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Abstract
How would resources be allocated among fertility, survival, and growth in an optimal life history?
The budget constraint assumed by past treatments limits the energy used by each individual at each
instant to what it produces at that instant. We consider under what conditions energy transfers from
adults, which relax the rigid constraint by permitting energetic dependency and faster growth for the
offspring, would be advantageous. In a sense, such transfers permit borrowing and lending across
the life history. Higher survival and greater efficiency in energy production at older ages than younger
both favor the evolution of transfers. We show that if such transfers are advantageous, then increased
survival up to the age of making the transfers must co-evolve with the transfers themselves.
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1 Introduction
A growing literature seeks the optimal solution to the “general life history problem”, how to
allocate resources among fertility, mortality and growth from birth to death. Most optimal life
history studies of which we are aware assume that the individual can use only the energy that
it produces (forages) in each period, and the life history is optimized subject to this strict budget
constraint (Cichon [1997], Cichon and Kozlowski [2000], Vaupel et al [2004], Abrams and
Ludwig [1995], Taylor et al. [1974], Goodman [1982], Schaffer [1983], Stearns [1992], Clark
and Mangel [2000]; the important exceptions are Kaplan and Robson [2002] and Robson and
Kaplan [2003]). But what if individuals were permitted to borrow and lend over their life
cycles? Markets for loans do not, of course, exist in nature, but intergenerational transfers from
adults to juveniles are common and serve a similar function. Transfers permit a stage of
nutritional/energetic dependence early in life with rapid growth and development, followed by
a corresponding adult stage of “repayment” in which transfers are made to the young. The strict
period-by-period energy constraint is then replaced by a looser version which, in a steady state,
requires that the survival-weighted and discounted sum of transfers received minus transfers
made over the life cycle must be zero, similar to a life cycle budget constraint with borrowing
and lending at an interest rate equal to the population growth rate.3
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Many species, including all mammals, most birds, many insects, and some fish and reptiles,
make various forms of intergenerational transfers (see Clutton-Brock [1991]). The duration
and magnitude of such transfers are extraordinary in the case of human beings and some
dolphins and whales, and the longevity of these species (see Carey and Gruenfelder [1997])
motivates our exploration of the possible correlation between intergenerational transfers and
the optimal life history strategies. We will consider how the life history changes shape when
intergenerational transfers are permitted and confer a selective advantage. Lee (2003) took the
existence of transfers as given, and did not consider physiological tradeoffs. In this paper we
will examine the conditions under which transfer behavior (parental care) evolves, and consider
how mortality co-evolves, when tradeoffs are explicitly modeled through the energy budget
constraint.

The analysis we present is formally applicable to cooperative breeders, that is, groups of
individuals in which some members across the age spectrum potentially provide food and care
to young that are not necessarily their own offspring.4 In such cases, we can imagine a lineage
carrying a mutation forming a stable population in aggregate, and living in small cooperatively
breeding groups. Each group can be viewed as a microcosm of the lineage, with random
departures from its stable age distribution. To obtain analytic results, we need the stable age
distribution to write the balancing constraint on transfers.5 Within each group, all members
share the same genotype which might include a gene promoting longevity, transfer behavior,
or punishment of freeriding, for example. Transfers take place within these groups. Humans
are cooperative breeders, and it has been argued that their longevity, particularly in
postreproductive years, is related to their transfer behavior.6 There is also evidence (Brown
[1987]) that cooperatively breeding bird species live longer than others.

The evolution of altruistic behavior raises difficult questions addressed by a large literature.
We acknowledge these difficulties, but here we simply assume that some genotype can solve
these difficulties and support transfer behavior. Although humans and other species we have
in mind do not reproduce clonally, we believe that our analysis captures the central forces at
play.

We begin by considering what life history for a lineage-founding individual would produce
the greatest number of living descendants at a specified future date, optimizing subject to the
usual budget constraint that does not allow transfers (section 2). We show that the appropriate
measure of fitness to be maximized for this individual is the Malthusian parameter. This sets
the stage for considering the conditions under which intergenerational transfers would be
selected. We investigate when such transfers increase fitness (section 3), and if they do, how
low mortality coevolves with them (section 4). The last two sections contain extensions and
conclusions.

