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Gene expression has a stochastic component because of the single-
molecule nature of the gene and the small number of copies of
individual DNA-binding proteins in the cell. We show how the
statistics of such systems can be mapped onto quantum many-body
problems. The dynamics of a single gene switch resembles the
spin-boson model of a two-site polaron or an electron transfer
reaction. Networks of switches can be approximately described as
quantum spin systems by using an appropriate variational princi-
ple. In this way, the concept of frustration for magnetic systems can
be taken over into gene networks. The landscape of stable attrac-
tors depends on the degree and style of frustration, much as for
neural networks. We show the number of attractors, which may
represent cell types, is much smaller for appropriately designed
weakly frustrated stochastic networks than for randomly con-
nected networks.

The complexity of a cell’s genome is expressed through the
interactions of many genes with a large variety of proteins.

Understanding gene expression, therefore, is a many-body problem.
But what kind of many-body problem? Should we think of gene
expression using the metaphors and techniques of deterministic
many-body problems like those developed for the ‘‘clockwork
Universe’’ of 19th century celestial mechanics? Or is it appropriate
to use statistical ideas like those that form the language of con-
densed matter physics and physical chemistry (1)?

The deterministic view has much to recommend it. Miracles
of development require intricacy and precision (2). Cell cycles,
a prominent dynamic sign of life not found in inanimate matter,
are often described as clocks. With the great information content
of the genome now so apparent in the ‘‘postgenomic era,’’ it is
hard to resist making analogies between cells and those man-
made information processors, electronic computers, which grind
through their programs with a determination that Laplace would
have found thrilling. The stochastic view is not without merit,
however. Because a gene is a molecule, the statistical f luctua-
tions of atomism cannot be avoided, as Delbrück realized so long
ago (3). The technological capabilities of modern experimental
biophysics have also made the presence of stochastic behavior in
cells undeniable as an experimental fact (4). Under some
circumstances, the game theoretic advantage of unpredictable
behavior in predator–prey relations among single-cell organisms
will be a clear incentive for stochasticity to have evolved adap-
tively. Furthermore, even when modern cells have well orches-
trated patterns of gene expression, we need to know how this
elegant patterning can have been achieved in the light of there
being both specific and nonspecific interactions of DNA-binding
proteins with the myriad possible similar but nevertheless in-
correct sites along the genome, many of which remain silent.

The main purpose of this paper is to begin the exploration of
stochastic gene expression by developing an analogy to quantum
many-body problems. Theoretical work on stochastic models of
gene expression has been dominated by simulation approaches
(5–8). Because of the intricate connectivity of real gene net-
works, computer simulations are doubtless necessary. Yet by
themselves, they do not provide an easy route to visualizing the
basic emergent principles at work. Analytical approaches to
stochastic gene systems have focused on single switches using
methods that are not easy to generalize to the description of a
complete network (9, 10). In this paper, we will see how the

discrete nature of the binding sites on the DNA and the finite
small numbers of transcription factor proteins in a cell can be
easily accommodated by using a master equation containing
operators like those encountered in describing quantum many-
particle systems. The dynamics of the DNA-binding sites (genes)
will be described by quantum spin operators, whereas the
fluctuations in protein concentrations in the cell will be de-
scribed by using creation�annihilation operators analogous to
those for bosonic harmonic oscillators. The analogy between
discrete number fluctuations in chemical kinetics and quantum
mechanics has been uncovered many times (11–13) and is
reviewed by Mattis and Glasser (14). For gene expression
problems in particular, this analogy provides an immediate
connection to well-studied many-body problems. A single ge-
netic switch becomes equivalent to the spin-boson problem that
features in the theory of polarons in solid-state physics (15) and
electron transfer in chemistry (16). Bare switches are dressed by
a ‘‘proteomic atmosphere,’’ much as electrons in insulating solids
are accompanied by a cloud of phonons. In the quantum analogy,
switches interact through the virtual emission and reabsorption
of protein fluctuations. Using this formalism, a multiswitch
network can be described using the language of magnets and spin
models of neural networks. Finally, through this analogy, the
steady states of a stochastic genetic network can be, in some
approximations at least, described in landscape terms using
precise mathematics rather than in the metaphorical way that has
already achieved a certain popularity.

