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ABSTRACT Phototransduction is mediated by a G-protein-coupled receptor-mediated cascade, activated by light and
localized to rod outer segment (ROS) disk membranes, which, in turn, drives a diffusion process of the second messengers
cGMP and Ca21 in the ROS cytosol. This process is hindered by disks—which, however, bear physical cracks, known as
incisures, believed to favor the longitudinal diffusion of cGMP and Ca21. This article is aimed at highlighting the biophysical
functional role and significance of incisures, and their effect on the local and global response of the photocurrent. Previous work
on this topic regarded the ROS as well stirred in the radial variables, lumped the diffusion mechanism on the longitudinal axis of
the ROS, and replaced the cytosolic diffusion coefficients by effective ones, accounting for incisures through their total patent
area only. The fully spatially resolved model recently published by our group is a natural tool to take into account other
significant details of incisures, including their geometry and distribution. Using mathematical theories of homogenization and
concentrated capacity, it is shown here that the complex diffusion process undergone by the second messengers cGMP and
Ca21 in the ROS bearing incisures can be modeled by a family of two-dimensional diffusion processes on the ROS cross
sections, glued together by other two-dimensional diffusion processes, accounting for diffusion in the ROS outer shell and in the
bladelike regions comprised by the stack of incisures. Based on this mathematical model, a code has been written, capable of
incorporating an arbitrary number of incisures and activation sites, with any given arbitrary distribution within the ROS. The code
is aimed at being an operational tool to perform numerical experiments of phototransduction, in rods with incisures of different
geometry and structure, under a wide spectrum of operating conditions. The simulation results show that incisures have a dual
biophysical function. On the one hand, since incisures line up from disk to disk, they create vertical cytoplasmic channels
crossing the disks, thus facilitating diffusion of second messengers; on the other hand, at least in those species bearing multiple
incisures, they divide the disks into lobes like the petals of a flower, thus confining the diffusion of activated phosphodiesterase
and localizing the photon response. Accordingly, not only the total area of incisures, but their geometrical shape and distribution
as well, significantly influence the global photoresponse.

INTRODUCTION

Rod outer segments (ROS), which house the phototransduc-

tion apparatus, are made up of highly specialized floating

disks. Rod disks house the integral membrane and peripheral

membrane proteins that perform photon capture and chem-

ical amplification of the visual signal. Rod disks have clefts

called incisures that give the disks a scalloped or lobed ap-

pearance when viewed transversely, as in Fig. 1 (1–6).

Hundreds of adjacent disks are oriented such that their

incisures are longitudinally aligned, and carry vertically par-

allel microtubules. Disks and incisures are held together with

filamentous structures (7) made up of bivalent proteins. Cer-

tain of these linking proteins have been identified as mem-

bers of the tetraspanin family of proteins that form tetramers,

retinal degeneration slow (rds)/peripherin, and rom1 (8,9);

these are thought to facilitate the curvature of the disk

membranes. The stable structure of the disks is mediated by

these linking proteins, which take part in their morphogen-

esis as well as their stability; mutations of these proteins

underlie a number of photoreceptor degenerative diseases.

Thus incisures are a key conserved structural feature of ROS.

Perturbations of such a complex cellular architecture lead

to retinal degeneration by triggering apoptosis (10). The

structure of the incisures, their geometry and number, varies

somewhat with species. Frog and amphibian rods have mul-

tiple incisures, whereas rat, mouse, and cow exhibit only a

single incisure (11). Even within the same species, red versus

green rods have a different number of incisures (12). The

depth of the incisures also varies; in frogs they are deep,

whereas in human rods they are shallow (12).

The functional role of incisures in phototransduction and

the reason for such variations are not known. Because these

highly complex structures are found in most vertebrate pho-

toreceptors, and the proteins that make them up are con-

served (13,14), the question of their function is clearly

significant. This leads to the natural question of their func-

tion. Although there have been extensive morphological

studies of incisures, as well as biochemical studies of the pro-

teins localized there, no studies on their function have yet

been carried out.
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Our study investigates the roles of incisures in visual signal

transduction, using a mathematical model of the dynamics of

visual transduction that incorporates the geometry of inci-

sures into the model. The computational implementation of

the model allows us to vary the number of incisures, as well as

their shape and distribution, and determine their effect on the

amplitude, spread, and sensitivity of light responses in the

absence or presence of variable numbers of incisures.

The presence of incisures should increase the amount of

cytoplasm available for diffusion, and thus facilitate diffu-

sion of second messengers. In addition, at least in those

species bearing multiple incisures, these divide the disks into

lobes like the petals of a flower, thus favoring a localized re-

sponse to photon activation. For these reasons a model that

would account for incisures has to be spatiotemporal in na-

ture, i.e., capable of detecting the diffusion of the second

messengers, at each point of the ROS, at all times.

Geometrical setup

The ROS of vertebrates can be assimilated to a right circular

cylinder Ve, of height H and radius R 1 se for some given,

positive parameters R, s, and e. It houses a stack of n parallel,
equal, equispaced, disklike, flattened vesicles (or disks), Cj, j
¼ 1,2, . . . ,n, for a given positive integer n, as in Fig. 2. Each of
the disks has radius R and thickness e, they are mutually

separated by a distance ne for a given positive number n, and

they are all coaxial with the cylinderVe. Although they are not

disks, we refer to them as disks, using the common biological

terminology. The outer shell of the ROS is a thin cylindrical

shell, of thickness se enclosing the ROS as in the left Fig. 3

and whose transversal cross section is depicted in the left Fig.

4. The number n of disksCj, the parametersH andR, denoting
the height of theROS, and the radius of the disks, aswell as the

parameters e, n, ands, that quantify the thickness of the disks,
their mutual distance, and the thickness of the outer shell,

depend on the species. For example, for the Salamander, n�
800,H� 22mm, R� 5.5mm, e� 14 nm, and n� s� 1 (15).

The disks bear incisures, vertically aligned in series (11,

14,16), whose shape and form are schematically depicted in

Fig. 2. The typical incisure starts from the edge of the disk

with width of the order of e, and runs approximately radially

toward the center of the disks in a spikelike manner (11,14,

17). According to species they could be as long as the radius of

the disk (amphibians, (12)) or less than one-half the radius (rat

and monkeys, (12)). They could be in large number (�17–25

in amphibians and up to 30 in some primates (11)) or there

could be only one (rat, mouse, cow (11)).

Phototransduction is mediated by the diffusion of the

second messengers cyclic guanosine monophosphate (cGMP)

and Ca21 in the cytosol, i.e., the space that remains from Ve

when the disks are removed. The movement of molecules,

along the longitudinal axis of the ROS is constrained by the

hindrance of the disks, their periodically layered structure,

and the relatively small thickness of the interdiscal spaces.

Incisures, appearing essentially as physical cracks on the

disks, are believed to favor the longitudinal diffusion of

cGMP and Ca21.

FIGURE 1 (Left) Horizontal cross section of frog ROS. (Right) Diagram

depicting ROS structure. They are reproduced from Papermaster et al. (13). FIGURE 2 Cross section of ROS with a stack of disks with one incisure.

FIGURE 3 (Left) Geometrical description of the ROS. (Right) The

domain obtained in the limit as e / 0.
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In the Salamander their total area is;0.8 mm2 per disk, or

;1% of the area of the disk (18). Olson and Pugh use this

value to give an estimate of the effective longitudinal

diffusivity of cGMP in the ROS of amphibians. Holcman

and Korenbrot (19) use essentially the same mechanism to

account for the incisures in the longitudinal diffusion of the

second messengers. In either case, the ROS is regarded as

well stirred in the radial variables and the diffusion mech-

anism is lumped on the longitudinal axis of the rod. The

diffusion coefficient is replaced by an effective one, intended

to translate somehow, the various physical features, includ-

ing the presence of the incisures. A similar radially well-

stirred approach is also in Gray-Keller et al. (20). From a

mathematical point of view, this is equivalent to letting the dif-

fusivity acting on the transversal variables tend to infinity. This

raises the question as to what extent a model based on lon-

gitudinal diffusion approximates the physical phenomenon.

The main simulation results can be summarized as follows:

1. Effect of the activation site for a given geometrical

arrangement of the incisures: moving the activation site

toward the rim of the disk (thus inside a lobe of the disk)

the global response decreases due to the localization of

PDE* induced by disk lobulization. The opposite behavior

would be observed if no incisures were present, i.e., the

response would increase by moving the activation site

toward the rim of the disk.

2. Effect of the disposition of incisures, keeping fixed the

total area of incisures and the activation site: the closer the

disposition is to the activation site, the higher the response.

3. Effect of incisures on multiple-photon response: incisures

increase the response elicited by simultaneous neighbor-

ing activation sites, favoring a linear superposition of the

corresponding single photon responses (SPR).

LOCAL MODELING AND
SURFACE-VOLUME INTERACTIONS

The plasma membrane forming the lateral boundary of the

ROS contains cGMP-gated channels. In the dark, a fraction

of these channels are open, permitting influx ofNa1 andCa21

ions. An exchanger located on the same plasma membrane

extrudes Ca21 and K1 while permitting additional Na1

influx. The exchange rate varies with internal Ca21 concen-

tration. In the dark, Ca21 and cGMP are at a steady state and

their steady-state or dark concentrations are denoted by

[Ca21]dark and [cGMP]dark. Absorption of a photon by a rho-

dopsin molecule residing on an outer segment disk initiates

a cascade receptor / transducer / effector, whose net

effect is to produce a sink (a negative source term) for cGMP

produced by the activated effector phosphodiesterase

(PDE*). The cGMP is then depleted by diffusion toward

such a sink. Depletion of cGMP causes closing of the chan-

nels thereby reducing the inward current. We refer to Pugh

and Lamb (15) for a detailed description of such a process.

The geometry of the ROS enters in this process on several

accounts. First, the current is generated on the outermembrane

since this is where the cGMP-gated channels reside. Second,

the incisures reduce the hindrance of the disks on the lon-

gitudinal movement of cGMP. We refer to Andreucci et al.

(21) for a discussion on the effects of diffusion, its localized

nature, and on the notion of pointwise versus bulk modeling.

The space available for diffusion of cGMP and Ca21 is

Ṽe ¼ Ve � [
n

j¼1

�CCj: (1)

Denote by V the cylinder of height H and radius R, formally

obtained fromVe by setting e¼ 0. Denote also by Ve the two-

dimensional, transversal cross section of one such incisure as

in Fig. 2, and let Be ¼ Ve 3 (0,H) the bladelike cylindrical

domain cut by incisures in the ROS, as in the left Fig. 3.

