Mexican hats and pinwheels in visual cortex

Kukjin Kang**, Michael Shelley*, and Haim Sompolinsky?*

*Courant Institute of Mathematical Sciences and Center for Neural Science, New York University, New York, NY 10012; and *Racah Institute of Physics and

Center for Neural Computation, Hebrew University, Jerusalem 91904, Israel

Communicated by David W. McLaughlin, New York University, New York, NY, December 31, 2002 (received for review October 21, 2002)

Many models of cortical function assume that local lateral connec-
tions are specific with respect to the preferred features of the
interacting cells and that they are organized in a Mexican-hat
pattern with strong “center” excitation flanked by strong
“surround” inhibition. However, anatomical data on primary visual
cortex indicate that the local connections are isotropic and that
inhibition has a shorter range than excitation. We address this
issue in an analytical study of a neuronal network model of the
local cortical circuit in primary visual cortex. In the model, the
orientation columns specified by the convergent lateral geniculate
nucleus inputs are arranged in a pinwheel architecture, whereas
cortical connections are isotropic. We obtain a trade-off between
the spatial range of inhibition and its time constant. If inhibition is
fast, the network can operate in a Mexican-hat pattern with
isotropic connections even with a spatially narrow inhibition. If
inhibition is not fast, Mexican-hat operation requires a spatially
broad inhibition. The Mexican-hat operation can generate a sharp
orientation tuning, which is largely independent of the distance of
the cell from the pinwheel center.

M odels of cortical function often assume that cortical cir-
cuitry acts in a center—surround fashion, namely that
nearby cells excite each other, whereas separated pairs of cells
have a mutually suppressive influence (1-9). Because of their
selective enhancement of local groups of cells, center—surround
interactions are attractive dynamic mechanisms for sharpening,
or even spontaneously generating, spatial patterns of activity in
the neuronal assembly. Further, to make the enhanced cortical
patterns congruent with the sensory representation of the sys-
tem, the cortical interactions must depend on the functional
distance between the cells, determined by the features coded by
them. This functional circuitry, known as “Mexican hat” orga-
nization, has been adopted in network models of orientation
selectivity (OS) (1-5), working memory in frontal cortex (7),
multiplicative neural responses in parietal cortex (8), and in
general winner-take-all circuits (9). However, the underlying
anatomical and physiological basis of this architecture is not well
understood. For instance, experiments in primary visual cortex
(V1) suggest that inhibitory connections in cortex tend to be
more spatially restricted than the excitatory ones (10, 11).
Furthermore, although there is anatomical evidence that long-
range connections are feature-specific (11, 12), several experi-
mental studies find that the local connectivity in cortex has
roughly a symmetric organization (12, 13), depending primarily
on cortical distances. The functional implications of this isotro-
pic organization of connectivity depend on the columnar orga-
nization of the coded features. In cat, monkey, and several other
primates, orientation columns are organized in pinwheel archi-
tectures with singularities at their centers. Given that near the
pinwheel centers, cells with orthogonal preferred orientations
(POs) are close to each other, but are far apart from each other
away from the centers, it might be expected that the orientation
tuning properties of cells would depend on their location relative
to these centers. Indeed, a recent study by McLaughlin et al. (14)
modeling the simple cell network in V1 predicted that OS would
be considerably sharper near pinwheel centers than away. Ex-
perimental findings have so far failed to find substantial differ-
ences between the OS near and away from the centers (15). In
light of these results, we address two questions: (i) What are the
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requirements on cortical connectivity that allow for a functional
Mexican-hat action in the cortical network? (if) In networks that
do realize Mexican-hat functional connectivity, what is the
predicted relationship between OS and the 2D pinwheel orga-
nization of orientation columns?

