Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1993 Dec;101(Suppl 5):35–44. doi: 10.1289/ehp.93101s535

DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis.

B N Ames 1, M K Shigenaga 1, L S Gold 1
PMCID: PMC1519422  PMID: 8013423

Abstract

DNA lesions that escape repair have a certain probability of giving rise to mutations when the cell divides. Endogenous DNA damage is high: 10(6) oxidative lesions are present per rat cell. An exogenous mutagen produces an increment in lesions over the background rate of endogenous lesions. The effectiveness of a particular lesion depends on whether it is excised by a DNA repair system and the probability that it gives rise to a mutation when the cell divides. When the cell divides, an unrepaired DNA lesion has a certain probability of giving rise to a mutation. Thus, an important factor in the mutagenic effect of an exogenous agent whether it is genotoxic or non-genotoxic, is the increment it causes over the background cell division rate (mitogenesis) in cells that appear to matter most in cancer, the stem cells, which are not on their way to being discarded. Increasing their cell division rate increases mutation and therefore cancer. There is little cancer from nondividing cells. Endogenous cell division rates can be influenced by hormone levels, decreased by calorie restriction, or increased by high doses of chemicals. If both the rate of DNA lesions and cell division are increased, then there will be a multiplicative effect on mutagenesis (and carcinogenesis), for example, by high doses of a mutagen that also increases mitogenesis through cell killing. The defense system against reactive electrophilic mutagens, such as the glutathione transferases, are also almost all inducible and buffer cells against increments in active forms of chemicals that can cause DNA lesions. A variety of DNA repair defense systems, almost all inducible, buffer the cell against any increment in DNA lesions. Therefore, the effect of a particular chemical insult depends on the level of each defense, which in turn depends on the past history of exposure. Exogenous agents can influence the induction and effectiveness of these defenses. Defenses can be partially disabled by lack of particular micronutrients in the diet (e.g., antioxidants).

Full text

PDF
35

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allegretta M., Nicklas J. A., Sriram S., Albertini R. J. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science. 1990 Feb 9;247(4943):718–721. doi: 10.1126/science.1689076. [DOI] [PubMed] [Google Scholar]
  2. Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
  3. Ames B. N. Endogenous oxidative DNA damage, aging, and cancer. Free Radic Res Commun. 1989;7(3-6):121–128. doi: 10.3109/10715768909087933. [DOI] [PubMed] [Google Scholar]
  4. Ames B. N., Gold L. S. Chemical carcinogenesis: too many rodent carcinogens. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7772–7776. doi: 10.1073/pnas.87.19.7772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ames B. N., Gold L. S. Endogenous mutagens and the causes of aging and cancer. Mutat Res. 1991 Sep-Oct;250(1-2):3–16. doi: 10.1016/0027-5107(91)90157-j. [DOI] [PubMed] [Google Scholar]
  6. Ames B. N., Gold L. S. Too many rodent carcinogens: mitogenesis increases mutagenesis. Science. 1990 Aug 31;249(4972):970–971. doi: 10.1126/science.2136249. [DOI] [PubMed] [Google Scholar]
  7. Ames B. N., Magaw R., Gold L. S. Ranking possible carcinogenic hazards. Science. 1987 Apr 17;236(4799):271–280. doi: 10.1126/science.3563506. [DOI] [PubMed] [Google Scholar]
  8. Ames B. N., Profet M., Gold L. S. Dietary pesticides (99.99% all natural). Proc Natl Acad Sci U S A. 1990 Oct;87(19):7777–7781. doi: 10.1073/pnas.87.19.7777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ames B. N., Profet M., Gold L. S. Nature's chemicals and synthetic chemicals: comparative toxicology. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7782–7786. doi: 10.1073/pnas.87.19.7782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Amstad P., Peskin A., Shah G., Mirault M. E., Moret R., Zbinden I., Cerutti P. The balance between Cu,Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress. Biochemistry. 1991 Sep 24;30(38):9305–9313. doi: 10.1021/bi00102a024. [DOI] [PubMed] [Google Scholar]