The stack of incised disks, Cj, identifies and is included in

the right cylinder,V–Be. The indicated geometry implies that

the ratio of the volume of the stack of disks Cj to the volume

of V–Be is independent of the parameter e, i.e.,

volð[n

j¼1CjÞ
volðV� BeÞ

¼ 1

11 n
¼def go: (2)

According to the system of coordinates introduced in Fig. 3,

x ¼ ðx1; x2Þ denote the transversal variables and z is the

longitudinal variable along the axis of the ROS. In this

system, the outer shell is described by

Se ¼ fðx; zÞjR, jxj,R1se; z 2 ð0;HÞg: (3)

Locality of photocurrent

The current density due to Ca21 exchange, across the ROS

lateral surface, is given by a Michaelis-Menten-type relation

Jex ¼
j
sat

ex

Srod

½Ca21 �
Kex 1 ½Ca21 �

; (4)

where jsatex is the saturated exchange current (as [Ca21]/N),

Kex is the Ca21 concentration at which the exchange rate

FIGURE 4 (Left) Transversal cross section of the ROS. (Right) Limit of

such a cross section as e / 0.
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is half-maximal, and Srod is the surface area of the lateral

boundary Se of the ROS.
At fixed membrane voltage, the current density JcG carried

by the cGMP-gated channels, across the ROS lateral surface,

is given by the Hill-type relation

JcG ¼ j
max

cG

Srod

½cGMP�mcG

KmcG

cG 1 ½cGMP�mcG
; (5)

where jmax
cG is the maximal cGMP-current (as [cGMP]/N),

mcG is the Hill exponent, and KcG is the half-maximum

channel-opening concentration of cGMP.

It is pointed out that Jex and JcG are current densities (i.e.,

current per unit area, measured in pA/mm2), and, in general,

take different values at different points of the lateral bound-

ary Se of the ROS. Indeed, Eqs. 4 and 5 are local in nature,

i.e., they provide the current densities in terms of space-time

values of [cGMP] and [Ca21]. Since current is generated at

the lateral boundary of the ROS, this is where the values of

[cGMP] and [Ca21] are relevant for the computation of JcG
and Jex. Equations 4 and 5 imply that a local pointwise eval-

uation of these currents requires a pointwise description

of [cGMP] and [Ca21] as functions of position and time. In

the literature, these currents are regarded as volumic, as if

they were distributed over the entire ROS. In particular in

Nikonov et al. (22), volumic current densities are defined by

dividing the coefficients jmax
cG and jsatex by the volume of the

cytosol (�1 pl).

In absence of light, Jex and JcG are constant and equal to

their dark values:

Jex;dark ¼ Jexjt¼0 ¼
jsatex

Srod

½Ca21 �
dark

Kex 1 ½Ca21 �dark

JcG;dark ¼ JcGjt¼0 ¼
j
max

cG

Srod

½cGMP�mcG

dark

K
mcG

cG 1 ½cGMP�mcG

dark

: (6)

The local value of (total) current density Jloc and its dark

value Jdark are defined as

Jlocðu; z; tÞ ¼ Jexðu; z; tÞ1 JcGðu; z; tÞ; Jdark ¼ Jlocjt¼0:

(7)

As z ranges over (0, H) and u ranges over [0, 2p), the

variables (u, z) range over the lateral boundary Se of the ROS.
At time t ¼ 0, both [Ca21] and [cGMP] are constant and

equal to their dark values. Consequently Jdark is also a con-

stant, and the global current across the plasma membrane at

time t ¼ 0 is

jdark ¼ SrodJdark: (8)

The local response to light activation, at time t, at a point (u, z)
of the plasma membrane, is the variation of Jloc(u, z, t) from its

dark value, i.e., Jdark–Jloc(u, z, t). Define the global current

across the entire plasma membrane as

jðtÞ ¼
Z
Se

Jlocðu; z; tÞdS; (9)

where dS is the surface measure of the lateral boundary Se
of the ROS. Results are presented in terms of the relative

responses

1� Jlocðu; z; tÞ
Jdark

; 1� jðtÞ
jdark

: (10)

Local spread of activation

Denote by (u, z) the coordinates of the lateral boundary Se of
the ROS, and let P* ¼ (x1,*, x2,*, z*) be the activated point.

Thus z* is the z location of the activated disk, and (x1,*, x2,*)
is the point on the activated disk where isomerization occurs.

At each fixed time t, the local response Jdark � Jloc(u, z, t) is
highest at z ¼ z*, it decreases away from z*, and it becomes

negligible sufficiently away from z*. That interval at z*,
along the longitudinal axis of the ROS, where the current sup-

pression is not negligible, defines (roughly speaking) the

interval of spread of the response to light activation. This

localization has been pointed out by a number of researchers

(18,20,23–26), and it is generally accepted that the response

is local in the sense that the interval of spread of the response

to light activation is considerably smaller than the length of

the outer segment. However, the literature does not contain

an unambiguous quantitative notion of spread. A discussion

on this issue is provided in Caruso et al. (27).

Choose d 2 (0, 1) and define spread of excitation as the

width l(u, d, t) of the largest interval at z*, along the

longitudinal axis of the rod, at a fixed angle u and time t,
where the response is greater than a fixed fraction d of the

dark circulating current, at that time. Precisely, assuming that

z / Jloc(u, z* 6 z, t) for fixed u, z*, and t is increasing for

z . 0, the spread is given by

lðu; d; tÞ ¼ z1 1 z2;

where z1 and z2 are two positive numbers such that

Jdark � Jlocðu; z� 1 z1; tÞ ¼ dJdark;

Jdark � Jlocðu; z� � z2; tÞ ¼ dJdark: (11)

Here, d is a positive parameter that most likely encompasses

some biological features of the process. We are in the process

of investigating the mathematical link of d with the

underlying biology. However, whatever the biological inter-

pretation, Eq. 11 is a precise and mathematically unambigu-

ous notion of spread. For computational purposes, we have

chosen d ¼ 0.5%. Further discussion on the notion of spread

of activation is provided in How Incisures Affect the Spread

of the Response.

THE FULL THREE-DIMENSIONAL MODEL

The concentrations [cGMP] and [Ca21] are smooth functions

of space and time, defined in the domain Ṽe, available for

diffusion, and they satisfy the mass balance equations within

Roles of Incisures in Phototransduction 1195
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such a domain. Since in the cytosol there are no volume

sources,

@½cGMP�
@t

� divðDcG=½cGMP�Þ ¼ 0

@½Ca21 �
@t

� divðDCa=½Ca21 �Þ ¼ 0 in Ṽe; (12)

where t is time and = is the gradient in the spatial variables

ðx; zÞ. The coefficients DcG and DCa are the respective dif-

fusion coefficients of cGMP and Ca21 in the cytosol. For a

dark-adapted rod, the initial data for the concentrations

[cGMP] and [Ca21] are their uniform, steady-state, dark values

½cGMP�jt¼0 ¼ ½cGMP�dark and ½Ca21 �jt¼0 ¼ ½Ca21 �dark:
(13)

Boundary fluxes of [cGMP]

Production or depletion of cGMP occurs through binding

phenomena on the faces F6
j of the disks Cj. Accordingly

these terms are modeled as fluxes across such faces.

Basal PDE hydrolyzes cGMP at all disk faces. The rate of

cGMP depletion (per unit surface area, per unit time, i.e.,

depletion flux of cGMP), due to basal PDE, is given by

ks;hyd½PDE�s½cGMP� on the facesF
6

j :

Here, [PDE]s denotes the surface density of PDE (in number

of molecules per mm2) and ks;hyd is the surface hydrolysis

rate (in [No./mm3]�1 s�1). Accordingly, ks;hyd[PDE]s has

dimensions of mm s�1. These terms, the significance of their

surface formulation, as opposed to their volumetric counter-

parts (20,22,28), have been discussed and estimated in

Caruso et al. (27). The previous equation was shown to lead to

ks;hyd½PDE�s½cGMP� ¼ 1

2
nebdark½cGMP� on the faces F

6

j :

(14)

For the Salamander, we estimated bdark � 1 s�1.

Production of cGMP is mediated by guanylyl cyclase

(GC), which is located on the faces of the disks Cj. Mol-

ecules of guanosine triphosphate (GTP) bind to molecules of

GC to synthesize cGMP. Such activity is modulated by

Ca21, being maximum for [Ca21] ¼ 0 and minimum for

[Ca21]/N. In Andreucci et al. (21) and Caruso et al. (27),

the surface/volume nature of such a production rate was

analyzed and it was shown that the cGMP production rate

may be described by the relation

kfGC;og½GC�s ¼ 1

2
nea on the faces F

6

j ; (15)

where

a ¼ amin 1
amax � amin

11 ð½Ca21 �=KcycÞmcyc
: (16)

Here, amin , amax are given positive constants and Kcyc is a

scaling Ca21 concentration for the cyclase effect, and mcyc is

the Hill exponent. Also, [GC]s is the surface density of GC

and kfGC;og is the corresponding surface catalytic rate. For

the Salamander, these parameters have been estimated in

Caruso et al. (27), by combining their volumetric analogs

appearing in the literature, with the indicated surface/volume

interpretation.

Let Cj* be a disk hit by one or several photons on one of its

faces, say, for example, F�
j�
, and let ½PDE��sðx; tÞ be the re-

sulting surface density of activated PDE (in number of PDE

subunits per mm2), as a function of space and time. Let also

k�s;hyd denote the surface catalytic rate of light-activated PDE
(measured in [(number of molecules)/mm3]�1 s�1). The flux

generated on F�
j�
by such a depletion of cGMP is then

k
�
s;hyd½PDE

��
s
½cGMP�: (17)

The surface/volume nature of such a formula has been

discussed in Andreucci et al. (21) and Caruso et al. (27) and

the parameter k�s;hyd for the Salamander has been estimated as

k�s;hyd � 1 mm3 s�1 No.�1. The determination of the function

½PDE��sðx; tÞ will be discussed in the context of The Ac-

tivation Mechanism. The above considerations yield the

following boundary condition for [cGMP] on each of the

faces F6
j , j ¼ 1,. . .,n,

�DcG

@

@z
½cGMP�jF6j ¼ 1

2
neð6a7bdark½cGMP�Þ

1 djk
�
s;hyd½PDE

��
s
½cGMP�; (18)

where dj equals 1 if j ¼ j* (activated face) and it is zero

otherwise. We finally assume that cGMP does not penetrate

the lateral part Lj of the disks Cj, nor does it outflow the ROS,

i.e.,

DcG=½cGMP� � njLj ¼ 0; DcG=½cGMP� � nj@Ve
¼ 0; (19)

where n is the unit normal to the indicated surfaces pointing

outside the ROS.

