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ABSTRACT The determination of the intermediate state structures of the bacteriorhodopsin photocycle has lead to an un-
precedented level of understanding of the catalytic process exerted by a membrane protein. However, the crystallographic
structures of the intermediate states are only relevant if the working cycle is not impaired by the crystal lattice. Therefore, we
applied visible and Fourier transform infrared spectroscopy (FTIR) microspectroscopy with microsecond time resolution to
compare the photoreaction of a single bacteriorhodopsin crystal to that of bacteriorhodopsin residing in the native purple
membrane. The analysis of the FTIR difference spectra of the resolved intermediate states reveals great similarity in structural
changes taking place in the crystal and in PM. However, the kinetics of the photocycle are significantly altered in the three-
dimensional crystal as compared to PM. Strikingly, the L state decay is accelerated in the crystal, whereas the M decay is
delayed. The physical origin of this deviation and the implications for trapping of intermediate states are discussed. As a
methodological advance, time-resolved step-scan FTIR spectroscopy on a single protein crystal is demonstrated for the first
time which may be used in the future to gauge the functionality of other crystallized proteins with the molecular resolution of
vibrational spectroscopy.

INTRODUCTION

The elucidation of themolecularmechanism of energy conver-

sion by living organisms is of particular interest to biophysics.

One of the most intensively studied but still controversially

discussed primary energy converter is bacteriorhodopsin

(bR). bR is a 27-kDa integral membrane protein from the

halophilic archaea Halobacterium salinarum (1). It is the

simplest known proton pump. As cofactor, bR contains

all-trans retinal covalently linked to Lys-216 via a protonated
Schiff base (SB). Photon absorption induces the working

cycle of the protein (photocycle). The first atomic motion

leads to 13-cis isomerization of the retinal, which is eventually

followed by a sequence of proton transfer reactions that

finally result in positive charge transfer out of the cell (2,3).

The development of new crystallization procedures (4–7)

resulted in well-ordered three-dimensional (3D) crystals that

allowed us to solve the bR structure to high resolution. The next

step in high-resolution crystallographic studies was the

determination of the structural changes that accompany the

photocycle (8). Most of the intermediate state structures have

been solved from crystals of space group P63 grown in lipidic

cubic phase (4). The packing of molecules in this crystal form

is similar to the natural two-dimensional crystals (purple

membrane; PM) (9). These crystals diffract to the highest

resolution (10). The crystallized bR molecules were shown

to be fully functional; that is, the crystals were investigated

by resonance Raman and time-resolved (TR) Fourier trans-

form infrared spectroscopy (FTIR) spectroscopy in millisec-

ond range, and it was concluded that retinal isomerization,

conformational changes of the protein backbone, and proton

translocation steps proceed virtually indistinguishable from

those in the native membranes (11). Later it turned out that

the procedures developed to trap intermediate states of bR in

PM (12) are not rigorously applicable to bR in crystals

(13,14). Moreover, it was suggested that lipidic cubic phase

crystallization results in internally dehydrated bR crystals

(15). These contradictions were the motivation for the more

thorough investigation of the photochemical properties of

bR in crystals.

The major limiting factor in spectroscopic studies of pro-

tein crystals is their small size, which usually does not ex-

ceed a few hundred microns. However, when a structure of

an intermediate of a light-sensitive protein is the focus of a

crystallographic study, it is prerequisite to characterize photo-

product by spectroscopic methods. The most common tech-

nique is stationary visible absorbance spectroscopy (16–18).

Among more sophisticated methods are TR visible absor-

bance spectroscopy (19–21) and static FTIR spectroscopy

(22,23). Another obstacle for a spectroscopic study is to

obtain crystals with the suitable shape. Special approaches

like crystallization in capillary (19) or between parallel glass

plates (22) were used in some cases. Under our conditions,

bR crystallizes in the form of thin hexagonal plates, which

are naturally suitable for spectroscopic studies.

We were able to demonstrate in previous FTIR spectro-

scopic experiments that bR is fully functional in 3D crystals

(11). However, kinetic details could not be studied due to the
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poor time resolution of rapid-scan FTIR (millisecond range).

Moreover, previous work was performed on an ensemble of

crystals. In this study, we applied visible and FTIR micro-

spectroscopy with microsecond time resolution to compare

the photocycles of a single bR crystal to that of PMs under

conditions commonly used in crystallography. It is found

that bR undergoes transformations via the intermediate states

L, M, N, and O in the crystal. The detailed comparison of the

FTIR difference spectra of the resolved intermediate states

reveals great similarity in structural changes taking place in

crystals and PM. However, the kinetics of the photocycle is

significantly altered in 3D crystals as compared to PM.