2 A Model of Optimal Life History
We first consider the case in which transfers are not an evolutionary option. The analysis could
be carried out for a life history of potentially unlimited length, but we will instead consider the
more realistic case of an individual who is not fertile past age y.7 To avoid the complications

3Some transfers take the form of stored output, for example paralyzed prey, and therefore occur with a delay. In steady state, this constraint
will still hold: the survival-weighted and discounted transfers made and received over the life cycle must be equal. Out of steady state,
the budget constraint would be more complicated to accommodate storage.
4Whether or not cooperative breeding evolved to facilitate intergenerational transfers, the demography of cooperative breeding groups
provides an analytic setting in which stable population methods can be appropriately used.
5The analysis for transfers within parent-offspring sets is more difficult, because their age distributions cannot plausibly be viewed as
microcosms of the lineage. However, the technical difficulties in analyzing the parent-offspring case do not seem to point to substantive
differences in the explanation of transfer behavior between this and the cooperative breeding contexts.
6See Clutton-Brock (1991), Kaplan and Robson (2002), Lee (2003) and Lahdenpera et al. (2004).
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of mating and sexual reproduction, we will consider a population of females reproducing
asexually. To unify the terminology and notation, we call the age interval [a, a+1) age a+1,
and assume that all decisions affecting age a+1 are made at time a. The probability that a person
survives from a to age just below a + 1 is denoted pa+1. Fertility at age (a + 1) takes place just
before a + 1, conditional on survival, and is denoted ma+1.

At age a, a typical individual expects to have energy or resources which, following Abram and
Ludwig (1995), Cichon (1997) and Vaupel et al. (2004), she allocates to fertility (ma),
maintenance (pa) and growth (za). We can think of growth as an increase in body size, but we
could also think of it as other kinds of physical investment such as development of the brain,
as in Kaplan and Robson (2002) and Robson and Kaplan (2003). Because the individual can
potentially reproduce in all periods before y, there is a tradeoff between energies devoted to
reproduction, growth and maintenance: Having more children early in life comes at the expense
of her growth and survival probability, which in turn affects her later fertility.

2.1 The Maximization Problem
The disposable resource or energy of an individual aged a depends on her body size, denoted
wa. Specifically, her age-a budget (energy) constraint is written as

bapa + cama + daza ≤ ζawa, ∀ a (1)

where ba, ca, da are constant coefficients, which express the rate at which energy can be used
to achieve various levels of survival, fertility or growth. ζa is a production coefficient linking
body-size with the net production, or acquisition through foraging, of disposable energy.8 It
is easy to see that one of the four coefficients (ba, ca, da, ζa) in (1) is redundant, and so at each
age a, we normalize ζa to be 1. This simplifies the expressions in what follows, but note that
whenever we need to combine units of energy from different ages, we will have to convert the
units appropriately. When this happens we will alert the reader.

The body size of an individual grows according to the following rule: wa+1 ≡ wa + za. The
initial body size w1 is itself an important intergenerational transfer from the mother. In our
analysis, w1 is given, while the adult size is part of the optimization problem through allocation
of energy to growth. Thus the ratio of birth size to adult size is endogenous in our analysis.
Given our linear homogeneous budget constraint, scale is irrelevant, so only this ratio matters.
In this paper our emphasis is on intergenerational transfers occurring after birth.9

We expect that natural selection will maximize reproductive fitness, measured as the
representation of an individual’s genes at some future date τ. Since we are assuming clonal
reproduction, this is equivalent to maximizing the number of living descendants at some date
τ, which may be far beyond the individual’s finite lifespan.10 Consider an individual age a at

7It is not necessary to assume that fertility is 0 past some age y. However, absent this assumption, fertility and survival would never reach
zero in our optimization setup. As long as fertility and survival are not infinitely costly, death will never be optimal in our model setup.
This is because fertility ma occurs only after survival pa, so it can never be optimal to spend all energy on fertility at some age and none
on survival. For this reason, our analysis focuses on survival rather than on life span. We could define the end of life as that age at which
the probability of survival to the next period drops below some specified level, such as .001. Perhaps for similar reasons, Cichon and
Kozlowski (2000) adopted this approach.
8Note that allowing the coefficients (b, c, d) to be age-dependent is just a general way to write down the energy constraints. The
comparative statics results we show later in Propositions 3 and 4 do not depend on the relative size of such coefficients, although the
age-specific life-history trajectories do. See Chu and Lee (2005) for more discussion of the shape of optimal age-specific mortality.
9The linear form of the budget constraint, as in Taylor et al. (1974) and Vaupel et al. (2004), is to some extent restrictive. Appropriate
nonlinear effects would include an upper bound of unity for pa, with increasing costs as this limit is approached; a dependence of pa on
body weight wa; and a dependence of fertility on body weight.
10As we shall see, once the population reaches steady state, the fitness measure is also stable. For this reason, τ should exceed the
approximate number of periods from the time in question until the steady state is reached.
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time t. Let Va,t(.) be her contribution to the number of descendants at time τ. Here t will measure
the remaining length of time until τ, when fitness is assessed, so for individuals closer to τ, t
will be smaller. Bellman’s (1957) principle of optimality can be used to maximize the expected
number of future descendants at τ. According to this principle, energy is allocated at age a and
period t so as to maximize the contribution to fitness assessed at τ, assuming that the energy
in all future ages and periods is also allocated optimally.