If n* disks are activated, each by one or several photons, at
either their lower or upper faces F6

j�
, we relabel and order

them as Cj* for j* ¼ 1, . . . ,n*. Then the flux conditions on

the faces F6
j are expressed as in Eq. 18, where dj equals 1 if

j 2 f1, . . . ,n*g and it is zero otherwise.

Boundary conditions for [Ca21]

[Ca21] flows into the cytosol through cGMP-gated channels

and is extruded by the electrogenic exchanger. Thus the

boundary fluxes for [Ca21] can be expressed as

�DCa=½Ca21 � � n ¼ 1

BCa F
Jex �

1

2
fCa JcG

� �
: (20)

The current densities Jex and JcG (measured in pA/mm2) were

defined in Eqs. 4 and 5. The constant BCa is the buffering

power of the cytoplasm for Ca21, fCa is the fraction of

1196 Caruso et al.
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cGMP-activated current carried by Ca21, and F is the

Faraday constant.

In Nikonov et al. (22), the currents Jex and JcG contribute

with a volumic term to the variation of [Ca21], i.e., jsatex and

jmax
cG are divided by the volume Vcyt, of the cytosol in the ROS

(�1 pl). Since both currents are generated on the lateral

boundary of the ROS and are local in nature, they are taken

here as surface current densities and thus as boundary

sources for [Ca21].

Calcium does not penetrate the disk Cj, nor does it outflow

the ROS through its top fz ¼ Hg or its bottom fz ¼ 0g.
Therefore,

=½Ca21 �j@Cj
� nj ¼ 0 and

@½Ca21 �
@z

¼ 0

for z ¼ 0 and z ¼ H; (21)

where nj is the unit normal to Cj.

The full pointwise, three-dimensional space-time model

for [cGMP] and [Ca21] consists of the partial differential Eq.

12, the initial conditions Eq. 13, and the boundary conditions

Eqs. 18–21.

THE HOMOGENIZED MODEL

Using an idea first introduced in Andreucci et al. (21,29), the

homogenized model is derived by regarding e as a small

parameter to be let go to zero, starting from its initial physical

value eo ¼ 14 nm. The limit process keeps constant the

volume fraction of the ROS available for diffusion. As e/ 0

the disks Cj, the incisures Ve, and the bladelike regions Be

become thinner and thinner. In the limiting process, we

artificially increase the number of disks Cj in such a way that

the volume fraction go in Eq. 2 remains constant. The

interdiscal spaces are also thin, of the order of e; however,
there are, roughly speaking, e�1 of them, so the information

in them is compounded in the limit. The faces F�
j�
where a

photon is captured are at levels zj* for j* ¼ 1,2,. . .,n*. The
limit is carried out so that the levels zj* are kept fixed for all

e. 0. The volumes of the outer shell Se and the blade Ve are

not accounted for in Eq. 2 and tend to disappear as e / 0.

Likewise, the interdiscal spaces Ij for j 2 f1, . . . ,n*g where

activation occurs cannot be compounded in the remaining

interdiscal spaces, since they compound the activation

sources that do not vanish as e / 0, as indicated by Eq.

18. To recover the physical contributions of these regions to

the diffusion process, as e/ 0, the blades Be, the outer shell

Se, and the activated interdiscal spaces Ij, for j 2 f1, . . . ,n*g,
are concentrated, in the sense that, within them, the diffusion

coefficients and the mass capacities are multiplied by a factor

of the order of e�1 to compensate for their vanishing

thickness. This way, for e . 0, the system in Eq. 12 is

replaced by a system of diffusion equations with discontin-

uous coefficients which become unbounded as e / 0. The

boundary conditions Eqs. 18 and 19 for [cGMP], and Eqs. 20

and 21 for [Ca21], remain unchanged. The solutions of such

a three-dimensional model with discontinuous and un-

bounded coefficients are denoted by [cGMP]e and [Ca21]e.

In the limit, as e / 0, the two-dimensional incisures Ve

tend formally to the one-dimensional segment

V ¼ fro , x1 ,Rg3fx2 ¼ 0g; (22)

and the disk with incisure DR–Ve tends formally to the

incised disk DR–V as in Fig. 4, right. The three-dimensional

outer shell Se given by Eq. 3 tends formally to the two-

dimensional cylindrical surface

S ¼ fðx; zÞkxj ¼ R; z 2 ð0;HÞg
¼ fðR; u; zÞju 2 ½0; 2pÞ; z 2 ð0;HÞg: (23)

Formally, the ROS tends to the cylindrical domain in Fig. 3,

right, whose interior is V–B and whose lateral boundary is

S [ B.
The rigorous calculation of the limiting problem and its

pointwise interpretation is presented in Andreucci et al. (30).

As a way of extracting the biophysical laws of such a limiting

diffusion process, here we indicate what the limiting equa-

tions look like for cGMP only. Also, to simplify the

presentation and convey the main ideas we will assume that

theROShas only one incisure as in Fig. 3 and that there is only

one activated face; say, for example, F�
j�
at the level z* ¼ zj*.

The numerical simulation we present in the coming sections

allow for multiple incisures and multiple activation sites.

As e / 0, the approximating functions [cGMP]e and

[Ca21]e, generate four pairs of functions:

[cGMP] and [Ca21], defined in V–B and called the

‘‘interior limit’’. They satisfy a two-dimensional dif-

fusion process (diffusion occurs only along the trans-

versal variables x ¼ ðx1; x2Þ, on each level z and on

each incised disk DR–V.
[cGMP]s and [Ca21]s, defined in S and called ‘‘limit in

the outer shell’’. They satisfy two-dimensional surface

diffusion processes on the limiting outer shell S and

they glue together along S the diffusion processes of

the indicated interior limit.

[cGMP]B and [Ca21]B, defined on the longitudinal,

limiting rectangle B and called ‘‘limit in the blade’’ B.
They satisfy two-dimensional surface diffusion pro-

cesses on the limiting blade B and they glue together

along B the diffusion processes of the indicated interior

limit. They are linked to the interior diffusion process

through the interior limits [cGMP] and [Ca21], and to

the diffusion process on the limiting outer shell S,

through the limiting functions [cGMP]s and [Ca21]s.

[cGMP]* and [Ca21]*, defined on the disk (DR–V) 3

fzj*g, and called ‘‘limit at the activation sites’’. They

satisfy diffusion processes that directly respond to

activation and transmit the signal to the rest of the ROS.

These functions are smooth off the activation level z ¼ zj*,
and satisfy the usual compatibility conditions; for example,
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the interior limit [cGMP] computed on S equals [cGMP]s.

The same interior limit [cGMP] computed on B equals

[cGMP]B. However, [cGMP] computed for z* is not [cGMP]*.

The limiting equations contain the limiting forcing terms

generated by Eq. 18. To simplify the symbolism set,

Fðx; z; tÞ ¼def a� bdark½cGMP�

F�ðx; tÞ ¼
def
a� � bdark½cGMP��

G�ðx; tÞ ¼
def
k
�
s;hyd½PDE

��
s
½cGMP��: (24)

Here, a and a* are defined in Eq. 16 for [Ca21] and [Ca21]*
representing the interior limit and the limit, respectively, on

the activated level z* of the approximating [Ca21]e.

The interior limit [cGMP]

The interior limit [cGMP] satisfies

@

@t
½cGMP� � DcGDx½cGMP� ¼ F in V� B: (25)

Here, D�xx is the Laplacian acting only on the transversal

variables x ¼ ðx1; x2Þ. Since ½cGMP�ðx; z; tÞ is a function of

the transversal variables x and the longitudinal variable z,
these can be regarded as a family of diffusion processes, pa-

rameterized with z 2 (0, H), each taking place on the

incised disk DR–V. The homogenized limit transforms the

boundary fluxes in Eq. 18 into volumic source terms holding

in V–B. Finally the initial datum [cGMP]dark is preserved in

the limit.

The limit [cGMP]* on the activated level z*

The limiting [cGMP]* satisfies the diffusion process

@

@t
½cGMP�� � DcGDx½cGMP�� ¼ F� � G�

on ðDR � VÞ3fz�g: (26)

Therefore, the volumic diffusion in Eq. 12 is transformed

into a two-dimensional diffusion on the layer (DR–V) 3

fz*g. The flux terms in Eq. 18 are transformed into sources

defined on the incised disk DR–V at the level z*. Notice that
in this case the limiting equation contains the limiting forcing

term G* due to activation. The initial datum [cGMP]dark is

preserved in the limit.

The limit [cGMP]B on the limiting incisure B

The coordinates on B are r 2 (ro, R) and z 2 (0, H). For e ¼
eo, the ROS is in its physical configuration and we denote by

r/ueoðrÞ the polar description of the physical incisure for e
¼ eo, i.e., before the homogenization starts. For example,

2RueoðRÞ is the length of the arc cut by the physical incisure

Veo on the rim of the diskDR. This we take as the width of the

incisure. Then in B,

2rueoðrÞ
@

@t
½cGMP�B � divr;zð2rueoðrÞDcG=r;z½cGMP�BÞ

¼ ð1� goÞDcGf½cGMP�1x2 � ½cGMP��x2g
1 dz�neoDcGf½cGMP�1�;x2 � ½cGMP���;x2g: (27)

Here, ½cGMP�6x2 is the limit of the x2-derivative of the interior
limit [cGMP], as (x1, x2) tends to the limiting incisure B from

x2 . 0 and x2 , 0, respectively. Thus the first term on the

right-hand side is the outward flux of the interior limit

[cGMP] from V–B into B. In the second term, dz* is the

Dirac mass in B concentrated on the segment B \ fz ¼ z�g,
whereas ½cGMP�6�;x2 are defined as before for the limit

[cGMP]* on the activated incised disk (DR–V) 3 fz*g. In
summary, the limit [cGMP]B satisfies a diffusion process on

B, whose forcing terms are the outward flux of the interior limit

[cGMP] and the limit [cGMP]* on the activated disk. The

coefficients of such fluxes reflect the original geometry of the

ROS through the parameters go, n, and eo. The initial datum
[cGMP]dark is preserved as well, as the no-flux condition on

the top and bottom of the ROS. Finally, the interior limit

[cGMP], when computed on B, equals ½cGMP�B, i.e.

