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Abstract
A 3D reconstruction algorithm for electrical impedance tomography is presented for determining the
distribution of electrical properties inside the body, given electrical measurements made on the
surface. A linearized reconstruction algorithm using planar electrode arrays in a handheld probe
geometry developed by Mueller et al (1999  IEEE Trans. Biomed. Eng.  46 1379–86) has been refined
and extended in this paper. This algorithm is based on linearizing the conductivity about a constant
value. We have extended the distance below the electrodes at which a target can be imaged by using
a combination of two regularization schemes and a weighted mesh. An appropriate combination of
Tikhonov and NOSER regularization produces satisfactory static images of a 2 cm cube placed 2 cm
below the array, and difference images of a 1 cm cube 4 cm away from the array. The weighted mesh
allows use of fixed regularization parameters for all depths of the target.
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1. Introduction
Electrical impedance tomography (EIT) is a medical imaging technique for determining the
electrical conductivity and permittivity distribution in the interior of a body from measurements
made on its surface. Typically, conducting electrodes are attached to the skin of the subject
and small currents are applied to some or all of the electrodes. Simultaneously, the
corresponding electrical potentials are measured. The process is repeated for many different
configurations of the applied current. Proposed applications include monitoring of ventilation
(Cheney et al 1999, Mueller et al 2001, Cherepenin et al 2002), detection of cancer in the skin
(Aberg et al 2004), and in the breast (Cherepenin et al 2001 and Kerner et al 2002) and detection
of stroke (Holder 1992, Tidswell et al 2001, Bagshaw et al 2003).

Among noninvasive imaging techniques, EIT is a technique offering low cost, but low
resolution, images. Its main limitations are caused by inaccurate modeling of the regionally
varying electrode–skin contact impedance, and poor signal-to-noise ratio. Kolehmainen et al
(1997) and Blott et al (1998) pointed out that the sizes and locations of the electrodes and the
boundary shape of the object provide the most difficulties for the reconstructed image. They
suggested that the most feasible way to minimize these errors is to measure them and to use
those data in the forward model. For breast cancer detection, the area of interest is a limited
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anatomical region with a limited depth. Hence, we propose to use a handheld probe, which has
fixed size and electrode locations, to reduce those errors and to use a general boundary shape
for mathematical modeling.

The handheld probe allows the operator flexibility to move the probe to the place to be
examined. We have reported (Kao et al 2003) the results of distinguishability experiments
conducted in water tanks with copper targets placed near planar electrode arrays attached to
an inside wall of the tank. Having a distinguishability higher than a noise or error threshold is
a necessary but not sufficient condition for making a useful image. In general, higher
distinguishability implies a larger signal for a reconstruction algorithm to work with. A
reconstruction algorithm for EIT using planar electrode arrays was originally developed by
Mueller et al (1999). This algorithm is based on linearizing the conductivity about a constant
value. The distance at which targets could be reconstructed with satisfactory images by this
algorithm was less than 1 cm from the electrode array. In the present study, we reproduced and
extended that work using a new test tank with a 5 × 5 electrode array. We have developed a
novel means to obtain satisfactory images for targets at greater distances below the array by
combining two classical regularization schemes in a single algorithm.

2. Methods
For breast cancer detection, the region of interest is a specific region with a limited depth from
the skin. The adjoining chest is relatively large, so we assume that the space under the electrode
array is a half-infinite space. Therefore, we simplified the geometry using an aquarium for the
experiment and an infinite half-space for the mathematical model to develop our reconstruction
algorithm.

2.1. Simplified geometry and the current pattern
We placed an array of 25 stainless steel electrodes at one end of an aquarium (25 cm × 30 cm
× 32 cm). The overall array dimension was 8 × 8 cm; each electrode was 1.48 cm2 with 1.5
mm inter-electrode gaps. The aquarium was filled with saline having a conductivity of 300 mS
m−1. A ground electrode was placed at the other end of tank, 32 cm away. A cubical copper
target was suspended by a stereotaxic apparatus at different distances in front of the electrode
array. We applied the optimal current patterns to this system as described by Isaacson
(1986). The left-hand side of figure 1 illustrates the mathematical model used for developing
the forward model and the reconstruction algorithm. The right-hand side shows the test tank
with a suspended target.