Materials and Methods

A Network Model. We model a restricted region of cortical
circuitry by two populations of excitatory and inhibitory neurons
that interact with each other in a 2D plane. The network
dynamics is described by using a mean-field rate model (16-18),
with mg(7, t) and m (7, t) as the dynamic variables. The variable
mg(7, t) (my(7, t)) denotes the synaptic conductance rate (nor-
malized by the peak conductance) generated by an excitatory
(inhibitory) cell located at the 2D cortical coordinate 7. The
conductance rates are low-pass filters of the presynaptic firing
rates, Mg(F, t) and M (7, t), with excitatory and inhibitory syn-
aptic conductance time constants T and 7y, respectively. The
firing rates for each cell are approximated by an instantaneous
f-I curve M(t) = [I(t)]+, where I(¢) is the synaptic current
injected into a neuron relative to its threshold current after
scaling by the gain of the f-I curve; [x]+ is the rectification
function ([x]+ = x for x > 0 and [x]+ = 0 for x < 0). These
assumptions lead to the following set of equations.

dmg(, t) . . . .
TE flt = —mg(, 1) + |:ILGN(r) + Sge E pe(, 7 )mg(, t)
— S E pi(7, 7 )my (7 t)] [1]
7 +
dml(i t) . =~ > > >
T a —my(7, t) + | ILgn@) + Sie 2 pe(@, 7 )mg(F, t)
7 +

[2]

The first terms in brackets of Eqgs. 1 and 2 represent the lateral
geniculate nucleus (LGN) drive, specified below. The second
(third) term of Eq. 1 denotes the excitatory (inhibitory) cortical
feedback, where Sgepe(7, 7')(Sepi(7, 7')) is the strength of
synaptic connection between a presynaptic excitatory (inhibi-
tory) cell at 7' and a postsynaptic excitatory cell at 7. The function
pe(7, 7)(p1(7, 7')) denotes the (normalized) spatial profile of the
excitatory (inhibitory) cortical interactions, whereas the factor
See(Ser) denotes the summed strength of these interactions.
Similar definitions apply to Eq. 2. For simplicity we have not
incorporated self-inhibition into our model.

In this paper we consider only the local cortical connections
and assume that their density as well as strength depend only
on the cortical distance between the interacting cells. We thus
assume that pg(7', 7) and pi(7', 7) are normalized 2D Gaussian
functions of 7 — 7' with standard deviations o and o7y, respectively.

Abbreviations: V1, primary visual cortex; LGN, lateral geniculate nucleus; OS, orientation
selectivity; NMDA, N-methyl-p-aspartate.
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Fig. 1. Pinwheel architecture in the model. (a) A single-pinwheel system.
Each cell is indexed by its distance r from the pinwheel center at (1,1), and an
angle 6§ measured relative to the depicted vertical line. The preferred orien-
tation of the cell is 6/2. (b) Four-pinwheel system, with centers at (1,1), (1,3),
(3,1), and (3,3). 6 of each cell is defined relative to the nearest center. The red

regions show the two horizontal columns, each connecting center pairs with
opposite parity.

o = N W

Pinwheel Architecture and LGN Inputs. The LGN afferent input to
a neuron is specified by its preferred orientation (PO), i.e., by its
location within the pinwheel orientation map, shown in Fig. 1.
The 2D coordinate 7 is represented in polar coordinates 7 =
(r, 6) where the origin is the closest pinwheel center. The PO of
a cell ranges from 0° to 180° and is equal to half of its polar angle
0. The LGN input is modeled as Iy gn(7) = A + B cos(0 — 26p)
where A is the mean LGN input to the cortical cell, B is its
orientation modulation amplitude, and 6 is the orientation of
the stimuli.

Our main results are based on the analytical solution of the
model. For this we assume (i) a single pinwheel approximation,
namely that the interaction between different “hypercolumns”
can be neglected, (i) most of the cells are above their threshold
for firing so that the system is essentially linear, and (iii) the
number of neurons in the network is large. The resulting linear
equations can then be solved by 2D Fourier transforms. By
setting the time derivatives of the dynamic equations to zero and
transforming back to real space, we obtain the stationary spatial
activity profiles generated by a stationary visual stimulus. In the
stationary case, the conductance rates, mg(7) and m(F) are
identical to the firing rates, Mg(¥) and M;(7), respectively. In the
following section we will describe the properties of the excitatory
population.