Beyond its linguistic advantages, this analogy allows the
well-developed approximation methods used for quantum many-
body problems to be brought to bear on the gene expression
problem. These methods can be based on path integrals (17),
resummed diagrammatic perturbation theory (18), and varia-
tional schemes (19). In using these tools, one significant differ-
ence from ordinary quantum many-body problems must be
noted, however, the effective Hamiltonian for the Master equa-
tion is not Hermitian. This reflects the far-from-equilibrium
nature of these systems. Because of non-Hermiticity, the math-
ematical formulation of the traditional approximations must be
reexamined. In practice, also the quality of approximations well
established in quantum many-body science will have to be
reevaluated. In addition, for gene expression, a wider range of
phenomena occurs than comes up in traditional solid-state
physics, e.g., steadily oscillating states. Yet much insight from
quantum many-body theory can be brought over intact.

We illustrate the utility of this approach by providing a fresh
perspective on a central problem of cell biology, the stability of
cell types. Multicellular, eukaryotic organisms contain a rela-
tively modest number of cell types, by which we mean groups of
cells that have a sensibly common pattern of which proteins are
actually expressed. The small number of different cell types is
puzzling. Just as in the famed Levinthal paradox of protein
folding, if each gene switch, of which there must be hundreds, can
be in two states, either ‘‘on’’ or ‘‘off,’’ why are there not of order
2100 cell types? This huge number would be possible if the
switches were deterministic and noninteracting. This issue has
been raised for interacting deterministic switches by using the
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Kauffman N-K model (20). For this model, an unusual fine
tuning of parameters seems to be needed to obtain only a
moderate number of expression patterns (21), although this may
be avoided by invoking a scale-free topology of the network (22).
Another possibility is that the number of potential cell types
actually realized reflects the determinism of the developmental
program found in the embryo. Of course, this determinism raises
further issues of the stochastic stability of a sequence of events
rather than of a steady state. Here we explore a third possibility.
We exhibit a family of models of stochastic gene expression for
which the cell-type-number paradox can be resolved by using the
concept of frustration for the multispin system corresponding to
the gene network. As for the folding problem (23), the capacity
to address a central paradox of gene expression in quantitative
terms promises to be a starting point for practical problems
of characterizing the class of genetic networks that actually
describe real cells.

First, we describe the many-body analogy for a single switch
with a proteomic atmosphere, emphasizing the connections with
the spin-boson problem. We also describe switch interactions in
this framework. Following an approach of Eyink (24), we then
formulate a variational approximation for the non-Hermitian
many-body problem of a single switch and discuss an analogy to
the Hartree approximation for many interacting switches. A
landscape description arises naturally in this approximation.
Then we explore the phase diagram of a single switch. We
propose a very simple network topology where the Hartree
approximation should be valid and characterize the phase dia-
gram highlighting the range of parameters where the cell-type
paradox is resolved. Finally, we discuss the prospects for using
these ideas to provide a general landscape picture for gene
expression, for quantifying the response and fluctuation of such
networks, and for computing their long-term stability.

Spin-Boson Formalism for Stochastic Switches
A variety of mechanisms for individual gene switches have been
elucidated by molecular biologists. These involve the DNA-
directed synthesis of proteins that themselves bind to the DNA,
thereby turning up or down the synthesis rate. Protein synthesis
itself is not simple because of the intrinsic time delays of serial
synthesis and the intervening step of synthesizing messenger
RNA. Because our goal here is to illustrate the mathematical
tools, we will ignore these doubtless important complications.
They can be included simply by introducing more species. We
will describe only the simplest switches here and concentrate on
a switch architecture with symmetry properties that makes our
later discussion of networks more transparent. This exposition
should enable the reader to see how to write the equations for
any known biochemical model for a single switch or network.