½cGMP�jB ¼ ½cGMP�B: (28)

Remark 1

If the ROS has m incisures, for a given positive integer m,
then the limiting homogenization process gives rise to m
limiting incisures Bj for j ¼ 1,2, . . . ,m. In such a case, Eq. 27
is replaced by m equations each holding on Bj, where, in the

right-hand side, the flux of [cGMP] and [cGMP]* is meant

across Bj.

Remark 2

If there are multiple activation sites—say, for example, zj* or
j� 2 f1; 2; . . . ; n�g—then the last term in Eq. 27 is replaced

by n* terms of the same form and each holding at the levels

zj* for the Dirac masses dzj� .

The limit [cGMP]s in the outer shell

Describe the limiting, incised ROS V–B in cylindrical

coordinates (r, u, z) and the limiting outer shell S in terms of

(u, z) as in Eq. 23. Without loss of generality, the limiting

incisure B corresponds to u ¼ 0. The fluxes of the interior

limit [cGMP] and the limit [cGMP]* on the activated level z*,
across S and directed outside the ROS, are

�DcG½cGMP�
r
jr¼R � DcG½cGMP��;rjr¼R for u 6¼ 0:

Describing B in terms of r 2 (ro, R) and z 2 (0, H), the
outward flux of ½cGMP�B on S is

�DcG½cGMP�B;rjr¼R:
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Then the equation satisfied by [cGMP]s on S is

@

@t
½cGMP�s � DcGDS½cGMP�s ¼ �ð1� goÞDcG

seo
½cGMP�

r

� do;z�

nDcG

s
½cGMP��;r

� du¼0

2RueoðRÞDcG

seo
½cGMP�B;r:

(29)

Here, do;z� is the Dirac mass on S concentrated on the open

circle segment S \ fz¼ z*g \ fu 6¼ 0g. Likewise, du¼0 is the

Dirac mass on S concentrated on the segment S \ fu ¼ 0g.
The various geometrical parameters on the right-hand side

reflect the original geometry of the ROS. Thus, the limit

[cGMP]s on the outer shell satisfies a diffusion process on S

by the Laplace-Beltrami diffusion operator DS on S, and it is

driven by the exterior fluxes generated by the remaining

limiting compartments. The diffusion processes in these

compartments are compatible with [cGMP]s in the sense

that

½cGMP�jS ¼ ½cGMP�s and ½cGMP��jSðtÞ¼ ½cGMP�sðu; z�; tÞ
for u 6¼ 0; (30)

and

½cGMP�BðR; z; tÞ ¼ ½cGMP�sð0; z; tÞ for u ¼ 0: (31)

Finally, the initial datum [cGMP]dark is preserved, as well as

the no-flux condition on the top and bottom of S.

Remark 3

If the ROS has m incisures, each located at the angles u ¼ uj
for j¼ 1,2,. . .,m, then the last term in Eq. 29 bears the sum of

m terms each of similar form and each relative to the limiting

incisure Bj, for the Dirac mass du¼uj .

Remark 4

If there are multiple activation sites, zj* for j* 2 f1,2, . . . ,n*g,
then the penultimate term in Eq. 29 is replaced by n* terms of

the same form and each holding at the levels zj* for the Dirac
masses dzj� .

An integral version of Eqs. 25–31

These equations have been written formally, as the limiting

functions involved, [cGMP], [cGMP]*, [cGMP]B, and

[cGMP]s need not be, in general, sufficiently regular to justify

the operations indicated in Eqs. 25–31. They are only well

defined in a suitable weak form established in Andreucci et al.

(30). Here, we report a particular case of such a weak form,

which permits one to relate the fully resolved model Eqs. 25–

31 to simpler models that assume the cytosol well-stirred in

the transversal variables. The mathematical derivation of this

weak form results from the following steps:

Integrate Eq. 25 in dx over the limiting incised disk

(DR � V) 3 fzg at the generic level z 2 (0, H) and
multiply by (1–go).

Integrate Eq. 26 in dx over the limiting, incised activated

disk (DR–V) 3 fz*g and multiply formally by neodz*.
Integrate Eq. 27 in dr over B \ fzg for a generic level

z 2 (0, H).
Integrate Eq. 29 in d‘ over the rim @DR 3 fzg at the

generic level z 2 (0, H) and multiply by seo; here d‘ is
the line measure on the circle @DR.

Use the Gauss-Green theorem, the periodicity of [cGMP]s
in the variable u, and add the resulting equalities.

This leads to the weak formulation of

These formal arguments can be made rigorous by the pro-

cedure of Andreucci et al. (30).

Transversally well-stirred ROS

As indicated before, we will use Eq. 32 to compare the phys-

ical significance of the space-resolved model Eqs. 25–31

versus models for which the cytosol is regarded as well-

stirred in the transversal variables x. For this, we impose in

Eq. 32 that [cGMP] is independent of the transversal

@

@t

ZZ
ðDR�VÞ3fzg

½ð1� goÞ½cGMP�1 neodz� ½cGMP���dx
�

1

Z
B\fzg

2rueoðrÞ½cGMP�Bdr1
Z
@DR3fzg

seo½cGMP�sd‘
�

� DcG

@
2

@z
2

Z
B\fzg

2rueoðrÞ½cGMP�Bdr1
Z
@DR3fzg

seo½cGMP�sd‘
� �

¼
ZZ

ðDR�VÞ3fzg
½ð1� goÞF1 dz�neoðF� � G�Þ�dx: (32)
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variables x. This way, [cGMP] is a function only of (z, t), and
by the compatibility conditions Eqs. 28, 30, and 31, one has

½cGMP� ¼ ½cGMP�B ¼ ½cGMP�
s

as functions of ðz; tÞ:
However, [cGMP]* becomes a function of t only and by the

same compatibility conditions,

½cGMP�ðz�; tÞ ¼ ½cGMP��ðtÞ:
Enforcing these conditions in Eq. 32 gives

ð1� goÞpR
2
1 2pRseo1

Z R

ro

2rueoðrÞdr
� �

@

@t
½cGMP�

� 2pRseo 1
Z R

ro

2rueoðrÞdr
� �

DcG

@
2

@z
2½cGMP�

¼ pR
2ð1� goÞF� pR

2
neodz�

@

@t
½cGMP�� � F� 1G�

� �
:

(33)

The integral in dr over (ro, R) is the area of a horizontal cross
section of the original incisure. If the ROS contains m
incisures, then each of them contributes with a similar term

in Eq. 33, each with its own area depending on its geo-

metrical shape given by r/ueoðrÞ. Thus, more generally, in

the case of multiple incisures the indicated integral over (ro,
R), should be replaced by the total area exposed by the union
of the incisures to a transversal cross section. Set

Ainc ¼ ftotal area exposed by the incisuresg
Acyt ¼ 2pRseo 1Ainc

fhorizontal cross section cytoplasmic areag
Atot ¼ ð1� goÞpR

2
1 2pRseo 1Ainc

ftotal area of horizontal cross sectiong: (34)

Then, Eq. 33 takes the more concise form of

@

@t
½cGMP� � Ainc

Atot

DcG

@
2

@z2
½cGMP� ¼ 1� Ainc

Atot

� �
F

� 1� Ainc

Atot

� �
neo

1� go

dz�

@

@t
½cGMP�� � F� 1G�

� �
: (35)

Remark 5

This equation has been derived formally from Eqs. 25–31,

which are themselves formal. It can be justified rigorously as

follows. First one writes Eqs. 25–31 in the weak formulation

established in Andreucci et al. (30). Then one regards the

ROS as an anisotropic medium with different diffusivities

along the longitudinal direction z and along the transversal

cross-section x; say, for example, DcG,long and DcG,trasv,

respectively. By keeping DcG,long fixed, one lets DcG,trasv /
N. The corresponding family of problems has a rigorous

limit that satisfies Eq. 35. Physically this corresponds to

assuming that cGMP diffuses with infinite speed along the

transversal variables.

THE ACTIVATION MECHANISM

All terms in the homogenized system Eqs. 22–31 are well

defined and their physical meaning is well identified, except

for the term [PDE*]s appearing in the definition of G�ðx; tÞ
in Eq. 24, and consequently on the right-hand side of Eq. 26.

The latter contains the incipient dynamics of the [cGMP]*,

through [PDE*]s which, in turn, is determined by the ac-

tivation mechanism. The literature contains several attempts

to model such a mechanism (15,20–22,31–33). A satisfac-

tory modeling of the function ½PDE��ðx; tÞ for x ¼ ðx1; x2Þ
ranging over the faces of the activated disk Cj*, would have

to take into account the full dynamics of receptor /
transducer / effector. We propose here a model that by-

passes the intermediate effect of the transducer and connects

directly the activated receptor Rh* to the activated effector

[PDE*]s. Such a point of view appears in the modeling ideas

of Pugh and Lamb (15) and Nikonov et al. (22), for a well-

stirred ROS, where no spatial resolution is included in the

process. Thus these studies neglect the dynamics and the

local effects of Rh* and [PDE*]s. Our model is intended to

trace the surface dynamics of these molecules on their

activated disk. Let E*(t) denote the surface density of the

number of g subunits that have been removed from PDE.

Full activation is assumed, that is, a molecule of PDE is

defined to be activated if both of its g subunits have been

removed. Thus in particular if PDE* and E* are uniformly

distributed on n* activated disks,

½PDE��
s
¼
number of molecules of PDE

�
in the ROS

n
�
pR

2 ¼def
1

2
E

�

n
�
pR

2:

PDE* diffuses on the activated disk

D ¼ ðDR � VÞ3fz�g:

This is the disk DR, at the level z* of the activation site, along
the axis of the ROS, from which the limiting incisure V has

been removed. Indeed, such an incisure acts as a physical

barrier to the free diffusion of PDE*, or any molecule in D.

Therefore, x/E�ðx; tÞ is a function defined on D that

satisfies a diffusion equation there. Initially, when activation

starts, E�ðx; 0Þ ¼ 0. As time evolves, E�ðx; tÞ is generated by
the presence of Rh* and depleted because of recovery. Thus,

@

@t
E

� � DE
�=

2
E

� ¼ source terms

due to Rh
�

� �
� depletion terms

due to recovery

� �
;

where DE* is the diffusivity of E*.