Results

The Stationary Spatial Activity Profile. The stationary profile of the
excitatory population, mg(7), has the form

mg(r, 0) = Aa + Bb(r)cos(6 — 20,), [31]

where 4 and B are the mean and modulation amplitudes of the
LGN input, respectively. The factor a is

=7 T o o -
1= Sgg + SeiSie
The analytical expression for b(r) is
(k[ 1= Sen®)

where Ji(x) is the Bessel function of order 1. The feedback
kernel is D(k) = SEEﬁE(k) - SEISIEﬁE(k)ﬁI(k), where f)E(k) =
exp(—o%k?/2) and pi(k) = exp(—oik?/2) are the Fourier
transforms of pr(7) and pi(7), respectively. The variable r is the
radial distance from the pinwheel center, and k denotes the
Fourier wave number. Note that the k = 0 value of the term
in the square brackets of Eq. 5 is equal to a. The factor a
represents the cortical gain of the mean activity, whereas b(r)
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represents the effect of the cortical interactions on the orien-
tation modulation of the cell. In the absence of cortical
interactions @ = b = 1. For the above solution to be valid 1 —
D(k) must be positive for all k. If D(k) is larger than unity, the
linear solution is unstable.

Orientation Selectivity and Pinwheel Architecture. The above solu-
tion implies that the mean activity of the cells does not depend
on their distance r from the pinwheel center. On the other hand,
the orientation modulation depends on r through the cortical
factor b(r). The degree of OS can be measured by the orientation
index (OI), which is half the ratio between the modulated and the
mean components of the cell’s activity, namely OI = Bb(r)/2Aa.
We write the OI as Q(r)B/2A4, where B/2A is the OI of the cell
in the absence of cortical interactions. Q(r) = b(r)/a measures
the cortical orientation amplification factor. To obtain an insight
into the r-dependence of Q, it is instructive to consider two
theoretical limits: “near center,” » << o and “far from center,”
r = Ogj1.

Near Center. In this limit the dominant contribution to the
k-integral of Eq. 5 is from large k. However, for large k all
interaction terms vanish, yielding, b(r — 0) — 1, and therefore
Q(r — 0) — 1/a. The meaning of this result is simple: for cells
near the centers, the interactions span all orientations. Hence
they affect the activity by controlling the average component of
the activity, a, but they do not contribute to the modulated
component.

Far from Center. In this limit, small wavenumbers & dominate the
integral. Hence all the k-dependent interactions can be replaced
by their k = 0 values, yielding b(r — ©) — a, and Q(r — ») —
1. This means that in this limit the range of interactions is shorter
than the distance between dissimilar orientations. Thus, the
entire interaction takes place within a single iso-orientation
domain; hence, interactions affect the overall gain of the cell’s
activity but do not affect its orientation tuning. It should be
stressed, however, that whether this limit is actually reached
depends on the range of the interactions relative to the width of
iso-orientation domains far from the centers, or within the
framework of our model, on the maximum value of r relative to
og,. To determine the actual dependence of Q on r in between
the two limits, one needs to specify the parameters of the
interactions which we do below.

Mexican Hat with Fast Short-Range Inhibition. In this section we
assume that the inhibitory time constant is much shorter than the
excitatory one. In this case, all stationary solutions whose
feedback kernel satisfies D(k) < 1 are stable. The change of Q
with r depends largely on the shape and magnitude of D(k).
When |D(k)| is small for all k, the influence of cortical feedback
is negligible. To be concrete, we call D(k) as type F (feed-
forward) when [D (k)| < 0.5 for all k. In our model D(k) has four
main shapes, depicted in Fig. 2, other than type F. Type I is
positive and decreases monotonically with k. It acts as a low-pass
filter enhancing the low-k modes. This behavior occurs whenever
St dominates.

Types II and IIT are both realizations of a Mexican-hat state.
They are defined by having a band-pass feedback kernel with a
pronounced peak at a non-zero k. By combining inhibition with
excitation, these two types selectively enhance a nonhomoge-
neous pattern of activity. Furthermore, this enhancement can be
made arbitrarily sharp by making the non-zero k peak of the
feedback kernel close to 1. For concreteness we define the
Mexican-hat state by the requirements that (i) the maximum
value of D obeys Dmax > 0.5 and (if) 1 — D(0) > 2(1 — Dmax).
Type II and type III differ by the value of the feedback at low
k. In type II, Sgg is sufficiently strong so that the D(k = 0) is
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Fig. 2. Types of feedback kernels D(k) vs. the wave-number k and the
corresponding cortical orientation amplification factor Q vs. the radial dis-
tance r from the pinwheel center. Here o = 0.45, o = 0.5, and Sg; = 0.5. The
other parametersare: (/) See = 1, Sg = 0.5; (/) See = 3, Sie = 4.6; (/1) Seg = 3.5,
Sk = 8;and (IV) Seg = 1, S = 4. They correspond to the circles depicted in
Fig. 5.

positive. Type III has negative D(k = 0). Finally, when Sgg is
small, the feedback D(k) is dominated by the inhibitory com-
ponent. It is negative for low k and its maximum value is less than
0.5. (type IV). Here the feedback acts as a high-pass filter,
suppressing the low-k modes.

