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Young children and the developing fetus may be more susceptible to effects of environmental toxicants than adults due to differential exposure
patterns and developmental immaturities. Biologic markers offer the potential of quantitative dosimeters of biologic dose and/or indices of biologic
effect associated with fetal/childhood exposures. They can facilitate evaluation of interindividual variability in response and the magnitude of age-
related susceptibilities. Thus far, biologic markers have not been widely used in developmental epidemiology of environmental exposures. Research
by our group and others has seen elevations in biologic markers in samples from children and fetal tissue associated with a spectrum of environ-
mental exposures, including tobacco smoke (active and passive), ambient pollution, and dietary contaminants. Studies also suggest that biologic
markers can provide powerful dosimeters for investigating reproductive effects. Validation of biologic markers offering the greatest promise for
developmental epidemiology is needed. — Environ Health Perspect 103(Suppl 6):105-110 (1995) ’
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Introduction

There is evidence that young children and
the developing fetus may be more suscepti-
ble than adults to the adverse effects of
many environmental carcinogens and other
toxicants. Their increased susceptibility can
arise from differential exposure patterns
and/or immaturities in physiological devel-
opment. Infants and young children have
higher breathing rates, ingest more drink-
ing water, and consume more calories of
food per unit body weight than do adults
(1,2). As a result, they can have signifi-
cantly greater intakes per unit body weight
of carcinogens and other contaminants in
food, water, and air (1,3). Physiologic
immaturities can also lead to greater
absorption, retention, or increased target
organ sensitivity, depending on the toxi-
cant (4,1,5). For certain carcinogens, risk
of cancer has been shown to increase if
exposure begins in utero or infancy rather
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than in adulthood (6,7). The increased
susceptibility is due presumably to the
increased rate of cell proliferation, differing
metabolic capabilities during early develop-
ment, and the long future life during
which cancers initiated in childhood can
develop (8,6,9-11).

While increased susceptibility of the
young is of concern, age-related differ-
ences in response to environmental toxi-
cants have not been well characterized.
Epidemiologic studies quantifying effects
of environmental exposures during infancy
and childhood are limited (3) and have
been hampered by uncertainties regarding
the extent and timing of exposure. Human
data are currently available for only a few
toxicants, most notably lead (12-14).
Exposures in carcinogenicity bioassays typ-
ically occur after maturation of the test
animals is largely completed (15). In the
case of developmental bioassays, in which
exposure begins in utero or during infancy,
extrapolation of results from animals to
humans can be compromised by inter-
species differences in developmental
patterns and growth rates (3).

The use of biologic markers in molecu-
lar epidemiologic studies of fetal and child-
hood exposures can circumvent some of
these limitations. To date, biologic markers
have not been widely used in developmen-
tal epidemiology of environmental expo-
sures (16,17); however, they offer the
potential to provide quantitative dosime-
ters of biologic dose and/or indices of bio-
logic effect associated with fetal and

childhood exposures to environmental car-
cinogens and other toxicants. Further, they
can facilitate quantification of differences
in the magnitude of response in the young
relative to that in adults. The following
review provides an overview of biologic
markers used in human studies. Most have
involved adult populations with a variety
of environmental exposures. The term
environmental is broadly defined to
include lifestyle (cigarette smoke), occupa-
tion, and ambient pollution. Collectively,
they demonstrate the sensitivity of a num-
ber of biologic markers to environmental
toxicants and support their applicability to
developmental studies. The review con-
cludes with examples from our group and
others of research incorporating biologic
markers into studies of environmental
exposures during fetal development and

early childhood.

Overview of Biologic
Markers*

Molecular epidemiology bridges from basic
research in molecular biology to studies of
disease causation in humans by combining
laboratory measurements of internal dose,
biologically effective dose, biologic effect,
and susceptibility with epidemiologic
methodologies (18-20). Research has shown

*Section excerpted from Perera FP and Whyatt RM.
Biomarkers and molecular epidemiology in muta-
tion/cancer research. Mutat Res 313:117-129 (1994),
which contains a more detailed discussion, tables,
and references.
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marked elevations in biologic markers
associated with a spectrum of exposures
and has demonstrated the ability of multi-
ple biologic markers to detect genetic and
molecular damage in humans. Case—con-
trol studies in patient populations also sug-
gest that specific biologic markers may
indicate heightened risk of disease.