Source and depletion terms

These terms have a spatiotemporal dependence, and as such,

must include the contribution due to the activated transducer

G*, the decay of Rh* due to recovery as well as other com-

ponents in the recovery cascade. Although a full modeling is
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still lacking, we propose a first spatially resolved approxi-

mation to these mechanisms. Depletion terms are propor-

tional to E* by a deactivation rate constant kE. To model the

effects of Rh*, let t / x(t) be the trajectory of a single Rh*,

originating at x(0) ¼ (xo, yo) at time t ¼ 0. Then

fsource terms due to Rh
�g ¼ nREe

�kRtdxðtÞ;

where nRE is the rate of formation of E* per fully activated

Rh* and kR is the rate constant of inactivation of Rh*. The

last term on the right-hand side is the Dirac mass at x(t),
thereby signifying the local effect of the activation mecha-

nism. Combining these remarks,

@

@t
E

� � DE
�=

2
E

�
1 kEE

� ¼ vREe
�kRtdxðtÞ in D

DE
�
@

@n
E� ¼ 0 on @D

E�ð�; 0Þ ¼ 0 for t ¼ 0

;

8>>><
>>>:

(36)

where n is the outward unit normal to @D. The second of

these signifies that E* does not outflow the disk. This model

builds on the ideas of Nikonov et al. (22) in the following

sense. First, set

�EE
�ðtÞ ¼

Z
D
E

�ðx; y; tÞdxdy:

This is the total number of E* on the activated disk D, and

thus on the whole ROS, since we are considering a single

isomerization. If several disks are activated, such an integral

would be extended to the union of the activated disks, so

that, in any case, �EE�ðtÞ represents the total number of E* in

the ROS. Integrating the first of Eq. 36 in dxdy, over D, and

using the Gauss-Green theorem and the zero-flux condition

of the second of Eq. 36 gives

d

dt
�EE
�
1 kE �EE

� ¼ nREe
�kRt;

irrespective of the trajectory t / x(t). This is precisely the

global, well-stirred model (Eqs. A1 and A2 of (22)) in the

absence of background light.

A difficulty with Eq. 36 is in interpreting the first equation,

since t/ x(t) is a random path. In Pugh and Lamb (34) it was

proposed to regard Rh* as still at its activation site (xo, yo)
and view the combined effect of receptor / transducer /
effector as the diffusion of E* with a diffusion coefficient to

be the sum of the diffusion coefficients of Rh*, G*, and E*.

A rough estimate of such a cumulative diffusivity was

provided in the range 2.7 mm2 s�1 # DE* # 4.5 mm2 s�1

according to temperature. Although this is only a first step in

modeling the diffusion on the activated disks, we adopt it

as a way of testing our mathematical model by numerical

simulations.

Thus, on the right-hand side of the first line of Eq. 36 we

have taken dxðtÞ ¼ dðxo;yoÞ, where (xo, yo) is the activation site.
In our numerical simulations we have takenDE*¼ 5 mm2 s�1.

The simulations will be carried for variable (xo, yo),
thereby tracing the effect of such a random location on the

response on various parts of the ROS (close or far away from

the activation site). This might be used as a way of detecting

of the causes of variability of the response.

Our code is flexible enough to include a variety of ‘‘source

terms due to Rh*’’ on the right-hand side of the first line of

Eq. 36. For example, one might allow several isomerizations,

each with its own (variable) activation sites, on the same or

different disks, by setting

fsource terms due to Rh
�g ¼ nREe

�kRt +
m

j¼1

dðxj ;yj ;zjÞ; (37)

where m is the number of isomerizations and (xj, yj) are their
activation sites on the homogenized disk at z ¼ zj. Another
possible choice is

fsource terms due to Rh
�g¼ nREdðxo;yoÞ for 0 # t, t�

0 for t$ t�
;

�

where t* is a parameter that can be interpreted as a random

shutoff time for Rh*. The corresponding simulations done

for variable t* might detect another possible cause of var-

iability of the response.

PARAMETERS

The homogenized model is rather general, and theoretically

applies to the ROS of any higher vertebrate. Our numerical

simulations have been performed for the Salamander for

which the literature provides a reasonably complete set of

values for the modeling parameters. The ranges of these

parameters are collected in Tables 1 and 2, along with their

sources, and our choice in the simulations. A detailed cri-

tique and justification for these ranges is in Caruso et al. (27),

to which we refer for further discussion. Here we discuss

those that are complementary to Caruso et al. (27), and those

that, in the simulations, have been chosen slightly out of

range, and justify such choices.

Parameters related to the geometry of incisures

The total area exposed by the incisures, by a transversal cross

section of the Salamander ROS, is reported to be�0.82 mm2,

and the average width of a single incisure is estimated to be in

the range �10–12 nm (18). Inspection of electron micro-

graphs in the literature (11,12,14,16–18) suggests that there

are from 15 to 30 incisures in the ROS of Salamander. Using

these data we have simulated each incisure as an isosceles

triangle of base 15 nm and height 4.64 mm.

Although the homogenized model regards an incisure as a

segment, it remembers its original geometry through the

function ueoðrÞ appearing in Eq. 27. For example, the choice

of an isosceles triangle with vertex at the center of the disk

amounts to choosing ueoðrÞ as constant. We point out, how-

ever, that our code is flexible enough to permit simulations

with spikelike incisures as in Fig. 4, of variable opening,

width, and depth.
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We have taken 23 equal incisures per disk, for a total area

of �0.8 mm2, as reported in Olson and Pugh (18). We have

taken the average width larger than the one reported in Olson

and Pugh (18); this has been traded with a shorter length, to

avoid that the tip of the incisure would to go all the way to

the center of the disk. Taking the width �12 nm would have

required either a longer incisure or a larger number of them

to keep the total exposed area to �0.8 mm2. Again, our code

has been designed to handle any one of these, or alternate,

simulation scenarios.

Calibrating parameters

The remaining parameters are calibrated under the constraint

that they remain within the published experimental ranges.

Precisely, the simulated global current drop, after a single

isomerization, with activation site at the center of the middle

disk (400th disk), is to fit to the average of the seven ex-

perimental curves, kindly provided by F. Rieke (unpub-

lished). Each of the experimental curves is shifted to start, at

time t ¼ 0, from the same dark current jdark and normalized

to jdark ¼ 1. Numerical simulations are fit to the average of

these experimental curves for five variable parameters (DcG,

nRE, kcat/Km, kE, kR). The least-square fit was realized with

these variables constrained in their published experimental

ranges, for a simulation of 1.2 s, with a least-square fit not ex-

ceeding 0.06. The resulting parameters are reported in Table

2 as simulation parameters.

NUMERICAL METHODS

The mathematical techniques of homogenization and concentrated capacity,

as well as the mathematical computation of the homogenized form of the

limiting equations, have a high computational return. Indeed the homog-

enized formulation permits one to perform numerical simulations of the

spatiotemporal diffusion of the second messengers in the ROS of

vertebrates, taking into account any number of incisures, with any geo-

metrical distribution, at local level. An added value is that this can be done

with very little computational time cost. The relevant numerical simulations

presented below are based on a specific program developed in the MATLAB

TABLE 1 Nomenclature

Symbol Units Definition Reference

a; amin; amax mM s�1 Rate of synthesis of cGMP by guanylyl cyclase. (32); Boundary Fluxes of [cGMP]

bdark s�1 Rate of cGMP hydrolysis by PDE. (31); Boundary Fluxes of [cGMP]

BCa — Buffering power of cytoplasm for Ca21. (40); Boundary Conditions for [Ca21]

[Ca21];[cGMP] mM Concentration of Ca21; of cGMP. (25); Locality of Photocurrent

DCa; DcG; DE* mm2 s�1 Diffusion coefficient for Ca21; cGMP; E*. (25); The Full Three-Dimensional Model;

Source and Depletion Terms

e; ne mm Disk thickness; interdiscal space. Introduction

E* subunits Number of activated PDE subunits per ROS. (41,42); The Activation Mechanism

fCa — Fraction of cGMP-activated current carried by Ca21. (40); Boundary Conditions for [Ca21]

F Cmol�1 Faraday’s constant. (40); Boundary Conditions for [Ca21]

H mm Height of the ROS. Introduction

j pA Global current across the ROS lateral surface. (23); Locality of Photocurrent

jdark pA Dark current. Locality of Photocurrent

jsatex pA Saturation exchange current. (29); Locality of Photocurrent

jmax
cG pA Maximal exchange current. (21); Locality of Photocurrent

Jdark pA/mm2 Dark current density (Jdark ¼ jdark/Srod). Locality of Photocurrent

Jloc pA/mm2 Local current density. Locality of Photocurrent

1–Jloc/Jdark — Relative response. Locality of Photocurrent

kcat/Km mM�1 s�1 Hydrolytic efficacy of activated PDE dimer. (41,42); Calibrating Parameters

kE s�1 Rate constant for inactivation of PDE*. (42); Source and Depletion Terms

kR s�1 Rate constant for inactivation of Rh*. (42); Source and Depletion Terms

ks;hyd [No./mm3]�1 s�1 Surface hydrolysis rate of cGMP by PDE. (18); Boundary Fluxes of [cGMP]

ks*;hyd [No./mm3]�1 s�1 Surface hydrolysis rate of cGMP by PDE*. (33); Boundary Fluxes of [cGMP]

Kcyc mM Half max. constant for cyclase effect. (32); Boundary Fluxes of [cGMP]

KcG mM cGMP concentration for half-max. channel opening. (21); Locality of Photocurrent

Kex mM Ca21 concentration for half-max. channel opening. (29); Locality of Photocurrent

mcG; mcyc — Hill exponents. (21,32); Locality of Photocurrent;

Boundary Fluxes of [cGMP]

nRE s�1 Rate of E* formation per fully activated Rh*. (42); Source and Depletion Terms

n; n* No. Number of disks; of activated disks. Introduction; Boundary Fluxes of [cGMP]

[PDE]s No. mm�2 Surface density of dark-activated PDE. (43); Boundary Fluxes of [cGMP]

[PDE*]s No. mm�2 Surface density of light-activated PDE*. (33); Boundary Fluxes of [cGMP]

R mm Radius of disks. Introduction

Rh* No. Number of activated rhodopsins in ROS. The Activation Mechanism

Srod mm2 Lateral surface area of ROS. (23); Locality of Photocurrent

Vcyt mm3 Volume of the cytosol in the ROS. (33); Boundary Conditions for [Ca21]

Ṽe — Domain occupied by the cytosol in the ROS. Local Modeling and Surface-Volume Interactions
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environment (The MathWorks, Natick, MA). It is based on finite element

techniques. The weak form of the governing equations (Eqs. 25–31), es-

tablished in Andreucci et al. (30), lends itself naturally to a finite element

discretization.

