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Abstract
Background: Recently, growing evidence suggests the involvement of PI 3-K/Akt in IL-6-
dependent survival and proliferative responses in several types of cells. However, whether PI 3-K/
Akt plays the same role in IL-6-dependent growth of 7TD1 mouse-mouse B cell hybridoma is not
known.

Methods: We investigated the activation status of Akt in 7TD1 cells induced by IL-6. With PI 3-K
specific inhibitor wortmannin, we also investigated the biological roles of Akt activation in 7TD1
cells.

Results: IL-6 stimulated phosphorylation of Akt in a dose- and time-dependent manner in 7TD1
cells. Wortmannin significantly reduced IL-6-induced phosphorylation of Akt and IL-6-dependent
growth of 7TD1 cells. Furthermore, wortmannin blocked IL-6-induced up-regulation of XIAP, but
not Bcl-2 in 7TD1 cells.

Conclusion: The data suggest that IL-6-induced PI 3-K/Akt activation is essential for the optimal
growth of 7TD1 cells through up-regulation of anti-apoptosis proteins such as XIAP.

Background
Interleukin-6 (IL-6) is a pleiotropic cytokine. The binding
of IL-6 to its receptor induces the activation of multiple
signal transduction pathways such as JAK/STATs (Janus ty-
rosine kinase/signal transducers and activators of tran-
scription) pathway, Ras/ERK (extracellular signal-
regulated kinase) pathway, and PI 3-K (phosphotidyli-
nositol 3-kinase)/Akt pathway via gp130 tyrosine phos-
phorylation [1]. The roles of JAK/STATs pathway and Ras/
ERK pathway in the biological effects of IL-6 have been ex-
tensively investigated [1,2]. However, what role PI 3-K/
Akt plays in IL-6 signaling is less clear. Akt is a serine (Ser)/
threonine (Thr) protein kinase which resides within the

cytosol in a catalytically inactive state in quiescent or se-
rum-starved cells. After stimulation of cells with growth
factors and cytokines, Akt is catalytically activated by
phosphorylation at Thr308 and Ser473. Activated Akt in
turn phosphorylates downstream target molecules and in-
duces the expression of anti-apoptosis proteins, which
promote induction of its anti-apoptosis effect [3]. Recent-
ly, growing evidence suggests the involvement of PI 3-K/
Akt in IL-6-dependent survival and proliferative responses
in several types of cells [3–6]. Still, whether PI 3-K/Akt
plays the same role in IL-6-dependent growth of 7TD1
mouse-mouse B cell hybridoma is not known. In our pre-
vious work, we showed that ERK cascade but not STAT3
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contributed to IL-6-dependent growth of 7TD1 cells [7].
Here we report that IL-6 triggers activation of PI3-K/Akt
signaling in 7TD1 cells, and that IL-6-induced PI 3-K/Akt
activation is essential for the optimal growth of 7TD1
cells.

Methods
Cells and cell culture
7TD1 cells were obtained from the American Type Culture
Collection. The cells were cultured in RPMI 1640 medium
supplemented with 10% fetal bovine serum. β-mercap-
toethanol and recombinant human IL-6 (107U/mg) were
added to the medium at final concentration of 5 × 10-

5mol/L and 5 ng/ml, respectively. Wortmannin (Sigma)
was dissolved in DMSO to 2.5 mM and stored at -20°C.
DMSO was added to control cells to keep concentrations
of DMSO (<0.1%) equal in all samples. The cells were pre-
treated with wortmannin for 30 min at 37°C before IL-6
was added to the medium.

MTT assay
The cells were seeded into 96-well plate and cultured in
the presence of different dose of IL-6 for 72 h. Afterwards,
10 µl MTT (Sigma, 5 mg/ml) was added to each well, 4 h
later, an equal volume of 10%SDS-10 mM HCl was added
to dissolve the blue crystals of formazan. The samples
were measured at OD 570 nm by an ELISA reader (Dy-
natech Laboratories, Inc. U.S.A.).