2.2 The Solution
For any a ∈ {1, 2,…,y}, let the age-a strategy be θa ≡ (pa, ma, za) and its feasible set be Ω
(wa). For any t, the Bellman equations can be written as follows, for which the interpretation
is given in Appendix A.11

V1,t(w1) = max
θ1∈Ω(w1)

p1m1V1,t−1(w1) + p1V2,t−1(w1 + z1)

⋮
Vy−1, t(wy−1) = max

θy−1∈Ω(wy−1)
py−1my−1V1,t−1(w1) + py−1Vy,t−1(wy−1 + zy−1)

Vy,t(wy) = max
θy∈Ω(wy)

pymyV1,t−1(w1) .

(2)

We denote the optimum in (2) by θa* = (pa*, ma*, za*). Now, we try to write (2) in terms of
V1,t for different t’s. Let φa ≡ (p1*… pa*ma*) be the net maternity function. Starting from the
age-y equation, lagging each equation by one period, substituting it into the equation one line
above, and iterating the process, we obtain

V1,t = φ1V1,t−1 + φ2V1,t−2 + … + φyV1,t−y. (3)

Manipulating (3) can give us a steady-state optimal solution for θa as well as the corresponding
Va(wa). Instead of proceeding in this direction, we shall conform with the literature and apply
the results derived by McNamara (1991).

Writing Va,t as Vt(a), McNamara (p.235) transformed the problem of life history in (2) into the
following recursive process:

Vt+1(a) = max
θa

Tθa
Vt(a),

where the operator T connects the state space across different ages. In this age-specific
stochastic process, the transformation operator constitutes a Leslie matrix. Then the well-
known Perron-Frobenius theorem can be applied to show the existence of a steady state. In
that steady state, the value function Vt(a) of all ages grows at a constant rate, which is the
dominant eigen value of the Leslie matrix. In particular, we can write V1,t as V1,t = A(λ*)t ∀t.
From now on, we shall normalize A to be 1 to simplify the notation.12

Let θ ≡ (θ1, …, θy). We rewrite the maximization problem in (2) as

V1,t = max
θ

p1m1V1,t−1 + p1p2m2V1,t−2 + … + p1p2 … pymyV1,t−y . (4)

11See Ross (1983) for more details of the technical background for (2).
12Note that this result could also be derived from the stationary difference equation in (3). There is, however, a subtle difference between
our setup and that of McNamara’s (1991). In the latter paper, body growth was not a choice variable, whereas in our setting it is. Therefore,
the state-space in our model contains both age and age-specific weight, instead of age alone. However, convergence toward a steady state
can still be obtained in our setting; details are skipped here.
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Let la* = p1* … pa* be the probability of survival from birth to age a. In view of the definition
of φa, we can rewrite (4) as

1 = ∑
a=1

y
la
*ma

*(λ *)
−a

, (5)

This is the Euler-Lotka equation. Thus, we have

Proposition 1—The solution to the value function in (2) has the form V1,t = (λ*)t, where λ*
is the Malthusian parameter solved from (5).

In the analysis above, we derive what a selfish agent that maximizes its own clonal replication
would do, and show that the objective to be optimized turns out to be the Malthusian parameter.
Explicit characterization of the generic optimization problem in (2) helps us specify and
analyze the intergenerational transfers. The setting in (2) also provides us with a decision
framework for the comparative static analysis of the next section.

2.3 A Corner Solution Pattern
In reality, many species first grow and then become fertile once they have reached their adult
size. They cease growth or grow very slowly once they start bearing offspring. Our main interest
is in species that make intergenerational transfers, such as mammals or birds, and these exhibit
determinate growth of the sort described. The following proposition, proved in Appendix B,
shows that the determinate growth pattern emerges in our model:13

Proposition 2—Values of ma and za cannot both be interior solutions at the same time.

Given the linear energy constraint in (1), proposition 2 is intuitive and also consistent with that
found in Taylor et al. (1974), and Vaupel et al. (2004) and is convenient for our later analysis.
Biological interepretations and reasons behind the choice of determinate and indeterminate
growth can be found in Heino and Kaitala [1999]). Simple differentiation of (2) tells us that
any growth in size at age a has the benefit of increasing the number of future offspring at
various ages by a constant factor: pa+1/ca+1 at age a + 1, pa+1pa+2/ca+2 at age a + 2, ….
Furthermore, in a steady state the value of a new-born at time t is proportional to λt. Thus the
steady-state tradeoff between increasing size and bearing offspring is a constant, which
depends on the parametric value of ca’s and da’s. Therefore, a corner solution of either ma or
za must arise.