Internal dose refers to the measurement
of the amount of a toxicant or its metabo-
lite present in cells, tissues, or body fluids.
Examples of internal dosimeters include
DDT and PCBs in serum and adipose tis-
sue from environmental contamination,
plasma, or salivary cotinine from cigarette
smoking, urinary aflatoxin indicative of
dietary exposure, and lead from various
exposures. Examples from our group
include the findings of increased urinary
1-hydroxypyrene levels associated with
ambient exposures to polycyclic aromatic
hydrocarbons (PAH) in Finnish foundry
workers and dermal exposures in coal-tar-
treated psoriasis patients (21,22). Internal
dose markers take into account individual
differences in absorption or bioaccumula-
tion of the compound in question and
have the advantage of being comparatively
easy to monitor. However, they do not
provide data about interactions of the
compound with critical cellular targets.

Biologically effective dose reflects the
amount of toxicant that has interacted with
cellular macromolecules at a target site or
with an established surrogate. Examples
include levels of specific carcinogens bound
to genetic material (carcinogen-DNA
adducts) or an established surrogate (car-
cinogen—protein adducts). This class of
markers is more mechanistically relevant to
disease than internal dose, since it takes
into account differences in metabolism
(activation vs detoxification) of the chemi-
cal in question as well as the extent of
repair of DNA adducts. The biological
basis for measuring DNA adducts derives
from extensive experimental data support-
ing their role in the initiation and possibly
the progression of cancer. Adducts formed
between DNA and PAHs as well as other
carcinogens have been correlated with car-
cinogenic potency in experimental studies
and are therefore considered to be a rele-
vant indicator of the effective dose and
potential risk of carcinogens. There is evi-
dence that protein adducts can serve as
surrogates for DNA adducts.

Numerous studies have shown
PAH-DNA and other carcinogen-DNA
adducts in peripheral white blood cells
(WBC) of workers to be associated with
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occupational exposures, including foundry
workers, roofers, coke oven workers, and
aluminum plant workers (23-27).
Carcinogen-DNA adduct levels in WBC
have also been associated with ambient air
pollution exposures in Poland (28).
Dietary exposures to aflatoxin have been
correlated to urinary excretion of
aflatoxin—-DNA adducts (aflatoxin-V 7—gua-
nine) in populations studied in China and
West Africa (29,30). Some, but not all,
studies have seen increases in carcino-
gen—DNA adducts in WBC of cigarette
smokers compared to that in nonsmokers
(31-35). In lung tissue, a linear relation-
ship between DNA adduct levels and daily
or lifetime cigarette consumption was seen
(36). Adducts formed between 4-amino-
biphenyl and hemoglobin (4-ABP-Hb) are
also significantly elevated in smokers com-
pared to nonsmokers (37,38). In a
case—control study of lung cancer by our
group, a significant association was seen
between lung cancer risk and PAH-DNA
adduct formation among current smokers
after controlling for the number of ciga-
rettes smoked per day (32). These findings
suggest that adducts are not only an envi-
ronmentally relevant dosimeter, but that
they may also indicate heightened risk of
cancer.

Biologic effect markers reflect irre-
versible damage resulting from a toxic
interaction, either at the target or an analo-
gous site, which is known or believed to be
pathogenically linked to disease. A wide
variety of biologic markers fall into this
category, including gene mutations at the
hprt and glycophorin A (GPA) loci, alter-
ations in oncogenes and tumor suppressor
genes, DNA single-strand breaks, unsched-
uled DNA synthesis, sister chromatid
exchanges (SCE), chromosomal aberrations
(CA), and micronuclei. None of these
markers is chemical- or exposure-specific,
and other factors (lifestyle and environ-
mental) that affect these end points can act
as confounding variables in a molecular
epidemiologic study.