  11. Armario A., Montero J. L., Jolin T. Chronic food restriction and the circadian rhythms of pituitary-adrenal hormones, growth hormone and thyroid-stimulating hormone. Ann Nutr Metab. 1987;31(2):81–87. doi: 10.1159/000177254. [DOI] [PubMed] [Google Scholar]
  12. Ashby J., Tennant R. W. Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S. NCI/NTP. Mutat Res. 1988 Jan;204(1):17–115. doi: 10.1016/0165-1218(88)90114-0. [DOI] [PubMed] [Google Scholar]
  13. Bartoli G. M., Bartoli S., Galeotti T., Bertoli E. Superoxide dismutase content and microsomal lipid composition of tumours with different growth rates. Biochim Biophys Acta. 1980 Nov 7;620(2):205–211. doi: 10.1016/0005-2760(80)90202-7. [DOI] [PubMed] [Google Scholar]
  14. Bernstein L., Gold L. S., Ames B. N., Pike M. C., Hoel D. G. Some tautologous aspects of the comparison of carcinogenic potency in rats and mice. Fundam Appl Toxicol. 1985 Feb;5(1):79–86. doi: 10.1016/0272-0590(85)90051-x. [DOI] [PubMed] [Google Scholar]
  15. Bhave M. R., Wilson M. J., Poirier L. A. c-H-ras and c-K-ras gene hypomethylation in the livers and hepatomas of rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis. 1988 Mar;9(3):343–348. doi: 10.1093/carcin/9.3.343. [DOI] [PubMed] [Google Scholar]
  16. Block G. Epidemiologic evidence regarding vitamin C and cancer. Am J Clin Nutr. 1991 Dec;54(6 Suppl):1310S–1314S. doi: 10.1093/ajcn/54.6.1310s. [DOI] [PubMed] [Google Scholar]
  17. Block G., Patterson B., Subar A. Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer. 1992;18(1):1–29. doi: 10.1080/01635589209514201. [DOI] [PubMed] [Google Scholar]
  18. Borunov E. V., Smirnova L. P., Shchepetkin I. A., Lankin V. Z., Vasil'ev N. V. Vysokaia aktivnost' antioksidantnykh fermentov v opukholi kak faktor "izbeganiia kontrolia" immunnoi sistemy. Biull Eksp Biol Med. 1989 Apr;107(4):467–469. [PubMed] [Google Scholar]
  19. Cannon S. V., Cummings A., Teebor G. W. 5-Hydroxymethylcytosine DNA glycosylase activity in mammalian tissue. Biochem Biophys Res Commun. 1988 Mar 30;151(3):1173–1179. doi: 10.1016/s0006-291x(88)80489-3. [DOI] [PubMed] [Google Scholar]
  20. Cavenee W. K., Dryja T. P., Phillips R. A., Benedict W. F., Godbout R., Gallie B. L., Murphree A. L., Strong L. C., White R. L. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. 1983 Oct 27-Nov 2Nature. 305(5937):779–784. doi: 10.1038/305779a0. [DOI] [PubMed] [Google Scholar]
  21. Cavenee W. K., Hansen M. F., Nordenskjold M., Kock E., Maumenee I., Squire J. A., Phillips R. A., Gallie B. L. Genetic origin of mutations predisposing to retinoblastoma. Science. 1985 Apr 26;228(4698):501–503. doi: 10.1126/science.3983638. [DOI] [PubMed] [Google Scholar]
  22. Cerutti P. A. Oxidant stress and carcinogenesis. Eur J Clin Invest. 1991 Feb;21(1):1–5. doi: 10.1111/j.1365-2362.1991.tb01350.x. [DOI] [PubMed] [Google Scholar]
  23. Cerutti P. A., Trump B. F. Inflammation and oxidative stress in carcinogenesis. Cancer Cells. 1991 Jan;3(1):1–7. [PubMed] [Google Scholar]
  24. Chan T. M., Chen E., Tatoyan A., Shargill N. S., Pleta M., Hochstein P. Stimulation of tyrosine-specific protein phosphorylation in the rat liver plasma membrane by oxygen radicals. Biochem Biophys Res Commun. 1986 Sep 14;139(2):439–445. doi: 10.1016/s0006-291x(86)80010-9. [DOI] [PubMed] [Google Scholar]
  25. Charnley G., Tannenbaum S. R. Flow cytometric analysis of the effect of sodium chloride on gastric cancer risk in the rat. Cancer Res. 1985 Nov;45(11 Pt 2):5608–5616. [PubMed] [Google Scholar]
  26. Cheeseman K. H., Emery S., Maddix S. P., Slater T. F., Burton G. W., Ingold K. U. Studies on lipid peroxidation in normal and tumour tissues. The Yoshida rat liver tumour. Biochem J. 1988 Feb 15;250(1):247–252. doi: 10.1042/bj2500247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Coggon D., Barker D. J., Cole R. B., Nelson M. Stomach cancer and food storage. J Natl Cancer Inst. 1989 Aug 2;81(15):1178–1182. doi: 10.1093/jnci/81.15.1178. [DOI] [PubMed] [Google Scholar]
  28. Cohen S. M., Ellwein L. B. Cell proliferation in carcinogenesis. Science. 1990 Aug 31;249(4972):1007–1011. doi: 10.1126/science.2204108. [DOI] [PubMed] [Google Scholar]
  29. Cohen S. M., Ellwein L. B. Genetic errors, cell proliferation, and carcinogenesis. Cancer Res. 1991 Dec 15;51(24):6493–6505. [PubMed] [Google Scholar]