Substituting (1) into (2), one sees that the objective function at any age is a concave function
of pa. Thus, by restricting the range of the parametric values of (ba, ca, da), an interior solution
of pa can often be obtained (see also footnote 7). In what follows, we shall concentrate on
analyzing the case in which an organism first grows for r periods, and then stops growing and
reproduces. In our notation, the organism would have ma = 0 in the first a ≥ r periods, and
would have za = 0 when a ≥ r + 1.14

13Suppose with effort za there is probability q(za) of achieving size wa + g1, and probability 1 − q(za) of achieving size wa + g2. In this
case, our corner-solution argument will not hold. This may correspond to the case of indeterminate growth. An interior solution could
also arise if the rates of converting energy into fertility and into body size were not constant, but rather varied with the amount of energy
so converted. See Stearns (1992) and Taylor et al. (1974).
14For instance, when y = 3 (three periods of life) and r = 1 (the first period being childhood), the condition is d1λ2 < c1p2(λ/c2 + p3/
c3) and d2λ > c2p3/c3, according to Appendix B.
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3 Optimal Life History and Transfers
In some species, parents invest in their offspring after birth by making transfers of food,
guarding against predators, warming or ventilating them, and so on. We shall focus on the most
prevalent form of transfers by mammals, when adult individuals aged j ≥ r + 1 transfer
something to offspring aged i ≤ r. We ask when such a transfer would raise the intrinsic growth
rate λ, and therefore be selected.

Recall that equation (1) was normalized at each age a by dividing through by ζa Because of
this, when we consider transfers between ages i and j, we must use a conversion factor ηij (=
ζi/ζj). Let the transfer given by an individual at age-j be Tj and the amount received by an age-
i be Ri. The demography imposes a feasibility condition on these transfers in a steady state:

ηijλ
j−ig(Ri) = pi … p j−1T j. (6)

where g(.) characterizes the technology for receiving transfers and converting them into the
equivalent of energy directly produced by the age-i child recipient,15 with g(0) = 0, and g′(.)
> 0. If there is no cost of converting the transferred energy, then g(R) simply equals R. We
introduce g(.) to reflect the likelihood that the transfer process becomes less efficient at very
high rates. This nonlinearity makes it possible to consider interior optimal transfers.

Because fertility is zero in the first r periods of life, from (1) we have zs = (ws−bsps)/ds, s ≤ r,
s ≠ i. For the age-i, zi = (wi+Ri−bipi)/di because the age-i agent receives transfer Ri. And because
there is no body growth in periods s ≥ r+1, we know from (1) that ms = (ws−bsps)/cs ∀s ≥ r+1,
s ≠ j. For the age-j, mj = (wj − Tj − bjpj)/cj, because the age-j agent gives a transfer Tj. Finally,
since body size does not grow after age r + 1, we have ws = wr+1 ∀s ≥ r + 1.

With this background information and assuming steady state, equation (4) can be rewritten as

λt = max
θs

p1 … pr pr+1mr+1λ
t−r−1 + … + pr+1 … pymyλt−y , (7)

where all ps and ms are evaluated at their optimal values. Note that the value of Ri is implicit
in this equation, and is here taken as given and fixed. Note also that the form in which (7) is
written assumes that r is given, whereas it is in fact endogenous, and varies as ps, ms and zs
vary. For small variations in the neighborhood of the optimum, however, r will not change. To
see this, imagine that we carried out many otpimizations of the form of (7), sequentially taking
r equal to a for every possible discrete age group a. If we now choose the value of r associated
with the greatest maximum value of λ, that will be the optimal r which occurs in (7). Note that
this value of r is a function of the level of transfers Ri. However, due to the discreteness of the
age groups, for small variations of Ri the value of the optimal r will not change. For this reason,
we can differentiate (7) with respect to transfers Ri to determine the effect on λ of a marginal
increase in transfers.

Starting from a scenario with no transfers (Ri = 0), we shall evaluate how the steady state
selection criterion λ will be affected by the introduction of a marginal transfer. The case of
optimal transfers will be discussed briefly later. We now differentiate (4), and use the steady
state condition V1,t = λt to obtain16

15We characterize the transfer by its energy cost to the individual making the transfer. The function g(.) should have a subscript i to
indicate that this is a function specific to age-i. However, since our analysis applies to any unspecified i, for the time being we drop this
subscript i for simplicity of notation.
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−
(r + 1)pr+1mr+1

λr+2 + … +
ypr+1 … pymy

λ y+1 −
pr+1 … p jηijg(Ri)( j − i)

c j pi … p j−1λ
i+1 λ ydλ

+{Ki
pr+1λ

y−r−1

cr+1
+ … +

pr+1 … pyλ0

cy
− pr+1 … p j

λ y− j

c j
Gij}dRi = 0

(8)

where

Gij ≡
dT j
dRi

≡
ηijλ

j−igi
′(Ri)

pi … p j−1

is the conversion factor between the transfer Tj and the effective value of the transfer received,
and

Ki ≡ 1
di

(1 + 1
di+1

) … (1 + 1
dr

),
which is the compound factor of accumulating size from age i to maturity (the end of age r).
That is, an increment to growth at age i will result in larger body size and increased foraging
productivity at age i + 1, which in turn raise body size at age i + 2, and so on. In (8) the coefficient
of dλ is negative by the stability condition of λ. In the case when Ri = 0, (8) only needs some
minor revision: Gij has to be evaluated at Ri = 0 and g(Ri) = 0.

