Inter-

estingly, the chromosome 13 QTL is sex-limited and affects

severity of physical dependence on alcohol only in males [16].

In males the D2 allele was associated with more severe with-

drawal responses than the B6 allele, whereas the opposite

direction of effect was found in female mice. Because the

behavioral trait is sex-limited, this suggests that the actions of

the underlying gene are sex-limited. Such a phenotype might

4 Genome Biology Vol 3 No 12 Marshall et al.



be expected if the causal variant gene was expressed and/or

active in gonadal tissue, as is the case with Nrif-2. 

A third altered candidate gene within the chromosome 13

QTL is Hsd17b3. This gene encodes a 17�-hydroxysteroid

dehydrogenase expressed primarily in testis but also in

several other tissues, including brain [30]. Hsd17b3 cat-

alyzes the interconversion of androstenedione and testos-

terone, favoring the reduction reaction [31]. Ethanol

exposure has been shown to inhibit the reduction of
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Table 2

QTL genes with nonsynonymous changes

(a) Altered genes within the chronic alcohol withdrawal QTL on proximal chromosome 1

Gene In silico percent coverage*

Symbol Gene ID Location B6 D2 Both Amino-acid variations

mCG55019 30,510,903 - 30,520,321 100 100 100 M72V†

mCG52566 31,637,483 - 31,666,730 95 95 95 S6A

mCG49360 32,140,873 - 32,141,648 100 87 87 P74L†, C123R†

mCG66997 36,796,676 - 36,805,521 100 100 100 stop61Y

mCG4911 39,571,491 - 39,572,134 54 100 54 R74H, E79D

Slc5a7 NM_022025 Uncertain 100 99 (100) 99 (100) R38H†

(b) Altered genes within the sex-limited chronic alcohol withdrawal QTL on chromosome 13

Gene In silico percent coverage*

Symbol Gene ID Location B6 D2 Both Amino-acid variations

mCG22018 54,248,540 - 54,266,542 100 86 86 I155F

Ptch mCG21490 54,702,052 - 54,733,739 79 68 68 T1267N

mCG67381 54,910,868 - 54,921,322 95 95 95 N48D

mCG49128 55,141,914 - 55,156 036 82 100 82 S38G, H96R

Hsd17b3 NM_008291 55,258,374 - 55,287,747 69 (100) 61 (100) 45 (100) C95R†

mCG67239 55,349,545 - 55,350,013 100 100 100 T47M, P124R‡

Habp4 NM_019986 55,358,811 - 55,383,494 89 (96) 90 (96) 84 (96) A65- (in/del)†, P187L†, 
A266T†

mCG65010 55,397,330 - 55,399,305 84 100 84 S48N†, R76W†

mCG51118 55,652,165 - 55,652,438 31 100 31 F6L‡

mCG50935 55,841,328 - 55,842,516 100 100 100 A210V

mCG50411 56,005,687 - 56,054,181 100 66 66 G200E†

mCG55714 56,067,926 - 56,074,495 96 90 90 S99P‡, L361S‡, Q557R‡, 
A851V‡

mCG59053 56,106,754 - 56,107,033 84 100 84 S64G‡

mCG59052 56,122,823 - 56,169,063 93 86 79 W53R, M62V, T17I, 
V197A, T198P, A324S, 
D645N, R728G, W846R†

Nrif-2 AJ319726 56,376,102 - 56,425,620 96 (100) 78 (100) 74 (100) A491T†, Q593R†, I679V†

Ptdss1 mCG67987 57,190,261 - 57,251,587 100 89 89 G322C†

mCG67995 57,426,346 - 57,427,146 100 83 83 G4E

mCG67997 57,732,668 - 57,740,675 53 (100) 100 53 (100) K24T†, L30R†, S36P†, 
I48S†, K62R†, V89E†, 
N94T†

Srd5a1 mCG7698 58,982,812 - 59,009,801 78 (100) 78 (100) 78 (100) R7C†, V142I†, E176D†