  30. Craven P. A., Pfanstiel J., DeRubertis F. R. Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile acids. J Clin Invest. 1987 Feb;79(2):532–541. doi: 10.1172/JCI112844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Cunningham M. L., Foley J., Maronpot R. R., Matthews H. B. Correlation of hepatocellular proliferation with hepatocarcinogenicity induced by the mutagenic noncarcinogen:carcinogen pair--2,6- and 2,4-diaminotoluene. Toxicol Appl Pharmacol. 1991 Mar 1;107(3):562–567. doi: 10.1016/0041-008x(91)90319-a. [DOI] [PubMed] [Google Scholar]
  32. Cunningham M. L., Matthews H. B. Relationship of hepatocarcinogenicity and hepatocellular proliferation induced by mutagenic noncarcinogens vs carcinogens. II. 1- vs 2-nitropropane. Toxicol Appl Pharmacol. 1991 Sep 15;110(3):505–513. doi: 10.1016/0041-008x(91)90050-o. [DOI] [PubMed] [Google Scholar]
  33. Degan P., Shigenaga M. K., Park E. M., Alperin P. E., Ames B. N. Immunoaffinity isolation of urinary 8-hydroxy-2'-deoxyguanosine and 8-hydroxyguanine and quantitation of 8-hydroxy-2'-deoxyguanosine in DNA by polyclonal antibodies. Carcinogenesis. 1991 May;12(5):865–871. doi: 10.1093/carcin/12.5.865. [DOI] [PubMed] [Google Scholar]
  34. Demopoulos H. B., Pietronigro D. D., Flamm E. S., Seligman M. L. The possible role of free radical reactions in carcinogenesis. J Environ Pathol Toxicol. 1980 Mar;3(4 Spec No):273–303. [PubMed] [Google Scholar]
  35. Doll R., Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981 Jun;66(6):1191–1308. [PubMed] [Google Scholar]
  36. Dunsford H. A., Sell S., Chisari F. V. Hepatocarcinogenesis due to chronic liver cell injury in hepatitis B virus transgenic mice. Cancer Res. 1990 Jun 1;50(11):3400–3407. [PubMed] [Google Scholar]
  37. Erisman M. D., Scott J. K., Astrin S. M. Evidence that the familial adenomatous polyposis gene is involved in a subset of colon cancers with a complementable defect in c-myc regulation. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4264–4268. doi: 10.1073/pnas.86.11.4264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Fahrig R. The effect of dose and time on the induction of genetic alterations in Saccharomyces cerevisiae by aminoacridines in the presence and absence of visible light irradiation in comparison with the dose-effect-curves of mutagens with other type of action. Mol Gen Genet. 1976 Mar 22;144(2):131–140. doi: 10.1007/BF02428101. [DOI] [PubMed] [Google Scholar]
  39. Farber E. Cellular biochemistry of the stepwise development of cancer with chemicals: G. H. A. Clowes memorial lecture. Cancer Res. 1984 Dec;44(12 Pt 1):5463–5474. [PubMed] [Google Scholar]
  40. Farber E. Clonal adaptation during carcinogenesis. Biochem Pharmacol. 1990 Jun 15;39(12):1837–1846. doi: 10.1016/0006-2952(90)90599-g. [DOI] [PubMed] [Google Scholar]
  41. Farber E., Parker S., Gruenstein M. The resistance of putative premalignant liver cell populations, hyperplastic nodules, to the acute cytotoxic effects of some hepatocarcinogens. Cancer Res. 1976 Nov;36(11 Pt 1):3879–3887. [PubMed] [Google Scholar]
  42. Fearon E. R., Cho K. R., Nigro J. M., Kern S. E., Simons J. W., Ruppert J. M., Hamilton S. R., Preisinger A. C., Thomas G., Kinzler K. W. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 1990 Jan 5;247(4938):49–56. doi: 10.1126/science.2294591. [DOI] [PubMed] [Google Scholar]
  43. Fraga C. G., Motchnik P. A., Shigenaga M. K., Helbock H. J., Jacob R. A., Ames B. N. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11003–11006. doi: 10.1073/pnas.88.24.11003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Fraga C. G., Shigenaga M. K., Park J. W., Degan P., Ames B. N. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4533–4537. doi: 10.1073/pnas.87.12.4533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Friling R. S., Bergelson S., Daniel V. Two adjacent AP-1-like binding sites form the electrophile-responsive element of the murine glutathione S-transferase Ya subunit gene. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):668–672. doi: 10.1073/pnas.89.2.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Furihata C., Sato Y., Hosaka M., Matsushima T., Furukawa F., Takahashi M. NaCl induced ornithine decarboxylase and DNA synthesis in rat stomach mucosa. Biochem Biophys Res Commun. 1984 Jun 29;121(3):1027–1032. doi: 10.1016/0006-291x(84)90780-0. [DOI] [PubMed] [Google Scholar]