The most complete description of a simple stochastic gene
switch would be a path probability describing the joint proba-
bilities at various times of the DNA operator sites being occupied
by ligand proteins and, for those same times, the numbers of the
different ligand molecules in the cell. We assume the binding
proteins are well-mixed in the cell. We can extend the formalism
to a completely field theoretical description of protein concen-
trations at different points in the cell, if needed to account for
incomplete mixing. If we ignore time delays, the Markovian
nature of process ensures that the path probability can be
obtained from an operator description of the master equation
that describes at any one time the joint probability of the DNA
occupation and the protein numbers. The two valuedness of the
DNA occupation at a site makes it convenient to describe this
probability as a spinor quantum state. For concreteness, consider
first a single binding-site gene switch. The DNA site has two
states, S � 1 active, without a bound repressor, and S � 0,
inactive, with repressor bound. The two-component vector
P(n, t) � (P1(n, t), P0(n, t)) expresses the joint probability of

the DNA-binding state and the number n of proteins in the cell.
The rate of protein synthesis gs depends on the DNA state, and
the degradation rate k is independent of S. When S is fixed, then
the master equation describes a simple birth–death process (for
each value of S) and can be formulated as a difference equation.
Consider the case that the product of the gene is a repressor
protein that binds to the operator site to change its own activity.
Then binding of protein occurs with a rate dependent on n, h(n),
whereas unbinding has a rate f. These latter processes transfer
probability between the two components of the state vector. The
master equation can be written as

�

�t
P�n, t� � �g1 0

0 g0
� �P�n � 1, t� � P�n, t��

� k��n � 1�P�n � 1, t� � nP�n, t��

� ��h�n� f
h�n� �f� P�n, t�. [1]

The analogy to a quantum system is most apparent when we
express the difference operations using operators for the cre-
ation and annihilation of protein molecules. Such a notation was
introduced by Doi (11) and used extensively by Zel’dovich et al.
(12, 13) to describe the small-number asymptotics of diffusion-
limited reactions. We follow the notation and conventions
outlined in ref. 14. These differ somewhat from those ordinarily
used in quantum mechanics. For each protein concentration, a
creation and an annihilation operator are introduced, such that
a†�n � � �n � 1� and a�n� � n� n � 1�. These satisfy [a, a†] �
1. For a process involving only a single protein particle number,
the state vector is � � 	n P(n, t)�n �, where P(n, t) is the
probability of having precisely n particles. The master equation
(Eq. 1) is written ����t � 
� by using a spinor Hamiltonian for
the dynamics of the DNA coupled to the proteins. 
 is a
non-Hermitian ‘‘Hamiltonian’’ operator. 
 for this simple gene
switch is


 � �g� � �g�z��a† � 1� � k�a � a†a� � ����1 � �x�

� ����i�y � �z�, where �x � �0 1
1 0�, i�y � � 0 1

�1 0�,

�z � �1 0
0 �1�, [2]

and g� � (g1 � g0)�2, �g � (g1 � g0)�2, �� � (h(a†a) � f)�2
and �� � (h(a†a) � f)�2. In this operator formalism, averages
are obtained by taking the scalar product with the bra �0�ea.

 is the Hamiltonian of a spin-boson Hamiltonian, albeit an
explicitly non-Hermitian Hamiltonian. Probability is conserved
because of the unusual scalar product. We see that in this
representation, the ‘‘spin’’ state of the DNA polarizes a ‘‘pro-
teomic’’ atmosphere, just as in conventional electron transfer,
charge motion of an acceptor–donor pair distorts the surround-
ing lattice by coherently creating phonons. This distortion of the
proteomic atmosphere acts to stabilize the two distinct states of
the switch, allowing the switch states to be much more stable and
change much more slowly than the chemical off-rate alone might
suggest. As in electron transfer, the change from one switch state
to another can be viewed either in an adiabatic or nonadiabatic
representation, depending on whether the DNA occupation
variable can always follow the protein number variable. Gener-
ally, the adiabatic limit is thought to apply, but this may not be
the universal rule. In the study of charge transfer, different
approximations that turn out to be exact in one limit are still
useful to describe the kinematics in the other limit.
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The gene network is made up of elements containing binding
sites that control protein production. The state space of the
entire network is the direct product of the state spaces for each
element, and the non-Hermitian Hamiltonian operator 
 is the
sum of terms 
i describing each such element 
 � 	i 
i.
Explicitly, we have


i � �g� i � �gi�i ,z��ai
† � 1� � ki�ai � ai

†ai� � �i
���1 � �i, x�

� �i
���i�i, y � �i, z�, [3]