2.2. Reconstruction algorithm and the voxel configuration
At low frequencies, current injected into the body induces an electromagnetic field. We can
simplify the geometry of figure 1 as a half-space written as
∇ ⋅ (σ(x, y, z)∇U (x, y, z)) = 0 − ∞ ≤ x, y ≤ ∞, − ∞ ≤ z ≤ 0. (1)

Here σ denotes the homogeneous, isotropic conductivity and U the voltage inside the body B.
The application of currents to the electrodes, at z = 0, induces a current density distribution j
written as

σ(x, y, 0) dU
(x, y, 0)
dz = j(x, y). (2)

The inverse problem is to determine the conductivity σ(x, y, z) from the measurements made
on the surface S. Using the linearization method of Mueller et al (1999), we solve ∇·σ∇U = 0
with appropriate boundary conditions to obtain the voltage solution U:

U (x, y, z) → 0 as x 2 + y 2 + z 2 → ∞. (3)

Kao et al. Page 2

Physiol Meas. Author manuscript; available in PMC 2006 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The ‘ave-gap’ model (Cheng et al 1989) approximates current density j by

j(x, y) = {Il ∕ Areal for (x, y) on el
0, otherwise

, (4)

where Il is the current sent to the lth electrode el and Areal is the surface area of el.

The following steps were followed to reconstruct an approximation to the conductivity σ.

1. Introduce a guess for a best constant conductivity, σ0.

2. Relate the potentials or fields on the surface S to the electrical tissue properties and
field inside the body B by the identity

∫SU0
x j k − U k j x ds = ∫B(σ − σ0)∇U0

x ⋅ ∇U k dp. (5)

Here the subscript 0 denotes fields due to the conductivity σ0. The superscripts denote
the fields that result from different current densities.

3. Apply an electrode model relating currents and voltages on electrodes labeled with
the subscript l = 1,…, L to (5). Use the notation δσ = σ − σ0 and the approximation
U k = U0

k + O(δσ) to obtain the equations relating measured voltages to moments of
the unknown conductivity:

D(k, x) = ∑
l=1

L
Vl
k(σ0)Ilx − Vl

x(σ)Il
k = ∫Bδσ∇U0

k ⋅ ∇U0
x dp + O(δσ 2). (6)

4. Measure and compute the components of the ‘data’ matrix D.

5. Choose a basis function {Φn(p)}n=1N  as a mesh, for the approximation

δσ(p) = ∑n=1
N δσnΦn(p). Compute the coefficient matrix A, where

Ax,k,r = ∫BΦr(p)∇U0
x ⋅ ∇U0

k dp.

6. Solve equation δσ = (ATA + εR)−1 × ATD and display σ = δσ + σ0 on the mesh. Here,
R denotes the regularization method and ε denotes the regularization parameter.

The reconstruction was first done on the simple mesh shown in figure 2. The voxel
configuration consists of six layers with 49 (7 × 7) voxels in each layer (left figure). In the
region under the electrode array, six layers of 5 × 5 voxels are aligned under the electrodes
(right figure). The width and length of the mesh voxels are set to equal those of the electrodes
including the gaps between the electrodes. Each voxel layer was 1 cm thick. The voxel
configuration must also model the unbounded domain to compensate for currents that might
flow out and then back into the domain. This feature is modeled by a layer of voxels around
the boundary of the array which is not displayed in reconstructed images.

In later tests, we used a 1.1 cm copper cube as a conductive target together with a finer mesh
(figure 3) for getting a better resolution of reconstructions. The total number of voxels with
six layers is about 2000 which is close to the number of the independent measurements available
with the 64-electrode system for which this algorithm is being developed. The width and height
of each voxel is 5 mm and its thickness is 10 mm. We discard the outer voxels and display
only the center 16 × 16 voxels for each layer. The size of the electrode array and the target are
shown on the left of figure 3; the finer mesh is shown on the right. The dots from the center to
the top right corner present the positions of the center of the target when the resolution in the
X–Y plane was studied.
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2.3. The combined regularization method
The most often used regularization matrices in EIT are the identity matrix and a diagonal matrix
to compensate for the first and second difference operators, the former is called Tikhonov
regularization; the latter is called NOSER-type regularization (Cheney et al 1990). Because
the handheld probe geometry is severely ill-posed, the Tikhonov method can cut off the noise
very well but it also creates pseudo images by adding the identity to the coefficient matrix. The
NOSER-type regularization method can present the target at the correct position but
reconstructions at large target distances are corrupted by noise. Combining NOSER-type
regularization and Tikhonov regularization methods gives better reconstructed images than
using either one alone. The regularization equation is expressed as

δσ = (ATA + εN × diag(ATA) + εT × I )−1ATD, (7)

where εN denotes the regularization parameter of NOSER type and εT denotes the
regularization parameter of Tikhonov type. ‘A’ denotes the coefficient matrix (Mueller et al
1999) and ‘I’ the identity matrix. A comparison of the two methods and the result of the
combined scheme are shown below.