Western-blotting assay
After protein determination, total cell lysates (5 × 105 cell/
sample) were boiled in 2 × reducing SDS loading buffer of
equal volume for 10 min. The samples were subjected to
one-dimensional SDS-PAGE. After electrophoresis, pro-
teins were transferred to a 0.45 3 µm pore-size nitrocellu-

lose membrane at 40 V for 2 h. Non-specific binding sites
on the nitrocellulose membrane were blocked by incuba-
tion in blocking buffer (5% w/v, non-fat dried milk) for 1
h at 37°C. The blots were washed once with Tris-buffered
saline (10 mM Tris/HCl pH 7.5, 150 mM NaCl) and incu-
bated with the primary antibody for 1 h at 37°C or over-
night at 4°C. After the removal of excess primary antibody
with three washes, the blots were incubated with a sec-
ondary antibody (goat anti-mouse or goat anti-rabbit an-
tibodies conjugated with horseradish peroxidase). The
membrane was developed with enhanced chemilumines-
cence reagent and exposed to Hyperfilm-ECL® (Amersham
Life Science Corp.) for detection. Akt and phospho-Akt
(Ser473) antibodies were products of New England Bi-
oLabs (Beverly, MA, U.S.A.). Anti-(human XIAP) antibody
was a product of Medical and Biological Laboratories (Na-
ka, Nagoya, Japan). Anti-Bcl-2 and anti-Caspase-3 anti-
bodies were obtained from Santa Cruz Biotechnology
(Santa Cruz, CA, U.S.A.).

Results
IL-6 stimulated phosphorylation of Akt in a dose- and 
time-dependent manner in 7TD1 cells
The survival and proliferation of 7TD1 hybridoma cells
depend on IL-6. IL-6 induced phosphorylation (Ser473)
of Akt, a downstream effector of PI 3-K, in 7TD1 cells. This
activation by IL-6 occurred as early as 5 min, and was de-
pendent on the dose of IL-6. However, IL-6 had little effect
on the protein amount of Akt (Fig. 1).

PI 3-K specific inhibitor wortmannin significantly reduced 
IL-6-induced phosphorylation of Akt and IL-6-dependent 
growth of 7TD1 cells
To investigate what role PI 3K/Akt plays in the signal
transduction of IL-6 in 7TD1 hybridoma cells, we deter-

Figure 1
IL-6 stimulated phosphorylation of Akt in a dose- and time-dependent manner in 7TD1 cells. 7TD1 cells were 
starved in IL-6-free medium for 6 h. Then the cells were cultured in the presence of different dose of IL-6 for 5 min or in the 
presence of 1 ng/ml IL-6 for 0, 5, 10, 30, 60 min respectively. After the cells were collected and washed, whole-cell extracts 
were prepared and subjected to Western-blotting assay. This figure is representative of 3 separate experiments.
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mined the effects of wortmannin, a PI 3-K specific
inhibitor at 10–100 nmol/L [8], on IL-6-induced phos-
phorylation of Akt and IL-6-dependent growth of 7TD1
cells. It was found that wortmannin significantly antago-
nized IL-6-induced phosphorylation of Akt and IL-6-de-
pendent growth of 7TD1 cells and the inhibitory effects of
wortmannin were dependent on its concentration. These
data confirm that activation of Akt is mediated by a PI 3-
K-dependent mechanism and suggest that IL-6-induced PI
3-K/Akt activation is essential for the optimal growth of
7TD1 cells (Fig. 2).