with �i
� � (hi(aj

†aj) � fi)�2. �gi in Eq. 3 is positive when the
transcription factor that binds to the ith gene is a repressor and
negative when it is an activator. In a network of many gene
elements, not only does each element interact with its directly
generated proteomic atmosphere as in the polaron, but also
interactions between gene elements occur through the exchange
of proteins, the quanta of the proteomic fields. It is useful to
visualize this in the representation where the DNA state changes
slowly. In this case, we generate indirect spin–spin interactions
in the non-Hermitian Hamiltonian, just as in the theory of
condensed phase magnets. These can be considered ferromag-
netic or antiferromagnetic, depending on whether the exchanged
protein is a repressor or an activator. A nicely symmetric
two-element switch model is illustrated in Fig. 1a. Three or more
interacting components give rise to the possibility of frustrated
or unfrustrated interactions in the sense of whether the corre-
sponding spin–spin interactions lead to coherent or incoherent
activation patterns. This can be decided easily by taking the
product of the induced spin–spin interactions around a closed
loop, a positive product being unfrustrated, a negative product
tending to give multiple states or cycles.

Many gene switches involve multimers of individual proteins
or several gene products. In this case, the on-rates simply depend
on higher polynomials of the relevant protein number operators:
when a monomer of the product of the jth gene binds to the ith
gene site, hi(nj) � hijaj

†aj, and when a dimer of the jth product
binds to the ith site, hi(nj) � hij(aj

†aj)2.

Variational Approach in Spin-Boson Formalism
A variational method developed by Eyink (24) in a different
context provides a particularly lucid set of approximations. The
master equation is equivalent to the functional variation ��
��L � 0 of an effective ‘‘action’’  � � dt ��L�(�t � 
)��R� with
� � ��R�. This functional variation can be reduced to a set of
finite dimensional equations by representing �L with parame-
ters, 	L � (	1

L, 	2
L, . . . , 	K

L), as �L(	L) and �R as �R(	R). Here,
�L (	L � 0) is set to be consistent with the probabilistic
interpretation ��L(	L � 0)��R(	R)� � 1. In the spin-boson
formalism, this constraint implies ��L(	L � 0)� � �0�exp(	i ai).
The condition that this physically sensible �L is an extremum of
the action is

��
l�1

K � ��L

�	m
L � ��R

�	l
R � d	l

R

dt
�� ��L

�	m
L �
��R ��

	m
L�0

� 0,

for m � 1, . . . , K. [4]

To apply Eq. 4, explicit functional forms of �L (	L) and �R (	R)
have to be given. In the simple birth–death problem, for
example, the probability distribution P(n, t) to find n particles
should be Poisson at large t, P(n) � (Xn�n!) exp(�X) with a
mean X, so that the state vector � � 	n P(n, t)�n� approaches
a ‘‘coherent state,’’ � � exp(X(a† � 1))�0�. To analyze the
relaxation toward this stationary state, one may choose the
functional form �R � exp(X(t)(a† � 1))�0�, with 	R � X(t).
The corresponding �L is chosen to make the variation equations

simple: a reasonable choice is �L � �0�exp(a)exp(
a) with
	L � 
. This ‘‘coherent-state Ansatz’’ for �R and �L can be taken
further to describe more complex processes using, for example,
‘‘squeezed states.’’

With the coherent-state Ansatz for the single gene problem, the
state vector has two components corresponding to S � 1 and 0.

��R���C1exp�X1�a† � 1���0�
C0exp�X0�a† � 1���0��,

��L����0�eaexp�	1 � 
1a� �0�eaexp�	0 � 
0a��, [5]

where C1 and C0 are the probabilities of the two DNA-binding
states S � 1 and 0, respectively. With this Ansatz, the coupled
dynamics of the DNA-binding state and the protein distribution
is described as the motion of wavepackets with amplitudes C1(t)
and C0(t) and means at X1(t) and X0(t).