The domains to be discretized consist of the cylinder V (the limiting

ROS), the lateral surface S (the limiting outer shell), the longitudinal rect-

angular region B (the limiting incisure), and the zero-thickness activated disk

D ¼ (DR–V)3 fz*g (at the activated face F�
j� ). The mathematical derivation

of the model has been presented as containing only one incisure and one

isomerization, to simplify the theoretical arguments and convey the main

mathematical ideas. However, it remains valid, by minor modifications, for

any number of incisures (of arbitrary distribution) and any number of

photoisomerizations, however distributed on the ROS. Accordingly, the

code we have developed is capable of incorporating any number of incisures

and any number of activation sites, with any given distribution on the ROS.

Thus, the code is aimed at being an operational tool to perform numerical

experiments of phototransduction, in rods of different geometry and struc-

ture, under a wide spectrum of operating conditions.

A finite element mesh is created by using six-node prismatic elements for

the interior of the rod, four-node rectangular elements for the outer shell and

the blades relevant to each incisure, and three-node triangular elements for

each of the activated disks.

Linear shape functions are used to interpolate the nodal values of the

unknown quantities, [cGMP] and [Ca21], in the interior of the triangular

elements, whereas bilinear shape functions are used for the rectangular and

prismatic elements. As a consequence, both [cGMP] and [Ca21] are ap-

proximated by globally continuous functions. As the greatest rates of change

of [cGMP] and [Ca21] occur near the activated disk, a mesh-generation

algorithm has been written to accomplish local logarithmic refinements of

the mesh in a chosen region around each of the activated disks. This enables

us to obtain an accurate solution using fewer elements, thereby considerably

reducing the computational cost.

Special attention has been given to the implementation of the activation

mechanism on the activated disk, as explained in The Activation Mecha-

nism.

Time integration both for the diffusion problem on the activated disks and

the diffusion problem of cGMP and Ca21 in all the rod was performed with

the Crank-Nicolson scheme, which guarantees stability and convergence

without requiring too-small time steps (35). Alternatively, one might use the

built-in MATLAB function (ODE solver) for the integration of differential

equations.

The nonlinear forcing terms have been approximated, within each

element, by interpolating their nodal values (nonlinearly dependingon the un-

known [cGMP] and [Ca21]) with the shape functions of the element. Their

nodal values have been computed at the current timestep by weighting the

values at the old and new time, as prescribed by the semi-implicit integration

method. Accordingly, an iterative procedure has been used to advance the

solution to the new time.

The numerical solutions of the partial differential equations give the

(discretized) spatial distribution of [cGMP] and [Ca21] in the cytosol as they

evolve in time. Then the local current density Jloc(u, z, t) at any point (u, z) at
any time t is obtained from Eqs. 4–7 using the values of [cGMP](u, z, t) and

TABLE 2 Parameters of the model (for Salamander ROS)

Symbol Units Range of values Used in simulation Reference

amax mM s�1 40–50 50 (15,22)

amin/amax — 0.0–0.02 0.02 (15,22)

bdark s�1 1 1 (15,22); Boundary Fluxes of [cGMP]

BCa — 10–50 20 (15,22,44)

[cGMP]dark mM 2–4 3 (22,41)

[Ca21]dark mM 0.4–0.7 0.65 (22,41)

DCa mm2 s�1 15 15 (45)

DcG mm2 s�1 50–196 160 (18,31); Calibrating Parameters

DE* mm2 s�1 2.7–4.5 5 (34); Source and Depletion Terms

eo; neo mm 0.01–0.014 0.014 (15,41)

fCa — 0.1–0.2 0.17 (15,22)

F Cmol�1 96,500 96,500 (15,22)

H mm 20–28 22.4 (15,41)

jdark pA (computed) 66 Locality of Photocurrent

jsatex pA 17–20 17 (15)

jmax
cG pA 70–7000 7000 (22)

Jdark pA/mm2 (computed) 0.085 Locality of Photocurrent

kcat/Km mM�1 s�1 340–600 400 (22,42); Calibrating Parameters

kE s�1 0.58–0.76 0.64 (44)

kR s�1 1.69–3.48 2.8 (44)

ks;hyd mm3 s�1 — 7 3 10�5 (27)

k�s;hyd mm3 s�1 — 1 (21,27); Boundary Fluxes of [cGMP]

Kcyc mM 0.10–0.23 0.135 (22,41)

KcG mM 13–32 20 (15,22,41)

Kex mM 1.5, 1.6 1.5 (22,41)

mcG — 2–3 2.5 (15)

mcyc — 2 2 (15,22,31)

nRE s�1 120, 150, 220 183 (15,22); Calibrating Parameters

n — ;1000 800 (22,41)

[PDE]s No. mm�2 100 100 (15)

R mm 5.5 5.5 (15,41)

seo mm 0.015 0.015 (15,41)

Srod mm2 — 776 (41)

Vcyt mm3 1000 1076 (41)
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[Ca21](u, z, t), on the outer membrane at that point (u, z) and time t. The

global current, j(t), across the entire plasmamembrane at time t, is the surface

integral of Jloc(u, z, t) over the lateral boundary of the ROS (see Eq. 9).

Results are presented in terms of the global relative (or normalized) response

1–j(t)/jdark, and local normalized response 1–Jloc(u, z, t)/Jdark.

The numerical simulations can be performed on a standard laptop, and

the computational time for a 1.5 s simulation is of the order of 1 min.

SIMULATION RESULTS

We report the results of several numerical simulations of

phototransduction on a single ROS, bearing incisures. The

simulations are aimed at highlighting the effect of the pres-

ence of incisures in the rod on the local and global response

of the photocurrent. In particular, the number of incisures

and their geometries are varied, along with the photo-

isomerizations sites. As a reference configuration, we take a

typical Salamander ROS, containing 23 incisures. (The re-

levant geometrical parameters of the incisures are discussed

in Parameters Related to the Geometry of Incisures; the re-

maining physical parameters, their estimated values, and the

corresponding values taken in the simulations, are discussed

in Calibrating Parameters.)

As a benchmark, simulations have also been carried for

the model well-stirred in the transversal variables and in-

troduced in Transversally Well-Stirred ROS. To such a

model, the incisures contribute through their total area—not

through their geometry or distribution.

Finally, to underscore the role of the geometry in the

response, the simulations have also been performed for a

globally well-stirred model. This is obtained from Eq. 35,

formally by letting DcG / N, and by interpreting [cGMP],

as the concentration of cGMP in the whole ROS as a function

of time only. The other quantities are interpreted similarly

(see also (21)).

The global photocurrent as a function
of the incisures

The set of simulations, shown in Figs. 5 and 6, report the

global relative response 1–j(t)/jdark, over a time interval of

1.3 s as a function of the number of incisures and their

geometry. In each run, the activation site was at the center of

the disk at a level z ¼ H/2. In Fig. 5 A, each of the incisures

has the geometry described in Parameters Related to the

Geometry of Incisures, that is, an isosceles triangle of base

15 nm and height 4.64 mm. Experiments were performed by

progressively increasing the number of equal incisures from

0 to 23.

The continuous lines represent the response from the fully

space-resolved, homogenized model Eqs. 25–31. They show

a response progressively increasing with the number of

incisures, while the peak time remains essentially constant at

;0.9 s. Thus incisures favor a larger amplitude response, with

the highest response occurring for the maximum number of

incisures. The most dramatic increases in photoresponse

amplitude come with just one or three incisures. Increasing

the number up to 23 incisures has a moderate effect.

The dashed lines are the responses simulated from the

transversally well-stirred model Eq. 35. They also indicate an

increase in the response but much less dramatic than for the

fully space-resolved model. Indeed, increasing the number of

incisures in this model only has an affect on the effective

diffusivity, DcG, through an increased value of the factor

Ainc/Atot in Eq. 35. The peak time is anticipated to be ;0.75

s, since ‘‘transversally well-stirred’’ essentially means that

the transversal diffusivity is infinite.

The dotted curve is the response for the fully well-stirred

model. The response is higher than the one for the trans-

versally well-stirred model (dashed lines), since well-stirred
essentially means that, ideally, the diffusion coefficient DcG

FIGURE 5 Global relative response 1–j(t)/jdark as a function of time for an

increasing number of incisures. (Continuous lines: tridimensional homog-

enized model; dashed lines: transversally well-stirred model; dotted lines:

totally well-stirred model.) (A) Incisures with geometry as described in

Parameters Related to the Geometry of Incisures (long and thin, with tip

close to the activation site). (B) Incisures with equal area but half the length

and double the width of those in panel A (wide and short, with tip farther

away from the activation site).
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is taken to be infinity. In the simulations of Fig. 5 B the

geometry of incisures has been changed. Namely each is an

isosceles triangle of base 30 nm and height 2.32 mm so that

the area of each incisure remains the same. Again, as in Fig.

5 A, the number of equal incisures is progressively increased

from 0 to 23.

The dashed and dotted lines remain the same, since the

well-stirred models, globally or transversally, are indepen-

dent of the geometry of the incisures. The continuous lines

exhibit a dramatic drop in response and a delay in the peak

time. Thus, a redistribution of the total area of the incisures

near the rim of the disk drastically opposes diffusion and

results in a lower and slower response. Comparing the

simulations of Fig. 5, A and B, shows that when the incisures
are longer (4.64 mm in Fig. 5 A), and thus closer to the

activation site, the relative response, for each fixed number

of incisures, is larger than for shorter incisures (2.32 mm in

Fig. 5 B), and thus further away from the activation site. In

particular, for longer incisures, the response predicted by the

homogenized model has a peak, for sufficiently many

incisures, that is larger than the one relative to the fully well-

stirred model. For shorter incisures, independently of their

number, the response of the homogenized space-resolved

model is always lower than that exhibited by the fully well-

stirred model.

Returning briefly to the discussion of Fig. 5 A, it is worth
noticing that, by increasing the number of incisures, the fully

space-resolved model (continuous lines) produces a response
even higher than the one for the fully well-stirred model.