Gene IDs beginning with the letters mCG are Celera gene ID numbers; all other gene ID numbers are GenBank accession numbers for transcript
sequences. Although genes are identified by the Celera genomic (mCG) ID, transcript sequence was used as query for the BLAST searches for each gene.
All data were retrieved from Celera and NCBI between August 2001 and April 2002. Only changes where the reading frame is known and sequence is
available in both B6 and D2 are displayed. The B6 amino acid is given first, then the position, followed by the D2 amino acid. *Numbers in parentheses
indicate percent coverage after in-house sequencing. †These changes were verified by in-house sequencing. ‡These changes are supported by only a single
read in either B6 or D2 and have not been verified by in-house sequencing. 



androstenedione to testosterone in rat Leydig cells in vitro

[32]. The amino acid change within this gene replaces a cys-

teine (B6) at residue 95 with an arginine (D2).

While these data are consistent with the variant genes iden-

tified on chromosomes 1 and/or 13 being the gene that

underlies the respective QTL, it is also possible that the poly-

morphisms identified in these genes are merely linked to the

polymorphisms that actually underlie these two QTLs.

Although Slc5a7, Nrif-2, Srd5a1, and Hsd17b3 are promising

candidates to underlie these two QTLs, a significant number

of altered genes were also identified that cannot formally be

ruled out at this time, either in place of, or in addition to,

these three genes. Additional fine mapping of these QTLs is

needed to eliminate as many false candidate genes as possi-

ble from these QTL intervals. In addition, definitive confir-

mation that Slc5a7, Nrif-2, Srd5a1 and Hsd17b3 (or other

promising candidate genes if they arise) are involved in pre-

disposition to physical dependence on ethanol will probably

require verification using transgenics (for example, allele

substitution or bacterial artificial chromosome transgenics).

Another feature of the approach described here is that it not

only rapidly identifies gene variants within QTL intervals but,

because it will find many genes that are unchanged between

strains, can also quickly eliminate large numbers of gene-

coding regions as possible candidates underlying the QTL.

Finally, it should be pointed out that even when a synony-

mous sequence difference is found between QTL strains, it

can still be used as a new, easily scored marker to further

narrow the QTL interval using fine-mapping resources such

as interval-specific congenic recombinant mice [33]. In this

regard we identified many such synonymous changes

between B6 and D2 that fall within the proximal chromosome

1 or mid-chromosome 13 QTLs, and therefore can serve as

new informative markers for fine mapping of these QTLs.

The approach described here has considerable general

applicability. Many other murine QTLs, encompassing a

wide range of complex phenotypes of interest, have been

identified using mapping populations derived from two of

the five mouse strains for which whole-genome draft

sequences are now available, and therefore lend themselves

to this in silico approach. When we carried out a PubMed lit-

erature database search, 276 QTLs, corresponding to 57 dif-

ferent phenotypes, were identified that utilized two of these

five mouse strains (Table 3). The QTL intervals that were

used in the present study were rather large, and many other

QTLs that use strains amenable to an in silico approach are

considerably smaller.

While the present study focused on QTL gene-coding region

comparisons because of their potential functional impor-

tance [5], it should be pointed out that gene-regulatory

regions, which are also of considerable functional impor-

tance and have been shown to underlie some QTLs [34,35],

can be studied in the same way. For example, the approach

described here can be combined with data from high-

density DNA microarray studies of the B6 and D2 strains

(J.M.S., unpublished work). In such a scenario, interstrain

comparison of the expression levels of tens of thousands of

genes would be carried out, the genes that are differentially

expressed between strains identified, and their chromo-

some location determined from the genome databases.

Those differentially expressed genes that map to a QTL

region would be selected and the upstream regulatory

regions aligned in silico to search for sequence differences

that affect predicted transcriptional binding sites. Such

binding-site differences, when present, would be promising

candidates to underlie the QTL in which the gene resides.