MATERIAL AND METHODS

Purple membrane preparation and
bR crystallization

PMs were isolated from H. salinarum strain S9 (24). For crystallization, bR

was solubilized in b-octylglycopyranoside (OG). Crystals were grown in the

cubic phase of monoolein (1-oleoyl-rac-glycerol, MO, NU-Chek Prep,

Elysian, MN) (4) as described (25). Crystals were separated from the lipidic

cubic phase by dissolving the lysolipid in 2 ml of an aqueous solution of 3 M

NaH2PO4/Na2HPO4 (pH 5.6) buffer in the presence of OG.

Sample preparation for spectroscopy

Spectroscopic measurements in the visible wavelength rangewere performed

in a horizontal glass cuvette with two circular cover glasses separated by a

plastic spacer. A bR crystal adhered on the bottom window of the cuvette

was overlaid with 200 ml of 3 MNa-Pi pH 5.6 buffer and sealed with another

window using vacuum grease. For comparison, a dried film of PM has been

rehydrated in the same way.

For infrared measurements, crystals were placed in the center of a BaF2
windowusing a cryoloopoverlaidwith 10ml of 3Mphosphate buffer (pH5.6)

and sealed with a second BaF2 window using vacuum grease. Care was taken

to avoidmechanical destruction of the bR crystals. Only crystals with optimal

thickness (optical density; 0.7 at 570 nm)were selected. The diameter of the

sampling field of the microscope was limited to 180–250 mm by an aperture

wheel. For comparison, PMwas dried on a BaF2 window, covered by 100 ml

of phosphate buffer (see above) and equilibrated for .3 h. Finally, excess

buffer was removed and the sample sealed. For measurements in D2O, 3 M

deuterated phosphate buffer was prepared from the protonated buffer by

several successive lyophilization steps. Crystals were soaked overnight in

deuterated buffer before the spectroscopic experiments. Hydrogen/deuterium

(H/D) exchange in PMwas achieved by several successive washings steps of

the film with deuterated buffer and 2 h of equilibration after each wash. The

residual H2O content in the samples was,5% as judged from the absorbance

at 3400 cm�1 (O-H stretching vibration) and 2500 cm�1 (O-D stretch).

Experimental setup for
time-resolved microspectroscopy

A schematic block diagram of the experimental setup is shown in Fig. 1 a.

The principal part of the setup is a Cassegrain-type microscope (focusing

mirrors only). A single crystal was placed in the focal plane (Fig. 1 b). The
microscope can be operated in three different modes. In UV-Vis mode, one

of the oculars of the microscope is coupled via a quartz fiber bundle to a

spectrograph (Acton Research, Acton, MA) with an intensified charge-

coupled device (CCD) camera (CCD-576G, Princeton Instruments, Mon-

mouth Junction, NJ) as detector. The emission from a continuous Xe-lamp is

used as probe light. Time-gated difference spectra with a time resolution of

10 ns can also be acquired with the intensified CCD camera. However, the

intense white probe light leads to the accumulation of photoproducts.

Therefore, experiments at single wavelength are preferred. A home-built

flash photolysis setup was constructed which employs interference filters

(half-width ,10 nm) that are placed between the Xe-lamp and the sample.

For pulsed excitation, the pulsed emission of a frequency-doubled Nd:YAG

laser (532 nm, 8 ns, 3 mJ/cm2) was used. A notch filter (OD 6 at 532 nm,

Kaiser Optical Systems, Ann Arbor, MI) was placed in front of the

photomultiplier (R3788, Hamamatsu, Herrsching, Germany) to block

scattered laser light. The signal from the transmitted light was amplified

with a home-built amplifier (1-ms response time) and fed into a digital

oscilloscope (Hewlett Packard, Palo Alto, CA; 54510A, 250 MHz, 8000

points, GPIB interface) to detect transient absorbance changes in the time

range between 10 ms and 1 s. Data from 1536 laser flashes were averaged at

each wavelength to improve the signal/noise ratio.

In infrared (IR) mode, the modulated emission from the globar of the

IFS66v spectrometer (Bruker, Billerica, MA) is focused by the microscope

on the sample. The transmitted light is focused on the mercury cadmium

telluride (MCT) detector of the microscope. The signal from the detector is

coupled to a preamplifier (analog bandwidth 40 kHz) operating in alternating

current for steady-state measurements or direct current output mode for step-

scan experiments. The photocycle was excited with a repetition frequency of

5.9 and 4.0 Hz for PM and crystal, respectively. Step-scan data were

recorded using a sequence of 942 time points distributed uniformly on a

logarithmic timescale between 7 ms and 160 ms. The sequence was

generated by a programmable waveform generator (Wavetek model 39,

Ismaning, Germany) that triggers data acquisition of the FTIR spectrometer.

With a broadband interference filter (Optical Coating Laboratory, Santa

Rosa, CA) limiting the free spectral range from 1900 to 1000 cm�1, data

were collected at 844 positions of the moving mirror of the interferometer

corresponding to an optical resolution of 4.5 cm�1. Data from 5 or 10 flashes

were averaged at each mirror position, and 10–25 of such measurements

were collected on each bR crystal. Finally, the data collected from two

crystals were averaged for measurements in H2O and from four crystals in

D2O. All experiments have been carried out at 20�C.