Our research has found increases in
hprt gene mutations in lymphocytes associ-
ated with occupational exposures to PAHs
among Finnish foundry workers.
Consistent with experimental data, the fre-
quency of mutation was significantly corre-
lated with levels of PAH-DNA adducts
(39). In another study by our group, ambi-
ent air pollution in Poland was found to be
significantly related to SCE and CA,
including gaps (28). Further, PAH-DNA
adducts were significantly correlated with

chromosomal mutation, linking molecular
dose with a genetic effect of air pollution.
Research on liver cancer patients in China
and Southern Africa has implicated AFB;
as an etiologic agent and indicated a possi-
ble mechanism by which the carcinogen
may be exerting its effect (40). A total of
26 liver tumors were obtained from
patients living in areas characterized by
high exposure to AFB, and by high preva-
lence of liver cancer (41,42). Eleven (43%)
of the tumors exhibited a specific mutation
(G to T) at codon 249 of the tumor sup-
pressor gene, p53. This signal mutation is
produced by AFB, when administered to
experimental animals.

Susceptibility markers measure individ-
ual differences that can modulate response
to exposure. These include individual dif-
ferences in micronutrient levels, DNA
repair capacity, inherited mutations, and
detoxification mechanisms. Examples
include individual variability in “Phase 1”
and “Phase II” enzyme activities. The nor-
mal role of Phase I enzymes is to convert
lipid-soluble xenobiotics to more water-sol-
uble substances that can be excreted.
However, some of the intermediates in this
oxidative process are highly reactive elec-
trophiles capable of binding to DNA.
CYP1Al, a P450 enzyme with aryl hydro-
carbon hydroxylase activity, catalyzes the
oxidation of PAHs such as benzo[4] pyrene.
This enzyme system is highly responsive to
exposures to PAHs and other agents, and
inducibility has been associated with higher
risk of lung cancer in smokers (43). An
MspI RFLP in the 3’ coding region of the
CYPIAI gene (associated with a mutation
in exon 7 of the gene) has been associated
with lung cancer risk in Japan (44,45).
Phase II enzymes conjugate the phase I
metabolites with glucuronide, glutathione,
or sulfate, resulting in less reactive,
hydrophilic products for excretion.
Glutathione-S-transferases (GST) are a
family of multifunctional proteins that play
an important role in the detoxification of
PAHs and other xenobiotics through con-
jugation with glutathione (46,47). A poly-
morphism has been detected in the
GSTM!1 gene, which has been shown to be
a deletion of the entire gene locus.
Published reports indicate that 30 to 60%
of the population may be homozygous
deleted for this gene (48). Smokers with
low lymphocyte GSTM1 activity are
reported to be at higher risk for lung can-
cer (49,50). More recently, in a cancer
case—control study in Japan, a relative risk
of 1.87 was seen for the null genotype and
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squamous cell carcinoma of the lung (45).
A remarkably high relative risk of 9.1 for
squamous cell carcinoma was seen with the
combined CYP1A1l exon 7 mutation and
GSTM1 null genotypes.

Application of Biologic
Markers to Developmental
Epidemiology

Thus far, biologic markers have not been
used widely in studies of developmental
effects associated with environmental expo-
sures. Further, studies incorporating bio-
logic markers generally have not related
them to disease outcomes such as birth
defects or childhood cancers in infants and
children. Rather, biologic markers have
primarily been relied on as dosimeters for
fetal and childhood exposure. Research by
our group and others has seen elevation in
biologic markers in samples from children
and in fetal tissue associated with a spec-
trum of environmental exposures including
tobacco smoke (active and passive), dietary
contaminants, and ambient pollution.