Although less is known about sequences affecting gene reg-

ulation than about those affecting protein sequence, there

has been considerable progress in the past few years in our

understanding of the sequences involved in controlling gene

regulation [36,37].

It is also possible that sequence changes in the noncoding

regions of mRNAs can have functional effects. For example,

sequence in the 5� untranslated region (UTR) can affect

mRNA translation, and sequence in the 3� UTR can affect

mRNA stability. The 3� UTR region can also contain

enhancer elements that affect gene regulation and expres-

sion. Whereas less is known about the functional relevance

of sequence changes in noncoding parts of mRNAs than

those in the protein-coding region, they can nevertheless be

functionally important and, as such, could be included in

surveys using the in silico approach described here.

While Celera’s SNP database has the ability to quickly iden-

tify interstrain SNPs in QTL genes, the information available

from the SNP database is not as complete as the data gener-

ated by our in silico approach. Specifically, Celera uses a dif-

ferent strategy for assigning SNPs in the mouse genome and

the SNP database makes very conservative SNP predictions;

fewer than half of the SNPs we identified in silico and veri-

fied by in-house sequencing are in the SNP database. The

SNP database also misclassifies some SNPs as missense

mutations when the SNPs are actually in the 5� or 3� UTR

(J.M.S., unpublished data). And finally, the Celera SNP data-

base does not indicate which regions of a gene’s coding

sequence are covered by reads in each strain, and therefore

does not distinguish between completely sequenced regions

in which no variants have been detected and regions where

no variants are found because sequence coverage for one of

the strains is absent. Such a limitation provides an incom-

plete picture of the interstrain variants that exist in a given

QTL, which in turn could result in passing over the critical

SNP underlying the QTL.

Although the strategy presented here provides a significant

new tool in going from QTL to gene, a number of chal-

lenges still remain on the way to realizing this goal. For

6 Genome Biology Vol 3 No 12 Marshall et al.



example, functional confirmation that an interstrain gene

alteration underlies a QTL, while feasible, is not trivial. As

more QTL-localized genes are identified that have poten-

tially important sequence changes, as described here for

example, it becomes more difficult to test them all func-

tionally. A related ongoing development that should help

this situation by reducing the number of potential candi-

date genes that remain within the QTL interval is reduction

of the interval by fine mapping using specialized congenic

strains or recombinant progeny testing [33,38]. A number

of interval-specific congenic strains have recently been

developed for a number of QTLs and, although straightfor-

ward, fine mapping is still a large-scale enterprise because

of the need to generate and test large numbers of animals

to identify and behaviorally assess informative recombi-

nants, and because of the need for markers to detect such

recombination events.
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Table 3

Phenotypes for which QTLs have been generated using strains
that have whole genome draft sequence available 

Phenotype Number of QTLs (B6xD2)