FIGURE 1 (a) Block diagram of the spectroscopic

setup to perform TR UV/Vis and FTIR on a single

protein microcrystal. (b) Hexagonal bR crystal imaged

via the ocular of the microscope. Traces from the

lipidic cubic phase used for crystallization appear at the

left of the crystal as a transparent inhomogeneous

paste.
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Laser pulse intensity was optimized to minimize photobleaching, which

resulted in the pulse power of ;3 mJ/cm2. In addition, it was checked that

the bR crystal preserves the diffraction properties (see Figs. S3 and S4) and

hence crystallinity after illumination with 105 laser flashes.

To measure the light minus dark adapted spectrum, the 512 reference

spectra were taken from samples that had been left in the dark overnight.

After 1-min illumination with white light from the focused emission of the

Xe-lamp, the 512 FTIR spectra were measured and the difference was

calculated. Subsequent illumination did not increase the amplitude of the

difference signal, confirming that complete light adaptation was achieved.

Data analysis

Global exponential fitting was applied to the TR data. Weights and number

of essential exponentials were determined essentially as described by Müller

et al. (26). Presented differential spectra were derived from a unidirectional

kinetic model of the photocycle without branching (27).

RESULTS

The UV-Vis absorption spectrum of retinal proteins is very

sensitive to the geometry of retinal and also to structural and

electronic changes in the vicinity of the chromophore. This is

exemplified by alterations in the chromophore absorption if

bR is solubilized in detergent (28,29), if the protonation state

of the SB or the adjacent aspartates is changed (30), or if the

water content is reduced (31). It was reported that the ab-

sorption spectrum of bR crystal exhibits features of the

partially dehydrated state of the protein (15).

Fig. 2 compares the absorbance spectra of bR residing

in a single crystal and in the native PM, which have been

recorded under the conditions used for x-ray crystallography

(identical pH, salt, and temperature). Importantly, both sam-

ples were immersed in buffer providing equivalent condi-

tions of hydration. It is evident that the spectral shapes of the

retinal absorption (lmax ¼ 567 nm) are very similar. The

deviations can be seen at lower wavelengths where the cry-

stal shows higher absorbance than PM. The difference be-

tween the two spectra (Fig. 2 b) shows a monotonic decay

which can be fitted to l�4. Hence, this difference can be

attributed to stronger light scattering of the crystal, which

is most probably caused by remainders of the lipidic cubic

phase. Thus, the retinal absorption is the same for the crystal

and PM under conditions used in crystallography before flash

cooling of crystal. This is in agreement with the results of

low temperature absorption spectroscopy reported by Royant

et al. (14).

Time-resolved UV-Vis experiments

The kinetics of the visible absorbance changes after pulsed

excitation reflects the time evolution and the spectral charac-

teristics of the intermediates during the course of the photo-

cycle. Fig. 3 displays the photocycle kinetics of a single bR

FIGURE 2 (a) Absorbance spectra of light-adapted PM (solid line) and

crystal (dashed line). Spectra are scaled to match the absorbance at 570 nm.

The data have been recorded at 20�C in 3 M Na-Pi buffer (pH 5.6). The trace

in panel (b) is the difference between the absorbance spectra of the crystal

and PM.

FIGURE 3 Transient absorbance changes at 415, 575, and 655 nm of PM

and crystal. Experimental data are shown in black, and traces in green and

blue represent fits of the data with the sum of five exponentials for PM and

crystal, respectively. The two data sets have been scaled to match the

amplitude of the absorbance changes. Experiments have been carried out in

3 M Na-Pi (pH 5.6, 20�C).
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crystal (blue trace) recorded from 10 ms to 1s. The kinetics

of bR in PM has been taken under the same conditions and is

also shown for comparison (green trace). The measurements

have been performed at wavelengths that are characteristic

for the rise and decay of specific intermediates. The M state

kinetics has been recorded at 415 nm, the recovery of the

ground state at 575 nm, and the O state at 655 nm. It can be

seen in the top panel of Fig. 3 that the rise of the M inter-

mediate is accelerated and the decay is delayed in the crystal

as compared to PM. The transient appearance of the O

intermediate is clearly detectable in the millisecond time

domain for bR in PM (green trace in bottom panel of Fig. 3)
but seemingly absent (see below) for bR in the 3D crystalline

lattice (blue trace). The kinetic traces were analyzed by

global exponential fitting. We found the sum of five expo-

nentials is sufficient to adequately describe the kinetics of bR

both in the crystal as well as in PM. The resulting time

constants of the kinetics are presented in Table 1.

As a proton pump, bR exhibits kinetic isotope effects

(KIE) when the protons are exchanged versus deuterons.