The Mexican-hat behavior is present in our system even when
the inhibitory synapses have a shorter spatial range than the
excitatory ones (in Figs. 2-6, we use o1 = 0.90%). The reason for
this is that the space constant of the negative component of the
feedback loop is o— = Vo + 0%, which is always larger than the
positive feedback one, o. A similar argument has been given in
a study of a 1D network (19).

Fig. 2 shows the contribution of the cortical interactions to the
orientation tuning of the excitatory population, in the different
regimes. We plot the cortical modulation amplitude Q as a
function of the distance r from the pinwheel center. Since
the anatomical findings suggest that og; are roughly half the
“radius” of a hypercolumn we consider only the range 0 <r < 1,
r = 1 being twice the size of og (i.e., og = 0.5).

As can be seen, the shape of D(k) has a substantial effect on
the OS of the cells. In order to generate sharp tuning the cortical
interactions must enhance the non-zero k modes [contributing to
the modulation amplitude b(r)] relative to the kK = 0 mode of the
activity, which is a. This can be achieved by suppressing the
uniform mode, enhancing the non-zero modes, or a combination
of the two. Thus, type I kernel is unsuitable for OS because it
peaks at k = 0, thereby enhancing maximally the uniform mode.
Indeed, Fig. 2 shows that in this case, Q is less than unity,
implying that the OS is broadened relative to the tuning of cells
without cortical interaction. On the other hand types, II, 111, and
IV can all sharpen tuning, at least in some locations.

In the case of the type IV kernel, Q > 1 and is maximal near
the center. At this location, the negative feedback suppresses the
uniform component of the activity without suppressing the
modulation component. Away from the center, Q monotonically
decreases with r, as the inhibition suppresses also the modulated
component of the activity and reaches a value close to unity for
r = 1. This behavior is confirmed in the simulations of the model,
as shown in Fig. 3. The network is stimulated by a broadly tuned
LGN input with horizontal stimulus, 6, = 0°. The activity profile
exhibits sharp peaks at the pinwheel centers. As one moves away
from them, both the peak activities as well as the angular
modulation of the profile decrease considerably. Note that
unlike the analytical solution, here the interactions between the
different pinwheels are not neglected. Nevertheless, the simu-
lation results are in a good agreement with the analytical
predictions [compare Fig. 3 Inset with Fig. 2 (IV)].

In type II, Q(r) is monotonically increasing with 7 (in the range
r < 1). In fact, near the center Q is less than 1, indicating that
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Fig.3. Simulations of Egs. 1and 2 with the parameters of Fig. 2 (type IV) and
time constants 7 = 2 msec, 7 = 6 msec. The network is composed of two
populations of cells on a 64 X 64 lattice organized in four pinwheels. Here,
A = 3.25,B = 0.75, and 6 = 0°. Displayed is a surface plot of the stationary
excitatory activity profile, with its contours shown in the x-y plane. (Inset) The
cortical orientation amplification factor Q(r), as estimated by computing the
angular modulation of the profile in narrow annuli with radius r.

here the cortical interactions actually broaden the OS of the
cells. Because of the positive feedback at small k, it enhances
the uniform component, causing a decrease in Q. At larger r the
selective enhancement of the non-zero £ mode comes into play,
causing an increase in Q that can reach values larger than 1, as
shown in Fig. 2. Type III achieves large values of Q for all 7. This
is because of the combined inhibitory suppression of the low k
mode (which is effective at the center) and the enhancement of
a non-zero k mode (important far from the center). In general,
Q peaks at an intermediate value of r. However, depending on
the chosen parameters, the dependence on r of Q can be rather
mild, as shown in Fig. 2111. Simulations of the type III parameters
(for stimulus with 6, = 0°) are shown in Fig. 4. The activity
profile shows two uniform ridges at the middle of the two
horizontal columns, with relatively uniform peak activity and
angular modulation, as suggested by the numerical calculation of
QO (Fig. 4 Inset).