Substituting the formula for Gij into (8), we have

Proposition 3
The sign of dλ/dRi, which is the selection impact of a marginal transfer from age-j to age-i, is
identical to the sign of

Bij ≡ Ki
pr+1λ

y−r−1

cr+1
+ … +

pr+1 … pyλ0

cy
−

(pr+1 … p j)ηijλ
y−ig ′(Ri)

c j(pi … p j−1)
. (9)

On the right hand side of (9), the first term (Ki[.]) is the lifetime expected sum of fertility
increase, from age r + 1 to age y, due to the increased body size. Transfers to young individuals
lead to larger adult body sizes, which in turn generate more energy for growth and other
purposes. The envelope theorem tells us that the net marginal benefit of a change in Ri can be
evaluated by the net increase in reproduction. Because ms is weighted by λs, we obtain the first
term as shown. The second term captures the lost fertility at age j due to the out-transfer. Term
Bij must be positive for the transfer to be selected.

Examination reveals that Bij > 0 is more likely to be met under the following conditions: 1)
When there are more age-j adults relative to age-i offspring to share the costs of the transfer
(either larger pi … pj−1, or lower fertility, or both). Higher background mortality (larger
coefficients ba) would work against the evolution of transfers. It also follows from (9) that
transfers are less likely to evolve in the context of rapid population growth (larger λ), for
example for an opportunistic species or under favorable climatic conditions, and more likely
to evolve when carrying capacity is saturated. 2) When the adults are relatively more efficient
than the child at generating energy per unit body size (smaller ηij ≡ ζi/ζj). Perhaps this is more

16Note that the derivatives of the right hand side of (4) with respect to ps (s = 1,…, y) are zeros due to the first order conditions of
maximizing over ps, hence these terms do not appear in the differentiation. This is again an application of the envelope theorem.
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likely for carnivores than herbivores, since catching prey requires more skill, speed, strength,
and weaponry (teeth, claws). 3) When there is a lower cost to augmenting body size between
age i and age j (smaller ds, s = i, …, r in Ki), which makes the investment from adults more
rewarding. 4) When survival from age r + 1 to j is high, so that low adult mortality is a
predisposing factor for the evolution of transfers, at least up to the age of transferring.17

Transfers might be concentrated on younger offspring or older offspring. In general, the
compounded returns to early transfers (larger Ki for smaller i) favor transfers to the young, and
the more so when the young convert energy more efficiently into body size (smaller da for
small a’s). Transfers to older juveniles might still evolve, if their survival were sufficiently
high. Transfers to infants will be more likely if infants are relatively helpless, and unable to
forage effectively (low ζi and hence low ηij). This would be more likely true for carnivores but
less so for herbivores. If older juvenile productivity relative to body weight increased, then
transfers to that age would be less likely to evolve. Finally, a context of more rapid population
growth favors transfers to older juveniles (as revealed by the λy−i term).

4 Coevolution of Transfers and Longevity
Natural selection should move the life history toward the optimal θs ≡ (ps, ms, zs) to maximize
the intrinsic growth rate λ. We now switch back to treating transfers, Ri, as given, and consider
how the optimal levels of pk depend on the level of transfers, for variations that are small enough
such that the optimal age of sexual maturity r, corresponding to the given level of transfers
Ri, does not change. We will develop one result (Proposition 4) that holds in the neighborhood
of the optimal level of transfers, Ri*, and another result (Proposition 5) that holds when transfers
are below this optimal level.

>From the corner-solution pattern presented in section 2.3, it follows that the problem of
finding the optimal life history reduces to searching for the optimal pa’s that maximize λ in
equation (7). Given that the transfer in question is from age j to age i, it is natural to consider
separately the first order conditions for pk when k ≤ r and when k ≥ r + 1. We shall discuss
these cases separately below.

The immature age range corresponds to k ≤ r. Differentiating the right hand side of (7) with
respect to pk and using the envelope theorem, we see that its first order condition is proportional
to the following expression:

Δpk
≡ pr+1mr+1λ

y−r + … + pr+1 … pymyλ

− pkbkKk
pr+1λ

y−r

cr+1
+ …

pr+1 … pyλ

cy

+
(pr+1 … p j)λ

y−i+1ηijg(Ri)

c j(pi … p j−1)
⋅ I (k) = 0, k ≤ r

(10)

where I(k) = 1 if r ≥ k ≥ i, and I(k) = 0 otherwise. The term associated with I(k) is from the
differentiation of (6) (dTj/dRi), which is nonzero only if k is in the range between i and j. The
Kk factor enters (10) because it is the relevant compound growth factor up to age-k.