Studies on PM showed that H2O/D2O exchange affects the

rates of L/M and O/bR transitions (32,33). Indeed, the

rise of the M intermediate in crystalline bR is retarded in

D2O by about fourfold (green trace in top panel of Fig. 4) as
compared to the kinetics in H2O (blue trace). Though the

time constants of M rise change only by a factor of 2 (exps.

1 and 2 in Table 1), the corresponding equilibrium between

L and M is shifted toward the L state for the fast and toward

M for the slow time constant in D2O. This increases the real

deceleration of M rise to a factor of 4.

The M decay as well as the recovery of the ground state

bR (middle panel in Fig. 4) shows no isotope effect. How-

ever, the equilibrium between M and O is shifted toward the

O intermediate as a positive absorption band is detectable in

D2O at 655 nm (green trace in bottom panel of Fig. 4).

Hence, the O state transiently accumulates under these con-

ditions. As a matter of fact, the photocycle of crystalline bR

includes the O intermediate, but the rate constants do not

favor the transient accumulation in H2O.

Light-dark adaptation

In the dark, the retinal chromophore of bR forms a thermal

1:1 equilibrium mixture of the all-trans and the 13-cis iso-
mers (34). Upon light adaptation, retinal is converted to the

all-trans conformation (35). Dark/light adaptation in bR

crystals is of particular interest for x-ray crystallography

since incomplete light adaptation leads to a mixture of states

which is difficult to take into account during data analysis.

Fig. 5 shows FTIR difference spectra of light minus dark

adapted PM (black) and crystal (red). Positive bands corres-
pond to vibrations of light- and negative to dark-adapted bR.

All of the observed intensive bands have been assigned to

chromophore vibrations. The frequency of the ethylenic vib-

ration of retinal shifts from 1525 to 1539 cm�1 upon dark

adaptation, which correlates with the blue shift of the bR ab-

sorbance spectrum. In the fingerprint region the C-C stretch-

ing vibrations at 1201 and 1169 cm�1 are characteristic of

all-trans retinal, whereas the negative band at 1182 cm�1

corresponds to 13-cis protonated retinal. The C¼N stretch of

the SB is observed at 1641 cm�1 in the light-adapted state.

The bands at 1342 (�) and 1252 (1) cm�1 originate from the

TABLE 1 Time constants of the kinetics of bR in PM and in

the single crystal

No. of experiments PM H2O

Crystal

H2O D2O

1 81 ms 53 ms 108 ms

2 320 ms 230 ms 480 ms

3 4.3 ms 10.7 ms 11.8 ms

4 10.2 ms 35 ms 36 ms

5 36 ms 170 ms 190 ms

Data have been recorded in the visible wavelength range. Experiments on

the single crystal have been recorded in the presence of H2O or D2O,

respectively (see Figs. 3 and 4 for the experimental data and the details on

the sample conditions).

FIGURE 4 Transient absorbance changes at 415, 575, and 655 nm (from

top to bottom) of a single bR crystal in D2O (green trace). For comparison,

the kinetics in the presence of H2O (blue trace) are replotted from Fig. 3. The

experimental data are shown in black, whereas the smooth green and blue

traces represent fits to the data with the sum of five exponentials. The data

are scaled to match the maximum absorbance change at each wavelength.

Measurements have been carried out in 3 M Na-Pi pD at 20�C.
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coupled N-H and C15-H in-plane bending vibrations of

retinal in the dark- and light-adapted state, respectively (36).

The band at 1445 cm�1 on the basis of the frequency can be

tentatively assigned to asymmetric methyl deformation of

retinal in the ground state.

It is evident that the spectra correspond well to each other

and those reported earlier (37). The difference spectra have

been scaled to match the intensity of the amide II bands

(1545 cm�1) in the absorbance spectra of the samples (see

inset of Fig. 5). The intensity of the amide II band directly

reflects the amount of probed protein, because it is not sig-

nificantly overlapped with other than protein vibrations.

Because the normalized difference spectra have equal ampli-

tudes, the fractions of the molecules converted from the dark-

to the light-adapted state are the same in PM and in the

crystal. In conclusion, the similarity of the UV-Vis absor-

bance spectra of light-adapted PM and crystal as well as the

identity of the FTIR difference spectra suggest that dark/light

adaptation proceeds virtually identically in PM and the cry-

stal, in qualitative and quantitative terms. Hence, the retinal

in the bR crystal is quantitatively converted into the all-trans
conformation by light adaptation.

Time-resolved FTIR spectroscopy in H2O

To reveal the molecular details of the bR photocycle in a

single crystal, TR step-scan FTIR spectroscopy has been per-

formed. With this approach, the dynamics of protonation state

change of key amino acids and of the retinal SB, conforma-

tional changes of the retinal as well as those of the protein

backbone are determined and compared to those of bR re-

siding in PM.