Fig. 5 shows the phase diagram of the system, in the plane of
the positive feedback amplitude, Sgg, and the amplitude of the
negative feedback loop, SgiSie. The parameter regimes where
the different types of D(k) exist are marked. In addition, the
instability lines where the maximum of D(k) is 1 are shown. One
line (dashed) corresponds to the case where D (k) peaks at k =
0 (type I) so that the unstable mode is a uniform mode. Crossing
this line causes the activities to grow uncontrollably. The other

0 o0

Fig.4. Simulationsusing the parameters of Fig. 2 (i.e., type lll). Details are the
same as in Fig. 3.
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Fig. 5. Phase diagram showing the parameter regions for the different type
of D(k). Here o1/0¢ = 0.9. The four circles show the value of parameters used
in Fig. 2. Also shown are the instability lines where D(k) becomes greater than
unity. The dashed instability line is for the case where the unstable k is zero;
the dotted line is when the unstable k is nonzero.

stability line (dotted) corresponds to the case where the unstable
mode is at non-zero k. Crossing this line the solution becomes
nonlinear and exhibits symmetry breaking (see Discussion).

Instability of Mexican-Hat Solutions with Slow Short-Range Inhibition.
In the previous section we have assumed that the inhibition is fast
so that all stationary solutions with D(k) < 1 are stable. This
assumption, however, is problematic because the y-aminobutyric
acid type A (GABA,) decay time-constant is larger than that of
the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors. Here we study the system behavior when the
inhibition is not faster than the excitation. Calculating the
stability of the solutions of Egs. 1 and 2 we find that the stability
of the linear solution requires, in addition to D (k) < 1, also that

TE
Spp<1+—. [6]
i

If Sge exceeds this limit, the system undergoes an oscillatory
instability. The constraint, Eq. 6, seriously limits the strength of
the excitatory synapses, and hence their role in amplifying the
cortical tuning. For instance, in the case of inhibition and
excitation with equal time constants, the stability requires that
See < 2, which excludes the Mexican-hat regimes (types 11 and
IIT; see Fig. 5), limiting the action of the cortical interactions to
predominantly inhibitory (type IV). An example of the effect of
this oscillatory instability is shown in Fig. 6, where the network
with the parameters corresponding to the Mexican-hat archi-
tecture (type I1I parameters, Fig. 5) is simulated with 75 = 71 =
5 msec.

The above analysis assumes only one excitatory synaptic
time-scale. In cortex, in addition to fast AMPA receptors, many
cells have also N-methyl-D-aspartate (NMDA) receptors (20),
and these receptors have a much longer decay time, of the order
of 100 msec. Motivated by this, we examine the possible role of
the slow NMDA synapses in stabilizing the Mexican-hat system
(21, 22). We model the system by using three populations of
synapses: fast inhibition (time constant y), fast excitation (with
strength Sgg; and time constant 7g;), and slow excitation (with
strength Sgg, and time constant 7). The spatial profiles of both
types of excitatory synapses are assumed to be the same. Because
the nature of the synapse is determined by the postsynaptic
target and not by presynaptic sources, the firing rates of the
excitatory population are still defined in terms of a single
variable, Mg(7,t) = [Ig(7, t)]+, since both types of synaptic
receptors “see” the same presynaptic firing sources. This implies
that in the stationary state mg () = mga(F), and both are equal
to the excitatory firing rate profile Mg(7). Thus, the properties
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Fig.6. (Upper) Oscillatory instability with slow inhibition. Evolution of firing
rate of an excitatory cell at lattice location (1.0, 1.5). Network parameters are
thesame asin Fig. 4 (type Ill), except for the synaptic time constants, which are
7 = 1 = 5 msec. The system exhibits high-amplitude rapid coherent oscillation.
(Lower) Total excitatory conductance is the same as in Upper, but 60% of it is
composed of slow synapses with time constant 50 msec. The time constants of
the fast synapses are the same as in Upper.

of the stationary solution remain the same as those analyzed in
the two-population model above with Sgg = Sge1 + Seez.
Nevertheless, the dynamics of the system is different and, in
particular, the dynamic stability criteria of this stationary state
change.