A straightforward choice of the trial state vector for a gene
network is a Hartree-type product of single spin-boson vectors:

Fig. 1. (a) The circuit of a switch composed of two symmetrical genes, each
of which produces the repressor that binds to the other. (b) An example of the
network element with ‘‘ferromagnetic’’ interactions. (c) An example of the
network element with interactions of the Mattis type: interactions depend on
the target pattern of each switch, �i

0 � 1 (Ai active) or �1 (Bi active).
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��R� � 	
i

��R�i��, ��L� � 	
i

��L�i��, [6]

where ��R(i)� and ��L(i)� are vectors of the ith element. With the
coherent-state Ansatz, ��R(i)� and ��L(i)� have the same form as
in Eq. 5 with replacement of a† with ai

† and C1 with C1(i), and
so on. A time-dependent Hartree approximation of the network
is obtained by putting Eqs. 3 and 6 into Eq. 4. In the Hartree
approximation, the ith and jth elements interact through terms
like hj(ai

†ai) in ��L(i)�L(j)�
��R(i)�R(j)�. In this way, genes
couple through the proteomic atmosphere, which is here repre-
sented by field operators.

By introducing an effective ‘‘potential energy,’’ the term
���L��	m

L �
��R�	mL � 0 in the Hartree equation can be expressed
by a sum of derivatives of a potential energy for each switch and
a residual term. Regarding the residual term as a noise, it is
natural to use energy landscape language to describe behaviors
of the network. When interactions among gene elements are
unfrustrated, one may expect that the landscape of the effective
potential energy is dominated by a small number of distinct
valleys. When the network involves a sufficient number of
frustrated loops, on the other hand, the landscape should be
rugged, and the time-dependent Hartree trajectory would be
trapped into one of many local minima or would never settle into
a stationary state because of the lack of detailed balance.

Phase Diagram of a Single Switch
The gene circuit shown in Fig. 1a is composed of two interacting
genes. The product of gene A is a repressor that binds to gene
B, and the product of gene B is a repressor that binds to gene A.
This circuit was experimentally implemented in Escherichia coli
plasmids and shown to work as a toggle switch (25). In one state,
gene A is more active than gene B, and in the other state, gene
B is more active. An inducer that changes the activity of a
repressor can toggle between two states. Stochastic f luctuations
in switching were numerically simulated in the adiabatic regime
(26). Here we apply the Hartree approximation to this circuit.
The derived phase diagram illustrates how the adiabaticity
affects the switching behavior.

The two genes are assumed to be symmetrical with the same
production rates, g�(A) � g�(B) � g� and �g(A) � �g(B) � �g, and
the same unbinding rates, fA � fB � f. The degradation rates of
two proteins are also assumed to be same, kA � kB � k. We
consider the case that repressors bind to DNA in a dimer form
with the binding rates hA � h(aB

† aB)2 and hB � h(aA
† aA)2. Using

scaled parameters makes the description of the results more
transparent, � � f�k, Xeq � f�h, Xad � g��k, and �X � �g�k. � is
an ‘‘adiabaticity’’ parameter representing the relative speed of
the DNA-state alterations to the rate of the protein number
fluctuations. Xeq measures the tendency that proteins are un-
bound from DNA.

Using Eqs. 3, 4, and 6, the Hartree equations are derived. In
the adiabatic limit of small �, they have a stationary solution with
X1(A) � X1(B) � Xad � �X and X0(A) � X0(B) � Xad � �X.
The order parameter of the switching ability, �C � C1(A) �
C1(B), is �C � 0 in this case. Effects of the small protein number
become more evident when Xad is smaller. In the limit of small
Xad, f luctuations are large, which also leads to �C � 0.

The Hartree equation for �C can be written as (Xeq��)(d�C�
dt) � ��V���C � (residual terms). The shape of the effective
potential energy V is shown in Fig. 2a as a function of �C. The
stationary solution of the Hartree equations corresponds to a
minimum of this potential energy. The potential energy has a
single minimum in the regime of small � or Xad but has double
minima when � and Xad are large. By numerically solving the
stationary Hartree equations, ��C� is plotted on the � � Xad

plane in Fig. 2b. When � or Xad is small, the circuit f luctuates

with equal probability between two states and does not acts as
a stable switch. At the phase boundary of Fig. 2b, the �C � 0
state becomes unstable and bifurcates into two equivalent states
with positive and negative �C. In the nonzero �C phase, the
circuit takes either of two states and works as a toggle switch
between them.