The sample conditions were chosen to closely match those

used in x-ray crystallography before the crystal is frozen to

100 K (20�C, crystals immersed in 3MNa-Pi buffer, pH 5.6).

It is worthwhile to point out that the bR crystal does not lose

crystallinity upon repetitive excitation by the Nd:YAG laser

as gauged by recording diffraction patterns before and after

the crystal was hit by 100,000 laser pulses (see Figs. S3

and S4 of the supplementary information). The absorbance

changes were measured in the time range from 7 ms to

160 ms. Global exponential fitting was applied. As a conse-

quence of the poorer signal/noise ratio of the TR FTIR data

as compared to the ultraviolet/visible (UV/Vis) experiments,

three exponentials were sufficient to fit the absorbance

changes of the bR crystal. The resulting time constants are

30 ms, 13 ms, and 110 ms. Three exponential fittings of the

photocycle kinetics of PM yielded time constants of 86 ms,

3.0 ms, and 16 ms. As already demonstrated by TR visible

spectroscopy, the microsecond kinetics are faster in the

crystal than in PM, whereas the millisecond kinetics are

slower. This trend is maintained in D2O (see below).

The spectra calculated from the unidirectional unbranched

model of the photocycle are shown in Fig. 6. The spectra of

PM (black) are overlaid with the corresponding spectra of

crystal (red). The difference spectra corresponding to the

earliest time constant (Fig. 6 a) look very similar for bR in

the crystal or in PM. The spectra indicate the presence of a

pure L state (36,38–40). The most intense band at 1525 cm�1

is assigned to the C¼C stretch of retinal in the ground state.

This band is shifted to 1550 cm�1 in the L state. Three

negative bands at 1201 and 1169 arise from C-C stretching

vibrations of the retinal in ground state bR. The positive band

at 1190 cm�1 constitutes a fingerprint for the presence of

FIGURE 5 FTIR difference spectra of light minus dark adapted PM

(black) and crystal (red). The frequencies of the most prominent bands are

indicated and discussed in the text. Sample conditions are the same as in

Fig. 2. The inset shows the scaled absorbance spectra of the samples in the

amide I and II regions.

FIGURE 6 TR FTIR difference spectra of the bR derived from a uni-

directional photocycle without branching. The spectra have been derived by

globally fitting the IR kinetics with the sum of three exponentials. Black

spectra correspond to the decay-associated difference spectra of bR in PM at

time constants of 86 ms (a), 3.0 ms (b), and 16 ms (c). Spectra in red are the

decay-associated difference spectra of bR in the single 3D crystal at time

constants of 30 ms (a), 13 ms (b), and 110 ms (c).
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13-cis retinal with a protonated SB. The frequency of C¼N

stretching vibrations of SB in bR are located at 1639 cm�1 in

PM and crystal in H2O. The band which appears at 1643

cm�1 in the spectrum of the crystal is due to noise caused by

the strong background absorption of the amide I and the

bending mode of water. The TR spectra of other interme-

diates and spectra of L recorded at cryotemperature (data not

shown) clearly show C¼N stretching vibrations of SB at

1639 cm�1 in crystal. An important feature of the L inter-

mediate is the negative band at 1740 cm�1, which has been

assigned to shifts in the frequencies of the carbonyl stretch-

ing vibrations of protonated Asp-96 and Asp-115 (41–43).

The second spectra (Fig. 6 b) are also very similar for PM

and crystal. These spectra are representative for the M to

ground state difference as the negative intensity at ;1186

cm�1 is indicative for the deprotonated SB (38,40). The

positive band at;1760 cm�1 has been assigned to the C¼O

stretch of Asp-85. It peaks at 1760 for the crystal and at 1762

cm�1 for PM (see also supplemental Fig. S1). The high

frequencies together with the absence of an intense negative

band at 1670 cm�1 indicate that admixtures from the N state

are negligible in the spectra. The broad positive band cen-

tered around 1560 cm�1 is a mixture of the ethylenic vib-

ration of the retinal at 1566 cm�1 (36), a C-N stretching

vibration of Arg-82 (44), and the amide II vibration of the

protein backbone (40). The positive band at 1619 cm�1 in-

dicates the C¼N stretch of the SB in the M state (45) and

changes in amide I vibrations of Lys-216 (46).

Unlike the first two difference spectra, the third one of the

bR crystal deviates considerably from that of PM (Fig. 6 c).
In the case of PM, the carbonyl vibration of Asp-85 absorbs

at 1760 cm�1 and is broader than in the M state due to an

increase in absorbance at ;1755 cm�1 (supplementary infor-

mation I). The positive absorbance at 1186 cm�1 indicates a

mixture of intermediates with a protonated SB, i.e., N and O

states. Among them, the O state is dominant as judged by the

appearance of the characteristic C¼C stretch at 1506 cm�1,

whereas small bands at 1670 and 1553 cm�1 (Fig. 7) indicate

minor contributions from the N state (38,47). This is in

agreement with UV/Vis time-resolved measurements (Fig. 3)

and with the fact that the N state is not accumulated to high

transient concentration at pH 5.6 (the concentration of the

N state titrates with an apparent pKa of ;7 (48)).