  47. Furihata C., Sudo K., Matsushima T. Calcium chloride inhibits stimulation of replicative DNA synthesis by sodium chloride in the pyloric mucosa of rat stomach. Carcinogenesis. 1989 Nov;10(11):2135–2137. doi: 10.1093/carcin/10.11.2135. [DOI] [PubMed] [Google Scholar]
  48. Galeotti T., Masotti L., Borrello S., Casali E. Oxy-radical metabolism and control of tumour growth. Xenobiotica. 1991 Aug;21(8):1041–1051. doi: 10.3109/00498259109039544. [DOI] [PubMed] [Google Scholar]
  49. Godwin A. K., Testa J. R., Handel L. M., Liu Z., Vanderveer L. A., Tracey P. A., Hamilton T. C. Spontaneous transformation of rat ovarian surface epithelial cells: association with cytogenetic changes and implications of repeated ovulation in the etiology of ovarian cancer. J Natl Cancer Inst. 1992 Apr 15;84(8):592–601. doi: 10.1093/jnci/84.8.592. [DOI] [PubMed] [Google Scholar]
  50. Gold L. S., Bernstein L., Magaw R., Slone T. H. Interspecies extrapolation in carcinogenesis: prediction between rats and mice. Environ Health Perspect. 1989 May;81:211–219. doi: 10.1289/ehp.8981211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Gold L. S., Sawyer C. B., Magaw R., Backman G. M., de Veciana M., Levinson R., Hooper N. K., Havender W. R., Bernstein L., Peto R. A carcinogenic potency database of the standardized results of animal bioassays. Environ Health Perspect. 1984 Dec;58:9–319. doi: 10.1289/ehp.84589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Gold L. S., Slone T. H., Backman G. M., Eisenberg S., Da Costa M., Wong M., Manley N. B., Rohrbach L., Ames B. N. Third chronological supplement to the carcinogenic potency database: standardized results of animal bioassays published through December 1986 and by the National Toxicology Program through June 1987. Environ Health Perspect. 1990 Mar;84:215–286. doi: 10.1289/ehp.9084215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Gold L. S., Slone T. H., Backman G. M., Magaw R., Da Costa M., Lopipero P., Blumenthal M., Ames B. N. Second chronological supplement to the Carcinogenic Potency Database: standardized results of animal bioassays published through December 1984 and by the National Toxicology Program through May 1986. Environ Health Perspect. 1987 Oct;74:237–329. doi: 10.1289/ehp.8774237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Gold L. S., Slone T. H., Stern B. R., Bernstein L. Comparison of target organs of carcinogenicity for mutagenic and non-mutagenic chemicals. Mutat Res. 1993 Mar;286(1):75–100. doi: 10.1016/0027-5107(93)90004-y. [DOI] [PubMed] [Google Scholar]
  55. Gold L. S., Slone T. H., Stern B. R., Manley N. B., Ames B. N. Rodent carcinogens: setting priorities. Science. 1992 Oct 9;258(5080):261–265. doi: 10.1126/science.1411524. [DOI] [PubMed] [Google Scholar]
  56. Gold L. S., de Veciana M., Backman G. M., Magaw R., Lopipero P., Smith M., Blumenthal M., Levinson R., Bernstein L., Ames B. N. Chronological supplement to the Carcinogenic Potency Database: standardized results of animal bioassays published through December 1982. Environ Health Perspect. 1986 Aug;67:161–200. doi: 10.1289/ehp.8667161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Goodman J. I., Ward J. M., Popp J. A., Klaunig J. E., Fox T. R. Mouse liver carcinogenesis: mechanisms and relevance. Fundam Appl Toxicol. 1991 Nov;17(4):651–665. doi: 10.1016/0272-0590(91)90175-4. [DOI] [PubMed] [Google Scholar]
  58. Groden J., Nakamura Y., German J. Molecular evidence that homologous recombination occurs in proliferating human somatic cells. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4315–4319. doi: 10.1073/pnas.87.11.4315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Hansen M. F., Cavenee W. K. Genetics of cancer predisposition. Cancer Res. 1987 Nov 1;47(21):5518–5527. [PubMed] [Google Scholar]
  60. Harman D. The aging process. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Hartman P. E. Mutagens: some possible health impacts beyond carcinogenesis. Environ Mutagen. 1983;5(2):139–152. doi: 10.1002/em.2860050204. [DOI] [PubMed] [Google Scholar]