The sexually mature range corresponds to k ≥ r + 1. Differentiating (7) and using the envelope
theorem yields the following first order condition:

17This can be seen by canceling the (pr … pj−1) term in the numerator and denomenator of the second term of (9), and inspecting the
remaining terms in Bij.
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Δpk
≡ (mkλ y−k+1 + pk+1mk+1λ

y−k + ⋯ pk+1 ⋯ pymyλ)

−
pkbkλ y−k+1

ck
+

(pk ⋯ p j)λ
y−i+1ηijg(Ri)

c j pk(pi ⋯ p j−1)
⋅ I (k) = 0, k ≥ r + 1

(11)

where I(k) = 1 only if r + 1 ≤ k ≤ j − 1, and I(k) = 0 otherwise. In what follows, we shall ask
the following comparative static question: how does the optimal pk change when Ri increases
toward its optimum Ri*?

We note that in the ongoing process of evolution, the cumulation of marginal changes should
eventually maximize a species’ fitness and hence exhaust the selection advantage of increasing
transfers by choosing the optimal Ri* such that

dλ /dRi = 0. (12)

Suppose the optimal transfer from age j to age i, denoted Ri*, has been attained. Totally
differentiating (10) we have

∂Δpk
∂Ri

dRi +

∂Δpk
∂λ dλ +

∂Δpk
∂ pk

dpk = 0. (13)

If we evaluate the derivative around the optimal Ri*, we know from (12) that dλ = 0. The
coefficient of dpk is negative by the second order condition. Thus, we know that as Ri increases
towards the optimum Ri*, whether pk moves in the same or opposite direction hinges on the
sign of ∂Δpk/∂Ri.

Partially differentiating (10) with respect to Ri, we get

∂Δpk
∂Ri

= Ki
pr+1λ

y−r

cr+1
+ ⋯ +

pr+1 ⋯ pyλ

cy
k ≤ r

−
(pr+1 ⋯ p j)λ

y−i+1ηijg ′ (Ri)

c j(pi ⋯ p j)
+

(pr+1 ⋯ p j)λ
y−i+1ηijg ′ (Ri)

c j(pi ⋯ p j)
⋅ I (k).

For r ≥ k ≥ i, I(k) = 1, the last two terms of the above expression cancel, and hence the we see
that ∂Δpk/∂Ri is indeed positive. This means that if Ri increases towards its optimum Ri*, then
pk is also increasing for any r ≥ k ≥ i.

Following similar steps (see Appendix C) we see from (11) that for k ≥ r + 1, pk moves in the
same direction as Ri around the optimum Ri* if and only if ∂Δpk/∂Ri is positive for r + 1 ≤ k ≤
j − 1. Summarizing the above discussion, we have

Proposition 4
Consider a transfer Ri from age j to age i. As Ri increases towards the optimum within the
neighborhood of the optimal Ri* that maximizes the fitness index, survival from age i to age
j must increase.

What about the evolution of survival before age i? We summarize the result in the following
proposition, and the proof is given in Appendix D.
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Proposition 5
If an increased transfer from age j to age i improves fitness, the survival probability up to age
i must also increase.18

Why is it that Proposition 4 applies only to survival improvements between the age of receiving
and the age of giving the transfer, while in Proposition 5 survival also improves at ages from
birth to i? Improved survival from age i to j always imparts an efficiency gain when transfers
are increased, so it is selected. Increased survival from birth to age i does nothing to conserve
the investment in transfers, and in this sense does not impart any efficiency gains when transfers
increase. However, it raises the number of births surviving to age i, and thus raises λ, other
things equal. In the neighborhood of the optimal transfer, the effect of this increase in survivors
to age i is exactly offset by a reduction in transfers per offspring age i, so λ is unaffected, and
the survival improvement to i is not selected.

Once an adult is both past the age of providing transfers and no longer fertile, her continuing
survival makes no contribution, positive or negative, to reproductive fitness. Mathematically,
with respect to a transfer from age j to age i, we can say nothing about the comparative statics
with respect to ps for s ≥ j.

5 Extension and Discussion
5.1 General Optimal Transfers

So far we have discussed the impact of a transfer from one age j to another age i, but of course
transfers may be provided by adults of various ages, and received by children of various ages.
The feasibility constraint in (6) need not hold for each (i, j) pair, but rather resources must be
balanced over the lifecycle. Specifically, let g(Ri) indicate the energy cost of all transfers
received by an individual at age i. The life cycle feasibility constraint is:

∑
i

ζigi(Ri)λ
−i = ∑

j
ζ j pi ⋯ p j−1T jλ

− j,

similar to that in Lee (2003).

In general it will be optimal for adults of many ages to make transfers, and then the marginal
benefit of transferring from each age must be equalized. Likewise, the marginal benefit at each
age of receiving must be equalized. As long as we have interior solutions, we should have a
system of equations to solve for such optimal transfers. Details will not be provided here, but
one should note that the co-evolution result of transfers and longevity we derived in the previous
section would not be affected by such complications.