The third difference spectrum of the bR crystal shows that

major contributions result from the N state. However an

essential fraction of the M state is still present. The following

bands are marker bands for the N state (40,47): The carbonyl

vibration of Asp-85 absorbs maximally at 1756 cm�1, a

pronounced negative amide I band appears at 1670 cm�1, a

positive amide II band at 1554 cm�1, and a positive C-C

stretching vibration of retinal at 1186 cm�1. The absence of a

band at 1506 cm�1 indicates that the O state does not con-

tribute to the spectrum, which agrees with the results from

time-resolved UV/Vis spectroscopy (Fig. 3). Deprotonation

of Asp-96 is indicated by the negative absorbance at

1741cm�1 (41). This weak negative band appears late in

the photocycle concomitantly with reprotonation of the SB

(1186 cm�1), as one can deduce from the respective kinetic

traces in Fig. 7.

FIGURE 7 IR transients of the photoreaction of bR at characteristic

frequencies. The black traces correspond to experiments on PM and the red

traces to the single crystal. The smooth gray traces are due to the global

fit with the sum of three exponentials. The horizontal dashed lines indicate

the zero level of absorbance changes.
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TR-FTIR in D2O

TR experiments have been performed in D2O for two

reasons. From an IR spectroscopic view, the exchange of

H2O to D2O removes the strong background absorption of

the solvent, particularly in the diagnostic amide I region to

gauge conformational changes of the protein backbone in the

crystal. Additionally, bR exhibits characteristic KIEs when

the protons are replaced by the heavier deuterons, which

provides an additional measure for the functionality of the

protein. The TR data were fitted with the sum of three expo-

nentials likewise to the analysis of the data recorded in H2O.

The resulting time constants of the photocycle are 170 ms,

20 ms, and 84 ms for the bR crystal and 420 ms, 8.4 ms, and

14ms for PM. The corresponding spectra are depicted in Fig. 8.

The spectrum corresponding to the shortest time constant

represents the L to ground state difference spectrum (Fig. 8 a).
Carbon-carbon vibrations of retinal are not influenced by the

presence of D2O (except for 1254 cm�1 coupled with in-

plane bending vibration of SB N-H). The ethylenic stretching

vibration of retinal is at 1526 cm�1 in the ground state and

1548 cm�1 in L, whereas the C-C stretching vibration ab-

sorbs at 1201 cm�1 and 1169 cm�1 in ground state bR and at

1190 cm�1 in L. The negative band at 1728 with a shoulder

at 1734 cm�1 observed in PM and crystal are assigned to

alterations in hydrogen-bonding of Asp-115 and Asp-96,

respectively (41). In addition to this band, a small positive

band at 1751 cm�1 is observed in the spectrum of crystal due

to a minor contribution of the M state (see Fig. S2 in the

Supplementary Material). The C¼N stretching vibration of

the SB is found at 1624 and 1626 cm�1 for PM and crystal,

respectively. Isotopic substitution prolongs the lifetime of

the L state, which agrees with the TR UV/Vis measurements

(Fig. 4). In D2O the L state decays 2.4 times faster in the

crystal than in PM (Fig. 9).

The second difference spectra (Fig. 8 b) correspond to a

nearly pure M state and agree well between PM and crystal.

FIGURE 8 Difference spectra of the bR intermediates measured in D2O at

20�C. The spectra have been obtained by fitting the photocycle kinetics with
the sum of three exponentials. Black spectra correspond to the decay-

associated difference spectra of bR in PM at time constants of 420 ms (a),

8.4 ms (b), and 14 ms (c). Spectra in red are the decay-associated difference

spectra of bR in the single 3D crystal at time constants of 170 ms (a), 20 ms

(b), and 84 ms (c).

FIGURE 9 TR photocycle kinetics of bR in PM (black traces) and in

the single crystal (red traces) in D2O are shown for characteristic bands.

The gray traces correspond to the global fit.
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Deprotonation of the SB is deducible from the negative

intensity at 1190 cm�1. The protonation of Asp-85 is indicated

by a positive band at 1750 and 1748 cm�1 in PM and crystal,

respectively (Fig. S2, (37,49)). The broad positive band at

;1560 cm�1 is composed of nearly equally intense bands of

the ethylenic stretching vibration of retinal at 1570 cm�1 (37)

and the amide II band at 1554 cm�1. A positive band at 1648

cm�1 has been assigned to amide I vibrations of the protein

(37,50). These features comprise a fingerprint of the M state.

In the spectra corresponding to the slowest time constant,

the carbonyl band of Asp-85 is asymmetric, with maximum

at 1745 and a shoulder at 1750 cm�1 in PM and crystal (Figs.