  62. Hasegawa R., Tiwawech D., Hirose M., Takaba K., Hoshiya T., Shirai T., Ito N. Suppression of diethylnitrosamine-initiated preneoplastic foci development in the rat liver by combined administration of four antioxidants at low doses. Jpn J Cancer Res. 1992 May;83(5):431–437. doi: 10.1111/j.1349-7006.1992.tb01946.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Heller T. D., Holt P. R., Richardson A. Food restriction retards age-related histological changes in rat small intestine. Gastroenterology. 1990 Feb;98(2):387–391. doi: 10.1016/0016-5085(90)90829-p. [DOI] [PubMed] [Google Scholar]
  64. Henderson B. E., Ross R. K., Pike M. C. Toward the primary prevention of cancer. Science. 1991 Nov 22;254(5035):1131–1138. doi: 10.1126/science.1957166. [DOI] [PubMed] [Google Scholar]
  65. Henderson B. E., Ross R., Bernstein L. Estrogens as a cause of human cancer: the Richard and Hinda Rosenthal Foundation award lecture. Cancer Res. 1988 Jan 15;48(2):246–253. [PubMed] [Google Scholar]
  66. Holehan A. M., Merry B. J. Modification of the oestrous cycle hormonal profile by dietary restriction. Mech Ageing Dev. 1985 Oct 14;32(1):63–76. doi: 10.1016/0047-6374(85)90036-3. [DOI] [PubMed] [Google Scholar]
  67. Holliday R. DNA methylation and epigenetic defects in carcinogenesis. Mutat Res. 1987 Dec;181(2):215–217. doi: 10.1016/0027-5107(87)90098-4. [DOI] [PubMed] [Google Scholar]
  68. Holliday R. Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bioessays. 1989 Apr;10(4):125–127. doi: 10.1002/bies.950100408. [DOI] [PubMed] [Google Scholar]
  69. Holliday R. The inheritance of epigenetic defects. Science. 1987 Oct 9;238(4824):163–170. doi: 10.1126/science.3310230. [DOI] [PubMed] [Google Scholar]
  70. Ingram A. J., Grasso P. Evidence for and possible mechanisms of non-genotoxic carcinogenesis in mouse skin. Mutat Res. 1991 Jun;248(2):333–340. doi: 10.1016/0027-5107(91)90066-w. [DOI] [PubMed] [Google Scholar]
  71. Inoue J., Seiki M., Taniguchi T., Tsuru S., Yoshida M. Induction of interleukin 2 receptor gene expression by p40x encoded by human T-cell leukemia virus type 1. EMBO J. 1986 Nov;5(11):2883–2888. doi: 10.1002/j.1460-2075.1986.tb04583.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Irons R. D., Stillman W. S., Colagiovanni D. B., Henry V. A. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3691–3695. doi: 10.1073/pnas.89.9.3691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Jones T. D. A unifying concept for carcinogenic risk assessments: comparison with radiation-induced leukemia in mice and men. Health Phys. 1984 Oct;47(4):533–558. doi: 10.1097/00004032-198410000-00002. [DOI] [PubMed] [Google Scholar]
  74. Jones T. D., Griffin G. D., Walsh P. J. A unifying concept for carcinogenic risk assessments. J Theor Biol. 1983 Nov 7;105(1):35–61. doi: 10.1016/0022-5193(83)90423-x. [DOI] [PubMed] [Google Scholar]
  75. Joossens J. V., Geboers J. Nutrition and gastric cancer. Nutr Cancer. 1981;2(4):250–261. doi: 10.1080/01635588109513691. [DOI] [PubMed] [Google Scholar]
  76. Karube T., Katayama H., Takemoto K., Watanabe S. Induction of squamous metaplasia, dysplasia and carcinoma in situ of the mouse tracheal mucosa by inhalation of sodium chloride mist following subcutaneous injection of 4-nitroquinoline 1-oxide. Jpn J Cancer Res. 1989 Aug;80(8):698–701. doi: 10.1111/j.1349-7006.1989.tb01699.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Kelsey K. T., Memisoglu A., Frenkel D., Liber H. L. Human lymphocytes exposed to low doses of X-rays are less susceptible to radiation-induced mutagenesis. Mutat Res. 1991 Aug;263(4):197–201. doi: 10.1016/0165-7992(91)90001-k. [DOI] [PubMed] [Google Scholar]
  78. Kinzler K. W., Nilbert M. C., Vogelstein B., Bryan T. M., Levy D. B., Smith K. J., Preisinger A. C., Hamilton S. R., Hedge P., Markham A. Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science. 1991 Mar 15;251(4999):1366–1370. doi: 10.1126/science.1848370. [DOI] [PubMed] [Google Scholar]
  79. Koizumi A., Weindruch R., Walford R. L. Influences of dietary restriction and age on liver enzyme activities and lipid peroxidation in mice. J Nutr. 1987 Feb;117(2):361–367. doi: 10.1093/jn/117.2.361. [DOI] [PubMed] [Google Scholar]
  80. Lewis J. G., Adams D. O. Inflammation, oxidative DNA damage, and carcinogenesis. Environ Health Perspect. 1987 Dec;76:19–27. doi: 10.1289/ehp.877619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Lindahl T. DNA repair enzymes. Annu Rev Biochem. 1982;51:61–87. doi: 10.1146/annurev.bi.51.070182.000425. [DOI] [PubMed] [Google Scholar]