5.2 Selection and Population Density
For a given set of the parameters ba, ca, da and ζa, for all a, there will be some optimal growth
rate associated with the optimal life history, and only by chance will it be zero. If the growth
rate is positive, then nothing in our model prevents population density from increasing without
limit. It is beyond the scope of this paper to consider the dynamic trajectory as density changes.
However, we will sketch the way density could be introduced into the model and provided that
density is at an unchanging equilibrium level, no change in the analysis would be required.

Density is measured as the total body mass of the population per environmental resource. The
main effect of greater density would be to make foraging more difficult and thereby to reduce

18As Ri approaches Ri*, ∂pk/∂Ri → 0, ∀k ≤ i − 1.
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the energy yield for a given body weight, that is to reduce the coefficients ζa. The conversion
of energy into body weight, fertility, or survival as expressed by the other parameters would
not be affected to a first approximation, although a more elaborate analysis might permit density
to affect mortality (through contagion) and fertility (through limited breeding sites) directly,
in addition to the indirect effect through energy production that is now included. So long as
the relationship is monotonic, its precise functional form need not concern us. We can simply
multiply ζa at every age by some factor that makes the corresponding optimal growth rate λ*
equal unity.

When transfer behavior evolves, the founder of the mutant line actually experiences a lower
NRR than otherwise, because she foregoes some adult fertility and survival in order to divert
energy to caring for her existing offspring, although she received no such care in her youth. In
this way she gets the lineage started, and subsequent members of the lineage realize a higher
NRR as a result of her initial sacrifice and the improved life history it made possible. Of course,
the inclusive reproductive fitness of the first individual is also raised thereby, even though her
own NRR is reduced.

5.3 The Linear Technology
We assumed that the budget constraint is linear homogeneous, reflecting a linear tradeoff
technology. We could, instead, give equation (1) a nonlinear form, for example by allowing
the cost of fertility at age a to be a nonlinear function ca(.) of ma. In this case, second order
derivatives would appear in the comparative statics formulas. It would be possible to derive
comparative static results if we are willing to assume the sign of these second derivatives,

6 Conclusion
The optimal life history approach seems well suited for exploring the positive selection of life
history characteristics. In this paper, we are able to connect formally the optimization problem
for an individual life history and the aggregate criterion of the growth rate. This enables us to
carry out a comparative static analysis of the effects of these parameters, in contrast to the
previous literature which has explored optimal life histories through numerical solutions.

Previous applications of the optimal life history approach have assumed that the individual’s
energy budget must balance at every age. Intergenerational transfers replace this instantaneous
budget constraint with one that holds over the life cycle. Here we model intergenerational
transfers, and ask under what conditions they would improve reproductive fitness and be
selected. With transfers, a period of juvenile dependency with more rapid growth and
development can be funded by contributions from adults. We consider what features of an
initial life history without transfers would make it more likely that intergenerational transfers
would confer a selective advantage. Factors favoring the selection of transfers include the ratio
of adults to juveniles, greater efficiency of the old relative to the young in producing energy
per unit of body size, and the efficiency of juveniles in converting energy into body size. We
also discussed the factors favoring transfers to younger versus older offspring, and favoring
transfers from older versus younger adults. Because lower mortality favors the selection of
transfers from old to young, and because lower mortality coevolves with increased transfers,
we find the longevity and transfers should increase in a mutually reenforcing way, as argued
in Carey and Judge (2001) and Lee (2003).

When transfer behavior evolves, the founder of the mutant line actually experiences a lower
NRR than otherwise, because she foregoes some adult fertility and survival in order to divert
energy to caring for her existing offspring, although she received no such care in her youth. In
this way she gets the lineage started, and subsequent members of the lineage realize a higher
NRR as a result of her initial sacrifice and the improved life history it made possible. Of course,
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the inclusive reproductive fitness of the first individual is also raised thereby, even though her
own NRR is reduced.

A central finding is that on the one hand, lower mortality makes the evolution of transfers more
likely, and on the other hand, if increased transfers do evolve then longevity should coevolve.
With transfers from adults to juveniles, costly resources are diverted from immediate
reproduction to care for existing offspring, and concurrent life history investments in reducing
mortality serve to protect these investments.
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Mathematical Appendix

Part A
The interpretation of equation (2) is as follows: p1m1 in the first term on the right hand side of
(2) characterizes the event that an age-1 individual survives (with probability p1) and bears
m1 offspring. Since each of these offspring is valued V1,t−1 in period t − 1 (because the offspring
is one period closer to τ), V1,t−1 should be multiplied by p1m1 to obtain the expected value.
The V2,t−1 in the second term of (2) is the value function of this individual at age-2. With
probability p1 the individual will survive to face this state, and so V2,t−1 should be multiplied
by probability p1. The age-2 body size should be w2 = w1 + z1 instead of w1. The interpretations
of other expressions are similar, so we move forward to the last equation. For an individual
aged y in period t, py and my are chosen to maximize the expected value of the last birth. At
age y, there is no gain from further growth. This generates the age-y expected value
pymyV1,t−1. Since y is the last fertile age by assumption, there is no second term for the last
equation.