3. Reconstructions
3.1. Difference image

In order to study the mesh design and regularization methods, and to evaluate the performance
of the algorithm, we reconstructed difference images, so as to reduce as much as possible the
noise caused by the channel electronics and the individual electrode properties present in this
test tank. Within each layer of a difference image, each square depicts the conductivity change
from the background in the corresponding voxel.

3.1.1. Two combined classic regularization methods—The Tikhonov regularization
method, with a regularization parameter of 0.5, was not able to represent the Z-axis location,
i.e. distance from the electrode array, of the target (figure 4). The four rows of the figure show
the conductivity change from the background as a centered target is placed at a distance away
from the array from 1 cm (upper row) to 4 cm (bottom row), while the columns display the six
layers of the mesh used for reconstruction (six columns, left to right). Different conductivity
scales, in mS m−1, are used for each row, as shown below that row of images. A sketch
illustrating the target positions is shown on the right of the picture. The conductive target was
a 2 cm copper cube.

When the target was located 1 cm from the electrode, the reconstructions show the target in
the correct position with high intensity in layer 2 and less in layer 3. As the target is moved
further away, the image becomes fainter and less pronounced in the upper voxel layers but is
visible, although only at low intensity, in the expected position. We conjecture that this
phenomenon is due in part to the smoothing effect of the Tikhonov regularization in the Z
direction.

With NOSER-type regularization (εN =0.5) noise corrupted the images badly if the target was
not close to the electrodes (figure 5). We speculate that this is due to the ill-posedness of the
handheld probe geometry, which increases significantly with increasing distance from the
measuring electrodes.

To improve upon the results obtained using these two regularization schemes individually
(figures 4 and 5), we combined the two regularization methods as described by equation (7),
using 0.5 for εT and εN (figure 6). The target was located more clearly and accurately using
the combined regularization scheme.
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To evaluate the X–Y resolution of the reconstruction, we used a finer mesh (figure 3) and
suspended a smaller 1 cm copper cube at different locations. Within each layer of the difference
image shown in figure 7, each square depicts the conductivity change from background in the
corresponding voxel. The top row in the figure displays the conductivity of the second layer
of voxels as the target was moved from the center to the upper right corner of the array at a
distance of 1 cm below the array. The diagram at the right top shows the target location in that
plane, with P1 corresponding to the position for the left-most image and P7 for the right-most
image. The bottom four rows show results for a centered target in the same format as figures
4-6. The regularization parameters εN for NOSER and εT for Tikhonov were adjusted to obtain
the best image quality for the target at each depth. The target was located correctly in the X
and Y directions when it moved in a plane from P1 to P7 (figure 7). The Z-axis resolution was
decidedly less, but remained satisfactory as the target moved further away from the electrodes
(figure 7).

3.1.2. Weighted mesh for fixing the regularization parameters—Adjusting the
regularization parameters based on target location is obviously not feasible in practice when
the target location is unknown; this is one type of inverse crime (Lionheart 2004). An algorithm
with fixed regularization parameters is needed for practical use. The ill-posedness of this
geometry is severe and not only differs from center to corner of a given layer, but also from
layer to layer. Using fixed parameters did not give us satisfactory reconstructed images at
different depths. Designing an optimal mesh based on the distinguishability variation with
location is an approach to solve this problem. The result is a mesh in which the size of the
voxels is different in each layer with larger voxels at a greater distance from the array.
Mathematically, the mesh is weighted to adjust for the range of the diagonal values of the
coefficient matrix A, i.e.,

Weighted volume of voxel = layer number × voxel volume. (8)

Reconstructions with the same data set and same format as the previous figure are shown in
figure 8. The regularization parameters εN for NOSER and εT for Tikhonov were set to 0.5.
The intensity of the images is somewhat reduced and the clarity of the images is a little worse
than the previous result when the regularization is optimized for each depth. However, we can
determine the target position without varying regularization parameters for the different depths.