Such a behavior might appear paradoxical, since the latter

corresponds mathematically to a model with infinite diffu-

sivity. However, it might be explained by the role played by

the geometry of the incisures versus the activation site. To

stress this point, simulations have been run to compute the

longitudinal flux of cGMP across horizontal sections of the

ROS, generated by a single isomerization at the center of

the middle disk (z ¼ ð1=2ÞH). Let Fres(z, t) denote such a

flux at level z 2¼ ðð1=2ÞH,H) and at time t, computed by the

homogenized, space-resolved model, and let Ftws(z, t) the
same flux computed by the transversally well-stirred model.

Both functions z/ Fres(z, t) and z/ Ftws(z, t) decrease as z
increases from ð1=2ÞH toH, either in the presence or absence
of incisures. For short and wide incisures, with tip away from

the activation site (Fig. 5 B), Fres(z, t), Ftws(z, t) at all times.

For thin and long incisures, with the tip close to the

isomerization site (Fig. 5 A), for levels z close to H, i.e., near
the top of the ROS, the reversed behavior occurs; that is,

Fres(z, t) . Ftws(z, t).
Therefore, for the homogenized space-resolved model,

long incisures with the tip close to the isomerization site have

the effect of draining cGMP from regions of the ROS farther

away from the isomerization site, in contrast to the analogous

phenomenon for the transversally well-stirred model. Thus,

channels are closed further away, thereby raising the relative

response.

Analogous simulations have been run comparing the aver-

age [cGMP], as a function of time, for the globally well-

stirred model and the space resolved model, for long

incisures with the tip close to the activation site, as in Fig.

5 A. The average [cGMP] computed with the latter model is

less than the corresponding one computed with the well-

stirred model. These simulations provide evidence of the role

of the incisures, and their geometry, as a mechanism that

enhances the response even beyond that of a (virtually) well-

stirred ROS.

Keeping constant the total area of the incisures

A second set of simulations is carried by increasing the

number of incisures from 21 to 31, and progressively

FIGURE 6 Global relative response 1–j(t)/jdark as a function of time for an

increasing number of incisures. (Continuous lines, tridimensional homog-

enized model; dashed lines, transversally well-stirred model; dotted lines,

totally well-stirred model.) (A) The total area of the incisures and their width
are kept constant. Therefore, by increasing the number of incisures, their

length is reduced to keep the total area and their width constant. (B) The total

area of the incisures and their length are kept constant. Therefore, by

increasing the number of incisures, their width is reduced to keep the total

area constant.
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modifying their geometry, so that the total area exposed by

the incisures remains constant.

In Fig. 6 A, the geometry of the incisures is modified by

progressively shortening their length and keeping their width

constant. In Fig. 6 B, their length is kept constant and their

width is progressively reduced to maintain constant the total

exposed area. In either case, the well-stirred models (dashed
and dotted black curves) return the same response, irre-

spective of the number of incisures or their geometry. This is

expected, since these models depend on the total area of the

incisures (which is kept constant), but not on their geometry

or distribution.

For the space-resolved, homogenized model, distributing

the area of the incisures near the activation site (Fig. 6 A,
longer incisures of equal width or Fig. 6 B, equal length
reduced width) enhances the diffusion process, by producing

a response higher than the well-stirred models corresponding

to the same total area. This dramatically underscores the role

of the geometry in the process, i.e., for equal areas, the higher

response is obtained by distributing the area of the incisures

near the center of the activated disk. On the other hand, by

distributing the area of the incisures in long and narrow

segments, which therefore come closer to the activation site,

the changes on concentrations are higher—producing a re-

sponse essentially insensitive to the number of segments

needed to keep the total area constant.

THE EFFECTS OF THE ACTIVATION SITE

Our model and the corresponding code have the capability of

tracking the dependence of the response, local and global, on

the activation site and simultaneously with and without

incisures. In Fig. 7, a single photon hits at various distances

from the center, and on the same radius. In Fig. 7 A, such a

radius bisects two incisures. In Fig. 7 B, there are no

incisures.

In the case of no incisures, there is a large variability in

both the amplitude and time-to-peak of the response. The

largest total response occurs when the activation site is at the

rim of the disk and the lowest when the isomerization occurs

at the center.

In the presence of incisures, the behavior is reversed; that is,

the largest total response occurs for an isomerization at the

center of the disk and the lowest when the photon falls at the

rim. The response is larger and there is less variability in both

the amplitude and time-to-peak response. A possible expla-

nation is that when the activation site is at the center, diffusion

of PDE* occurs equally on radial directions, thus reaching at

the same time essentially all points of the rim. When the

activation site is at the rim, diffusion of PDE* is impeded by

the incisures, which confine the diffusion region; as a

consequence, the cGMP drop occurs, at least for short times,

essentially within the region between those two incisures.

In either case, the closer the activated site is to the rim, the

faster is the response, and the smaller the peak time.

Superposition of two single photon responses

Suppose two independent isomerizations occur, each at the

center of their disk, but separated along the longitudinal axis

of the ROS. It was shown in Caruso et al. (27), in the case of

no incisures, that if the two activation sites are sufficiently far

apart, then the response is linear in the sense that it es-

sentially coincides with the sum of the response that each of

them would generate as a SPR. It is natural to ask to what

degree such an independence continues to hold in the

presence of incisures, i.e., to what degree the response of

such a double isomerization differs from the sum of the

response that each of them would generate as a SPR. This is

the content of the simulations of Figs. 8 and 9. The deviation

from linear response was computed by the formula (2po–p)/
2po. Here, po is the peak of SPR, with an activation site at the
center of a disk sufficiently far away from the top and bottom

FIGURE 7 Global relative response 1–j(t)/jdark as a function of time. (A)
The photon hits the activated disk at different distances from the center,

along a radius bisecting two consecutive incisures. The ROS has 23 incisures

as described in Parameters Related to the Geometry of Incisures. (B) The
photon hits the activated disk at different distances from the center. The ROS

has no incisures.
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of the ROS, and p is the peak response for the two

simultaneous, symmetric isomerizations. When two photons

are sufficiently far apart (at least 150 disks for zero incisures,

and 200 disks for 23 incisures), (total) response is maximum

at twice the SPR; thus their effect is additive. This linear

summation of SPR begins to diminish when the distances get

closer (at least 150 disks for zero incisure, and 200 disks for

23 incisures), as their spreads begin to overlap. The presence

of incisures increases the longitudinal flux between disks,

and thus increases the overlap of spreads. This phenomenon

is clearly visible in the simulation of Fig. 9. As a

consequence, the deviation exhibited by the simulation

with incisures is always larger than the corresponding one for

the simulation without incisures. Such a difference tends to

become negligible when the two activated disks get closer.

Globally, the total response is larger in the presence of

incisures. The same issue might be addressed if two

isomerizations occurred at two different locations on the

same disk. Two isomerization sites are moved symmetrically

along the same diameter. The deviation from linear response

was computed by the formula (2po–p)/2po. Here p is the peak
response of the symmetric pair of isomerizations, and po is
the peak response of one element of the pair, acting alone in

its position. Fig. 10 contains such simulations. In both the

ROS with 23 incisures and the ROS without incisures, the

deviation from linear response is never zero and increases as

the mutual distance of the symmetric isomerizations de-

creases. If no incisures are present, the deviation is

considerably larger, than the case with incisures. Thus,

within a same disk, incisures dramatically increase the ability

of the photoreceptor to accurately count photons. This

behavior is opposite the previous case, when the activation

sites were moving along the longitudinal axis of the ROS.

Since the diffusion equation of [PDE*] is linear, two

simultaneous photons on the same disk produce double the

amount of [PDE*]. Such an amount depletes only those mol-

ecules of cGMP on the adjacent interdiscal space. If there are

no incisures, fresh cGMP inflows into the interdiscal space

adjacent to the activated disk only through the outer shell.

The presence of incisures, increases such an inflow.

HOW INCISURES AFFECT THE SPREAD
OF THE RESPONSE

To detect how incisures affect the spread, simulations have

been carried out for the activation site at several locations of

the middle disk (400th disk), for the homogenized model

both with and without incisures. Spread here is computed by

FIGURE 8 Two-photon simulations with and without incisures. The

photons hit the center of two different disks. Deviation from linear sum of

SPR as a percentage of maximum relative response (ordinate axis), against

mutual distance of the two activated disks, measured in disk units

(abscissas), is shown. Mutual distances of the two activated disks range

from 400 to 4 disk units. Peak times of total relative response range from

920 ms to 940 ms for zero incisures and from 860 ms to 880 ms for 23

incisures.

FIGURE 9 Two-photon simulations with (A) and without (B) incisures.

The photons hit the center of two different disks, symmetrically placed about

the middle of the ROS (400 in disk units), and separated by 16 disk units.

Local relative response (ordinate axis) plotted against the z variable

(abscissa).
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the Eq. 11 with d¼ 0.5%, as a function of u and t. The spread
was measured at different times and different recording

points at the rim of the activated disk, that is, for different

values of u. The first of Figs. 11 and 12 reports the response

of a ROS with 23 incisures (Fig. 11) and without incisures

(Fig. 12). In both cases the activation site is at center of the

middle disk and the response was computed on the rim of the

disk. The last two panels of Fig. 11 and the corresponding

panels of Fig. 12 report the response of a ROS with 23

incisures (Fig. 11) and without incisures (Fig. 12), where the

activation site is at 0.6R from the center of the middle disk,

and the response is computed on that point of the rim closest

to (u ¼ 0) and farthest from (u ¼ p) the activation site. A

spectrum of results is in Tables 3–6.

The tabulated spreads, and the figures, show that the

spread is larger for 23 incisures than without incisures. This

confirms the intuitive idea that the presence of incisures

favors longitudinal diffusion. The enhanced longitudinal dif-

fusion effect due the incisures is also evidenced by the

rounded peaks in Fig. 11 (23 incisures present), as opposed

to those in Fig. 12 (no incisures).

In addition, regardless of the point on the rim where the

response is computed, the spread has, for small times, a non-

trivial dependence on the activation site. As time increases to

peak time, such a dependence decreases.

For a fixed off-center activation site (for example, at a

distance of 0.9R from the center), the spread on the rim of the

disk has a significant dependence on the detection position

(i.e., on u). Such an effect becomes negligible for large times

(near the peak time). This phenomenon occurs both with and

FIGURE 10 Two-photon simulations with and without incisures. The

photons hit two different locations on the middle disk (400th). Deviation

from linear sum of SPR as a percentage of maximum relative response

(ordinate axis), against mutual distance of the two activation sites on the

same disk, measured in microns (abscissas), is shown. Mutual distances of

the two sites range from 0.2R to 1.8R, where R is the radius of the disk. Peak

times range from 790 ms to 990 ms for zero incisures and from 830 ms to

870 ms for 23 incisures.