To see the effect of slow excitation on the stability of the
stationary state, consider the simple limit where the time
constant of the fast synapses 7g» is much larger than 7g; and 7.
In this limit, the stability requirement that the positive feedback
not be larger than 1 yields the same condition as in the
two-population model, but with a feedback kernel D(k) com-
puted by using the total excitatory strength, Sgg = Sgg1 + See2.
On the other hand, the oscillatory instability applies now only to
the fast subsystem (i.e., that involving Sgg; and the ratio g1/ ).
Denoting the fraction of slow excitatory synapses by « (Sgg2 =
aSeg, See1 = (1 — a)Sgg), the stability condition (Eq. 6) is
replaced by

1 TE1

See<(1 — @) (1—1—?). [71
I

Thus the presence of slow synapses allows a stable stationary

state with stronger overall feedback excitation than the corre-

sponding system with only fast excitation. Fig. 6 shows an

example of stabilization of the nonoscillatory states for the

Mexican-hat parameters for a system for which 60% of the

excitatory interactions are slow (NMDA synapses) with gy =

50 msec.

Stable Mexican-Hat Solutions with Slow Long-Range Inhibition. We
have seen in the phase diagram of Fig. 5 that the Mexican-hat
state exists only for large values of positive feedback and this,
according to Eq. 6, can lead to its instability. However, we find
that the phase diagram of the system is very sensitive to the ratio
of the excitatory and inhibitory space constants, og and oy. Fig.
5 was calculated for o7 = 0.90g. In Fig. 7 we show the corre-
sponding phase diagram for the cases o7 = 20. Comparing Figs.
5 and 7, it is clearly seen that if the inhibition has a substantially
longer spatial range than the excitation, Mexican-hat solutions
occur already for smaller values of Sgg. To understand this
phenomenon, we recall that the space constant of the negative
feedback is - = Vo + of. Thus, if oy is small, the space
constants of the positive and negative feedbacks are nearly the
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Fig. 7. Effect of long-range inhibition on the phase diagram of the system.
Parameters are the same as in Fig. 5, except that o/o¢ = 2.

same. Hence, to generate a significant net positive feedback one
needs to overcome the cancellation of the positive and negative
feedback by substantially increasing the strength of the interac-
tions. This cancellation effect does not happen if oy is large.
Examining the dependence of the phase diagram on the space
constants ratio, we find that the Mexican-hat state requires

Sge > min[1 +x, 0.5x (1 + x)'**] wherex = o%/07. [8]

This bound, which is an increasing function of x, predicts that a
smaller value of Sgg is sufficient if oy is large. If this bound is
smaller than the condition Eq. 6 (or Eq. 7), then the system
posses a stable Mexican-hat state.

The interplay between the spatial extent of the inhibition and
its time constant is summarized in Fig. 8. Fig. 8 shows the
minimum relative spatial range of inhibition required for a stable
Mexican-hat solution vs. its relative time constant. This rela-
tionship is derived by combining Egs. 6, 7, and 8. Note that if the
inhibition is not faster than the excitation, then for the system to
have a Mexican-hat solution the inhibition must have a longer
range than the excitation. This is not the case if in addition to the
fast subsystem, there is also a substantial component of slow
excitatory synapses, as predicted by Eq. 7.

Discussion

Mexican Hats and the Range of Inhibition. In this work we shed light
on the conditions for local recurrent circuits to amplify spatial
patterns of activity by using a balance between strong excitation
and inhibition, with both of limited spatial extent. We show that
long-range inhibition is not a prerequisite for amplification. This
is because the negative feedback loop consists of excitatory and
inhibitory synapses in series, and the range of this loop is always

2
=0
° @=03.
’’’’’ a=0.6
"""""" ®=09 |
% T/t 5

Fig. 8. Relation between the relative spatial range of inhibition and its
relative temporal range. The curves show the minimum ratio oy/0¢ required
for the existence of a Mexican-hat state vs. the ratio 7/7. Solid line is for a
system with a single excitatory time constant (a« = 0). The dotted lines are for
a system where a fraction « of the excitation is very slow compared to the fast
subsystem. In the latter case, the x axis corresponds to the ratio of time
constants for the fast subsystem, see Eq. 7.
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longer than the monosynaptic positive feedback. Long-range
inhibition is, however, necessary to stabilize the asynchronous
state in the Mexican-hat regime, if the inhibitory conductance is
not faster than the excitatory ones. Indeed, in visual cortex the
long axons of GABAergic basket cells may provide the substrate
for long-range inhibition (23).