8 c and S2). This indicates that the spectra contain an essen-

tial fraction of the M intermediate, dominated by the later

intermediates of the photocycle. In PM, these intermediates

are the N and O states. The bands at 1672(�), 1555(1),

1228(1), and 1189 cm�1 are characteristic of the N inter-

mediate, whereas those at 1730(1), 1506(1), and 1176(1)

characterize the O intermediate (38). These intermediates

appear nearly synchronously in the photocycle of PM as is

obvious from the time traces at characteristic wavenumbers

(Fig. 9). Therefore, they are represented by one difference

spectrum in the sequential unidirectional model applied here.

In the spectrum of the crystal, the characteristic bands at

1555 and 1672 cm�1 clearly demonstrate the occurrence

of protein conformational changes, typical for the N state

(Fig. 9). No substantial accumulation of the O state is ob-

served in the crystal as obvious from the difference absor-

bance trace at 1506 cm�1 (Fig. 9).

The KIE on the late part of the photocycle is small, which

agrees with the results from TR UV-Vis experiments.

DISCUSSION

This spectroscopic study of the photoinduced kinetics of a

single bR crystal aimed to characterize the putative influence

of the crystal lattice on the dynamics of the protein. Since our

results agree well with the huge number of spectroscopic data

that were recorded on PM, we can correlate the single crystal

kinetics to the multiple crystallographic structures obtained

for ground state bR and the photocycle intermediates.

Ground state structure

We have observed that the UV-Vis absorbance spectra of

PM and crystal are identical (Fig. 2). The frequencies of

the retinal vibrations, which are extremely sensitive markers

for the conformation of the chromophore (51,52), are also

not influenced by the crystalline packing (Figs. 5 and 6). In

particular, the C¼N stretching vibration of the retinal SB,

which critically depends on hydrogen-bonding interaction

with its immediate vicinity, is the same in the crystal as in the

native PM. These observations imply that the structure of

retinal and its binding pocket is the same for bR in the 3D

crystal and in the native membrane. Schenkl et al. (15) have

concluded from UV/Vis absorption and fluorescence spec-

troscopy that bR crystals embedded in the lipidic cubic phase

are strongly dehydrated. We have also observed a dramatic

deceleration of the photocycle upon partial dehydration of

the crystal (data not shown). The effect is induced even at

short exposure (;1 min) of the well-hydrated crystal to room

atmosphere. In contrast to the work by Schenkl et al. (15),

we isolated single bR crystals from the cubic phase and

immersed them in aqueous buffer solution. Under these con-

ditions neither the visible absorbance spectrum nor the FTIR

difference spectrum (see below) reveal signs of essential de-

hydration of the bR crystal, which would suppress bR func-

tionality. Moreover, the observation of an appreciable KIE

on the photocycle and isotopic shifts of specific FTIR bands

suggests that the solvent can diffuse into the bR crystals.

This is in line with the earlier observed ion exchange in bR

crystals of space group C2221 grown in cubo (53).

Light/dark adaptation as monitored by steady-state FTIR

difference spectroscopy did not reveal any deviation between

the crystal and PM. This observation suggests that the retinal

conformation is not disturbed by the crystalline packing of

the bR molecules. Special care should be taken in crystal-

lographic experiments to ensure complete light adaptation,

particularly in the case of thick crystals. This is of particular

importance for the structure determination of intermediate

states as the conformation of dark-adapted bR is difficult to

disentangle from the respective photocycle intermediate.

Thus, the significance of the structure of the latter is blurred.

In this context, it is worthwhile to compare the molecular

structure of the retinal binding pocket of bR as solved from

3D crystals by x-ray crystallography (10) with electron mi-

croscopic structures from PM (54,55). The root mean square

deviations of the coordinates of those amino acids within

5-Å distance from retinal are all within the experimental error

of 1 Å. This corroborates the conclusions from our spectro-

scopic results.

Proton transfer dynamics

The dynamics of proton transfer within the crystal is of cru-

cial importance as it refers to the functionality of bR. TR

FTIR measurements show that SB deprotonates and Asp-85

protonates in the crystal upon formation of the M state. The

frequency of the C¼O stretch of the proton acceptor Asp-85

is 2 cm�1 lower in the crystal than in PM. This holds true not

only for H2O and D2O as solvent (Figs. 6 b and 8 b) but also
at low temperatures (data not shown). Hence, the environ-

ment of Asp-85 in crystal is more hydrophilic (or H-bonding

is stronger) than in PM, and its pKa is higher. In the

millisecond range after photoexcitation, the carbonyl stretch-

ing vibration of protonated Asp-85 is downshifted from 1760

to 1755 cm�1 (47,56) in the crystal as well as in PM (Figs. 7

and 9). This frequency shift has been correlated to a pKa

increase of Asp-85 by;0.5 (40). On the same timescale, the

SB is reprotonated (1186(1) cm�1) and the negative band
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at 1741 cm�1 indicates the deprotonation of Asp-96 (Fig. 7).

These observations suggest that the reprotonation of the SB

occurs from the cytoplasmic side. Since the major steps char-

acteristic for proton translocation are observed in the crystal,

we conclude that crystalline bR pumps protons.