  82. Liskay R. M., Stachelek J. L. Evidence for intrachromosomal gene conversion in cultured mouse cells. Cell. 1983 Nov;35(1):157–165. doi: 10.1016/0092-8674(83)90218-0. [DOI] [PubMed] [Google Scholar]
  83. Little J. B., Kennedy A. R., McGandy R. B. Effect of dose rate on the induction of experimental lung cancer in hamsters by alpha radiation. Radiat Res. 1985 Aug;103(2):293–299. [PubMed] [Google Scholar]
  84. Loeb L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 1991 Jun 15;51(12):3075–3079. [PubMed] [Google Scholar]
  85. Lok E., Scott F. W., Mongeau R., Nera E. A., Malcolm S., Clayson D. B. Calorie restriction and cellular proliferation in various tissues of the female Swiss Webster mouse. Cancer Lett. 1990 May 15;51(1):67–73. doi: 10.1016/0304-3835(90)90232-m. [DOI] [PubMed] [Google Scholar]
  86. Lu J. B., Qin Y. M. Correlation between high salt intake and mortality rates for oesophageal and gastric cancers in Henan Province, China. Int J Epidemiol. 1987 Jun;16(2):171–176. doi: 10.1093/ije/16.2.171. [DOI] [PubMed] [Google Scholar]
  87. Luethy J. D., Holbrook N. J. Activation of the gadd153 promoter by genotoxic agents: a rapid and specific response to DNA damage. Cancer Res. 1992 Jan 1;52(1):5–10. [PubMed] [Google Scholar]
  88. MacGregor J. T., Schlegel R., Wehr C. M., Alperin P., Ames B. N. Cytogenetic damage induced by folate deficiency in mice is enhanced by caffeine. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9962–9965. doi: 10.1073/pnas.87.24.9962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Madsen C. Squamous-cell carcinoma and oral, pharyngeal and nasal lesions caused by foreign bodies in feed. Cases from a long-term study in rats. Lab Anim. 1989 Jul;23(3):241–247. doi: 10.1258/002367789780810572. [DOI] [PubMed] [Google Scholar]
  90. Malins D. C., Haimanot R. Major alterations in the nucleotide structure of DNA in cancer of the female breast. Cancer Res. 1991 Oct 1;51(19):5430–5432. [PubMed] [Google Scholar]
  91. McCormick M. L., Oberley T. D., Elwell J. H., Oberley L. W., Sun Y., Li J. J. Superoxide dismutase and catalase levels during estrogen-induced renal tumorigenesis, in renal tumors and their autonomous variants in the Syrian hamster. Carcinogenesis. 1991 Jun;12(6):977–983. doi: 10.1093/carcin/12.6.977. [DOI] [PubMed] [Google Scholar]
  92. Mirsalis J. C., Steinmetz K. L. The role of hyperplasia in liver carcinogenesis. Prog Clin Biol Res. 1990;331:149–161. [PubMed] [Google Scholar]
  93. Mirsalis J. C., Tyson C. K., Steinmetz K. L., Loh E. K., Hamilton C. M., Bakke J. P., Spalding J. W. Measurement of unscheduled DNA synthesis and S-phase synthesis in rodent hepatocytes following in vivo treatment: testing of 24 compounds. Environ Mol Mutagen. 1989;14(3):155–164. doi: 10.1002/em.2850140305. [DOI] [PubMed] [Google Scholar]
  94. Nakamura K. D., Duffy P. H., Lu M. H., Turturro A., Hart R. W. The effect of dietary restriction on myc protooncogene expression in mice: a preliminary study. Mech Ageing Dev. 1989 May;48(2):199–205. doi: 10.1016/0047-6374(89)90051-1. [DOI] [PubMed] [Google Scholar]
  95. Nicklas J. A., Hunter T. C., O'Neill J. P., Albertini R. J. Molecular analyses of in vivo hprt mutations in human T-lymphocytes. III. Longitudinal study of hprt gene structural alterations and T-cell clonal origins. Mutat Res. 1989 Dec;215(2):147–160. doi: 10.1016/0027-5107(89)90178-4. [DOI] [PubMed] [Google Scholar]
  96. Nicklas J. A., O'Neill J. P., Sullivan L. M., Hunter T. C., Allegretta M., Chastenay B. F., Libbus B. L., Albertini R. J. Molecular analyses of in vivo hypoxanthine-guanine phosphoribosyltransferase mutations in human T-lymphocytes: II. Demonstration of a clonal amplification of hprt mutant T-lymphocytes in vivo. Environ Mol Mutagen. 1988;12(3):271–284. doi: 10.1002/em.2860120302. [DOI] [PubMed] [Google Scholar]
  97. Ootsuyama A., Tanooka H. Threshold-like dose of local beta irradiation repeated throughout the life span of mice for induction of skin and bone tumors. Radiat Res. 1991 Jan;125(1):98–101. [PubMed] [Google Scholar]