Since evidence suggests that children
may be at heightened risk of cancer from
environmental tobacco smoke (ETS) expo-
sure during early childhood (57), we initi-
ated a study using a panel of biologic
markers to assess ETS exposure in mothers
and their preschool-age children (2-5
years) (52). A number of markers, includ-
ing serum cotinine (a metabolite of nico-
tine) and PAH-albumin adducts, were
evaluated in peripheral blood samples from
87 African—American and Hispanic
mother—child pairs. Children of smoking
mothers had significantly higher levels of
both cotinine and PAH-albumin than
children of nonsmoking mothers. Their
cotinine was significantly correlated with
numbers of cigarettes smoked daily by the
mother. Cotinine was also markedly ele-
vated in children of nonsmoking mothers
who were exposed to ETS from other
household smoking. These results under-
score the importance of programs aimed at
smoking prevention among mothers and
women of childbearing age.

Monitoring of PAH-DNA and other
carcinogen~-DNA adducts in placental tis-
sue of smokers and nonsmokers has also
demonstrated increases related to cigarette
smoking (53-56). Hansen et al. (55)
found carcinogen—DNA adducts in both
placental tissue and umbilical cord DNA
to be associated with smoking. Adduct lev-
els in the placenta of both smokers and
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nonsmokers were higher than correspond-
ing adduct levels in umbilical cord DNA.

Coghlin et al. (57) measured levels of
4-ABP-Hb adducts in paired maternal
blood—fetal cord blood samples from
smoking and nonsmoking women. Adduct
levels in both maternal and fetal samples
were significantly associated with cigarette
smoke exposure. Fetal adduct levels were
consistently lower than maternal levels.

A recently initiated investigation by our
group is using a panel of biologic markers
to assess effects of smoking, diet, and
ambient air pollution on women and the
developing fetus. Markers are being assayed
in placental tissue samples and maternal
and infant cord blood samples collected
from 73 mother—newborn pairs residing in
Krakéw, Poland, an industrial city with
severe ambient air pollution, and 90
mother—newborn pairs from a rural town
in Poland with lower pollution levels.
Preliminary results show CYP1A1 mRNA
levels in placental tissue and PAH-DNA
adduct levels in maternal WBC to be
significantly increased in current smokers
compared to nonsmokers (58). Adduct
levels in maternal WBC were also
significantly associated with ETS exposure.
Dietary consumption of smoked and fried
meats, cheese, and fish was a significant
determinant of placental CYP1A1 mRNA
levels, presumably as a result of PAHs
formed during cooking. A dose response in
both placental CYP1A1 mRNA levels and
maternal PAH-DNA adduct levels with
ambient pollution was apparent. Unlike
the Coghlin et al. findings of lower adduct
levels in fetal compared to maternal sam-
ples, in the current study levels of both
serum cotinine and PAH-DNA adducts in
infant cord blood samples were higher than
those in the corresponding maternal blood
samples. These findings suggest a reduced
ability of the fetus relative to that of the
mother to detoxify cigarette smoke con-
stituents. They also point to the possibility
of increased susceptibility of the develop-
ing fetus to PAH-DNA adduct formation.
This is particularly striking, given evidence
from experimental bioassays that transpla-
cental exposure to PAHs is an order of
magnitude or more lower than maternal
exposure (59,60).

In a series of studies, Wild et al.
(61,62) have investigated dietary exposure
to aflatoxin B, by measuring AFB,-albu-
min adducts in blood samples from resi-
dents of Gambia. Umbilical cord blood
and maternal blood were collected from 30
mother—newborn pairs, and blood was also

collected from 323 children (ages 3-8).
Adducts were present in 97% of maternal
sera, 70% of umbilical cord sera, and over
95% of children’s sera, indicating wide-
spread dietary exposure to aflatoxin in this
region and transplacental transfer of the car-
cinogen during pregnancy. Cord adduct lev-
els were highly correlated with, but 10-fold
lower than, maternal levels. Interestingly,
children who were positive for the hepatitis
B virus (HBV) surface antigen had
significantly higher adduct levels than did
children who had never been infected or
who had markers of past infection. These
data suggest that HBV infection can
influence aflatoxin metabolism.