FIGURE 11 ROS with 23 incisures of total area 0.8 mm2, as described in

Parameters Related to the Geometry of Incisures. Shown are the z profiles of

local relative response 1–Jloc(u, z, t)/Jdark at times 0.2 s, 0.4 s, and 0.8 s. (A)

Activation site is at the center of the middle disk and response is measured

on the rim of the disk for u ¼ 0. (B) Activation site is at distance 0.6R from

the center and the response is measured at the closest point on the rim to

the activation site (u ¼ 0). (C) Activation site is at distance 0.6R from the

center and the response is measured at the farthest point on the rim from the

activation site (u ¼ p).
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without incisures, and underscores the locality of the acti-

vation process, at least up to peak time. It thus provides evi-

dence against the notion of a transversally well-stirred

model.

RADIAL PROFILES OF cGMP

Fig. 13 compares the radial profiles of [cGMP], at the z level
of the activated disk, for no incisures (Fig. 13 A) and in

presence of 23 incisures (Fig. 13 B). The isomerization is at

the center (r ¼ 0) of the middle disk (400th). With no

incisures, immediately after activation there is a large drop of

cGMP near r ¼ 0, which persists up to the peak response. In

the presence of incisures, such a drop is dramatically reduced

and localized near the activation site. This phenomenon fur-

ther underscores the mechanism by which further inflow of

cGMP is permitted into the interdiscal spaces through the

incisures.

DISCUSSION

We found that disk incisures in rod photoreceptors have two

clear roles. First they provide greater cytoplasmic space for

diffusion of cGMP and Ca21. This allows more communi-

cation longitudinally between disks. The greater pool of

cGMP available to the PDE in the activated disk has the

effect of increasing the size of the photoresponse, because

more cGMP is cleaved. Moreover, it increases the linear

response to multiple photons, falling on the same disk. This

is illustrated clearly in Fig. 10, where two photons hit a

single disk at different locations. The figure shows a dra-

matically increased independence between the two photons,

as expressed by the decreased reduction from linear sum-

mation in the photoreceptor with 23 incisures. Also, because

of the greater cytoplasmic space, there is a smaller radial

fall of [cGMP] (Fig. 13). The longitudinal profile of the

photoresponse is blunted (compare Figs. 11 and 12), de-

creasing the local nature of signaling, since cGMP diffusion

is less impeded by the baffling effect of the disks. Thus the

presence of many incisures has the global effect of making

the local response closer to the predicted well-stirred re-

sponse. This effect is most dramatic with just a few incisures

(Fig. 5).

The second role of the incisures is to divide up the disk

into separate domains, lobules or petals, where two-dimen-

sional diffusion of rhodopsin, transducin, and PDE are im-

peded from spreading. The effect of this lobulization is a

localization of the response; the closer the photon is to the

rim, the greater the localization produced as the photon isFIGURE 12 ROS with no incisures. Shown are the z profiles of local

relative response 1–Jloc(u, z, t)/Jdark at times 0.2 s, 0.4 s, and 0.8 s. (A)

Activation site is at the center of the middle disk and response is measured

anywhere on the rim of the disk, since by radial symmetry, there is no

u-dependence. (B) Activation site is at distance 0.6R from the center and

the response is measured at the closest point on the rim to the activation site

(u¼ 0). (C) Activation site is at distance 0.6R from the center and the response

is measured at the farthest point on the rim from the activation site (u ¼ p).

TABLE 3 Spreads of localized relative responses when the

activation site is at the center (r ¼ 0), d ¼ 0.5%

Angle
u ¼ 0, ½p, p

Incisures 0 23

0.2 s 1.6108 2.1848

0.4 s 2.8171 4.2382

0.6 s 3.5566 5.5422

0.8 s 3.9876 6.2862

1.0 s 4.1068 6.4441
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more confined by the lobule containing it. One effect of this

localization is a small reduction in the response, as shown by

the simulations in Fig. 8. Moreover, simulations not here

reported reveal that the lobulization partially contributes in

increasing the linear summation when two photons hit the

same disk.

The incisures favor the longitudinal diffusion of cGMP

and Ca21, and this effect depends on the number of incisures

as well as their geometry and distribution. The results in

Figs. 5 and 6 show that, for equal total area of incisures, a

stronger response occurs for longer incisures as opposed to

shorter incisures. Other simulations (not reported) show that

this effect continues to hold, although to a lesser extent, for

off-center activations. The geometry of the incisures, there-

fore, and not just their total cross-sectional area, plays a

crucial role in the drop of the photocurrent. As a conse-

quence, neither transversally well-stirred nor globally well-

stirred models are able to capture these features.

The simulations show that incisures increase the ampli-

tudes of SPR as well as their spread. Fig. 7 shows the effects

of the activation sites on the global response in the presence

of incisures. Without incisures, the closer the activation site

is to the rim of the disk, the faster the response. With

incisures, the response is larger, more uniform, but slightly

slower. This greater response as well as greater stability of

response will aid in the photoreceptor function as a photon

counter. When two photons hit on the same disk, there is a

decreased linearity of the responses (Fig. 8). The presence of

incisures divides the disk into lobes, decreasing the diffusion

of PDE* from one lobe to the next, and thus, dramatically

increasing linearity of the responses. This again reflects the

ability of incisures to increase the photon counting function

of photoreceptors. Thus, incisures provide a larger, more

uniform, more linear response, enabling the photoreceptor to

be a more precise photon counter. This is because cGMP can

diffuse better longitudinally, whereas PDE* diffusion is

constrained to a local zone by the geometry of the lobelike

compartments.

When two photons hit on two different disks, in the

presence of incisures there is a larger response with more

spread, due to the increased diffusion of cGMP through the

channels made by the incisures (Fig. 9). Because of the in-

creased spread, there is a resulting reduction from linear sum-

mation (Fig. 8). The effect on the overall signal of this

mechanism is still unclear, and is the object of current

investigations.

The study of longitudinal spreads and radial profiles of

cGMP confirms that the presence of incisures favors lon-

gitudinal diffusion, and thus permits further influx of cGMP

into the interdiscal space through incisures. The simulations

in Tables 3–6 and Figs. 11 and 12 indicate the increase of

longitudinal spreads. In Fig. 13, the radial profiles of cGMP

show that the drop of cGMP is largely reduced by the

presence of incisures. Again, these features could not be

captured by well-stirred models.

These considerations suggest that one important role of

incisures is to increase the ability of the photoreceptor to

more precisely count photons. This is a very important de-

sign feature, suggesting one important role of incisures.

Clearly, the highly specialized nature of incisures, and the fact

that photoreceptors degenerate if the rds proteins that are

involved in forming and stabilizing them are disrupted, we

might speculate that they have other roles as well. The fact

that the effects on phototransduction are attained with a

relatively small number of incisures (close to maximal effect

by three incisures, Fig. 5), whereas in nature, there can be a

large variety of numbers of incisures, up to 30 or more,

suggests that there may be other roles for incisures than these

effects on phototransduction. What might such roles be?

Since incisures are the sites where microtubules run all along

TABLE 4 Spreads of localized relative responses when the activation site is at r ¼ 0.6R, d ¼ 0.5%

Angle
u ¼ 0 u ¼ ½p u ¼ p

Incisures 0 23 0 23 0 23

0.2 s 1.9859 2.9111 1.3805 2.1724 0.7593 1.0764

0.4 s 3.0205 4.4524 2.8394 4.2612 2.6271 3.9870

0.6 s 3.7166 5.5896 3.6423 5.4787 3.5732 5.3471

0.8 s 4.1767 6.2090 4.1257 6.1618 4.0782 6.0991

1.0 s 4.2633 6.2833 4.2241 6.2427 4.1874 6.1886

TABLE 5 Spreads of localized relative responses when activation site is at r ¼ 0.9R, d ¼ 0.5%

Angle
u ¼ 0 u ¼ ½p u ¼ p

Incisures 0 23 0 23 0 23

0.2 s 2.4003 2.9928 1.7281 2.0236 0.9962 0.0000

0.4 s 3.3422 4.4519 3.0855 4.2091 2.8988 3.8478

0.6 s 3.9792 5.5293 3.8709 5.3900 3.7678 5.2685

0.8 s 4.3052 6.1410 4.2552 6.0803 4.2084 6.0023

1.0 s 4.3123 6.2046 4.2674 6.1517 4.2248 6.0838
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the ROS (11), incisures might play a structural or stabilizing

role. The association of microtubules equidistant between

incisures and plasma membranes suggests proteins linking

them (11), and there are also other proteins at disk rims that

play structural roles, such as peripherin/rds, responsible for

autosomal dominant retinitis pigmentosa, and ABCR, the

ATP-binding cassette transporter responsible for Stargardt

macular dystrophy (8,9). Part of the structural role of

peripherin/rds proteins is their ability to homo- and

heterodimerize, and disruption of these interactions disrupts

incisures (9). Other roles may be related to microtubule-

associated transport proteins such as kinesin involved in

transporting molecules from the inner segment (36), or

microtubule binding partner proteins (37–39).

The simulations thus demonstrate that the fully space-

resolved homogenized model has a great capability of cap-

turing the physics of the problem, as it provides a theoretical,

quantitative and numerical bridge from the geometry of

ROS, the activation mechanism, and the diffusion of the

second messengers cGMP and Ca21, to the local and global

effects of the photon response. In particular, dispensing with

the well-stirred limiting assumption, it permits us to detect

the effects of the incisures on the drop of photocurrent

(Simulation Results), to test the local effects on activation

sites (The Effects of the Activation Site), and to study the

longitudinal spread of the photocurrent, and the radial pro-

files of cGMP (How Incisures Affect the Spread of the Re-

sponse and Radial Profiles of cGMP). The simulations

indicate that the fully space-resolved homogenized model

detects the inherent relation between the incisures and the

global photocurrent.

We conclude by pointing out the flexibility of the

mathematical and computational model. It presents itself as

an experimental device by which biochemical and geomet-

rical parameters, as well as activation mechanisms, can be

chosen to simulate spatiotemporal responses under essen-

tially an infinite number of physical and/virtual cross-talking

situations and decision-making hypotheses.

This work was supported by National Institutes of Health grant No.

1R01GM068953-01.
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