3.2. Static image
Difference imaging is often preferred to static imaging, because it is less sensitive to
inaccuracies in the forward solution, some errors in the experimental setup or systematic errors
in the data acquisition system. Difference images are thus useful for testing algorithms and
regularization methods, but they are not suitable for many medical applications. Tumor
detection or imaging hemorrhagic or ischemic stroke (McEwan et al 2005) requires static
images.

We therefore also reconstructed static images. Because of the ill-posedness of the handheld
probe geometry, we can only obtain satisfactory static images by using relatively large values
of regularization parameters and relatively large voxels to better pose the problem. The 3D
static images of a homogeneous tank and an inhomogeneous tank with a 2 cm cube copper
target are shown in figure 9. The reconstructions were obtained using the algorithm of section
2.2 with the coarse six-layer voxel configuration of figure 2. The parameters for the combined
regularization were 1.0 for NOSER regularization and 10 for Tikhonov. Different conductivity
scales are used for each row, as shown below that row of images, in mS m−1

In the homogeneous case, we still can see the roughness of the reconstructed static image. This
might be caused by the inaccurate forward model, variation among the electrodes and noise in
the measurements. When a 2 cm cubic copper target is moved further than 2 cm away from
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the electrode, the signal will get close to the noise level and we will not be able to identify the
target clearly. Detecting a 1 cm cubic copper target in the static image will be difficult if it is
further than 1 cm away from the electrode array. Using the finer mesh also makes the problem
more ill-posed and the static image will not be improved.

4. Discussion and conclusions
The advantage of the handheld probe geometry is the ability to move the probe where it is
needed. There is also a theoretical advantage in the ability to increase the number of electrodes
and knowing where each is positioned relative to the others. A disadvantage of this geometry
is that measurements are made on only one side of the breast at a time. This geometry presents
a more ill-posed problem compared to other 3D reconstructions which place electrodes around
the boundary. Therefore, the choice of a suitable regularization method and values of the
regularization parameters are more significant. In this study, we found the combination of two
classic regularizations with a weighted mesh design which provides a satisfactory solution to
these requirements.

We have shown that a handheld EIT probe is able to detect objects beneath the electrode array
at substantial distances in reconstructed static and difference images using a linearized
reconstruction algorithm. Despite the inaccuracies in the array and tank construction and the
use of 25 electrodes with a simple electrode model used in this study, we obtained promising
experimental results.

Although the detectable depth, the Z direction, is limited by the penetration of the currents, the
reconstructed image located the target very well in the X and Y directions. To improve the
resolution and quality of the reconstructed images, we plan to expand to 64 electrodes on the
array, and improve the electronic signal-to-noise ratio in future work. It is expected that
improving the probe construction and modifying the mathematical model to include more
precise boundary conditions and incorporating the complete electrode model of Cheng et al
(1989) will also improve the results.

One shortcoming of the present study is that it used targets of nearly infinite contrast. The
actual results with targets of more realistic contrast ratios would have lower contrast in the
reconstruction images, but the other comparisons made in this study would not be expected to
change. We anticipate verifying this with agar targets using a 64-electrode handheld probe with
our new EIT system ACT 4 (Liu et al 2005) in the near future.
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Figure 1.
A sketch of a simplified geometry and a photograph of the test tank with a suspended conductive
target.
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Figure 2.
The 7 × 7 mesh used in the reconstructions. We display only the interior 5 × 5 voxels for each
layer.
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Figure 3.
A finer mesh for the handheld probe geometry.
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Figure 4.
The reconstructed images using a 7 × 7 × 6 voxel mesh with Tikhonov regularization.
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Figure 5.
The reconstructed images using a 7 × 7 × 6 voxel mesh with NOSER-type regularization.
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Figure 6.
Reconstructions using a 7 × 7 × 6 voxel mesh with combined NOSER and Tikhonov
regularization.
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Figure 7.
Image reconstructions as the target moved in the X–Y directions and Z direction with adjusted
regularization parameters for better image quality.
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Figure 8.
Reconstructions using a weighted mesh with uniform regularization parameters.

Kao et al. Page 15

Physiol Meas. Author manuscript; available in PMC 2006 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Reconstructed static images.
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