Switch Interaction, Network Topology, and the
Attractor Landscape
With the Hartree approximation, it is possible to analyze a
large-scale network composed of many genes. Here, for simplic-
ity, we consider networks whose elements are the toggle switches
discussed in the last section. When there are N uncoupled
switches, the network potentially has 2N states. This is a huge
number, even for a moderate N. We will see this huge number

Fig. 2. (a) The effective ‘‘potential energy’’ V for dynamics of the gene circuit
of Fig. 1a is shown as a function of the difference �C in activities of two
identical genes. � � 0.2. (b) The phase diagram of the circuit of Fig. 1a. A
contour map of ��C� is plotted on the � � Xad plane. When � or Xad is small,
the circuit shows no switching ability with �C � 0. For larger � and Xad, the
solution of �C � 0 becomes unstable and bifurcates into symmetry-breaking
states of positive and negative �C. The circuit works as a toggle switch
between those two states. �X � Xad and Xeq � 1,000 for both a and b.
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may be much reduced when the network of switches interacts in
only a weakly frustrated manner.

The simplest design for the network is shown in Fig. 1b. The
ith switch has two operons, Ai and Bi. Ai produces both the intra-
and interswitch repressors, and Bi produces only the intraswitch
repressor. Their production rates are controlled by the binding
state of the operator site of each operon. The binding rates of
repressors hAi and hBi at the operator sites Ai and Bi are

hAi � h�aBi
† aBi�

2 and hBi � h�aAi
† aAi�

2 �
h�

N �
j

aAj
† aAj,

[7]

respectively. In hBi, the binding rate of the interswitch protein is
scaled as h��N, because each interswitch repressor diffuses over
N switches. The Hartree equations for this network have a
stationary ferromagnetic solution with �C � C1(Ai) � C1(Bi) �
0 for all i when � and Xad are large enough. The phase diagram
on the � � Xad plane shows that the region of the ferromagnetic
phase with �C � 0 is wider than the switching region �C � 0
of the single switch in Fig. 2b. Such ferromagnetic networks can
also be designed by using activator proteins.

Denoting the switch state by �i � sgn(C1(Ai) � C1(Bi)), every
switch in the network of Fig. 1b is homogeneous, �i � 1, in the
ferromagnetic phase. Heterogeneous switching states with any
designed pattern, �i

0 � �1, are also possible when interactions
are transformed from the all ferromagnetic of Fig. 1b into
another set of unfrustrated interactions of Fig. 1c. This is
analogous to the so-called Mattis ferromagnet (27). Here, re-
pressors bind to Ai and Bi with the binding rates hAi and hBi,

hAi � h�aBi
† aBi�

2 �
1 � �i

0

2
h�

N �
j

�1 � �j
0

2
aAj

† aAj �
1 � �j

0

2
aBj

† aBj�,

hBi � h�aAi
† aAi�

2 �
1 � �i

0

2
h�

N �
j

�1 � �j
0

2
aAj

† aAj �
1 � �j

0

2
	Bj

† aBj�.

[8]

This target-dependent transformation of interactions from Eqs.
7 to 8 is analogous to a gauge transformation in the spin system.
By making this transformation, an unfrustrated set of interac-
tions will have a frozen state with a different arrangement of
bound and unbound sites. The Hartree equations for this Mattis
network have a stationary solution of �i � �i

0 in the same
parameter region where the ferromagnetic solution exists.

When each operon produces multiple kinds of interswitch
repressors or activators, then the proteomic atmosphere is a
superposition of many kinds of these transcription factors. By
having interactions that are sums of different Mattis patterns,
such gene networks can exhibit multiple expression patterns
analogous to the memories of a Hopfield neural network (28).
Superposition of multiple interactions, however, yields both
unfrustrated and frustrated interactions. In such networks, both
solutions that retrieve a given binding pattern, and solutions that
are irrelevant to that binding pattern may coexist.