1 Alcohol drinking - preference 7

2 Alcohol drinking - acceptance 1

3 Alcohol conditioned taste aversion 3

4 Cocaine seizures 3

5 Morphine preference 1

6 Morphine analgesia 2

7 Screen test sensitivity 8

8 Ethanol-induced locomotor activity 3

9 Basal activity 1

11 Acute alcohol withdrawal 5

12 Acute pentobarbital withdrawal 3

13 Chronic alcohol withdrawal 3

14 LORR duration 4*

15 LORR Bec 14*

16 Free-choice ethanol consumption 6*

17 Behavioral effect of stress 7*

18 Porphyria 3

19 Liver injury and porphyria 3

20 Lymphocyte proportion B220 (%) 2

21 Lymphocyte proportion CD4 (%) 1†

22 Lymphocyte proportion CD8 (%) 1

23 Hepatic lipid peroxidation potential 1

24 Peak bone mass 16*

25 Variation in TRBV4 expansion 2

26 Maximal electroshock seizure threshold 4

27 Variation in cerebellar size 4

28 Variation in IGL volume 1

29 Susceptibility to mycobacterium tuberculosis 2, 1†

30 Acute behavioral sensitivity to paraoxon 6*

31 Circadian period of locomotor activity 1†

32 Short-term intake of saccharin 1

33 Short-term intake of sucrose 1

34 Short-term intake of quinine 1

35 Testicular weight 1

36 Bone density 6

37 Contextual fear conditioning 5

38 Hypothermic sensitivity to quinpirole 1

39 Tolerance to quinpirole 1†

40 Sensitivity and tolerance to 1†

quinpirole-induced hypothermia

41 Baseline locomoter activity 3†

42 Locomotor sensitivity to quinpirole 1†

43 Hypnotic sensitivity to ethanol 1*, 1†

Table 3 (continued)

Phenotype Number of QTLs (B6xD2)

44 Body weight 1

45 Tail length 1

46 Methamphetamine responses

Chewing 5

Climbing 14

Home cage locomotor activity 20

Body temperature change 22

47 Pcp-induced behavior 3*

48 Amp-induced behavior 6*

49 Antinociceptive responsiveness to N2O 7

50 Corticosterone response to ethanol 5

51 High-affinity choline uptake 1†

Phenotype Number of QTLs (B6xA/J)

52 Cocaine-induced locomotor activity 2

53 Seizure susceptibility (beta-CCM administration) 3

54 Habituated open field behavior 2, 5†

55 Hormone-induced ovulation rate 2, 5†

56 Light-to-dark transition behavior 3, 5†

57 Center time behavior 5†

58 Initial ambulation in the open field 1, 4†

59 Vertical rearings 1, 2†

60 Trypanosomosis resistance 1

61 Nickel-induced acute lung injury 1, 2†

62 PKC-alpha content 1

63 PKC activity 1

Total number of QTLs 276

*QTLs identified as suggestive in the original publications. †QTLs
identified as provisional in the original publications.



While such challenges remain, the new genomics tools and

resources that are now available or are becoming available

are clearly providing a major impetus to this field. The

power of high-density microarray studies to identify QTL-

related genes and pathways, draft genomic sequences for

the primary mouse strains used for QTL analysis, and

evolving bioinformatics tools and databases are all making

major impacts on this field, with more improvements to be

expected. For example, after this work was completed, we

used the in silico approach on a QTL identified using B6

and A/J strains and found that coverage was considerably

higher than reported in this study. We found that in an

analysis of over 30 QTL genes the in silico coverage for B6

and A/J was 98% and 91%, respectively, with a total cover-

age for both of 90% (J.M.S., unpublished data). Finally,

the anticipated completion of the B6 genome sequence and

deeper sequence coverage of the D2 and A/J genomes, in

particular, if carried out would remove the last remaining

obstacles to virtually complete in silico discovery of gene

variants for the several hundred QTLs identified using

these strains.

Materials and methods 
Identification of genes within QTL regions 
A list of known genes within the 1.0 LOD confidence interval

for each QTL was found using the NCBI vs MGD

human/mouse homology maps at NCBI [39]. This list was

screened for candidate genes on the basis of gene expression

within the brain and functional relevance to the QTL pheno-

type. GenBank accession numbers for the complete coding

region sequence of each candidate gene were found on

LocusLink. Coding region sequences were retrieved from

GenBank and used as the query for BLAST searches. 

A more complete list of genes and gene predictions within

the QTL was found on the Celera Discovery System [40].

The genetic marker with the highest LOD score for a QTL

was localized on Celera’s physical map and a list of genes

and predicted genes within an interval on either side of this

marker was generated and screened for candidate genes.

Coding region sequences of the selected genes were

retrieved either from Celera or NCBI and used as the query

for BLAST searches. 

BLAST searches 
A MegaBLAST search of the mmtrace database on NCBI [41]

was used to retrieve B6 sequences from the public database.