IL-6 induced up-regulation of X chromosome-linked inhib-
itor of apoptosis protein (XIAP) through PI 3-K/Akt 
activation
The preceding experiments suggest that IL-6-induced PI 3-
K/Akt activation is essential for the optimal growth of
7TD1 cells. Next we try to investigate the underlying
mechanism. Recent evidence has indicated that proteins
of the inhibitor of apoptosis (IAP) family, whose expres-
sion might be under the regulation of NF-κB, can block
apoptotic events by directly binding and inhibiting select-
ed caspases. A potent mammalian IAP is X-linked IAP
(XIAP), for which the mechanism of action involves the
direct binding and inhibition of caspase-3 and caspase-7,
two key effector proteases of apoptosis [10]. What role
XIAP plays in IL-6-mediated anti-apoptosis mechanism is
of interest. It is reported that the level of Bcl-2, but not Bcl-

XL and Mcl-1, decreased after IL-6 deprivation [9]. To ex-
amine the effects of IL-6-induced PI3-K/Akt activation on
these apoptosis-related proteins, we further studied IL-6-
induced expression of Bcl-2 as well as XIAP and Caspase-
3 in 7TD1 cells by Western-blotting assay with Bcl-2,
XIAP, and Caspase-3 antibodies, with or without wort-
mannin. Untreated 7TD1 cells displayed significant levels
of these apoptosis-related gene products (Fig. 3). IL-6 sig-
nificantly up-regulated the levels of XIAP and Bcl-2 but
had little effect on the level of caspase-3. Both constitutive
and IL-6-induced expression of XIAP in 7TD1 cells was in-
hibited by wortmannin. However, wortmannin had little
effect on IL-6-induced expression of Bcl-2. Taken together,
these data suggest that IL-6 might induce up-regulation of
XIAP through PI 3-K/Akt activation.

Discussion
The growth of 7TD1 B cell hybridoma is dependent on the
survival factor IL-6. IL-6 inhibits physiological cell death
and allows expansion of populations of serum-stimulated
cells. How IL-6 can promote the growth of 7TD1 cells re-
mains elusive. In our previous work, we showed that ERK
cascade but not STAT3 contributed to IL-6-dependent
growth of 7TD1 cells [7]. However, activation of ERK cas-
cade seems not to be sufficient since MEK inhibitor
PD098059 pretreatment resulted in partial blockade of IL-
6-induced growth of 7TD1 cells although IL-6-induced ac-
tivity of ERK cascade can be completely blocked by

Figure 2
Effects of wortmannin on IL-6-induced phosphorylation of Akt (A) and IL-6-dependent growth of 7TD1 cells 
(B). 7TD1 cells were starved in IL-6-free medium for 6 h. Then the cells were pretreated with wortmannin or DMSO of equal 
volume for 30 min at 37°C before IL-6 was added into the medium. (A) The cells were cultured for 5 min in the presence of IL-
6. After the cells were collected and washed, whole-cell extracts were prepared and subjected to Western-blotting assay. (B) 
The cells were seeded into 96-well plate (2 × 103 cells per well) and cultured in the presence of different dose of IL-6 for 72 h. 
Afterwards, MTT assay was performed to determine the effect of wortmannin on IL-6-dependent growth of 7TD1 cells. This 
figure is representative of three separate experiments.
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PD098059 of the same concentration. In this work, we
show that IL-6-induced PI 3-K/Akt activation is also essen-
tial for the optimal growth of 7TD1 cells. Taken together,
our data suggest that IL-6 promotes the growth of 7TD1
cells via activation of multiple signal transduction path-
ways including ERK cascade and PI 3-K/Akt pathway.

Recently, growing evidence suggests the involvement of PI
3-K/Akt in IL-6-dependent survival and proliferative re-
sponses in several types of cells [3–6]. Our data are con-
sistent with these findings, further confirming the
important roles of PI 3-K/Akt in IL-6 signaling. Further-
more, we found that XIAP, but not Bcl-2, might be a
downstream target molecule of Akt since both constitutive
and IL-6-induced expression of XIAP, but not Bcl-2, in
7TD1 cells was inhibited by wortmannin. Recent evidence
has indicated that the expression of XIAP might be under
the regulation of NF-κB. PI 3-K/Akt pathway is thought to
be involved in the full activation of NF-κB through phos-
phorylation of the Rel proteins [11]. Therefore IL-6 might
induce the expression of XIAP through PI 3-K→Akt→NF-
κB cascade. This is the first report that XIAP is involved in
IL-6-mediated anti-apoptosis mechanism.
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