  98. Orr-Weaver T. L., Spradling A. C. Drosophila chorion gene amplification requires an upstream region regulating s18 transcription. Mol Cell Biol. 1986 Dec;6(12):4624–4633. doi: 10.1128/mcb.6.12.4624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Pariza M. W., Boutwell R. K. Historical perspective: calories and energy expenditure in carcinogenesis. Am J Clin Nutr. 1987 Jan;45(1 Suppl):151–156. doi: 10.1093/ajcn/45.1.151. [DOI] [PubMed] [Google Scholar]
  100. Park E. M., Shigenaga M. K., Degan P., Korn T. S., Kitzler J. W., Wehr C. M., Kolachana P., Ames B. N. Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3375–3379. doi: 10.1073/pnas.89.8.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Parsonnet J., Friedman G. D., Vandersteen D. P., Chang Y., Vogelman J. H., Orentreich N., Sibley R. K. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 1991 Oct 17;325(16):1127–1131. doi: 10.1056/NEJM199110173251603. [DOI] [PubMed] [Google Scholar]
  102. Preston-Martin S., Pike M. C., Ross R. K., Jones P. A., Henderson B. E. Increased cell division as a cause of human cancer. Cancer Res. 1990 Dec 1;50(23):7415–7421. [PubMed] [Google Scholar]
  103. Ramel C. Short-term testing--are we looking at wrong endpoints? Mutat Res. 1988 May-Aug;205(1-4):13–24. doi: 10.1016/0165-1218(88)90004-3. [DOI] [PubMed] [Google Scholar]
  104. Richter C., Park J. W., Ames B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Roe F. J., Lee P. N., Conybeare G., Tobin G., Kelly D., Prentice D., Matter B. Risks of premature death and cancer predicted by body weight in early adult life. Hum Exp Toxicol. 1991 Jul;10(4):285–288. doi: 10.1177/096032719101000408. [DOI] [PubMed] [Google Scholar]
  106. Roe F. J. Non-genotoxic carcinogenesis: implications for testing and extrapolation to man. Mutagenesis. 1989 Nov;4(6):407–411. doi: 10.1093/mutage/4.6.407. [DOI] [PubMed] [Google Scholar]
  107. Sasaki M., Okamoto M., Sato C., Sugio K., Soejima J., Iwama T., Ikeuchi T., Tonomura A., Miyaki M., Sasazuki T. Loss of constitutional heterozygosity in colorectal tumors from patients with familial polyposis coli and those with nonpolyposis colorectal carcinoma. Cancer Res. 1989 Aug 15;49(16):4402–4406. [PubMed] [Google Scholar]
  108. Schectman G., Byrd J. C., Hoffmann R. Ascorbic acid requirements for smokers: analysis of a population survey. Am J Clin Nutr. 1991 Jun;53(6):1466–1470. doi: 10.1093/ajcn/53.6.1466. [DOI] [PubMed] [Google Scholar]
  109. Schiestl R. H., Gietz R. D., Mehta R. D., Hastings P. J. Carcinogens induce intrachromosomal recombination in yeast. Carcinogenesis. 1989 Aug;10(8):1445–1455. doi: 10.1093/carcin/10.8.1445. [DOI] [PubMed] [Google Scholar]
  110. Shigenaga M. K., Gimeno C. J., Ames B. N. Urinary 8-hydroxy-2'-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9697–9701. doi: 10.1073/pnas.86.24.9697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Sieweke M. H., Stoker A. W., Bissell M. J. Evaluation of the cocarcinogenic effect of wounding in Rous sarcoma virus tumorigenesis. Cancer Res. 1989 Nov 15;49(22):6419–6424. [PubMed] [Google Scholar]
  112. St Clair D. K., Oberley L. W. Manganese superoxide dismutase expression in human cancer cells: a possible role of mRNA processing. Free Radic Res Commun. 1991;12-13 Pt 2:771–778. doi: 10.3109/10715769109145858. [DOI] [PubMed] [Google Scholar]
  113. Strauss B. S. The origin of point mutations in human tumor cells. Cancer Res. 1992 Jan 15;52(2):249–253. [PubMed] [Google Scholar]
  114. Sylvester P. W., Aylsworth C. F., Van Vugt D. A., Meites J. Influence of underfeeding during the "critical period" or thereafter on carcinogen-induced mammary tumors in rats. Cancer Res. 1982 Dec;42(12):4943–4947. [PubMed] [Google Scholar]
  115. Szatrowski T. P., Nathan C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991 Feb 1;51(3):794–798. [PubMed] [Google Scholar]
  116. Talalay P. Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Adv Enzyme Regul. 1989;28:237–250. doi: 10.1016/0065-2571(89)90074-5. [DOI] [PubMed] [Google Scholar]
  117. Templeton A. Pre-existing, non-malignant disorders associated with increased cancer risk. J Environ Pathol Toxicol. 1980 Mar;3(4 Spec No):387–397. [PubMed] [Google Scholar]