Low complexity was filtered, percent identity was set to 98%,

and the number of alignments to return was set to 100.

Results were saved as a text file. A BLASTN search of the All

Mouse Fragments (masked) database on Celera [42] was

used to search for D2 sequences. The e-value was set to 0.1,

and the number of hits to return was set to 250. The com-

plete entries view of the results was exported to a file which

was given a .txt extension.

JAVA scripts to process BLAST results 
A script, named Mouse Gene Selection NCBI (MGS_NCBI),

was written in JAVA and used to parse BLAST results from

NCBI. This script filters the BLAST results and only selects

hits which have percent identity greater than or equal to 98%

and e- value, which is a measure of the statistical significance

of BLAST hits, less than or equal to 0.0001. The e-value is the

number of hits with the same degree of similarity one would

expect to find by chance if there were no true matches in the

database. Another script, Mouse Gene Selection Celera

(MGS_Celera), was written in JAVA and used to parse BLAST

results from Celera. This script filters the BLAST results and

only selects hits with strain name DBA/2J, e-value less than or

equal to 0.0001 and percent identity greater than or equal to

98%. After filtering the BLAST results, the script saves each

alignment as an individual text file. When one hit aligns with

more than one region of the query sequence, the entire hit is

discarded if any of the alignments does not meet the above cri-

teria. As both scripts are written in JAVA, they can be run on

Unix, Macintosh or PC platforms.

Alignment of filtered BLAST results 
Filtered BLAST results were aligned using AutoAssembler

2.1. For each gene, one alignment file was made of the fil-

tered B6 BLAST results and a separate alignment file was

made of the filtered D2 BLAST results. The B6 alignment file

was then compared to the D2 alignment file to identify

sequence changes. When sequence variations were found

within a strain they were regarded as true only if more than

half the reads for a strain contained the change. This crite-

rion was checked for validity by in-house sequencing. 

In-house sequencing 
In-house sequencing was used to test in silico sequence pre-

dictions and also occasionally to fill in gaps that remained in

certain genes. C57BL/6J and DBA/2J mice were obtained

from the Jackson Laboratory. Animals were euthanized and

the brains dissected. Whole-brain RNA was isolated using an

RNeasy Maxi Kit (Qiagen). cDNA was synthesized by RT-

PCR using SUPERSCRIPT First Strand Synthesis System for

RT-PCR (Invitrogen). C57BL/6J, DBA/2J, A/J, 129X1/SvJ,

and 129S1/SvImJ genomic DNAs were obtained from the

Jackson Laboratory. Primer3 software [43] was used to

design primers to amplify either cDNA or genomic DNA.

Template DNA was amplified by PCR in the Perkin Elmer

GeneAmp PCR system 9700. A typical reaction cycle was

denaturation for 3 min at 94°C followed by 35 cycles of

denaturation for 15 s at 94°C, annealing for 1 min 15 s at

54°C, and extension for 1 min 15 s at 72°C with a final exten-

sion step at 72°C for 10 min. Products were run on a 1.7%

agarose gel, stained with ethidium bromide, and purified

using QIAquick Gel Extraction kits (Qiagen). PCR products

were reamplified when necessary.

PCR products were sequenced using ABI Big Dye Termina-

tor v.2 chemistry and cycle sequencing and sequence traces
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read on an ABI PRISM 3100 Gene Analyzer. When in-house

sequencing was done to fill gaps from the in silico alignment,

a minimum of one forward read and one reverse read was

run for each sample of PCR products. When-in house

sequencing was done to verify nonsynonymous changes

found in the in silico alignment, a minimum of two forward

reads and two reverse reads was run for each sample of PCR

products. Sequencing data for each strain were analyzed

with the Consed software suite [44]. Sequencing was

repeated for regions of poor quality (that is, Phred score

< 40). High-quality sequence was exported and B6 sequence

was compared to D2 sequence using AutoAssembler to iden-

tify changes between the two strains.
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