To describe the phase diagram, we consider a network com-
posed of repressors only. The network may be designed to have
superimposed interactions of p binding patterns �i

l with l � 1 �
p. We assume binding of the intraswitch and interswitch repres-
sors at the operator site cause the same effect on the protein
production rate of each operon. The degradation rate k and the
unbinding rate f are assumed to be the same for all proteins.
Then, the relevant scaled parameters for the phase diagram are
�, Xeq, Xad, and �X of the last section and �eq � h��h. The

equation for Si � C1(Ai) � C1(Bi) is approximately derived from
the Hartree equations as

Xeq

�

d
dt

Si � �
�

�Si ��
r0

2
Si

2 �
u
4

Si
4�

K
2 �

i�j

JijSiSj�, [9]

where Jij �(1�N)	l�1
p �i

l�j
l, K��eqC� �X, u��X2 {1 � (C� �

(��C� ))2}, r0�4uC� 2 � (X��X�2
� Xeq � p�eq(X��2��XC� )),

and X� � Xad � �X. We see that Eq. 9 represents gradient
descent in an energy landscape. C� � (C1(Ai) � C1(Bi))�2 is
self-consistently derived from the Hartree equations.

For small �, Eq. 9 has only a solution with Si � 0, in which
elements fluctuate independently from each other. For larger �, an
eigenvector of the Jij matrix appears that can satisfy the linearized
stationary equation for Si. This yields the static pattern of the switch
states. Such a pattern is irrelevant to the stored binding pattern �i

l

and should be regarded as a spin–glass solution. We expect a large
number of such solutions. For general multiplicity of interactions,
these are exponentially many as in the Potts glass (29). Because of
the lack of the detailed balance, however, the residual noise that is
neglected in Eq. 9 might destabilize this solution to prevent the
time-dependent Hartree trajectory from being trapped into the
spin–glass pattern. The ability of the network to produce a designed
pattern can be examined by introducing order parameters ml �
(1�N)	i�1

N �i
lSi. Generally, either the mls are all small or one of the

mls is O(1) and others are O(1��N). The parameter region that
allows such a dominant solution is obtained by approximately
solving the self-consistent equations of order parameters (30).
These results are summarized in the phase diagram of Fig. 3.

Discussion
The quantum many-body analogy, when combined with a vari-
ational scheme, allows us to understand gene networks in
landscape terms. A single switch has two attractors where the
wavepacket Hartree solutions correspond to an active or inactive
gene. As in any mean-field theory, these attractors are only

Fig. 3. The phase diagram of a Hopfield-type network composed of N � 200
elementary gene switches. P � 15 binding patterns of repressors are stored in
the network. For small � or Xad, each element shows no switching ability. For
intermediate � and Xad, all elements work as switches but fluctuate indepen-
dently of each other. For larger � and Xad, the network can produce any one
of p designed binding patterns, i.e., the number of cell types is P. In this finite
cell type number phase, the spin–glass solutions with random switch states
coexist. �eq � 0.5, �X � Xad and Xeq � 1,000.
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approximate; improbable f luctuations can take the system
from one basin to the other (31, 32). This dynamics will occur on
a much longer time scale than the time to settle into one steady
state. This activated fluctuation process is rather analogous
to electron transfer kinetics and can be treated by instantons
by using a path integral version of the present variational
approximation.

Although the N switch problem might have been expected to
have 2N attractors, the present variational formulation suggests this
number will be strongly reduced if the magnetic spin problem
corresponding to the network is only weakly frustrated. In this case,
only a small number of patterns will stably emerge on the time sale
of the rapid fluctuations of a single gene switch. Again, transitions
between the basins of attraction found by the variational treatment
can occur, but on much longer time scales. It will be very interesting
to see whether real gene networks have the weak frustration
described here or are more nearly random (21).

Several issues in gene expression require going beyond con-
sideration of steady attractors alone. One such issue is the escape
from stable attractors already mentioned. In addition, we must

account for the periodic attractors that are involved in the cell
cycle. Many experiments probe the response to externally pro-
vided signals that are not constant in time. Other experiments
may probe endogenous fluctuations about individual attractors.
Finally, the most central issue is not just that of steady states but
the possibility of developmental programs in which epigenetic
states must follow each other in specific sequences. In all these
dynamical situations, it should be possible to use an analogous
time-dependent variational formalism to the one we used here
to at least test the robustness of these temporal patterns to
stochastic f luctuations.

In summary, we believe the quantum many-body analogy will
complement detailed stochastic modeling by providing a set of
powerful mathematical tools and concepts to visualize gene
expression.
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