Conformational changes

It is known that the capacity of bR to perform structural

changes depends critically on the water content (57,58). It

was shown by FTIR spectroscopy that the amplitude of the

conformational changes starts to diminish at 70% (w/v)

water concentration and completely vanishes at 25% (50). It

is known that the N state can be accumulated only when PM

is highly hydrated (12,47). It is striking though that in the

crystals containing just;20% water by volume (9), bR does

not exhibit signs of strong dehydration: Conformational

changes do occur in the photocycle, and the N state accu-

mulates to an even higher extent than in PM. Thus, we con-

clude that the low water content in the crystal does not impair

the protein’s functionality.

Kinetics

We have observed that the kinetics of the photocycle in the

crystal is noticeably different from that of PM. The M state

rises faster and lives longer in the crystal than in PM under

identical conditions. The accumulation of the O state is ham-

pered in the crystal whereas N is favored. The KIE of H1

transfer is similar in the crystal and PM.

Among the relevant factors known to alter photocycle

kinetics are water content (50,57,58) and lipid composition

(59–61). Thin water layers that separate the two adjacent bR

layers are ;10-Å thick in the 3D crystal. Thus, the apparent

dielectric permittivity is different from that of bulk water.

Consequently, alterations to the protein surface electrostatics

are induced which may influence the photocycle kinetics.

Change in lipid content is another plausible reason for

kinetic alterations. Indeed, the available high-resolution struc-

tures of bR provide evidence for endogenous lipids in the

crystal (10,62). However, these studies were unable to quan-

tify the lipid composition. Qualitatively, a difference in lipid

content is indicated by a reduced in-plane lattice constant:

60.8 6 0.1 Å of crystal (10,62,63) versus 61.2 6 0.1 Å for

PM (64). Matrix-assisted laser desorption ionization exper-

iments on bR crystals suggest the lack of two different en-

dogenous lipids (62). Such a partial delipidation accelerates

the rise of the M state and decelerates its decay in PM (59),

similar to what is observed in the crystal.

In the crystal, we observe a 2-cm�1 downshift of the fre-

quency of the carbonyl stretching vibration of (protonated)

Asp-85 in the M state. It was earlier suggested that such a

shift correlates with the pKa of the proton release group (48).

Thus, proton release by bR is delayed in PM, whereas it is

accelerated in the crystal under the conditions used in this

work (3 M phosphate, pH 5.6). Hence, either the structure of

the proton release complex is altered in the crystal as com-

pared to PM, or the local electrostatics in its immediate

environment is different. Both changes might be evoked by

the absence of particular polar lipids in the crystal.

Implications for the nature of the trapped
intermediate states used in
x-ray crystallography

The structural model of the L state is currently the most con-

troversial (65). As the transitions from one state to another

are thermally driven, our observation of the faster kinetics of

the L decay in the crystal implies that it is less stable at low

temperature than the L state in PM. Indeed, it was observed

that the L state is accumulated at temperatures not higher

than 150 K in the crystal, which is 20 K lower than in PM

(13,14,65). The accelerated decay of the L state is in line

with an increased pKa of Asp-85, since it would facilitate

protonation of the residue in the crystal as compared to PM.

Another intermediate that is affected by the difference in

kinetics is the N state. Our data on the photocycle kinetics in

the crystal allow an independent assignment of the inter-

mediate trapped by illumination of the crystal at room tem-

perature and after flash cooling (66). It follows from the

photocycle kinetics and supported by steady-state FTIR

measurements (data not shown) that a mixture of M and N

states with high occupancies accumulates under steady-state

illumination. Subsequent flash cooling results in higher pop-

ulation of the M state. This agrees with an assignment based

on comparison of low-resolution projection maps calculated

from the structure of crystal intermediate with experimental

maps for PM (67). Hence, it is due to the photocycle kinetics

specific for the crystal that the N state can be trapped by flash

cooling under constant illumination.

The last intermediate of the photocycle, the O state, is

difficult to accumulate at ambient temperatures (38) and not

possible to trap at low temperature in PM. Moreover, it is

even more difficult in the crystal (Fig. 4). Thus, the O state

of wild-type bR remains a challenge for high-resolution

crystallographic structural studies.
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of the purple membrane at 1.9 Å resolution. Struct. Fold. Des. 7:
909–917.

63. Efremov, R., R. Moukhametzianov, G. Buldt, and V. Gordeliy. 2004.
Physical detwinning of hemihedrally twinned hexagonal crystals of
bacteriorhodopsin. Biophys. J. 87:3608–3613.

64. Zaccai, G. 1987. Structure and hydration of purple membranes in
different conditions. J. Mol. Biol. 194:569–572.

65. Lanyi, J. K. 2004. What is the real crystallographic structure of the
L photointermediate of bacteriorhodopsin? Biochim. Biophys. Acta.
1658:14–22.
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