Polycyclic aromatic hydrocarbons are
present in urban and industrial air pollu-
tion as well as in cigarette smoke and diet.
PAH-DNA adduct levels have been
assessed in human fetal tissues and placen-
tas from 15 spontaneous abortions collected
from nonsmoking women (63). Adducts
were detected in 42% of fetal lung speci-
mens, 27% of fetal liver specimens, and
43% of placentas. In the cases in which
adducts were present in both placenta and
fetal tissue, fetal tissue levels were not
appreciably lower than the corresponding
placental values. These results demonstrate
that tissues of the developing human fetus
are targets for DNA damage from ubiqui-
tous exposures like that from PAHs.

A study using biologic markers to mon-
itor exposure from an industrial waste site
in Belgium found levels of SCEs (including
high frequency cells) to be significantly
higher in blood samples from a small num-
ber of children living near the site than in
samples from matched controls (64). Air
contamination by a mixture of genotoxics
emitted from the site were presumed
responsible for these cytogenetic effects.

In addition to using biologic markers as
dosimeters of fetal and childhood exposure,
several studies have shown associations
between specific biologic markers and
reproductive effects. A highly significant
association was found between decreased
birth weight and the level of smoking-
related adducts in placental tissue collected
from only 30 smoking mothers (53). By
contrast, no association was seen between
decreased birth weight and either intensity
of smoking exposure assessed by question-
naire data or biochemical measures of
smoking exposure (cotinine, thiocyanate,
and carboxyhemoglobin). Several other
studies have used umbilical cord blood
serum cotinine levels from nonsmoking
mothers as an internal dosimeter of fetal
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ETS exposure. These studies found a
significant inverse correlation between
serum cotinine levels and birth weight

(65,66).
Conclusion

This body of research has demonstrated
that laboratory methods for detection of
carcinogen—DNA adducts and other bio-
logic markers of effect and susceptibility are
adequately sensitive for studies of environ-
mental exposures in human populations.
Research on exposures during fetal develop-
ment and childhood indicates that biologic
markers can provide dosimeters of environ-
mental exposures and tools for evaluating
interindividual variability in response and
age-related susceptibilities. However, incor-
poration of biologic markers into develop-
mental epidemiology has been limited to
only a few markers and to studies of small
sample size. Validation of markers offering
the greatest promise for developmental epi-

demiology is needed. Criteria for validation
should include low-dose sensitivity and
reproducibility of the assay as well as expo-
sure specificity. Biologic markers can inte-
grate exposure via multiple routes
(inhalation, oral, dermal), multiple sources
(ambient and indoor air, workplace air, cig-
arette smoke, diet, drinking water), and
across all patterns of exposure (past, cur-
rent, intermittent, continuous). This is an
advantage, since risks can be assumed to be
additive. However, it is also a disadvantage
in that many environmental chemicals are
ubiquitous in the environment and it is
difficult to distinguish the effect of any par-
ticular exposure source. Markers vary
greatly with respect to source specificity; for
example, 4-aminobiphenyl-hemoglobin (4-
ABP-HDb) has far fewer noncigarette-smok-
ing-related background sources than
ethylene oxide (EtO), PAHs, and N-nitroso
compounds. The extent to which the
marker will document specific time periods

of exposure will depend upon the pharma-
cokinetics of the chemical and the persis-
tence of the marker in the biologic sample
assayed (itself a function of the turnover
rate of the sample and repair processes).
The feasibility of the marker should be
determined. That is, how acceptable is it to
the public, how cost-effective, and how sta-
ble in stored samples? Finally, because of
their ability to provide information on
gene—environment interactions within indi-
viduals, the potential for misuse of biomon-
itoring data, leading to discrimination
related to employment or insurance, cannot
be ignored (20). This review summarizes
early and recent validation research.
However, before applying methods in
larger scale developmental epidemiologic
studies, it is imperative that guidelines be
developed to protect confidentiality and to
guard against misuse of data.

10.
11.
12.
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