Possible Role of NMDA Synapses. A potential source for slow
excitatory conductances in cortical recurrent dynamics is
NMDA-mediated receptors. Other recent models have proposed
a role for NMDA synapses in the cortical dynamics (20, 21). As
we show here, stability of the Mexican-hat state with short-range
inhibition can be achieved when a sizable fraction of the total
excitatory conductance is slow compared to the inhibition, even
though the fast excitatory component contributes significantly to
the total positive feedback. Indeed, several experiments suggest
that NMDA-mediated currents constitute a large fraction of
the excitatory current in cortex (20, 24), although the ratio of
NMDA to «a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) conductances in adult visual cortex is not known.

Orientation Tuning and Pinwheel Architecture. One of the main
results of this work is that the Mexican-hat state differs quali-
tatively from the inhibitory regime in the 2D layout of orienta-
tion tuning. In the regime where cortical feedback is predomi-
nantly inhibitory, OS is sharp at the pinwheel centers and is
considerably broadened far from the centers, in agreement with
previous numerical work. We show that in this regime, the peak
firing rate should be significantly higher near the center. In
contrast, when cortical excitation is substantial, OS width as well
as peak firing rate are maximal at intermediate distance from the
centers. Furthermore, in a suitable choice of parameters of the
Mexican-hat interactions, the distance dependence of the cor-
tical activity pattern is weak, yielding a roughly uniform OS along
an orientation column. Further experimental studies of the
relation between OS and the pinwheel singularities will be
important for elucidating the involvement of cortical circuitry in
orientation processing.

Relation to Previous Work. This work differs from most previous
models of visual cortex in that it does not assume feature
specificity of the connections. Instead, connections are assumed
to depend only on cortical distances. In addition, lateral inhibi-
tion is not assumed to be global or of larger extent than
excitation. This architecture is closely related to that used in the
recent large-scale numerical study by McLaughlin et al. (14) of
layer 4Co in macaque V1. Their work studied the inhibitory
regime (type I'V) in a large-scale network of conductance-based
integrate-and-fire cells. Its complexity precludes a systematic
survey of a large parameter range. Shelley and McLaughlin (17)
analyzed this network near and far from pinwheel centers by
using nonlinear rate models in the inhibitory regime. Here we
simplify the neuronal dynamics further by using linear rate
equations and gain analytical solutions. Other analytical studies
of spatial patterns in V1 have focused only on the long-range
connectivity while ignoring the pinwheel orientation architec-
ture (22, 25), or used a 1D “ring” model of an orientation
hypercolumn (3, 4). The ring model has been recently extended
to incorporate both orientation and spatial frequency tuning
(26). In this work we extend the power of analytical study of large
networks to the study of the local 2D architecture of V1. The
methods developed here allowed us to map the phase diagram
of the system and to specifically address the conditions for the
existence of stable Mexican-hat states and their properties.

Limitations of the Model. For the sake of simplicity, we have

ignored inhibitory—inhibitory interactions. A more comprehen-
sive analysis shows that incorporating these interactions does not
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change the qualitative conclusions of our work. Our rate equa-
tions ignore the effects of active currents on the network state.
Although this rate model is suitable for calculating the properties
of stationary (namely asynchronous) states due to spatial aver-
aging, more work is needed to elucidate the effect of spike-
related mechanisms on the stability of these states. The present
analytical solution was confined to the linear regime where all
the cells are above firing threshold. Our numerical simulations
(data not shown) indicate that in the studied parameter regime,
adding a high firing threshold does not change the qualitative
behavior of the network aside from the thresholding the activity
profiles predicted by the linear solution.

Mexican Hats and Multiple Attractors. When the peak value of the
Mexican-hat feedback is sufficiently large, the linear state be-
comes unstable. When this instability line is crossed (dotted line
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in Figs. 5 and 7), the system settles into a nonlinear marginal
phase. This phase is characterized by having a continuum of
states, spatially modulated on intrinsic scales, which emerge in
the system spontaneously in the absence of modulated inputs.
This multiplicity of “attractors” is a key feature in network
models of working memory, head direction systems, and other
spatial memory systems (7). Mexican-hat feedback is crucial for
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conclusion is reached in studying the stability of bump states in
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