Part B
Let g(α) ≡ maxx f (x, α). The envelope theorem (see Simon [1976]) says that when x has an
interior solution, dg/dα = ∂g/∂α around the neighborhood of the maximum, for the indirect
effect through x is absorbed by the first order condition of x. Applying the envelope theorem
to (2), we see that

Va,t
′ = pa

*{V1,t−1/ ca + pa+1
* V1,t−2/ ca+1 + pa+2

* (V1,t−3/ ca+2 + ⋯ }.

For the age-a problem, concerning the trade-off between ma and za, we have the following first
order condition (in terms of economics, MRS equals price ratio) for an interior solution:

pa
*V1,t−1

pa
*pa+1

* {V1,t−2/ ca+1 + pa+2
* V1,t−3/ ca+2 + pa+3

* (V1,t−4/ ca+3 + ⋯ ) } =
ca
da

.

In the steady state, V1,t is a constant of power λ for all t, as shown in the text, and so the above
expression can be further rewritten as

pa
*λ t−1

pa
*pa+1

* {λ t−2/ ca+1 + pa+2
* λ t−3/ ca+2 + pa+3

* (λ t−4/ ca+3 + ⋯ ) } =
ca
da

.

Canceling pa* in the numerator and the denominator of [A2], we see that both sides of [A2]
are not dependent on any age-a choice variable. Thus, expression [A2] could hold only by
accident in a steady state, which in turn implies that ma and za cannot be interior solutions at
the same time.
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Part C
Partially differentiating Δpk in (11) with respect to Ri, we have

∂Δpk
∂Ri

= Ki
λ y−k+1

ck
+

pk+1λ
y−k

ck+1
+ ⋯ +

pk+1 ⋯ pyλ

cy
k ≥ r + 1

+
pk ⋯ p jλ

y−i+1ηijg ′ (Ri)

c j pk(pi ⋯ p j−1)
⋅ I (k) −

pk+1 ⋯ p jλ
y−i+1ηijg ′ (Ri)

c j(pi ⋯ p j−1)
.

For r+1 ≤ k ≤ j −1, I(k) = 1, the last two terms in the above expression cancel, and hence
∂Δ pk/∂Ri s positive. As such, we know that pk and Ri also move in the same direction for r +
1 ≤ k ≤ j − 1 as Ri moves toward the optimum, Ri*

Part D
For k ≤ i − 1, the first order condition for pk is similar to that in (10), except that I(k) = 0 ∀k ≤
i −1:

Δpk
≡ pr+1mr+1λ

y−r + ⋯ + pr+1 ⋯ pymyλ

− pkbkKk
pr+1λ

y−r

cr+1
+ ⋯

pr+1 ⋯ pyλ

cy
, k ≤ i − 1

Partially differentiating the above expression with respect to Ri yields

∂Δpk
∂Ri

= λBij

where Bij is given in (9). We know that dλ/dRi = 0, and hence Bij = 0 around the optimum
Ri*. Thus, for k ≤ i − 1, dpk/dRi is close to zero around the optimum transfer. But we are able
to say more about the change of pk in the process when Ri increases toward Ri*

Equation (13) says that for any dRi, the sign of dpk/dRi is the same as that of [∂Δpk/∂Ri] +
[∂Δpk/∂λ] · [dλ/dRi]. Partially differentiating ∂Δpk with respect to λ, using (10) to simplify the
result, and substituting in the dλ/dRi formula, we have

∂Δpk
∂Ri

+

∂Δpk
∂λ ⋅ dλ

dRi
= λBijE

+λBij 1 −

pr+2mr+2

λr+2 + ⋯ +
(y − r − 1)pr+2 ⋯ pymy

λ y − F

(r + 1)mr+1

λr+1 + ⋯ +
ypr+2 ⋯ pymy

λ y − F

,

(A3)

where

E ≡ pkbkKk
pr+2

cr+2λ
r+2 + ⋯

pr+2 ⋯ py

cyλ y > 0,

and
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F ≡
pr+2 ⋯ p jg(Ri)( j − i)

c j pi ⋯ p j−1λ
i .

It is easy to see that terms in the square brackets of (A3) are positive. We showed in section 3
that whenever the increase of Ri improves fitness, Bij must be positive. Thus, as Ri moves
toward the optimum Ri* to improve fitness, Bij > 0 must hold in the process, which means that
dpk/dRi > 0 ∀k ≤ i − 1. Thus, we have proved proposition 5 in the text.
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