  118. Tong C., Fazio M., Williams G. M. Cell cycle-specific mutagenesis at the hypoxanthine phosphoribosyltransferase locus in adult rat liver epithelial cells. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7377–7379. doi: 10.1073/pnas.77.12.7377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Turner D. R., Grist S. A., Janatipour M., Morley A. A. Mutations in human lymphocytes commonly involve gene duplication and resemble those seen in cancer cels. Proc Natl Acad Sci U S A. 1988 May;85(9):3189–3192. doi: 10.1073/pnas.85.9.3189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Tuyns A. J. Salt and gastrointestinal cancer. Nutr Cancer. 1988;11(4):229–232. doi: 10.1080/01635588809513992. [DOI] [PubMed] [Google Scholar]
  121. Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M., Nakamura Y., White R., Smits A. M., Bos J. L. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988 Sep 1;319(9):525–532. doi: 10.1056/NEJM198809013190901. [DOI] [PubMed] [Google Scholar]
  122. Vogelstein B., Fearon E. R., Kern S. E., Hamilton S. R., Preisinger A. C., Nakamura Y., White R. Allelotype of colorectal carcinomas. Science. 1989 Apr 14;244(4901):207–211. doi: 10.1126/science.2565047. [DOI] [PubMed] [Google Scholar]
  123. Vorce R. L., Goodman J. I. Altered methylation of ras oncogenes in benzidine-induced B6C3F1 mouse liver tumors. Toxicol Appl Pharmacol. 1989 Sep 15;100(3):398–410. doi: 10.1016/0041-008x(89)90288-3. [DOI] [PubMed] [Google Scholar]
  124. Vorce R. L., Goodman J. I. Hypomethylation of ras oncogenes in chemically induced and spontaneous B6C3F1 mouse liver tumors. J Toxicol Environ Health. 1991 Nov;34(3):367–384. doi: 10.1080/15287399109531574. [DOI] [PubMed] [Google Scholar]
  125. Wada N., Marsman D. S., Popp J. A. Dose-related effects of the hepatocarcinogen, Wy-14,643, on peroxisomes and cell replication. Fundam Appl Toxicol. 1992 Jan;18(1):149–154. doi: 10.1016/0272-0590(92)90208-y. [DOI] [PubMed] [Google Scholar]
  126. Weinberg R. A. Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res. 1989 Jul 15;49(14):3713–3721. [PubMed] [Google Scholar]
  127. Weindruch R. H., Cheung M. K., Verity M. A., Walford R. L. Modification of mitochondrial respiration by aging and dietary restriction. Mech Ageing Dev. 1980 Apr;12(4):375–392. doi: 10.1016/0047-6374(80)90070-6. [DOI] [PubMed] [Google Scholar]
  128. Weitzman S. A., Gordon L. I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood. 1990 Aug 15;76(4):655–663. [PubMed] [Google Scholar]
  129. Weraarchakul N., Strong R., Wood W. G., Richardson A. The effect of aging and dietary restriction on DNA repair. Exp Cell Res. 1989 Mar;181(1):197–204. doi: 10.1016/0014-4827(89)90193-6. [DOI] [PubMed] [Google Scholar]
  130. Wilson V. L., Smith R. A., Ma S., Cutler R. G. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem. 1987 Jul 25;262(21):9948–9951. [PubMed] [Google Scholar]
  131. Wotherspoon A. C., Ortiz-Hidalgo C., Falzon M. R., Isaacson P. G. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991 Nov 9;338(8776):1175–1176. doi: 10.1016/0140-6736(91)92035-z. [DOI] [PubMed] [Google Scholar]
  132. Wu T. C., Tong M. J., Hwang B., Lee S. D., Hu M. M. Primary hepatocellular carcinoma and hepatitis B infection during childhood. Hepatology. 1987 Jan-Feb;7(1):46–48. doi: 10.1002/hep.1840070111. [DOI] [PubMed] [Google Scholar]
  133. Yamasaki H., Enomoto K., Fitzgerald D. J., Mesnil M., Katoh F., Hollstein M. Role of intercellular communication in the control of critical gene expression during multistage carcinogenesis. IARC Sci Publ. 1988;(92):57–75. [PubMed] [Google Scholar]
  134. Yeh F. S., Mo C. C., Luo S., Henderson B. E., Tong M. J., Yu M. C. A serological case-control study of primary hepatocellular carcinoma in Guangxi, China. Cancer Res. 1985 Feb;45(2):872–873. [PubMed] [Google Scholar]
  135. de Feijter A. W., Trosko J. E., Krizman D. B., Lebovitz R. M., Lieberman M. W. Correlation of increased levels of Ha-ras T24 protein with extent of loss of gap junction function in rat liver epithelial cells. Mol Carcinog. 1992;5(3):205–212. doi: 10.1002/mc.2940050307. [DOI] [PubMed] [Google Scholar]
  136. de Vries E. G., Meijer C., Timmer-Bosscha H., Berendsen H. H., de Leij L., Scheper R. J., Mulder N. H. Resistance mechanisms in three human small cell lung cancer cell lines established from one patient during clinical follow-up. Cancer Res. 1989 Aug 1;49(15):4175–4178. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES