Transformation of BALB/c-3T3 Cells: V. Transformation Responses of 168 Chemicals Compared with Mutagenicity in Salmonella and Carcinogenicity in Rodent Bioassays

by Edwin J. Matthews,¹ Judson W. Spalding,² and Raymond W. Tennant²

This report describes the activities of 168 chemicals tested in a standard transformation assay using A-31-1-13 BALB/c-3T3 cells. The data set includes 84 carcinogens, 77 noncarcinogens, and 7 research chemicals. Carcinogens included 49 mutagens and 35 nonmutagens; noncarcinogens included 24 mutagens and 53 nonmutagens. The transformation assay did not use an exogenous activation system, thus, all chemical responses depended on the inherent target cell metabolic capacity where metabolic activation was required. The upper dose limit was 100 milli-osmolar because the assay could not discriminate active and inactive chemicals tested above this concentration. Certain physicochemical properties resulted in technical problems that affected chemical biological activity. For example, chemicals that reacted with plastic were usually nonmutagenic carcinogens. Similarly, chemicals that were insoluble in medium, or bound metals, were usually nonmutagenic and nontransforming.

Multifactorial data analyses revealed that the transformation assay discriminated between nonmutagenic carcinogens and noncarcinogens; it detected 64% of the carcinogens and only 26% of the noncarcinogens. In contrast, the transformation assay detected most mutagenic chemicals, including 94% of the mutagenic carcinogens and 70% of the mutagenic noncarcinogens. Thus, transformation or Salmonella typuimurium mutagenicity assays could not discriminate mutagenic carcinogens from mutagenic noncarcinogens. Data analyses also revealed that mutagenic chemicals were more cytotoxic than nonmutagenic chemicals; 88% of the mutagens had an $LD_{50} < 5$ mM, whereas half of the nonmutagens had an $LD_{50} > 5$ mM. Binary data analyses of the same data set revealed that the transformation assay and rodent bioassay had a concordance of 71%, a sensitivity for carcinogens of 80.0%, and a specificity for detecting noncarcinogens of 60%. In contrast, Salmonella mutagenicity assays and rodent bioassays had a concordance of 63%, a sensitivity of 58%, and a specificity of 69%. The transformation assay complemented the Salmonella mutagenesis assay in the identification of nonmutagenic carcinogens; thus, the two assays had a combined 83% sensitivity for all carcinogens and a 75% specificity for nonmutagenic noncarcinogens.

Introduction

Recent investigations supported by the National Toxicology Program (NTP) have revealed that many chemical carcinogens were not detected in Salmonella typhimurium mutagenesis assays (1–4). These carcinogens have been operationally classified as either nongenotoxic or nonmutagenic carcinogens, based on their activity in the Salmonella assay (1–4). While some of the nonmutagenic carcinogens induced chromosomal aberrations (ABS) and sister chromatid exchanges (SCE) in Chinese hamster ovary cells (CHO), or TK^{+/-} mutations in mouse lymphoma (ML) L5178Y cells, the chemicals were not consistently active in all three assays (4). Furthermore, the three genotoxicity assays all detected as many nonmutagenic noncarcinogens as nonmutagenic carcinogens (4). Thus, there is a continuing need to develop a short term, *in vitro* assay with which to selectively characterize nonmutagenic carcinogens.

¹Center for Food Safety and Applied Nutrition, Food and Drug Administration, HFS-226, Room 1510F, 200 C Street, S.W., Washington, DC 20204.

²National Institute of Environmental Health Sciences, P. O. Box 12233, Research Triangle Park, NC 27709.

Address reprint requests to R. W. Tennant, P.O. Box 12233, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.

The National Institute of Environmental Health Sciences (NIEHS) has supported research programs using different cell transformation assay systems because such assays demonstrate phenotypes that respond to carcinogen treatments and mimic certain events in the multistep process of chemical carcinogenesis in vivo (5-8). The BALB/c-3T3 transformation assay was one of the assays evaluated because chemical-induced morphologically transformed cells are easily recognized and induced at relatively high frequencies in this assay (7,9–12). Furthermore, normal BALB/c-3T3 cells have been demonstrated to be biologically different from chemical-induced transformed cells isolated from a type III focus. Whereas normal BALB/c-3T3 cells were nonmalignant and grow at low frequencies in soft agar, transformed cells readily grew in soft agar and were tumorigenic in vivo (7,11,13).

This report summarizes the results we obtained in testing 168 chemicals in a standard BALB/c-3T3 cell transformation assay protocol. The protocol was developed in this laboratory (10,14), and it differed substantially from the method first described by Kakunaga (7) and that currently recommended by government agencies (6,15). Our method modified the standard assay design to enhance the sensitivity for detection of chemical-induced transformation (14,16). The improved sensitivity was achieved without using an exogenous activation system; thus, all chemical responses were dependent on the inherent metabolic capability of the BALB/c-3T3 cells. Each chemical was tested in two or more experiments, and a total of 110 experiments were conducted over a 2.5-year period. The majority of the 168 test chemicals were selected from the NTP database of 301 chemicals tested in rodent bioassay (3); thus, the chemical structures and biological activities of most of these chemicals in several assay systems was readily available for comparative analyses (1-4).

The 168 test chemicals in this data set included comparable numbers of chemicals with three different biological activities (carcinogenicity, cytotoxicity, and mutagenicity). For example, the data set contained roughly equal numbers of carcinogens and noncarcinogens, as well as mutagenic and nonmutagenic chemicals. Furthermore, this data set also included many examples of nonmutagenic carcinogens as well as mutagenic noncarcinogens. Currently both groups of chemicals reduce our ability to predict carcinogenicity in rodents using *in vitro* tests for genotoxicity. Finally, this set contained many examples of cytotoxic and noncytotoxic chemicals that differed in their carcinogenic and mutagenic activities. The only chemicals tested in the assay that were omitted from this paper were 24 chemicals with unknown carcinogenicity, which were reported separately (14), 10 polycyclic aromatic hydrocarbons (unpublished data), and 21 test chemicals with a unique technical problem. The 21 chemicals rapidly reacted with plastic culture vessels at treatment dose concentrations that were tested for transforming activity and will have to be evaluated separately in a chemicalresistant culture vessel. Taken together, none of the test chemical responses detected during this investigation were either selectively, or arbitrarily, omitted from this report.

This study included a major effort to determine the appropriate upper dose limit for the BALB/c-3T3 cell transformation assay and to investigate the relationship of chemical cytotoxicity to transformation, mutagenicity, and carcinogenicity. Currently most in vitro genotoxicity assays using cultured mammalian cells employ an arbitrary upper dose limit of 5-10 mg/mL. This decision creates two problems. Because test chemicals have widely different molecular weights, the 5-10 mg/mL limit represents a high physiological treatment dose for some chemicals and a relatively lower dose for other chemicals. We avoided this problem by analyzing chemical activities in terms of treatment doses expressed in millimolar (mM) concentrations. In addition, the use of an arbitrary dose limit inhibits one from determining the actual upper dose limit. For the purpose of this investigation, the actual upper dose limit of an assay was defined as the dose at which the assay could not discriminate active and inactive test chemicals. This upper dose limit can only be determined when all chemicals are tested at comparable ranges of cytotoxic responses. This report will provide evidence that the actual upper dose limit for noncytotoxic test chemicals was equivalent to a treatment dose of 100 milliosmolar (mOsM).

The statistical methods used in this report to evaluate the activities of chemicals in one or more experiments, as well as those used to weight and rank-order chemical transformation responses, have been described previously (17-18). These methods were developed because transformation experiments had different statistical sensitivities (17) and different detection sensitivities for chemicalinduced transformation (18). The statistical weighting procedures used mean and rank *t*-statistics (18), and these methods solved three data analysis problems. First, statistically weighted chemical responses provided an unbiased method for comparing responses in two independent experiments and could be used to determine whether chemical activities detected in two consecutive experiments were reproducible. Second, the statistical weighting procedure provided an easy and unbiased method for combining the data for a chemical tested in two or more trials. Third, rank-ordered and statistically weighted chemical responses provide a very sensitive means of comparing biological activities of small sets of chemicals.

This report does not present a single table with all of the test chemicals and their transformation responses. A binary presentation of positive and negative test chemical responses was too simplistic and masked the multifactorial activities of chemicals in this database. Thus, binary procedures were only used to demonstrate that the data set had a comparable distribution of chemicals to that of other NTP data sets. In contrast, multifactorial procedures were used to compare the activities of chemicals that shared selected biological activities. Multifactorial comparisons of groups of chemicals were examined for many different correlations between biological properties before they were presented in the format of the tables contained herein.

Materials and Methods

Cell Culture

The investigations in this report used the A31-1-13 clone of BALB/c-3T3 cells (19,20). The materials and methods used to culture the cells have been previously reported in detail (10) and are summarized in part I of these investigations (17).

Standard Clonal Survival Assay

The standard clonal survival assay was used to a) estimate the cytotoxic activity of a test chemical, b) select treatment doses for the preliminary co-culture clonal survival assay, c) assess the reproducibility of the chemicalinduced cytotoxic responses, and d) determine the relative shift in test chemical cytotoxic responses between highand low-density cell cultures. The standard clonal survival assay using low-density cultures of BALB/c-3T3 cells was conducted according to our modification (10,14) of the method described by Kakunaga (7). Briefly, 200 wild type (WT) cells were seeded in either 60-mm culture dishes (or 25-cm² culture flasks), and chemical treatment doses were applied to triplicate cultures for 48 hr beginning 2 days after seeding. After a total culture period of 8 days, the vessels were washed, fixed in methanol, stained with Giemsa, and colonies of cells were hand tabulated according to the procedure described in part IV of these investigations (14).

Co-culture Clonal Survival Assay

The co-culture clonal survival assay was used to a) select chemical treatment doses for transformation assays, b) assess the reproducibility of chemical-induced cytotoxic responses, and c) verify that the test chemical and positive control treatment doses were cytotoxic in the transformation assay. The procedure used for the co-culture clonal survival assay has been previously reported in detail (11,13) and is summarized in part III of this series (21).

Transformation Assay

Chemical-induced transformation of BALB/c-3T3 cells was evaluated in a standard transformation assay protocol that has been reported in detail (10) and is summarized in part IV of this series (14). Briefly, each transformation assay contained three components: a standard clonal survival assay (10,14), a co-culture clonal survival assays (21), and a transformation assay (10,14). In each experiment, chemial-induced transformation was detected in 18-20 vessels/dose seeded with 3.2×10^4 cells/vessel. Chemical doses were applied to cell cultures for 48 hr, days 2-4, using standard procedures (14). A total of three to six test chemicals were included in each transformation experiment, and each chemical was tested at four treatment doses in two or more independent trials. The procedure for selecting the four doses has been described in part IV of these investigations (14), and the doses covered a range of cytotoxic responses of approximately 10-100% relative cloning efficiency (RCE).

Transformation Assay Acceptance and Evaluation Criteria

A complete explanation of the transformation assay acceptance and evaluation criteria for a test chemical evaluated in a single trial or in multiple trials is provided in part IV of this investigation (14). Briefly, a test chemical evaluated in one experiment had one of four possible transformation responses: sufficient positive (SP), limited activity (LA), sufficient negative (SN), and limited negative (LN). Briefly, an SP transformation response required that a test chemical response was statistically significant at two or more consecutive treatment doses. In contrast, an LA transformation response required that a test chemical response was statistically significant at either one treatment dose alone at the 99% confidence level or at two consecutive doses at the 95% confidence level. An SN transformation response required that a test chemical response did not have a statistically significant increase in transformation responses at any of the four treatment doses. An LN transformation response occurred under two different circumstances. First, the four test chemical treatment doses did not induce a statistically significant transformation response; however, in contrast to an SN transformation response, the test chemical treatments did not have a significant cytotoxic response. Therefore, higher concentrations of the test chemical could have induced a significant cytotoxic response, and this could have resulted in a statistically significant transformation response. Second, the test chemical had the equivalent of an SN transformation response; however, the positive control for the transformation experiment was inactive and did not induce a statistically significant response.

Evaluation of Transformed Foci

The method used to evaluate transformed foci of BALB/ c-3T3 cells has been reported in detail (10) and is summarized in part IV (14) of these investigations. Briefly, the number of type I–III transformed foci of BALB/c-3T3 cells were identified microscopically using published criteria (6-8,12,17), and type III foci had three phenotypic properties: piling and overlapping cells, disorientation of cells at the periphery of the focus, and invasion of transformed cells into a contact-inhibited monolayer of WT cells. Type I and II foci also appeared in many different sizes, but they lacked one or more of the three phenotypic properties of the type III transformed focus.

Handling of Test Chemicals

Many chemicals in this investigation had physicochemical properties that could have potentially interfered with them being adequately tested in the BALB/c-3T3 cell transformation assay (Table 1). Therefore, procedures were developed to ensure that all test chemicals would be consistently and adequately evaluated, and the procedures are described in detail in part IV of these investigations (14).

Table 1. Cytotoxicity of 168 test chemicals.^a

Group of chemicals	LD_{50}	No.
1. Cytotoxic	< 5mM	114
2. Noncytotoxic	5 mM-100 mOsM	43
3. Very noncytotoxic	> 100mOsM	11

Abbreviations: LD_{50} , lethal dose for 50% of the cells; mOsM, milliosmolar; no., number of chemicals in a subgroup of chemicals.

^aChemical-induced, cytotoxic response data for this table were obtained from Tables A1 and A4.

Statistical Analyses and Mathematical Models

Mathematical Transformation of Focus Data. The method used to determine the distribution of spontaneous transformed foci of BALB/c-3T3 cells has been previously reported (10,11) and is described in detail in part I of these investigations (17).

Significance of Transformation Responses. The methods used to determine the statistical significance of a chemical-induced transformation response has been described in detail in part IV of these investigation (14). Briefly, the significance was determined using analysis of variance (*F*-test) and modified Student's *t*-tests, and the computations were performed using SAS software (22).

Method for Rank-Ordering Test Chemical Transformation Responses. The method used to rank-order test chemical transformation responses on the basis of the significance of their activity in the transformation assay has been described in detail in part IV of these investigations (14). Briefly, the significance of the test chemical response was observed to vary proportionally to the magnitude of the t-statistic, and the t-statistic was independent of the absolute spontaneous transformation response of the solvent control. The average significance of each chemical transformation response, or mean t-statistic, was calculated by averaging the *t*-statistics of the four test chemical, (or two positive control) treatment doses. Treatment doses with <5% RCE and incomplete monolayers were deleted, and negative *t*-statistics were arbitrarily assigned the value of zero. This mean *t*-statistic was used to rank order chemical transformation responses in individual experiments. The test chemical activity in two or more experimental trials was assessed using a weighted the rank *t*-statistic. It was calculated using all the *t*-statistics for test chemical treatments in two or more experimental trials (see Tables A3 and A6 for actual and estimated rank t-statistics of 168 chemical transformation responses). Examples of these calculations are provided in Results.

Effect of Statistical Sensitivity on Detection Sensitivity for BaP. Both the magnitude of the spontaneous and the benzo[a]pyrene (BaP) transformation response varied among the 110 experiments included in this investigation (17,18). Variable spontaneous transformation responses resulted in experiments with different statistical sensitivity to detect test chemical responses (17) and different detection sensitivity for BaP (18). Experiments with significantly low statistical sensitivity were demonstrated to have a low detection sensitivity for BaP (18). Therefore, these experiments had a high probability of underestimating the activity and rank *t*-statistics of test chemicals. In contrast, experiments with normal or significantly high statistical sensitivity had normal detection sensitivity for BaP (18). To compensate for the diminished sensitivity to detect chemical-induced transformation, the rank *t*-statistic was multiplied by a correction factor to obtain an estimated rank *t*-statistic (14). Example calculations using the actual rank *t*-statistic and the correction factor to determine the estimated rank *t*-statistics are provided in Tables A3 and A6.

Test Chemicals

The 43 cytotoxic, mutagenic carcinogens evaluated in this investigation were tested either as coded test chemicals (marked with an asterisk below) or as uncoded test chemicals. In addition, five chemicals were tested as both coded and uncoded (dichlorvos, C. I. basic red 9-HCl, HC red 3, dimethyl morpholinophosphoramidate, and methyl carbamate). The following 39 test chemicals were supplied by Radian Corporation (Houston, TX): *2-amino-4-nitrophenol; *2-amino-5-nitrophenol; benzidine-2HCl; 2-biphenylamine; 4-biphenylamine; 4-chloro-o-phenylenediamine; 3-(chloromethyl)pyridine-HCl; 4-chloro-o-toluidine-HCl; 5-chloro-o-toluidine; *C. I. acid orange 3; C. I. basic red 9-HCl; *C. I. basic red 9-HCl; *C. I. disperse blue 1; C. I. disperse vellow 3; C. I. solvent vellow 14; cytembena; 1,2-dibromo-3-chloropropane; 2,6-dichloro-pphenylenediamine; 1,3-dichloropropene; dichlorvos; *dichlorvos; diglycidyl resorcinol ether; 2,4-dinitrotoluene; epichlorohydrin; *1,2-epoxybutane; 1,2epoxypropane; ethylene dibromide; HC blue 1; *iodinated glycerol; melphalan; *N-methyl-o-acrylamide; 4,4-methylenedianiline; 2-naphthylamine; *nitrofurantoin; *nitrofurazone; 2-nitro-*p*-henylenediamine; 4,4-oxydianiline; quinoline; selenium sulfide; o-toluidine; and ziram. Three chemicals were purchased from Sigma Chemical Company (St. Louis, MO): acetylaminofluorene, 5-azacytidine, and N-methyl-N'-nitro-N-nitrosoguanidine. One chemical, acrylonitrile, was purchased from Aldrich Chemical Company (Milwaukee, WI).

The 21 cytotoxic, mutagenic, noncarcinogens evaluated in this investigation were all supplied by Radian Corporation (Houston, TX): 4-acetylaminofluorene; 4'-(chloroacetyl)acetanilide; 2(chloromethyl)pyridine-HCl; 3-chloro-p-toluidine; coumaphos; dimethoate; 2,4dimethoxyaniline-HCl; HC blue 2; HC red 3; *HC red 3; 8-hydroxyquinoline; malaoxon; 1-naphthylamine; N-(1naphthyl)ethylenediamine-2HCl; 1-nitronaphthalene; 4-nitro-o-phenylenediamine; 3-nitropropionic acid; p-phenylenediamine-2HCl; *N-phenyl-2-naphthylamide; 2,3,5,6-tetrachloro-4-nitroanisole; tetraethylthiuram disulfide; and 2,6-toluenediamine-2HCl.

Nineteen of 20 cytotoxic, nonmutagenic carcinogens evaluated in this investigation were supplied by Radian Corporation: allyl isothiocyanate; allyl isovalerate; *chlorendic acid; *chlorinated paraffins C23, 43% chlorine (also chlorowax 40); *chlorinated paraffins 60% chlorine (also chlorowax 500c); 3-chloro-2-methylpropene; *dimethylvinyl chloride; cinnamyl anthranilate; ethyl acrylate; isophorone; *D-limonene; *malonaldehyde, sodium salt; *2mercaptobenzothiazole; methapyrilene-HCl; polybrominated biphenyl mixture; reserpine; tris(2-ethylhexyl)phosphate; and *4-vinylcyclohexene. One chemical, diethylstilbestrol, was purchased from Aldrich, and one chemical, trisodium salt, was purchased from Sigma.

The 30 cytotoxic, nonmutagenic noncarcinogens evaluated in this investigation were all supplied by Radian: anilazine; L-ascorbic acid; bisphenol A; carbromal; *chlorpheniramine-maleate; C. I. acid red 14; C. I. acid yellow 73; *ephedrine sulfate; *erythromycin stearate; ethoxylated dodecyl alcohol; ethylenediamine tetraacetic acid, trisodium salt; eugenol; geranyl acetate; *4hexylresorcinol; D,L-menthol; methoxychlor; *methyldopa sesquihydrate; methylphenidate-HCL; *oxytetracycline-HCl; phenol; *phenylephrine-HCl; propyl gallate; *rotenone; sodium diethyldithiocarbamate; stannous chloride; *tetracycline-HCl; *tetrakis(hydroxymethyl)phosphonium chloride; *tetrakis(hydroxymethyl)phosphonium sulfate; triphenyltin hydroxide; and *xylenes (mixed).

Fourteen of 21 noncytotoxic, carcinogens evaluated in this investigation were supplied by Radian: 11aminoundecanoic acid; DC red no. 9; *decabromodiphenyloxide; di(2-ethylhexyl)adipate; di(2-ethylhexyl)phthalate; diethanolnitrosamine; dimethyl hydrogen phosphite; dimethyl methyl phosphonate; dimethylmorpholinophosphoramidate; *dimethylmorpholinophosphoramidate; ethylene thiourea; melamine; methyl carbamate; *methyl carbamate; monuron; and 2,4- and 2,6-toluene diisothiocyanate. Six chemicals were purchased from Sigma: 3-amino-1,2,4-triazole; cyclamate, sodium salt; diethylnitrosamine; dimethylnitrosamine; phenobarbital, sodium salt; and saccharin, sodium salt. One chemical, hexamethylphosphoramide, was purchased from Aldrich.

The 26 noncytotoxic noncarcinogens evaluated in this investigation were supplied by Radian: aldicarb; *ampicillin trihydrate; *o*-anthranilic acid; benzoin; *benzyl alcohol; caprolactam; 2-chloroethanol; (2-chloroethyl)trimethylammonium chloride; C. I. acid orange 10; dimethyl terephthalate; diphenylhydantoin; FD&C yellow no. 6; D-mannitol; *methyl methacrylate; molybdenum trioxide; 4-nitroanthranilic acid; *penicillin VK +; phthalamide; phthalic anhydride; *roxarsone; sodium(2ethylhexyl) alcohol sulfate; sulfisoxazole; 3-sulfolene; tetrahydrofuran; titanium dioxide; and witch hazel.

The seven very noncytotoxic chemicals evaluated in this investigation were all supplied by three companies: Sigma, Fisher Scientific, and U.S. Industrial Products.

Results

Range of Cytotoxic Responses of 168 Chemicals

A co-culture clonal survival assay was used to measure the cytotoxic responses of 168 chemicals (21), and each chemical was tested in two or more experiments. The cytotoxic responses of individual chemicals are presented in detail in Tables A1 and A4. The data set had a range of cytotoxic responses of over 7 logs. The most cytotoxic chemical was ziram, and it had an average cytotoxic response, or LD₅₀, of 0.0000373 mM. Based on a molecular weight of 305.81, this concentration was equivalent to approximately 0.0114 μ g/mL. The least cytotoxic chemical was witch hazel, and it had an LD₅₀ estimated at approximately 540 mM.

The 168 chemicals were arbitrarily divided into three groups according to their relative cytotoxic responses: group 1, cytotoxic chemicals with an $LD_{50} < 5 \text{ mM}$; group 2 noncytotoxic chemicals with an LD_{50} 5 mM–100 mOsM; and group 3, very noncytotoxic chemicals with an $LD_{50} >$ 100 mOsM (Table 1). There were 114 cytotoxic chemicals, 43 noncytotoxic chemicals and 11 very noncytotoxic chemicals (see Table 1). Chemical cytotoxic responses were divided into groups 1-3 based on three empirical observations. First, using the appropriate solvent vehicles, nearly all cytotoxic chemicals could be tested at treatment doses either at or below their solubility limit in culture medium. In contrast, many noncytotoxic chemicals had to be tested at treatment doses above their solubility limit to obtain cytotoxicity to the BALB/c-3T3 cells. Second, many cytotoxic chemicals ($LD_{50} < 5 \text{ mM}$) were consistently inactive in the transformation assay; however, few noncytotoxic chemicals ($LD_{50} > 5 \text{ mM}$) were inactive if they were fully soluble in culture medium. Thus, the solubility of noncytotoxic test chemicals clearly correlated their potential activity in the transformation assay, and nearly all of the noncytotoxic chemicals that were inactive in the transformation assay had solubility problems in culture medium. Third, mutagenic and nonmutagenic test chemicals had very different profiles of cytotoxic responses. Most mutagenic chemicals were cytotoxic chemicals, while only half of the nonmutagenic chemicals were cytotoxic. Data supporting this observation will be presented later in this report.

Distribution of Cytotoxic Responses among Carcinogens and Noncarcinogens

The cytotoxic responses of carcinogenic and noncarcinogenic chemicals were compared in the data set of 168 chemicals (Table 2). This set of chemicals included 84 carcinogens and 77 noncarcinogens, and the remaining 7 test chemicals were model chemicals that had not been evaluated in the NTP rodent bioassay. These analyses of the data revealed that the data set contained a balanced distribution of cytotoxic responses among the carcinogens and noncarcinogens. Furthermore, the data set contained many examples of cytotoxic and noncytotoxic carcinogens and noncarcinogens (Table 2). Thus, these data demonstrated that *in vitro* cytotoxicity of chemicals to BALB/ c-3T3 cells neither correlated with nor predicted their *in vivo* carcinogenic activity.

Table 2. Cytotoxicity of carcinogens versus noncarcinogens. ^a	Table 2.	Cytotoxicity	of carcinogens	versus noncarcinogens. ^a
--	----------	--------------	----------------	-------------------------------------

Type of chemical	LD_{50}	No.	%
Cytotoxic chemicals			
Carcinogens	$< 5 \mathrm{mM}$	63	55.3
Noncarcinogens	$< 5 \mathrm{mM}$	51	44.7
Noncytotoxic chemicals			
Carcinogens	5 mM–100 mOsM	21	44.7
Noncarcinogens	5 mM–100 mOsM	26	55.3
Total chemicals			
Carcinogens		84	52.2
Noncarcinogens		77	47.8

Abbreviations: LD₅₀, lethal dose for 50% of the cells; mOsM, milliosmolar; no., number of chemicals in a subgroup; %, percentage of chemicals in a subgroup (e.g., 63/63 + 51 = 52.2%).

^aChemical-induced, cytotoxic response data for this table were obtained from Tables A1 and A4.

Upper Dose Limit of the Transformation Assay

This investigation did not use an arbitrary upper dose limit of 5–10 mg/mL for the BALB/c-3T3 cell transformation assay. All chemicals were tested over a comparable range of cytotoxicity of 0–100% RCE, and the data from these experiments were retrospectively used to determine an empirical upper dose limit. In addition, the concentration of test chemical treatment doses was expressed in millimoles, and not in micrograms per milliliter because the 168 test chemicals had molecular weights that ranged from 46.07 for ethanol to approximately 1200 for ethoxylated dodecyl alcohol.

The upper dose limit of the BALB/c-3T3 cell transformation assay was set at 100 mOsM based on two empirical observations in this investigation. First, we observed that the test chemicals that were the least cytotoxic to the target cells all had an LD_{50} over a narrow range of 240– 504 mOsM (see Tables 3 and A4). Second, all of the very noncytotoxic chemicals were active in the transformation assay (Appendix H). Furthermore, each of these chemicals began to induce significant transforming activity at an average concentration of 134 mOsM (Table 3). Optimal

Table 3. Cytotoxic and transformation responses of seven very noncytotoxic test chemicals.^a

	Cytotoxicity response,		Transformation response, mOsM		
Name	LD ₅₀ , mOsM	Maximum	Minimum		
Acetone	257	176	102		
Dimethyl sulfoxide	507	563	141		
Ethanol	429	257	150		
Glycerol	401	340	136		
Sodium chloride	288	262	154		
Sucrose	240	300	150		
Urea	254	208	104		
Average	339	301	134		

Abbreviations: $\mathrm{LD}_{50}\!\!,$ lethal dose for 50% of the cells; mOsM, milliosmolar.

^aChemical cytotoxic response data for this table were obtained by plotting cytotoxic and transformation response data contained in Appendix H.

induction of transforming activity occurred at slightly higher treatment dose concentrations that were close to the chemical's LD_{50} dose. Taken together, the BALB/ c-3T3 cell transformation assay could not discriminate active and inactive chemicals when they were tested at concentrations above about 134 mOsM; thus, the actual dose limit for the data set of 168 chemicals was set at 100 mOsM.

Physicochemical Properties of 168 Chemicals

We were concerned in this investigation that uncontrolled test chemical technical problems could affect the activity of a chemical in the transformation assay. This concern arose because most of the 168 chemicals in this investigation had physicochemical properties that could potentially have caused technical problems when they were tested in an *in vitro* assay using cultured mammalian cells (refer to chemical technical problems listed in Tables A1 and A4). Fortunately, the majority of the technical problems were avoided by using specific techniques to handle the test chemicals [see Materials and Methods in part IV of this series (14)].

Nevertheless, six types of technical problems were difficult to control in this investigation, and each of these problems could have influenced the results in these experiments (Table 4). First, 21 chemicals reacted with plastic polystyrene culture vessels; thus, treatment times were reduced from 48 hr to minutes. The chemical reaction with plastic was unusual in that it occurred after the chemical was completely dissolved in the aqueous environment. Because this problem could only be overcome through the use of chemical-resistant culture vessels such as glass bottles, these chemicals were not included in this investigation. A complete list of the 21 chemicals is provided in the Discussion. Second and third, 56 chemicals were oxidized by air and 15 chemicals reacted with water; thus, the BALB/c-3T3 cells were exposed to not only the parent test chemical, but also its oxidized and hydrolyzed byproducts. Fourth, eight chemicals reacted with biochemicals; thus, they could have combined with biochemicals in the culture medium or biochemicals within the target cells. Fifth, seven chemicals bound different metal salts; thus, they could have complexed with critical metals in either the culture medium or the target cell. Finally, over half of the chemicals had solubility problems in an aqueous environment. Fortunately, the use of organic solvents in conjunction with the nonionic surfactant pluronic F68 (14, 23)resulted in most of these chemicals being soluble at concentrations that induced cytotoxicity to the BALB/c-3T3 cells. Nevertheless, 14 test chemicals could not be solubilized and were insoluble at a portion or all of the treatment dose concentrations used to test for cytotoxic and transforming activities.

Thus, we predicted that any one of the six technical problems could have affected detection of chemicalinduced transformation of BALB/c-3T3 cells. Furthermore, we anticipated that the same six technical problems might also have affected detection of mutagenicity in Salmonella assays and carcinogenicity in rodent bioassay. Therefore, we examined sets of chemicals with the six technical problems to determine whether any of the problems correlated with the expression of carcinogenicity, mutagenicity, and transformation. If a chemical technical problem had either no effect or a random effect on a biological activity, then there would be equal distributions of active and inactive chemicals with this problem (i.e., ratio of active/inactive chemicals = 1.00). Conversely, if a technical problem had a consistent effect on the biological activity, then the distribution of active and inactive chemicals <1.00 or >1.00).

The results of these comparisons are summarized in Table 4. It was found that two of the technical problems, reaction with air and water, had no significant effect on all three biological activities. Three additional technical problems had no effect on carcinogenicity, but they were correlated with suppressed detection of transformation and mutagenic activities. For example, chemicals with severe solubility problems and chemicals that bound metal salts

Table 4. Effect of test chemical technical problems on biological	
activities of carcinogenicity, mutagenicity and transformation.	

	Test chemical						
Biological activity ^a	technical problems ^b	Relative effect ^c					
Carcinogenicity	Reacts with plastic	3.49^{d}					
0 0	Reacts with water	1.47					
	Reacts with biochemicals	1.38					
	Reacts with air	1.22					
	Solubility problem	1.09					
	Binds metal salts	1.08					
Transformation	Reacts with biochemicals	3.00 ^d					
	Reacts with water	1.77					
	Binds metal salts	1.29					
	Reacts with air	1.26					
	Solubility problem	$0.393^{ m d}$					
	Reacts with plastic	$0.000^{\rm d,e}$					
Mutagenicity	Reacts with biochemicals	2.43^{d}					
	Reacts with air	1.38					
	Reacts with water	1.08					
	Solubility problem	$0.574^{ m d}$					
	Binds metal salts	0.246^{d}					
	Reacts with plastic	0.105 ^d					
<u> </u>							

^aThe three biological activities included carcinogenicity in rodent bioassay, mutagenicity in Salmonella, and transformation in BALB/c-3T3 cells.

^bTest chemicals in this investigation had several difficult problems: 56 chemicals were oxidized upon exposure to air; 21 chemicals reacted with plastic; 15 chemicals reacted with water; 14 chemicals had severe solubility problems in culture medium that was not corrected by the use of pluronic F68; 8 chemicals reacted with biochemicals (i.e., alkylating agents and chemicals that reacted with alcohols and amine groups); and 7 chemicals bound metal salts.

^cWhen a technical problem had no effect on the biological property, it resulted in a relative effect of 1.00 (i.e., equal ratio of inactive and active chemicals). When a technical problem correlated with an enhanced biological activity, it resulted in a relative effect > 2.00. Conversely, when a technical problem correlated with a decreased biological activity, it resulted in a relative effect < 0.500.

^dChemicals with relative effects either >2.00 or <0.500.

^eBecause the 21 chemicals that reacted with plastic could not be tested for transformation, they were all arbitrarily considered inactive to get a relative effect of 0.000.

tended to be inactive in both BALB/c-3T3 transformation and Salmonella mutagenicity assays. Conversely, chemicals that reacted with biochemicals tended to be active in both mutagenicity and transformation assays. In contrast, only one of the technical problems had an effect on all three biological properties of carcinogenicity, transformation, and mutagenicity. Nearly all of the 21 chemicals that reacted with plastic culture vessels in BALB/c-3T3 cytotoxicity assays (unpublished observations) were carcinogenic, and they did not induce either transformation or mutagenicity in Salmonella. Thus, the presence of this technical problem significantly correlated with these chemicals being nonmutagenic carcinogens in rodent bioassay.

Transformation Responses of 168 Chemicals

Variability among spontaneous transformation responses resulted in experiments with different statistical sensitivities to detect chemical-induced transformation responses (17). Likewise, variability among BaP responses demonstrated that individual experiments had different detection sensitivities for BaP (18). Thus, individual experiments had different sensitivities to measure test chemicalinduced transformation responses. Therefore, the responses of test chemicals in the BALB/c-3T3 cell transformation assay were evaluated in terms of the rankordered sensitivity of individual experiments to detect both spontaneous and BaP-induced transformation responses (14, 17, 18).

In the current study, the 168 chemicals were tested in two or more transformation assay experiments. The results of individual experiments for each test chemical are provided in detail in Appendices B-H. In addition, a summary of transformation responses of all the chemicals are presented in summary Tables A2 and A5. Explanations for the different response calls and evaluation criteria for a single transformation assay experiment have been reported (14) and are summarized in Materials and Methods. The final determination of the rank-ordered activity of each chemical is summarized in Tables A3 and A6. The method used for combining the activities of chemicals tested in two or more experiments has been discussed in detail in part IV of these investigations (14). For the reader who is interested in the cumulative data associated with an individual test chemical, a narrative description of the activities of individual chemicals is provided in Appendix A. To facilitate comparative analyses of chemicals with different biological activities, the same sequence of chemicals has been presented within each of the tables of Appendix A.

Comparison of Carcinogenicity with Mutagenicity and Transformation Responses

The data set of 161 carcinogens and noncarcinogens was compared to the activities of different sets of chemicals tested in other NTP investigations (1-4). In these binary analyses, the concordance of each assay was compared to

	Sumonena maragementy auta	
Carcinogenicity	Mutagenicity	No.
Carcinogenic	Mutagenic	49
Noncarcinogenic	Nonmutagenic	53
Carcinogenic	Nonmutagenic	35
Noncarcinogenic	Mutagenic	24
Concordance	= 49 + 53/161 = 63.4%	
Sensitivity	= 49/ 84 $=$ 58.3%	
Specificity	= 53/77 $=$ 68.8%	

Table 5. Correlation of rodent bioassay carcinogenicity and Salmonella mutagenicity data.^a

No., number of chemicals in a subgroup.

^aThe computations for this table were made using data obtained from Tables A3 and A6.

 Table 6. Correlation of rodent bioassay carcinogenicity and BALB/c-3T3 transformation data.^a

Carcinogenicity	Transform	nation No).
Carcinogenic	Transform	ing 64	i
Noncarcinogenic	Nontransf	forming 40)
Carcinogenic	Nontransf	orming 16	;
Noncarcinogenic	Transform	ning 27	,
Concordance	= 64 + 40/147 = 76	0.7%	
Sensitivity	= 64/80 = 80	0.0%	
Specificity	= 40/67 $=$ 59	9.7%	

No., number of chemicals in a subgroup.

^aThe computations in this table excluded 4 carcinogens and 10 noncarcinogens that had an indeterminate transformation response (Tables A3 and A6).

the rodent bioassay using a chi-square method. In this database the concordance of Salmonella mutagenicity data with rodent bioassay was 63.4% (Table 5). Using the same group of chemicals, Salmonella assays had a sensitivity to detect carcinogens of 58.3% and a specificity for detecting noncarcinogens of 68.8%. Thus, this database was comparable to other NTP data sets (1–4), and it contained a large number of nonmutagenic carcinogens and mutagenic noncarcinogens.

Transformation data were also analyzed using the same method, and the concordance of BALB/c-3T3 transformation responses was compared to carcinogenicity data from rodent bioassay (Table 6). The transformation assay exhibited a concordance with the rodent bioassay of 70.7%, which was 7.3% higher than Salmonella (i.e., 70.7 versus 63.4%). Likewise, the transformation assay also had a 21.7% higher sensitivity for carcinogens (i.e., 80.0% versus 58.3%) and a 9.2% lower specificity for detecting noncarcinogens (i.e., 59.7% versus 68.9%) compared to Salmonella assays.

Correlation of Test Chemical Cytotoxicity with Mutagenicity

Binary comparisons of the responses of 147 chemicals in BALB/c-3T3 transformation and 161 chemicals in Salmonella mutagenicity assays revealed that the data from both assays had a high concordance with rodent bioassay (Tables 5 and 6). However, this database contained a disproportionate number of cytotoxic, versus noncytotoxic, test chemicals (see Table 2). Thus, the concordance of the transformation and Salmonella mutagenesis assays might have been affected by the relative cytotoxicity of the test chemicals. Because the number of carcinogens and noncarcinogens was roughly equal in both of these groups of chemicals, the correlation of test chemical cytotoxicity with mutageneicity in Salmonella and rodent bioassay carcinogenicity could be directly compared.

The correlation of test chemical cytotoxicity to BALB/ c-3T3 cells with mutagenicity in Salmonella assays was examined first (Table 7). These multifactorial analyses revealed that Salmonella mutagenicity was highly correlated with chemical cytotoxicity. About 88% of the mutagenic chemicals had an $LD_{50} < 5$ mM, including both mutagenic carcinogens and noncarcinogens. In contrast, chemical cytotoxicity was not correlated with carcinogenicity; about 57% of both carcinogens and noncarcinogens were cytotoxic. Thus, cytotoxicity of the test chemical to BALB/c-3T3 cells correlated most with its capacity to induce mutations in Salmonella (Table 8). In contrast, cytotoxicity did not correlate with either the induction of transformation in BALB/c-3T3 cells or carcinogenicity in the rodent bioassay (Table 8). Thus, the *in vivo* capability of a chemical to induce tumors in rodents was not correlated with its in vitro cytotoxicity to a cultured mammalian cell.

Taken together, these data showed that among the four biological variables in this investigation (i.e., carcinogenicity, cytotoxicity, mutagenicity, and transformation), the highest correlation of variables was observed for results from BALB/c-3T3 transformation assays with rodent bioassay (70.7% concordance) and Salmonella mutagenicity assays (69.8% concordance) (Table 8). A less significant correlation was noted for BALB/c-3T3 cytotoxicity and Salmonella mutagenicity (63.4% concordance) and carcinogenicity and Salmonella mutagenicity (63.4% concordance). All other binary comparison of variables were not significantly correlated.

Comparison of Mutagenicity and Transformation

Because BALB/c-3T3 cell transformation and Salmonella mutagenicity assay data both exhibited a high concordance with rodent bioassay data, it was of interest to see whether the two assays detected the same profile of chemicals. If the two assays were to detect the same chemicals, this result would imply, but not prove, that the BALB/c-3T3 transformation assay was detecting primarily mutagenic test chemicals. Thus, a mutation at a gene for the transformed cell phenotype would be the most likely explanation of the activity of chemicals in the assay.

When the BALB/c-3T3 transformation response data was compared to the Salmonella assay data, the transformation assay was observed to detect 92.5% of the mutagenic carcinogens and approximately 70% of the mutagenic noncarcinogens (Table 9). These data demonstrated that the transformation assay detected a high

Cytotoxicity	Mutagenicity	Carcinogenicity	No.	%
73 Mutagens				
Cytotoxic	Mutagenic	43 Carcinogens + 21 noncarcinogens	64	87.7
Noncytotoxic	Mutagenic	6 Carcinogens + 3 noncarcinogens	9	12.3
88 Nonmutagens				
Cytotoxic	Nonmutagenic	20 Carcinogens + 30 noncarcinogens	50	56.8
Noncytotoxic	Nonmutagenic	15 Carcinogens + 23 noncarcinogens	38	43.2
Sensitivity =	+ 43 + 21 + 15 + 23 / 64 + 9 + 43 + 21 / 64 + 9	-50 = -64/114 = -56.1%		
Specificity =	15 + 23 / 9	+ 38 = 38/47 = 80.9%		
Cytotoxicity versu	us carcinogenicity			
Concordance =	+43 + 20 + 3 + 23 / 64 + 9 +	-50 + 38 = -89/161 = 55.3%		
Sensitivity =	43 + 20 / $43 + 6 +$	-20 + 15 = -63/84 = 75.0%		
Specificity =	3 + 23/21 + 3 +	-30 + 23 = 26/77 = 33.8%		

Table 7. Correlation of BALB/c-3T3 cytotoxicity with Salmonella mutagenicity and rodent bioassay carcinogenicity.^a

Abbreviations: No., number of chemicals in a subgroup; %, percentage of the chemicals in a subgroup (e.g., 43 + 21/64 = 87.7%). ^aThe data for this table were obtained from Tables A3 and A6.

percentage of mutagenic carcinogens and mutagenic noncarcinogens. Most of the mutagenic noncarcinogens in this group were analogues of known carcinogens, and they all had DNA reactive structural alerts (1–4). Thus, neither the BALB/c-3T3 assay nor the Salmonella mutagenesis assays were able to distinguish mutagenic carcinogens from mutagenic noncarcinogens. Fortunately, the frequency of mutagenic noncarcinogens in rodent bioassays has been relatively small.

Detection of Nonmutagenic Carcinogens

Because the BALB/c-3T3 transformation assay did not detect all of the mutagenic carcinogens (Table 9) but it had a higher sensitivity to detect carcinogens than Salmonella (Table 8), the transformation assay must have detected a substantial number of nonmutagenic carcinogens. This data set included 35 nonmutagenic carcinogens, which was 41.7% of the total of 84 carcinogens. The nonmutagenic carcinogens were approximately equally divided between cytotoxic and noncytotoxic chemicals. A total of 20 of 35 carcinogens were cytotoxic, and 15 of 35 chemicals were noncytotoxic chemicals.

Table 8. Concordance of carcinogenicity, transformation, mutagenicity, and cytotoxic data.^a

Biological property	%	Concordance (relative significance)
Carcinogenicity versus		
Transformation	70.7	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Mutagenicity	63.4	XXXXXXXXXXXXX
Cytotoxicity	55.3	XXXXX
Control	50.0	-
Transformation versus		
Carcinogenicity	70.7	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Mutagenicity	69.8	XXXXXXXXXXXXXXXXXXXXXXXXX
Cytotoxicity	55.3	XXXXXX
Control	50.0	_
Mutagenicity versus		
Transformation	69.8	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Carcinogenicity	63.4	XXXXXXXXXXXXX
Cytotoxicity	63.4	XXXXXXXXXXXXX
Control	50.0	-
Cytotoxicity versus		
Mutagenicity	63.4	XXXXXXXXXXXXX
Transformation	56.0	XXXXXX
Carcinogenicity	55.3	XXXXX
Control	50.0	_

Abbreviations: %, the percentage of concordance between the two biological properties.

"The concordance of each biological activity with the remaining three biological activities is presented as percentage and as a bar graph. A concordance of 50% is the control (-) and each X is equivalent to 1% concordance over the control.

Table 9. Detection of mutagenic chemicals by the standard BALB/c-3T3 transformation assay.^a

Mutagenicity/carcinogenicity	Transformation	No.	%
Cytotoxic chemicals (LD ₅₀ < 5 n	nM)		-
Mutagenic/carcinogenic	Transforming	37/40	92.5
Mutagenic/noncarcinogenic	Transforming	13/20	65.5
Noncytotoxic chemicals (LD ₅₀ \geq	5mM)		
Mutagenic/carcinogenic	Transforming	6/6	100.
Mutagenic/noncarcinogenic	Transforming	3/3	100.
Total chemicals			
Mutagenic/carcinogenic	Transforming	43/46	93.5
Mutagenic/noncarcinogenic	Transforming	16/23	69.6
Concordance = $43 + 7/69$	0 = 72.5%		
Sensitivity = $43/46$	5 = 93.5%		
Specificity = $7/23$	$3 = 30.4\%^{\rm b}$		

Abbreviations: no., ratio of the number of chemicals in a subgroup that induced significant transformation responses versus the total number of chemicals in the subgroup; %, the ratio of chemicals expressed as a percentage (e.g., 37/40 = 92.5%); LD₅₀, lethal dose for 50% of the cells.

^aData for this table were obtained from Tables A3 and A6. The computations in this table excluded 4 carcinogens and 10 noncarcinogens that had an indeterminate transformation response.

^bA total of only 7 chemicals were mutagenic, noncarcinogenic, and nontransforming (i.e., 23 - 16 = 7).

Mutagenicity/carcinogenicity	Transformation	No.	%
Cytotoxic chemicals ($LD_{50} < 5 \text{ mM}$)			
Nonmutagenic/carcinogenic	Transforming	10/19	52.6
Nonmutagenic/noncarcinogenic	Transforming	6/26	23.1
Noncytotoxic chemicals ($LD_{50} \ge 5 \text{ mM}$	[)		
Nonmutagenic/carcinogenic	Transforming	11/14	78.6
Nonmutagenic/noncarcinogenic	Transforming	5/16	31.3
Total chemicals			
Nonmutagenic/carcinogenic	Transforming	21/33	63.6
Nonmutagenic/noncarcinogenic	Transforming	11/42	26.2
Concordance = $21 + 31/75 =$	69.3%		
Sensitivity = $21/33$ =	63.6%		
Specificity = $31/42$ =	$73.8\%^{\mathrm{b}}$		

Table 10. Detection of nonmutagenic carcinogens by the Standard BALB/c-3T3 transformation assay.^a

Abbreviations: no., ratio of the number of chemicals in a subgroup that induced significant transformation responses versus the total number of chemicals in the subgroup; %, the ratio of chemicals expressed as a percentage (e.g., 10/19 = 52.6%); LD₅₀, lethal dose for 50% of the cells. ^aData for this table were obtained from Tables A3 and A6. The

Data for this table were obtained from Tables A3 and A6. The computations in this table excluded carcinogens and noncarcinogens that had an indeterminate transformation response.

 ^{b}A total of 31 chemicals were nonmutagenic, noncarcinogenic and nontransforming (i.e., 42 - 11 = 31).

The capability of the BALB/c-3T3 assay to detect nonmutagenic carcinogens is summarized in Table 10. These data revealed that there was a high concordance of 69.3% between nonmutagenic carcinogens detected in rodent bioassay and transformation responses measured in the transformation assay. In addition, the transformation assay had a sensitivity for detecting nonmutagenic carcinogens of 63.6% (21/33), and a high specificity for not detecting noncarcinogens of 73.8% (31/42). The number of nonmutagenic carcinogens used in these analyses was 33 out of a total of 35 because 2 chemicals had an indeterminate activity (Tables A3 and A6).

Comparison of the Relative Carcinogenic Activity of Mutagenic and Nonmutagenic Carcinogens

The relative carcinogenic activity of chemicals in rodent bioassay has been evaluated in terms of their level of effect (1-3). The most active carcinogens induced tumors at one or more tissue sites in both species of rodents and were defined as having a level A effect (Table 11). In contrast, carcinogens with lower activities induced tumors in only one species, and they were evaluated as having level B, C, or D effects. Finally, chemicals that did not induce a significant tumor response were evaluated as having an equivocal activity (level E) or as being inactive (level F). Occasionally, a chemical was evaluated as having an indeterminate activity, because it has not been evaluated in a rodent bioassay that fulfilled all of the required prerequisites.

The relative level of activity of mutagenic and nonmutagenic carcinogens in rodent bioassay has also been compared (1,3). Ashby and Tennant (1,3) concluded that mutagenic carcinogens in general induced more multi-site

Table 11. Relative activity of carcinogens in rodent bioassays.^a

Activity	Level of effect	Species	Tissues
Carcinogenic			
High	Α	2	1 or more
High	В	1	2 or more
Low	С	1	1 tissue/both sexes
Low	D	1	1 tissue/1 sex
Noncarcinogenic			
Equivocal	\mathbf{E}		
Inactive	F		

^aA method for estimating the relative activity of carcinogens in rodent bioassay as reported by Ashby and Tennant (1,3).

and trans-species effects in the rodent bioassay than nonmutagenic carcinogens. Furthermore, they found evidence that mutagenic carcinogens induced tumors in a different profile of tissues sites than nonmutagenic carcinogens (1). Thus, it was of interest to determine whether the mutagenic and nonmutagenic carcinogens included in the these investigations had a comparable profile of activities as previously reported. It was also of interest to determine whether the BALB/c-3T3 cell transformation assay selectively detected carcinogens of either high or low activity.

The results of these analyses are presented in Table 12. They confirmed the reported observation that the majority of the 49 mutagenic carcinogens in this investigation had a relatively high level of effect in the rodent bioassay (i.e., 37 were A or B versus 12 that were C or D; Tables A3 and A6). In addition, a total of 74% of the carcinogens detected by Salmonella and in the BALB/c-3T3 transformation assay had a level A or B effect. In contrast, the 35 nonmutagenic carcinogens in this investigation contained roughly equal numbers of chemicals with a high or low level of effect (i.e., 19 were A or B and 16 were C or D). In this group the BALB/c-3T3 transformation assay prefer-

 Table 12. Correlation of level of effect of carcinogenicity with BALB/c-3T3 transformation responses.^a

DillD/C-919 transformation responses.								
	Level of effect							
Transformation	No. AB	No. CD	% AB					
46 Mutagenic carcinogens								
Transforming	32	11	74.4					
Nontransforming	3	0	-					
33 Nonmutagenic carcinogens								
Transforming	13	8	61.9					
Nontransforming	6	6	_					
79 Total carcinogens								
Transforming	45	19	70.3					
Nontransforming	9	6	_					

Abbreviations: no. AB, number of the chemicals with a level of effect A or B (C or D) of the subgroup of chemicals; % AB, percentage of chemicals with level of effect A or B (e.g., 32/26 + 11 = 74.4%).

^aThe data for this table were obtained from Tables A3 and A6. (Note: three of the mutagenic carcinogens and two of the nonmutagenic carcinogens had indeterminate activity and were not included in these analyses.)

entially detected 62% of the carcinogens with a high A or B level of effect.

Discussion

There were five accomplishments of this investigation. First, we were able to validate the use of the BALB/c-3T3 transformation assay and demonstrate that it selectively detected carcinogenic, versus noncarcinogenic, test chemicals. The data from this study show that the BALB/c-3T3 cell transformation assay exhibits a somewhat higher concordance with the rodent bioassay than Salmonella mutagenicity data, i.e., 70.7 versus 63.4% (Tables 5 and 6). Thus, both of these assays selectively detected carcinogens versus noncarcinogens in this data set. However, the BALB/c-3T3 transformation assay also detected a large number of noncarcinogenic chemicals that were active in Salmonella mutagenesis assays (i.e., mutagenic noncarcinogens). Thus, neither assay could discriminate most matched pairs of carcinogens and noncarcinogens, which have very similar chemical structures. Nearly all of the matched pairs of carcinogens and noncarcinogens, such as 2- and 3-chloromethylpyridine, were active in both assays. The only matched pairs which were discriminated by BALB/c-3T3 transformation assays were the active carcinogens 2-acetylaminofluorene and BaP and the inactive noncarcinogens 4-acetylaminofluorene and benzo[e]pyrene (unpublished observation). One matched pair, HC blue 1 and 2, had either an inactive or an indeterminate activity in the transformation assay.

Second, the data obtained in this investigation demonstrate that the BALB/c-3T3 cell transformation assay can be used to selectively detect some carcinogens that were inactive in the Salmonella mutagenesis assays (i.e., nonmutagenic carcinogens). There were a total of 53 nonmutagenic carcinogens selected for evaluation in the transformation assay; however, only 35 chemicals were tested. The activities of the remaining 18 chemicals will be discussed below. Among the 35 chemicals that were tested in the standard transformation assay, 21 chemicals were active, including 10 of 19 cytotoxic and 11 of 14 noncytotoxic chemicals and 2 chemicals that had an indeterminate activity (Table 10). Of the remaining 12 inactive, nonmutagenic carcinogens, 3 carcinogens (i.e., cinnamyl anthraniliate, methapyrilene, and reserpine) have been demonstrated to be active in a new BALB/c-3T3 cell transformation assay that uses noncytotoxic treatment doses of the test chemical (unpublished data). In this protocol the BALB/c-3T3 cells are exposed continuously to multiple chemical treatment doses, and the assay is only used to evaluate the activities of cytotoxic test chemicals $(LD_{50} < 5 \text{ mM})$. The remaining six cytotoxic, nonmutagenic carcinogens that were inactive (e.g., allyl isovalerate, chlorowax 40, chlorowax 500, D-liminone, tris(2ethylhexyl)phthalate, and 4-vinylcyclohexene) and one equivocal (e.g., 2-mercaptobensothiazole) transformation response await further testing with the multiple treatment (MTA) assay. In contrast, the four noncytotoxic, nonmutagenic, carcinogens could not be evaluated in this

assay: decabromodiphenyloxide, di(2-ethylhexyl)adipate, di(2-ethylhexyl)phthalate, and monuron. These carcinogens had severe solubility problems in culture medium, and they were noncytotoxic at treatment dose well above their solubility limit.

Taken together, the Salmonella mutagenesis assays and the standard BALB/c-3T3 transformation assay were complementary and detected 83.3% (70/84) of the carcinogens in this investigation, including 21 nonmutagenic carcinogens. Of the remaining 14 nonmutagenic carcinogens, 10 were cytotoxic and were eligible for evaluation in the BALB/c-3T3 MTA assay. Three of these 10 chemicals have already been shown to be active in a MTA protocol that has a high sensitivity to detect carcinogenic test chemicals. Thus, only four noncytotoxic, nonmutagenic carcinogens with severe solubility problems in culture medium would be predicted to lack activity in the two assays. The sacrifice in specificity in using the two assays could be to detect all 24 mutagenic noncarcinogens and approximately 26% of the nonmutagenic noncarcinogens.

An additional group of 18 nonmutagenic carcinogens were originally selected to be tested in the BALB/c-3T3 cell transformation assay. However, these chemicals were part of a group of 21 chemicals that reacted with polystyrene, plastic culture vessels (Table 4); thus, these chemicals could not be evaluated in the standard transformation assay. This reaction occurred at concentrations that were completely soluble in culture medium and used as treatment doses to detect cytotoxic and transforming activity (Table 4). While most of these chemicals had severe solubility problems in culture medium, they were all completely soluble in culture medium supplemented with pluronic F68. Thus, these chemicals reacted with polystyrene while they were in solution in water. These chemicals are distinguishable from chemicals such as acetone that react with polystyrene as a neat chemical, but not when it is dissolved in culture medium.

Among this group of 21 test chemicals that reacted with polystyrene, Salmonella detected only one weak positive (1,2-dichloropropane). An additional chemical, bis(2chloro-1-methylethyl)ether, had a minor structural alert (3). Of the remaining 19 chemicals, 17 were nonmutagenic carcinogens: benzene; benzyl acetate; bromodichloromethane; bromoform; butyl benzyl phthalate; p-chloroaniline; chlorobenzene; chlorodibromomethane; diallyl phthalate; 1,4-dichlorobenzene; methylene chloride; pentachloroethane; safrole; 1,1,1,2-tetrachloroethane; tetrachloroethylene; 1,1,1-trichloroethane; and trichloroethylene (1-3). There were only 2 noncarcinogens in the group of 21 chemicals (N-butyl chloride and 1,2-dichlorobenzene). It should be noted that one of these chemicals, benzene, has been reported by Fitzgeral et al. to induce significant transformation of BALB/c-3T3 cells when the cells were treated in chemical-resistant glass dishes (25).

Third, we were able to determine the actual upper dose limit for testing chemicals in the BALB/c-3T3 cell transformation assay. To achieve this goal, we tested all of the noncytotoxic chemicals at very high treatment doses to determine the point at which the assay could not distinguish active and inactive chemicals. Furthermore, we tested a number of chemicals with solubility problems in culture medium at concentrations far exceeding their solubility limit. The results of these experiments revealed that the upper dose limit for the standard transformation assay was 100 mOsM because all of the least cytotoxic test chemicals induced significant transforming activity at treatment dose concentrations of about 134 mOsM or higher (Table 3). In the process of conducting these experiments we discovered that many of the chemicals which were tested at doses far above their solubility limit in culture medium were inactive in the transformation assay. In fact, noncytotoxic chemicals with solubility problems in culture medium were far less likely to be active in the transformation assay then chemicals that were freely soluble in culture medium (Table 4).

Fourth, we were able to ascertain that most of the chemicals tested in the standard BALB/c-3T3 transformation assay induced reproducible transformation responses. To accomplish this goal we tested all chemicals in two or more experiments. In addition, five chemicals were tested as both coded and uncoded test chemicals: C. I. basic red 9, dichlorvos, dimethylmorpholinophosphoramidate, HC red 3, and methyl carbamate. The results of these experiments showed that the cytotoxic responses of the paired chemicals were nearly identical (Tables A1 and A4). Likewise, the transformation responses of all 5 pairs of chemicals were not significantly different from one another (Tables A2 and A5). Both sources of dimethylmorpholinophosphoramidate, HC red 3, and methyl carbamate were active in the transformation assay, and C. I. basic red no 9 was inactive. The uncoded source of dichlorvos was inactive in the transformation assay, and the coded source of the chemical was evaluated as having an equivocal response.

Test chemical transformation responses were also observed to be very reproducible for the total group of 168 chemicals tested to at least two consecutive trials. A total of 82.7% (139/168) chemicals were clearly active or inactive in the transformation assay (Tables A3 and A6). Of the remaining 29 test chemicals, 8.9% (15/168) of the chemicals were evaluated as having weakly active or equivocal activities in the transformation assay. Thus, only 8.3%(14/168) of the chemicals had an indeterminate activity which resulted from different transformation responses being detected in two consecutive experiments. Therefore, the majority of the chemicals tested in the transformation assay had reproducible activities detected in two consecutive experiments.

The fifth accomplishment of this investigation has been to use the computer-automated structural evaluation software system (CASE) to investigate quantitative structure-activity relationships (QSAR) for BALB/c-3T3 transformation response data (unpublished observations). Because a combined database of 205 chemicals tested in a standard BALB/c-3T3 transformation assay was available [i.e., 168 chemicals in the current study, 24 chemicals in part IV of this series (14), and 13 polycyclic aromatic hydrocarbons (unpublished observations)], sufficient data were available to investigate a possible correlation of induction of transformation with specific portions of the chemical structure (i.e., biophores). This investigation revealed that the induction of transformation response data was significantly correlated with the presence of only 13 biophores; conversely, just four biophobes were associated with the inhibition of transformation. In addition, the study showed that the four biophobes were present on many of the 14 chemicals which had indeterminate activity in the transformation assay. In a companion investigation, CASE utilized the BALB-c-3T3 cell cytotoxicity data from the co-culture clonal survival assay to investigate QSAR for chemical-induced cytotoxic responses. This investigation revealed that a limited number of biophores were highly correlated with certain chemicals being cytotoxic to BALB/c-3T3 and other cultured mammalian cells [unpublished observations (26)]. QSAR investigations have determined that a limited number of biophores are highly correlated with the induction of cytotoxicity and transformation, and this information can be used to predict cytotoxic and transformation responses of chemicals untested in the BALB/c-3T3 transformation assay.

In conclusion, one of the major goals of the NTP Genetic Toxicology program during the 1980s has been to develop and evaluate in vitro assays that selectively detect carcinogenic chemicals that were inactive in Salmonella mutagenesis assays. If such assays could be developed, they could be used to investigate in vitro biological activities in common among the active chemicals and thereby lead to a clearer understanding of the mechanism(s) by which nonmutagenic carcinogens are carcinogenic in rodent bioassays. This report and the companion investigations have demonstrated progress in achieving this goal. The data in this report show that the majority of the 35 nonmutagenic carcinogens (21/35) were selectively detected in a standard BALB/c-3T3 transformation assay. In addition, CASE has identified chemical fragments of each of the nonmutagenic carcinogens that significantly correlated with the effects of the chemical in the transformation assay. Therefore, it now feasible to investigate the several different nonmutagenic carcinogens to determine the mechanism(s) by which they induced a permanent change in the transformed phenotype of BALB/c-3T3 cells. It is hoped that these investigations will help to close the current gap in our understanding of in vitro and in vivo chemical carcinogenesis.

The opinions expressed in this paper are solely those of the authors and do not necessarily reflect the positions of the U.S. Food and Drug Administration.

The experimental work was supported by funds from the National Institute of Environmental Health Sciences, contract no. NO1-ES-65150. The experimental investigations were conducted at Litton Bionetics, Inc. and Hazleton Laboratories America, Inc.

REFERENCES

- Ashby, J., and Tennant, R. W. Chemical structure, Salmonella mutagenicity, and extent of carcinogenicity, as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U. S. NCI/NTP. Mutat. Res. 204: 17–115 (1988).
- 2. Ashby, J., Tennant, R. W., Zeiger, E., and Stasiewicz, S. Classification according to chemical structure, mutagenicity to Salmonella and level

of carcinogenicity of a further 42 chemicals tested for carcinogenicity by the U. S. National Toxicology Program. Mutat. Res., 223: 73–103 (1989).

- Ashby, J., and Tennant, R. W. Evaluation of 301 chemicals for carcinogenicity: definitive relationships between chemical structure, carcinogenicity and mutagenicity. Mutat. Res., in press.
- 4. Tennant, R. W., Margolin, B. H., Shelby, M. D., Zeiger, E., Haseman, J. K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R. Prediction of chemical carcinogenicity in rodents from *in vitro* genetic toxicity assays. Science 236: 933–941 (1987).
- Heidelberger, C., Freeman, A. E., Pienta, R. J., Sivak, A., Bertram, J. S., Casto, B. C., Dunkel, V. C., Francis, M. W., Kakunage, T., Little, J. B., and Schectman, L. M. Cell transformation by chemical agents a review and analysis of the literature. Mutat. Res. 114: 283–385 (1983).
- IARC/NCI/EPA Working Group. Cellular and molecular mechanisms of cell transformation and standardization of transformation assays of established cell lines for the prediction of carcinogenic chemicals: overview and recommended protocols. Cancer Res. 45: 2395–2399 (1985).
- Kakunaga, T. A quantitative system for assay of malignant transformation by chemical carcinogens using a clone derived from BALB/ c-3T3. Int. J. Cancer 12: 463–473 (1973).
- Reznikoff, C. A., Bertram, J. S., Brankow, D. W., and Heidelberger, C. Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to post confluence inhibition of cell division. Cancer Res. 33: 3239–3249 (1973).
- Dunkel, V. C., Pienta, R. J., Sivak, A., and Traul, K. A. Comparative neoplastic transformation responses of BALB/c-3T3 cells, Syrian hamster embryo cells and Rauscher murine virus-infected Fischer's 344 rat embryo cells to chemical carcinogens. J. Natl. Cancer Inst. 67: 1303–1315 (1981).
- Matthews, E. J. Assessment of chemical carcinogen-induced transforming activity using BALB/c-3T3 cells. J. Tissue Culture Methods 10: 157–164 (1986).
- Rundell, J. O., Guntakatta, M., and Matthews, E. J. Criterion development for the application of BALB/c-3T3 cells to routine testing for chemical carcinogenic potential. In: Short-term Bioassays in the Analysis of Complex Environmental Mixtures III (M. D. Waters, S. S. Sandhu, J. Lewtas, L. Claxton, N. Chernoff, and S. Nesnow, Eds.), Plenum Publishing, New York, 1983, pp. 302–327.
- Rundell, J. O. *In vitro* transformation assays using mouse embryo cell lines: BALB/c-3T3 cells. In: Carcinogenesis and Mutagenesis Testing (J. F. Douglas, Ed.), Humana Press, Clifton, NJ, 1984, pp. 279–285.
- Sivak, A., Charest, M. C., Dudenko, L., Silveira, D. M., Simons, L., and Wild, A. W. BALB/c-3T3 cells as target cells for chemical induced neoplastic transformation. In: Advances in Modern Environmental

Toxicology, Mammalian Cell Transformation by Chemical Carcinogens, Vol. 1 (N. Mishra, V. Dunkel, and M. Mehlman, Eds.), Senate Press, Princeton Junction, NJ, 1981, pp. 133–180.

- 14. Matthews, E. J., Spalding, J. W., and Tennant, R. W. Transformation of BALB/c-3T3 cells: IV. Rank-ordered potency of 24 chemical responses detected in a sensitive new assay procedure. Environ. Health Perspect. 101(Suppl. 2): 319–345 (1993).
- 15. Morphologic transformation of cells in culture. 52(97): 795.285 (1987).
- Matthews, E. J. Comparison of two different protocols for detection of chemical-induced transformation of BALB/c-3T3 cells (abstract). Environ. Mol. Mutagen. 14: 124 (1989).
- Matthews, E. J. Transformation of BALB/c-3T3 cells: I. Investigation of experimental parameters that influence detection of spontaneous transformations. Environ. Health Perspect. 101(Suppl. 2): 277–291 (1993).
- Matthews, E. J. Transformation of BALB/c-3T3 cells: II. Investigation of experimental parameters that influence detection of benzo[*a*]pyrene-induced transformation. Environ. Health Perspect. 101(Suppl. 2): 293–310 (1993).
- Kakunaga, T., and Crow, J. D. Cell variants showing differential susceptibility to ultraviolet light-induced transformation. Science 209: 505–507 (1980)
- Lo, K., and Kakunaga, T. Similarities in the formation and removal of covalent DNA adducts in benzo[*a*]pyrene-treated BALB/3T3 variant cells with different induced transformation frequencies. Cancer Res. 42: 2644–2650 (1982).
- Matthews, E. J. Transformation of BALB/c-3T3 cells: III. Development of a co-culture clonal survival assay for quantification of chemical cytotoxicity of cells in high-density cultures. Environ. Health Perspect. 101(Suppl. 2): 311–318 (1993).
- 22. SAS/STAT Users Guide, release 6.03 ed. SAS Institute, Cary, NC, 1988.
- 23. Papciak, R. J., Brecher, S., Grant, M., Khar, S. H., and Marino, D. J. Suitably of pluronic polyols as vehicles for petroleum hydrocarbons and results with four *in vitro* assays (abstract). Environ. Mutagen. 7: 80 (1985).
- 24. WHO/IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Overall Evaluations of Carcinogenicity: Updating of IARC Monographs, Volumes 1 to 42. International Agency for Research on Cancer, Lyon, 1987.
- Fitzgerald, D. J., Piccoli, C., and Yamasaki, H. Detection of nongenotoxic carcinogens in the BALB/c-3T3 cell transformation/ mutation assay system. Mutagenesis 4: 286–291 (1989).
- Rosenkranz, H. S., Matthews, E. J., and Klopman, G. Relationships between cellular toxicity, the maximum tolerated dose, lipophilicity, and electrophilicity. ATLA 20: 549–562 (1992).

Appendix A

Cytotoxic, Mutagenic Carcinogens

2-Acetylaminofluorene. 2-Acetylaminofluorene was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.171 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 83 and 89/110, respectively; the detection sensitivities for BaP of trails 1 and 2 were 70 and 87/110, respectively (Table A2). The test chemical had an SP transformation response in two consecutive experiments. 2-Acetylaminofluorene was evaluated as very active in the transformation assay, and its actual and estimated rank *t*-statistics were 3.12 and 4.67, respectively (Table A3).

Acrylonitrile. Acrylonitrile was a level *B* carcinogen (Table A3). This chemical had one serious technical problem, because it was reported to be oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.337 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 52 and 41/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 79 and 83/110, respectively (Table A2). In both trials the chemical had an LA transformation responses. Acrylonitrile was evaluated as having had weak activity in the transformation assay. Its actual and estimated rank *t*-statistics were 3.75 and 4.35, respectively (Table A3).

2-Amino-4-Nitrophenol. 2-Amino-4-nitrophenol was a relatively weak level D carcinogen (Table A3). It had one difficult technical problem, because it is oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/ c-3T3 cells with an average LD_{50} of 0.933 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 13 and 56/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 66 and 109/110, respectively (Table A2). In trials 1 and 2 the chemical had SN transformation responses. However, there were two problems with the second transformation experiment. The test chemical cytotoxic response in the second experiment did not have a large cytotoxic shift as noted in previous experiments, and the detection sensitivity was very low in the experiment. Therefore, the test chemical should be tested in a third experiment to properly evaluate its activity in the transformation assay. 2-Amino-5-nitrophenol was therefore evaluated as having had an indeterminate activity in the transformation assay. Its actual and estimated rank *t*-values were both 0.00 (Table A3).

2-Amino-5-Nitrophenol. 2-Amino-5-nitrophenol was a relatively weak level D carcinogen (Table A3). It had one difficult technical problem, because it is oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.409 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 71, 43 and 21/110, respectively; the detection sensitivites for BaP of trials 1-3 were 23, 9 and 53/110, respectively (Table A2). In a preliminary trial 1 the chemical had a SN transformation response. In trials 2 and 3 the chemical had SP transformation responses. 2-Amino-5-nitrophenol was therefore evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 5.94 (Table A3).

5-Azacytidine. 5-Azacytidine was a level D carcinogen (Table A3) with no serious technical problems reported (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.00463 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 45 and 101/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 38 and 104/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. 5-Azacytidine was evaluated as one of the most active chemicals in the transformation assay. Its actual and estimated rank *t*-statistics were 12.8 and 16.8, respectively (Table A3).

Benzidine-2HCl. Benzidine-2HCl was a level A carcinogen (Table A3). It had one serious technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.121 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 30 and 34/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 4 and 45/110, respectively (Table A2). In trial 1 and 2 the chemical had an SP transformation response. Benzidine-2HCl was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 3.38 (Table A3).

Test Chemical ^a				Physicoc	hemical Properties	Cytotoxic Responses ^b (millimolar LD _{so}) Co-culture
Name	CAS No.	M.W.	1	2	3	Assay
	43 M	utagenio	r Ca	rcinc	aens	
Group I. Moderately Cytotoxic		utugenn			gens	
5-chloro-0-toluidine	95-79-4	141.61	S	DFC	a. ac, ai, o	1.69
C. I. disperse yellow 3	2832-40-8	269.31	S	DFC	0	1.50
1,2-epoxybutane	106-88-7	72.11	Ľ	C	ai, a, b, bc, ls, mh	
, , , , , , , , , , , , , , , , , , , ,			-	•	o, p, ts	/ 1145
1,2-epoxypropane	75-56-9	58.08	L	С	a, ai, b, bc, mc, mh	, 1.60
athylanadibramida	104-07-4	107 00	,	DEC	msc, o, p, r	1 (0
ethylenedibromide HC blue 1	106-93-4	187.88	L	DFC	b, ls, met, o, p, r	1.69
	2784-94-3	256.31	S	DFC	ai,	1.96
iodinated glycerol	5634-39-9	260.	L	C	ls	3.47
4,4-methylenedianiline	101-77-9	271.21	S	DFC	ai, ls	1.56
N-methyl-0-acrylamide	924-42-5	101.11	S	FC	ls, ts, o	1.75
2-naphthylamine	91-59-8	143.18	S	CF	a, ai, o,	1.59
quinoline	91-22-5	129.16	L	DFC	a, ls, msc, o, p	4.09
o-toluidine	95-53-4	107.16	L	DFC	a, ai, o, p, r	4.33
Group II. Cytotoxic Chemicals	EZ 0/ 7	222 2	_			0.474
2-acetylaminofluorene	53-96-3	223.3	S	DFC		0.171
acrylonitrile	107-13-1	53.06	L	DC	ai, v, 🚬	0.337
2-amino-4-nitrophenol	99-57-0	154.13	S	DFC	a, ac, ai, ls, o, ts	
2-amino-5-nitrophenol	121-88-0	154.13	S	DFC	ai, ls, ts,	0.409
benzidine-2HCl	531-85-1	257.18	S	DFC	ai, ls	0.121
2-biphenylamine	90-41-5	169.22	S	DFC	mel, o,	0.421
4-biphenylamine	92-67-1	169.23	S	DFC	ai, o, _.	0.479
4-chloro-0-toluidine-HCl	3165-93-3	178.07	L	DFC	a, ac, ai, o	0.650
C. I. acid orange 3	6373-74-6	453.41	S	DFC		0.102
C. I. disperse blue 1	2475-45-8	268.3	S	FC	sp, ts	0.240
C. I. solvent yellow 14	842-07-9	248.30	S	AFC	ls, o, sp	0.199
1,2-dibromo-3-chloropropane	96-12-8	236.35	L	DFC	b, met, r	0.401
2,6-dichloro- p -phenylenediamine		177.0	S	DFC	ai, ls, ts	0.921
1,3-dichloropropene	542-75-6	110.98	L	DFC	a, hc, met, o, tc	0.280
dichlorvos uncoded	62-73-7	220.98	L	DC	a, b, met, p, ru, W	0.145
(676384)						0.140
2,4-dinitrotoluene	121-14-2	182.14	S	DCF	o, r, ts	0.917
epichlorohydrin	106-89-8	92.53	L	DC	ai, a, b, c, msc, o,	
nitrofurantoin	67-20-9	238.16	S	DFC	a, b, ls, met, o, ts	
2-nitro- <i>p</i> -phenylenediamine	5307-14-2	153.16	S	DFC	ai, ls, o	0.947
,4-oxydianiline	101-80-4	200.24	S	DFC	ai, ls, o,	0.270
selenium sulfide	7446-34-6	111.02	S	CF		0.125
Group III. Very Cytotoxic Chemicals						
-azacytidine	320-67-2	244.2	S	DC	ts,	0.00463
-chloro-0-phenylenediamine	95-83-0	142.59	S	DFC	ai, k, l, o	0.0318
G-(chloromethyl)pyridine-HCl	6959-48-4	164.04	S	С	a, o,	0.0756
C. I. basic red 9-HCl uncoded	569-61-9	323.83	S	FC		0.00281
(947733)						0.00216
	21739-91-3	307.09	S	С		0.153
diglycidyl resorcinol ether	101-90-6	222.26	L	DCF	alk	0.00416
nelphalan	148-82-3	305.23	S	FC	ls, ts, w	0.00120
N-methyl-N-nitro-						
N'-nitrosoguanidine	70-25-7	147.1	S	DC	ls, ts, w	0.0154
nitrofurazone	59-87-0	198.14	S	DFC	ls	0.0515
ziram	137-30-4	305.81	S	DFC	a, b, met	0.0000373

21 Mutagenic Non-Carcinogens

Group I. Moderately Cytoto	xic Chemicals					
4-acetylaminofluorene	28322-02-3	223.29	S	DFC	sp	4.07
3-chloro-p-toluidine	95-74-9	141.60	S	DFC	a, ach, ai, l, o	1.17
2.4-dimethoxyaniline-HCL	54150-69-5	189.66	S	DFC	-	1.13
HC blue 2	33229-34-4	285.34	S	С	ai	5.21
HC red 3 (uncoded)	2871-01-4	197.22	s	FC	-	3.72
(coded)						4.50

MATTHEWS ET AL.

Table A1. Continued.

Name OAS No. N.N. 1 2 3 3-nitropropionic acid 504-88-1 119.06 S C a, al, b, o 2-6-toluenedianine-24CL 15541-70-6 195.11 S C - Group II. Cytotoxic Chemicals 6959-47-3 164.04 S DC o coumaphos 56-7224 322.77 S DFC b, o all (, o) Maleaxon 1634-782- 314.32 L DCC al, (, o) n N=11 renaphthylemine 134-32-7 173.17 S DFC a, a, (, a) n -1-nitronaphthylethylectorediamine 99-56-9 133.16 S DFC a, a, (, a) n -1-nitronaphthylethylethylethylethylethylethylethyl	xic Responses ^b limolar LD ₅₀) p-culture	
$ \begin{array}{c} 2,6-toluenediamine-24CL \\ \hline 15481-70-6 \\ 195.11 \\ \hline S \\ C \\ \hline Cychotoxic Chamicals \\ \hline Schlorowskip()pyridine-4CL \\ 565-72-4 \\ 362.78 \\ S \\ DFC \\ b, v \\ \hline malaoxn \\ \hline 1634-78-2 \\ 314.32 \\ L \\ DFC \\ a, ach, l, o \\ \hline 1000 \\ 100$	Assay	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.23	
2:chicromethylpyridine-RCL 6959-47-3 164.04 S DC o coumaphos 56-72-4 362.78 S DFC b, o methoate 60-51-5 229.27 L DFC b, v metaaxon 1634-78-2 314.32 L DFC a, at l, o -780L - 1. 1.nitronaphthylendiamine 134-32-7 143.18 S DFC a, o, r -780L - 1. 1.nitronaphthylendiamine 99-56-9 153.14 S DFC a, o, r -780L - 1. 1.nitronaphthylamide 135-88-6 219.30 S DFC a, ac, at, l, s N=phenyl-2-maphthylamide 135-88-6 219.30 S DFC a, ac, at, l, s N=phenyl-2-maphthylamide 135-88-6 219.30 S DFC - a, ac, at, l, s N=phenyl-2-maphthylamide 135-88-7 173.17 S DFC a, o, r -7(-Chi-Cacetyl)acetanilide 140-49-8 211.66 S DFC - - N=phenylenediamine-280L 624-18-0 181.07 S C at, l, o 2,3,5,6-tetrachloro-4 2438-88-2 290.91 S DFC - - nitroanisole tetraethylthiuram disulfide 97-77-8 296.54 S DFC 0 20 Non-Mutagenic Carcinogens Group 1. Moderately Cytotoxic Chemicals 4104 1983-74 190.55 L DFC - nitroanisole 115-28-6 388.83 S DFC m chlorowax 40 108171-26-2 415. L AFC L, o, r, ts chlorowax 40 108171-26-2 415. L AFC L, o, r, ts chlorowax 40 108171-26-3 204.55 L DFC ai, h, o, L, t, v isophorone 100-40-3 108.20 L DFC ai, o, ts nitroiniset 24382-04-5 94.05 S C L, vtS nitriotriacetia acid 139-13-9 257.1 S C m 4-vinylcyclohexene 100-40-3 108.20 L DFC ai, o, ts 2-methylophexene 563:47-3 99.55 L DFC o, o, l, t, v, w D-1 imonete 563:47-3 99.55 L DFC ai, o, ts 2-methylophexene 100-40-3 108.20 L DFC ai, o, ts 2-methylophexene 100-40-3 108.20 L DFC ai, o, ts 2-methylophexene 774-32-1 627.59 S DFC L, sp 2-intionethylophexphate 774-42-2 434.65 L DFC o 30 Non-Mutagenic Non-Carcinogens 30 Non-Mutagenic Non-Carcinogens	4.11	
Compapies 56-72-4 362.78 S DFC b, o Malaoxon 1634-78-2 314.32 L DFC b, v 1-naphthylamine 134-78-2 314.32 L DFC a, ail, o *'1-naphthylamine 145-25-4 259.18 DFC a, ach, l, o -2RICL 86-57-7 173.17 S DFC a, ac, ai, ls r *'nitron-phenylenediamine 99-56-9 153.14 S DFC a, c, ai, ls r *'nitron-phenylenediamine 140-49-8 211.66 S DFC - Shydroxyquinoline 148-24-3 145.16 S DFC - *'nitroanisole 135-88-62 210.91 S DFC - *'nitroanisole 152-28-6 S DFC - - *'sophoroe 708-88-82 200.91 S DFC - *'sophoroe 115-28-6 388.83 DFC - - *'sophoroe 108/71-27-3 56.1	0.118	
dimethodic 60-51-5 229.27 L DFC b, v malaxon 153-78-2 214.32 L DC a, v 1 1-naphthyl)tethylenediamine 134-32-7 143.18 S DFC a, atl, o -2HCL 1-nitronaphthalene 86-57-7 173.17 S DFC a, c, ai, ls r A-nitro-0-phenylenediamine 99-56-9 153.14 S DFC a, c, ai, ls r A-nitro-0-phenylenediamine 135-88-6 219.30 S DFC - 4'-(Chloroacetyl)acetantilde 148-24-3 145.16 S DFC - 8-hydroxyquinoline 148-24-3 145.16 S DFC - -itroanisole 23,5,6-tetrachloro-4 2438-88-2 290.91 S DFC - 14/1 Otomotetatild 97-77-8 296.54 S DFC - 173.17 S DFC - - - - 13/1 S DFC -	0.218	
1634-78-2 314.32 L DC ai, v 1-napithylamine 134-78-2 314.318 S DFC a, ail, o *1-napithylamine 1453-25-7 143.18 S DFC a, ac, ail, o *1-napithylamine 135-77 173.17 S DFC a, ac, ai, ls r *1-nitronapithalene 86-57-7 173.17 S DFC a, ac, ai, ls r *nitro-0-phenylenediamine 99-56-9 153.14 S DFC ai, l **-(folroacetyl3acetanilide 140-49-8 211.66 S DFC - *hydroxyquinoline 168-24-3 145.16 S DFC - *hydroxyquinoline 168-24-3 145.16 S DFC - nitroanisole 235.6-6-tetrachloro-4- 2438-88-2 290.91 S DFC - *lorendic acid 108171-27-3 560. L FC - - *lorendic acid 108171-26-2 415.2 L DFC - - *lorendic acid 108171-26-2 455. DFC -	0.602	
Impainting anime 134-32-7 143.18 S DFC a, ail, o -2NCL	0.468	
N-C1-maphthylethylenediamine 1465-25-4 259.18 S DFC a, ach, l, o -2NC1	0.506	
1-nitronaphthalene 86-57-7 173.17 S DFC a, o, r 4-nitro:-phenylenediamine 99-56-9 153.14 S DFC a, ac, ai, ls r h-phenyl-2-naphthylamide 135-88-6 219.30 S DFC ai, l Group III. Very Cytotoxic Chemicals 4'-(Chloroacetyl)acetanilide 140-49-8 211.66 S DFC - 8-hydroxyquinoline 148-24-3 145.16 S DFC - 8-hydroxyquinoline 24818-01 181.07 S C ai, l, o 2,3,5,6-tetrachloro-4- 2438-88-2 290.91 S DFC - nitroanisole tetraethylthiuram disulfide 97-77-8 296.54 S DFC 0 20 Non-Mutagenic Carcinogens Group I. Moderately Cytotoxic Chemicals allyl isovalerate 2835-39-4 142.22 L DFC - chloromax 40 108171-27-3 560. L FC b, l, o, r, ts chlorowax 40 108171-27-3 560. L FC b, l, o, r, ts dimethylvinyl chloride 513-37-1 90.55 L DFC oi, b, o, l, t, v isophorone 78-59-1 138.23 L DFC o, t, v malonaldehyde, sodium salt 24382-04-5 94.05 S C L VtS nitrilotriacetic acid 139-13-9 257.1 S C m 4-vinylcyclohexene 100-40-3 108.20 L DFC ai, o, o, l, t, v 5-chloro-aethylpopene 563-47-3 99.55 L DFC dai, o, ts Group II. Cytotoxic Chemicals 3-chloro-2-methylpopene 563-47-3 99.55 L DFC b, o, l, t, v, W 0-limonene 5989-27-5 136.24 L DFC a, ai, l, o, ts 2-mercaptoberzothiazole 149-30-4 167.25 S DFC a, ai, l, o, ts 2-mercaptoberzothiazole 149-30-4 167.25 S DFC d, sp polybrominated biphenyl mixture 6777-452-6 253.32 S DFC d, sp tris(2-ethylhexyl)phosphate 78-42-2 434.65 L DFC c a, al, b, o, v, W cinnamyl anthranilate 87-20-6 253.32 S DFC d, sp polybrominated biphenyl mixture 6776-5 237.10 S DFC ai, al, b, o, v, W reserpine 50-55-5 608.70 S DC d, sp c, v, w reserpine 50-55-5 608.70 S DC di, l, c, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbormal 77-65-6 237.10 S DFC ai, l, c, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbormal 77-65-7 99.16 L DFC a, b, o, pi, v, W reserpine 50-55-5 608.70 S DC ai, l, c, r ai, ald, l iethylactid red 14 3567-69-9 358.22 S FC m acid, trisodium salt plmenthol 15355-70-4 155-27 S DFC o, oc	0.125	
<pre>4-nitro-0 phenylemediamine 90-56-9 153.14 S DFC a, ac, ai, ls r N = phenyle-2-naphthylamide 135-88-6 219.30 S DFC ai, l Group III. Very Cytotoxic Chemicals 4'-(Chiloroacety)lacetanilide 148-24-3 145.16 S DFC - 8-hydroxyquinoline 148-24-3 145.16 S DFC - ai, l, o 2,3,5,6-tetrachloro-4- 2438-88-2 290.91 S DFC - nitroanisole 97-77-8 296.54 S DFC 0 20 Non-Mutagenic Carcinogens Group I. Moderately Cytotoxic Chemicals allyl isovalerate 2835-39-4 142.22 L DFC - chlorendic acid 115-28-6 388.83 S DFC m chlorendic acid 115-28-6 388.83 S DFC m chlorendic acid 115-28-6 388.83 S DFC m chlorendic acid 115-28-6 388.83 DFC o, r, ts chlorendic acid 115-28-6 388.83 DFC o, r, ts dimethylvinyl chloride 513-37-1 90.55 L DFC ai, b, o, l, t, v isophorone 78-59-1 138.23 L DFC o, t, v malonaldehyde, sodium salt 24382-04-5 99.55 L DFC ai, b, o, l, t, v isophorone 108-27-1 S C ai, c, vts nitrilotriacetic acid 139-13-9 257.1 S C m 4-vinylcyclohexene 10-04-3 108.20 L DFC ai, o, ts Group II. Cytotoxic Chemicals 3-chloro-2-methylpropene 563-47-3 99.55 L DFC b, o, l, t, v, W D-limonene 5989-27-5 136.24 L DFC a, ai, l, o, ts Group II. Cytotoxic Chemicals 3-chloro-2-methylpropene 563-47-3 99.55 L DFC b, o, l, t, v, W D-limonene 5989-27-5 136.24 L DFC a, ai, l, o, ts Group III. Cytotoxic Chemicals 3-chloro-2-methylpropene 563-47-3 99.55 L DFC b, o, l, t, v, W D-limonene 5989-27-5 136.24 L DFC a, ai, l, o, ts Group III. Very Cytotoxic Chemicals allyl isothiocyanate 398-27-5 136.24 L DFC a, a, o, W methapyrilene-HCl 135-23-9 297.88 S C - polybrominated biphenyl mixture 6777-52-1 287.95 DFC ai, a, b, o, v, W cinnamyl anthranilate 87-29-6 253.32 S DFC ai, ald, l diethylstibestrol 56-53-1 268.34 S DFC o Group III. Very Cytotoxic Chemicals Group I. Moderately Cytotoxic Chemicals carbomal 77-65-6 237.10 S DFC ai, l, c, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbomal 77-65-6 237.10 S DFC ai, l c. 1, acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-72-5 428.54 S C</pre>	0.464	
N-phenyl-2-naphthylamide 135-88-6 219.30 S DFC ai, L Group III. Very Cytotoxic Chemicals 4'-(chloroacetyl)acetanilide 140-49-8 211.66 S DFC - 8-hydroxyquinoline 148-24-3 145.16 S DFC - ai, n, o p-phenylenediamine-2HCL 624-18-0 181.07 S C ai, l, o 2,3,5,6-tertachloro-4- 2438-88-2 290.91 S DFC - nitroanisole tetraethylthiuram disulfide 97-77-8 296.54 S DFC 0 20 Non-Mutagenic Carcinogens Group I. Moderately Cytotoxic Chemicals allyl isovalerate 2835-39-4 142.22 L DFC - chlorowax 60 108171-27-3 560. L FC b, l, o, r, ts chlorowax 60 108171-27-3 560. L FC b, l, o, r, ts chlorowax 500 108171-27-3 560. L DFC o, t, v matonaldehyde, sodium salt 2432-04-5 94.05 S C L VtS nitrilotriacetic acid 139-13-9 257.1 S C m 4-vinylcyclohexene 100-40-3 108.20 L DFC ai, o, ts Group I. Cytotoxic Chemicals Group I. Cytotoxic Chemicals 3-chloro-2-methylpropene 563-47-3 99.55 L DFC b, o, l, t, v, W D-linonene 100-40-3 108.20 L DFC a, al, b, o, v, W 2-mercaptobenzothiazole 149-30-4 167.25 S DFC a, o, w methapyrilene-HCl 135-23-9 297.88 S C - polybromined biphenyl mixture 67774-32-1 627.59 S DFC ai, al, b, o, v, W cinnamyl anthranilat 87-29-6 253.32 S DFC ai, al, b, o, v, W diethylstilbestrol 56-53-1 268.34 S DFC o Group II. Very Cytotoxic Chemicals Group II. Very Cytotoxic Chemicals Group II. Very Cytotoxic Chemicals Group II. Very Cytotoxic Chemicals Group II. Noderately Cytotoxic Chemicals Group II. Moderately Cytotoxic Chemicals Group II. Moderately Cytotoxic Chemicals Group II. Moderately Cytotoxic Chemicals Group I. Moderately Cytotoxic Chemicals Group I. Moderately Cytotoxic Chemicals Carboromal 77-65-6 237.10 S DFC ai, l, c, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals Carboromal 77-65-6 237.10 S DFC ai, l, c, r ai, al, l, o, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals Carboromal 77-65-6 237.10 S DFC ai, l, c, r ai, al, l, c, r aid, trisodium salt 77-65-6 237.10 S DFC ai, l, c, r ephedrine sulfate 134-72-5 428.54 S C - C, l,	0.292	
	0.195	
B-hydroxyquinoline 148-24-3 145.16 S DC L, m, o p-phenylenediamine-2HCl 624-18-0 181.07 S C ai, l, o 2,3,5,6-tertachloro-4- 2438-88-290.91 S DFC - nitroanisole tetraethylthiuram disulfide 97-77-8 296.54 S DFC 0 20 Non-Mutagenic Carcinogens <u>Group I. Moderately Cytotoxic Chemicals</u> allyl isovalerate 2835-39-4 142.22 L DFC - chlorowax 40 108171-27-3 560. L FC b, l, o, r, ts chlorowax 40 108171-27-3 560. L FC di, b, o, l, t, v isophorone 78-59-1 138.23 L DFC o, t, v malonaldehyde, sodium salt 24382-04-5 94.05 S C l, vts malonaldehyde, sodium salt 24382-04-5 94.05 S C l, vts <u>Group II. Cytotoxic Chemicals</u> 3-chloro-2-methylpropene 563-47-3 99.55 L DFC a, ai, o, ts <u>Group II. Cytotoxic Chemicals</u> 3-chloro-2-methylpropene 563-47-3 99.55 L DFC a, ai, l, o, ts <u>Group II. Cytotoxic Chemicals</u> 3-chloro-2-methylpropene 563-47-3 99.55 L DFC a, ai, l, o, ts <u>Group III. Cytotoxic Chemicals</u> 3-chloro-2-methylpropene 563-47-3 99.55 L DFC a, ai, l, o, ts <u>Group III. Very Cytotoxic Chemicals</u> 3-chloro-2-methylpropene 563-47-3 99.55 L DFC a, ai, l, o, ts <u>Group III. Very Cytotoxic Chemicals</u> 3-chloro-2-methylpropene 563-47-3 99.55 L DFC a, ai, l, o, ts <u>Group III. Very Cytotoxic Chemicals</u> 3-chloro-2-methylpropene 563-47-3 99.55 L DFC a, ai, l, o, v, w ethapyrilene-HCl 135-23-927.88 C - polybrominated biphenyl mixture 67774-32-1 627.59 S DFC a, a, w methapyrilene-HCl 135-23-927.88 C - polytorominated biphenyl mixture 67774-32-1 627.59 S DFC di, sp tris(2-ethylhexyl)phosphate 78-62 233.32 S DFC di, ald, l diethylstibestrol 56-53-1 268.34 S DFC ethyl acrylate 140-88-5 100.12 L DFC a, al, b, o, v, w reserpine 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbromal 77-65-6 237.10 S DFC ai, l, c, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbromal 77-65-6 237.10 S DFC ai, l C. 1. acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-725-428.54 S C l, ts ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt 0-	0.0077/	
prhomylenediamine-2HCL 624-18-0 181.07 s c ai, i, o 2,3,5,6-tetrachloro-4- 2438-88-2 290.91 s DFC - nitroanisole tetraethylthiuram disulfide 97-77-8 296.54 s DFC 0 Convorting the second secon	0.00336	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00251	
Introanisole Provide and the set of the se	0.0712 0.0437	
tetraethylthiuram disulfide 97-77-8 296.54 s DFC 0 20 Non-Mutagenic Carcinogens Group I. Moderately Cytotoxic Chemicals allyl isovalerate 2835-39-4 142.22 L DFC - chlorendic acid 115-28-6 388.83 s DFC m chlorowax 40 108171-27-3 560. L FC b, l, o, r, ts chlorowax 500 108171-26-2 415. L AFC l, o, r, ts chlorowax 500 108171-26-2 415. L AFC l, o, r, ts chlorowax 500 108171-26-2 415. L AFC l, o, r, ts dimethylvnyl chloride 513-37-1 90.55 L DFC ai, b, o, l, t, v isophorone 78-59-1 138.23 L DFC o, t, v malonaldehyde, sodium salt 24382-04-5 94.05 s C l, vts nitrilotriacetic acid 139-13-9 257.1 S C m 4-vinylcyclohexene 100-40-3 108.20 L DFC ai, o, ts Group II. Cytotoxic Chemicals 3-chloro-2-methylpropene 563-47-3 99.55 L DFC b, o, l, t, v, w D-limonene 5989-27-5 136.24 L DFC a, oi, l, o, ts 2-mercaptobenzothiazole 149-30-4 167.25 s DFC a, o, w methapyrilene-HCl 135-23-9 297.88 s C - polybrominated biphenyl mixture 67774-32-1 627.59 s DFC l, sp tris(2-ethylhexyl)phosphate 78-42-2 434.65 L DFC o Group III. Very Cytotoxic Chemicals allyl isothiocyanate 57-06-7 99.16 L DFC a, al, b, o, v, w cinnamyl anthranilate 87-29-6 253.32 s DFC ai, ald, l diethylstilbestrol 56-53-1 268.34 s DFC ethyl acrylate 140-85-100.12 L DC a, b, o, pi, v, w reserpine 50-55-5 608.70 s DC ai, l, o, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carboromal 77-65-6 237.10 s DFC ai, l C. 1. acid red 14 3567-60-9 502.44 s C - C. 1. acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-72-5 428.54 S C l, ts ethylenediamine tetraacetic 150-38-9 358.22 s FC m acid, trisodium salt $p_{1-menthol}$ 15356-70-4 156.27 s DFC o, oc		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0.0000583	
allyl isovalerate2835-39-4142.22LDFC-chlorowax 40115-28-6388.83SDFCmchlorowax 500108171-27-3560.LFCb, l, o, r, tsdimethylvinyl chloride513-37-190.55LDFCo, t, visophorone78-59-1138.23LDFCo, t, vmalonaldehyde, sodium salt24382-04-594.05SCl, vtsnitrilotriacetic acid139-13-9257.1SCm4-vinylcyclohexene100-40-3108.20LDFCai, o, tsGroup 11.Cytotoxic Chemicals5SDFCa, o, w3-chloro-2-methylpropene563-47-399.55LDFCa, o, wD-limonene5989-27-5136.24LDFCa, o, wmethapyrilene-HCl135-23-9297.88SC-polybrominated biphenyl mixture67774-32-1627.59SDFCl, sppolybrominated biphenyl mixture57-06-799.16LDFCa, al, b, o, v, wcinnamyl anthranilate87-29-6253.32SDFCai, ald, ldiethylstilbestrol56-55-5608.70SDCai, l, o, r30Non-MutagenicNon-CarcinogensGroup 11.Moderately Cytotoxic Chemicalscarbromal77-65-6237.10SDFCai, l, o, r30Non-MutagenicNon-CarcinogensGroup 11.Moderately		
allyl isovalerate2835-39-4142.22LDFC-chlorowax 40115-28-6388.83SDFCmchlorowax 500108171-27-3560.LFCb, l, o, r, tsdimethylvinyl chloride513-37-190.55LDFCo, t, visophorone78-59-1138.23LDFCo, t, vmalonaldehyde, sodium salt24382-04-594.05SCl, vtsnitrilotriacetic acid139-13-9257.1SCm4-vinylcyclohexene100-40-3108.20LDFCai, o, tsGroup 11.Cytotoxic Chemicals5SDFCa, o, w3-chloro-2-methylpropene563-47-399.55LDFCa, o, wD-limonene5989-27-5136.24LDFCa, o, wmethapyrilene-HCl135-23-9297.88SC-polybrominated biphenyl mixture67774-32-1627.59SDFCl, sppolybrominated biphenyl mixture57-06-799.16LDFCa, al, b, o, v, wcinnamyl anthranilate87-29-6253.32SDFCai, ald, ldiethylstilbestrol56-55-5608.70SDCai, l, o, r30Non-MutagenicNon-CarcinogensGroup 11.Moderately Cytotoxic Chemicalscarbromal77-65-6237.10SDFCai, l, o, r30Non-MutagenicNon-CarcinogensGroup 11.Moderately		
Chilorowa 400 108171-27-3 560. L FC b, l, o, r, ts chlorowax 500 108171-26-2 415. L AFC l, o, r, ts dimethylvinyl chloride 513-37-1 90.55 L DFC ai, b, o, l, t, v isophorone 78-59-1 138.23 L DFC o, t, v malonaldehyde, sodium salt 24382-04-5 94.05 S C l, vts nitrilotriacetic acid 139-13-9 257.1 S C m 4-vinylcyclohexene 100-40-3 108.20 L DFC ai, o, ts 3c-hloro-2-methylpropene 563-47-3 99.55 L DFC a, o, l, t, v, W D-limonene 5989-27-5 136.24 L DFC a, ai, l, o, ts 2-mercaptobenzothiazole 149-30-4 167.25 S DFC a, o, W methapyrilene-HCl 135-23-9 297.88 S C - polybrominated biphenyl mixture 67774-32-1 627.59 S DFC a, al, b, o, v, W cinnamyl anthranilate 87-29-6 253.32 DFC	4.51	
Chlorowax 500 108171-26-2 415. L AFC L, o, r, ts dimethylvinyl chloride 513-37-1 90.55 L DFC ai, b, o, l, t, v isophorone 78-59-1 138.23 L DFC o, t, v malonaldehyde, sodium salt 24382-04-5 94.05 S C l, vts nitrilotriacetic acid 139-13-9 257.1 S C m 4-vinylcyclohexene 100-40-3 108.20 L DFC ai, o, ts 3-chloro-2-methylpropene 563-47-3 99.55 L DFC a, ai, l, o, ts 2-mercaptobenzothiazole 149-30-4 167.25 S DFC a, o, W methapyrilene-HCl 135-23-9 297.88 S C - polybrominated biphenyl mixture 67774-32-1 627.59 S DFC a, o, W reis(2-ethylhexyl)phosphate 78-62-7 99.16 L DFC ai, al, b, o, v, W cinnamyl anthranilate 87-29-6 253.32 S DFC ai, ald, l L diethylstilbestrol 56-53-1 268.34<	4.07	
dimethylvinyl chloride 513-37-1 90.55 L DFC ai, b, o, l, t, v isophorone 78-59-1 138.23 L DFC o, t, v malonaldehyde, sodium salt 24382-04-5 94.05 S C l, vts nitrilotriacetic acid 139-13-9 257.1 S C m 4-vinylcyclohexene 100-40-3 108.20 L DFC ai, o, ts <u>Group II. Cytotoxic Chemicals</u> 3-chloro-2-methylpropene 563-47-3 99.55 L DFC a, ai, l, o, ts 2-mercaptobenzothiazole 149-30-4 167.25 S DFC a, o, W methapyrilene-HCl 135-23-9 297.88 S C - polybrominated biphenyl mixture 67774-32-1 627.59 S DFC l, SP tris(2-ethylhexyl)phosphate 78-42-2 434.65 L DFC o <u>Group III. Very Cytotoxic Chemicals</u> allyl isothiocyanate 57-06-7 99.16 L DFC ai, al, b, o, v, W cinnamyl anthranilate 87-29-6 253.32 S DFC ai, ald, l diethylstilbestrol 56-53-1 268.34 S DFC ethyl acrylate 140-88-5 100.12 L DC a, b, o, pi, v, W reserpine 50-55-5 608.70 S DC ai, l, o, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbromal 77-65-6 237.10 S DFC ai, l, c, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbromal 77-65-6 237.10 S DFC ai, l, c, c ai, l, o, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbromal 77-65-6 237.10 S DFC ai, l C. I. acid red 14 3567-699 502.44 S C - C. I. acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-72-5 428.54 S C I, ts ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt D,L-menthol 1536-70-4 156.27 S DFC o, oc	1.43	
isophorone78-59-1138.23LDFCo, t, vmalonaldehyde, sodium salt $24382-04-5$ 94.05SCLVtsnitrilotriacetic acid139-13-9257.1SCm4-vinylcyclohexene100-40-3108.20LDFCai, o, tsGroup II.Cytotoxic Chemicals3-chloro-2-methylpropene563-47-399.55LDFCb, o, l, t, v, WD-limonene5989-27-5136.24LDFCa, ai, l, o, ts2-mercaptobenzothiazole149-30-4167.25SDFCa, o, Wmethapyrilene-HCl135-23-9297.88SC-polybrominated biphenyl mixture 67774-32-1627.59SDFCl, sptris(2-ethylhexyl)phosphate78-42-2434.65LDFCai, ald, lallyl isothiocyanate57-06-799.16LDFCa, al, b, o, v, Wcinnamyl anthranilate87-29-6253.32SDFCeithyl a: ald, ldiethylstilbestrol56-55-1268.34SDFCeithyl a: o, r30Non-MutagenicNon-CarcinogensGroup I.Moderately Cytotoxic Chemicalscarbromal77-65-6237.10SDFCai, lc. i. acid red 143567-69-9502.44SC-c. i. acid red 143567-69-9502.44SC-c. i. acid red 143567-69-9502.44SC-c. i. acid red 14 <td>1.58</td>	1.58	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.74	
nitrilotriacetic acid 139-13-9 257.1 S C m 4-vinylcyclohexene 100-40-3 108.20 L DFC ai, o, ts Group II. Cytotoxic Chemicals 3-chloro-2-methylpropene 563-47-3 99.55 L DFC b, o, l, t, v, w D-limonene 5989-27-5 136.24 L DFC a, ai, l, o, ts 2-mercaptobenzothiazole 149-30-4 167.25 S DFC a, o, w methapyrilene-HCl 135-23-9 297.88 S C - polybrominated biphenyl mixture 67774-32-1 627.59 S DFC l, Sp tris(2-ethylhexyl)phosphate 78-42-2 434.65 L DFC o Group III. Very Cytotoxic Chemicals allyl isothiocyanate 57-06-7 99.16 L DFC a, al, b, o, v, w cinnamyl anthranilate 87-29-6 253.32 S DFC ai, ald, l diethylstilbestrol 56-53-1 268.34 S DFC ethyl acrylate 140-88-5 100.12 L DC a, b, o, pi, v, w reserpine 50-55-5 608.70 S DC ai, l, o, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbromal 77-65-6 237.10 S DFC ai, l C. I. acid red 14 3567-69-9 502.44 S C - C. I. acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-72-5 428.54 S C I, ts ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt p,L-menthol 15356-70-4 156.27 S DFC o, oc	5.18 3.74	
4-vinylcyclohexene 100-40-3 108.20 L DFC ai, o, ts Group II. Cytotoxic Chemicals 3-chloro-2-methylpropene 563-47-3 99.55 L DFC b, o, l, t, v, W D-limonene 5989-27-5 136.24 L DFC a, ai, l, o, ts 2-mercaptobenzothiazole 149-30-4 167.25 S DFC a, o, W methapyrilene-HCl 135-23-9 297.88 S - polybrominated biphenyl mixture 67774-32-1 627.59 S DFC l, sp tris(2-ethylhexyl)phosphate 78-42-2 43.65 L DFC ai, ald, l diethylstilbestrol 56-53-1 268.34 S DFC ai, ald, l diethylarylate 140-88-5 100.12 L DC a, b, o, pi, v, W reserpine 50-55-5 608.70 S DC ai, l, o, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbromal 77-65-6 237.10 S DFC ai, l, o, r 30 Non-Mutagen	5.98	
	3.88	
$3-chloro-2-methylpropene563-47-399.55LDFCb, o, l, t, v, wD-limonene5989-27-5136.24LDFCa, ai, l, o, ts2-mercaptobenzothiazole149-30-4167.25SDFCa, o, wmethapyrilene-HCl135-23-9297.88SC-polybrominated biphenyl mixture67774-32-1627.59SDFCl, Sptris(2-ethylhexyl)phosphate78-42-2434.65LDFCoGroup III.Very Cytotoxic Chemicalsallyl isothiocyanate57-06-799.16LDFCai, ald, lcinnamyl anthranilate87-29-6253.32SDFCai, ald, ldiethylstilbestrol56-53-1268.34SDFCethyl acrylate140-88-5100.12LDCa, b, o, pi, v, wreserpine50-55-5608.70SDCai, l, o, r30 Non-MutagenicNon-CarcinogensGroup I.Moderately Cytotoxic Chemicalscarbromal77-65-6237.10SDFCai, lC. I. acid red 143567-69-9502.44SC-C. I. acid yellow 73518-47-8376.SCoethylenediamine tetraacetic153-38-9358.22SFCmacid, trisodium saltp_L-menthol15356-70-4156.27SDFCo, oc$	5.00	
D-limonene 5989-27-5 136.24 L DFC a, ai, l, o, ts 2-mercaptobenzothiazole 149-30-4 167.25 S DFC a, o, W methapyrilene-HCl 135-23-9 297.88 S C - polybrominated biphenyl mixture 67774-32-1 627.59 S DFC l, Sp tris(2-ethylhexyl)phosphate 78-42-2 434.65 L DFC o Group III. Very Cytotoxic Chemicals allyl isothiocyanate 57-06-7 99.16 L DFC a, al, b, o, v, W cinnamyl anthranilate 87-29-6 253.32 S DFC ai, ald, l diethylstilbestrol 56-53-1 268.34 S DFC ethyl acrylate 140-88-5 100.12 L DC a, b, o, pi, v, W reserpine 50-55-5 608.70 S DC ai, l, o, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbromal 77-65-6 237.10 S DFC ai, l C. I. acid red 14 3567-69-9 502.44 S C - C. I. acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-72-5 428.54 S C l, ts ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt D,L-menthol 15356-70-4 156.27 S DFC o, oc	0.662	
2-mercaptobenzothiazole 149-30-4 167.25 S DFC a, o, w methapyrilene-HCl 135-23-9 297.88 S C - polybrominated biphenyl mixture 67774-32-1 627.59 S DFC l, SP tris(2-ethylhexyl)phosphate 78-42-2 434.65 L DFC o Group III. Very Cytotoxic Chemicals allyl isothiocyanate 57-06-7 99.16 L DFC a, al, b, o, v, w cinnamyl anthranilate 87-29-6 253.32 S DFC ai, ald, l diethylstilbestrol 56-53-1 268.34 S DFC ethyl acrylate 140-88-5 100.12 L DC a, b, o, pi, v, w reserpine 50-55-5 608.70 S DC ai, l, o, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbromal 77-65-6 237.10 S DFC ai, l C. I. acid red 14 3567-69-9 502.44 S C - C. I. acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-72-5 428.54 S C l, ts ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt D,L-menthol 15356-70-4 156.27 S DFC o, oc	0.988	
$\begin{array}{c} Lincup for the output of the output$	0.130	
Interfact in the polybrominated biphenyl mixture 67774-32-1627.59SDFCl, SPtris(2-ethylhexyl)phosphate78-42-2434.65LDFCl, SPallyl isothiocyanate57-06-799.16LDFCa, al, b, o, v, wallyl isothiocyanate57-06-799.16LDFCa, al, b, o, v, wcinnamyl anthranilate87-29-6253.32SDFCai, ald, ldiethyl stilbestrol56-53-1268.34SDFCait diethyl acrylate140-88-5100.12LDCai, l, o, r30Non-MutagenicNon-CarcinogensGroup I.Moderately Cytotoxic Chemicalscarbromal77-65-6237.10SDFCai, lCI. acid red 143567-69-9502.44SCI. acid red 143567-69-9502.44SCI. acid red 143567-69-9502.44 <td colsp<="" td=""><td>0.812</td></td>	<td>0.812</td>	0.812
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.291	
allyl isothiocyanate57-06-799.16LDFCa, al, b, o, V, Wcinnamyl anthranilate87-29-6253.32SDFCai, ald, ldiethylstilbestrol56-53-1268.34SDFCethyl acrylate140-88-5100.12LDCa, b, o, pi, v, Wreserpine50-55-5608.70SDCai, l, o, r30Non-MutagenicNon-CarcinogensGroup I.Moderately Cytotoxic Chemicalscarbromal77-65-6237.10SDFCc. I. acid red 143567-69-9502.44SCc. I. acid yellow 73518-47-8376.SCethylenediamine tetraacetic150-38-9358.22SFCacid, trisodium salt0, L-menthol15356-70-4156.27SDFCo, c15356-70-4156.27SDFCo, oc	0.338	
allyl isothiocyanate57-06-799.16LDFCa, al, b, o, V, Wcinnamyl anthranilate87-29-6253.32SDFCai, ald, ldiethylstilbestrol56-53-1268.34SDFCethyl acrylate140-88-5100.12LDCa, b, o, pi, v, Wreserpine50-55-5608.70SDCai, l, o, r30Non-MutagenicNon-CarcinogensGroup I.Moderately Cytotoxic Chemicalscarbromal77-65-6237.10SDFCc. I. acid red 143567-69-9502.44SCc. I. acid yellow 73518-47-8376.SCethylenediamine tetraacetic150-38-9358.22SFCacid, trisodium salt0, L-menthol15356-70-4156.27SDFCo, oc15356-70-4156.27SDFCo, oc		
cinnamyl anthranilate 87-29-6 253.32 S DFC a1, ald, l diethylstilbestrol 56-53-1 268.34 S DFC ethyl acrylate 140-88-5 100.12 L DC a, b, o, pi, v, W reserpine 50-55-5 608.70 S DC ai, l, o, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbromal 77-65-6 237.10 S DFC ai, l C. I. acid red 14 3567-69-9 502.44 S C - C. I. acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-72-5 428.54 S C l, ts ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt D,L-menthol 15356-70-4 156.27 S DFC o, oc	0.00712	
activities 140-88-5 100.12 L DC a, b, o, pi, v, w reserpine 50-55-5 608.70 S DC ai, l, o, r 30 Non-Mutagenic Non-Carcinogens Group I. Moderately Cytotoxic Chemicals carbromal 77-65-6 237.10 S DFC ai, l C. I. acid red 14 3567-69-9 502.44 S C - C. I. acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-72-5 428.54 S C l, ts ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt D,L-menthol 15356-70-4 156.27 S DFC o, oc	0.0947	
Christian50-55-5608.70SDCai, i, o, r30 Non-Mutagenic Non-CarcinogensGroup I. Moderately Cytotoxic Chemicalscarbromal77-65-6237.10SDFCai, lC. I. acid red 143567-69-9502.44SC-C. I. acid yellow 73518-47-8376.SCoephedrine sulfate134-72-5428.54SCl, tsethylenediamine tetraacetic150-38-9358.22SFCmacid, trisodium salt15356-70-4156.27SDFCo, oc	0.0858	
30 Non-Mutagenic Non-CarcinogensGroup I. Moderately Cytotoxic Chemicalscarbromal77-65-6C. I. acid red 143567-69-9502.44SC. I. acid yellow 73518-47-8518-47-8376.SCo0ephedrine sulfate134-72-5428.54SC. I. trisodium saltD,L-menthol15356-70-415356-70-4156.27SDFCO, oc	0.0746	
Group I. Moderately Cytotoxic Chemicals carbromal 77-65-6 237.10 S DFC ai, l C. I. acid red 14 3567-69-9 502.44 S C - C. I. acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-72-5 428.54 S C l, ts ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt 15356-70-4 156.27 S DFC o, oc	0.0133	
carbromal 77-65-6 237.10 S DFC ai, l C. I. acid red 14 3567-69-9 502.44 S C - C. I. acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-72-5 428.54 S C l, ts ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt 15356-70-4 156.27 S DFC o, oc		
C. I. acid red 14 3567-69-9 502.44 S C - C. I. acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-72-5 428.54 S C l, ts ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt D,L-menthol 15356-70-4 156.27 S DFC o, oc	3.60	
C. I. acid yellow 73 518-47-8 376. S C o ephedrine sulfate 134-72-5 428.54 S C l, ts ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt D,L-menthol 15356-70-4 156.27 S DFC o, oc	3.38	
ephedrine sulfate 134-72-5 428.54 S C l, ts ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt D,L-menthol 15356-70-4 156.27 S DFC o, oc	4.65	
ethylenediamine tetraacetic 150-38-9 358.22 S FC m acid, trisodium salt D,L-menthol 15356-70-4 156.27 S DFC o, oc	1.53	
D,L-menthol 15356-70-4 156.27 S DFC 0, 0C	1.89	
	4.63	
	5.63	
	Continued on next pa	

Test Chemical*				Physicoc	hemical Properties	Cytotoxic Responses ^b (millimolar LD ₅₀) Co-culture	
Name	CAS No.	M.W.	1	2	3	Lo-culture Assay	
phenylephrine-HCl	61-76-7	203.67	s	с	a, ai, ach, l, o, ts	3.52	
tetracycline-HCl	64-75-5	480.94	S	FC	ai, l, o, ts	3.24	
xylenes, mixed	1330-20-7	106.17	L	DFC	o, ts	3.20	
Group II. Cytotoxic Chemicals	5						
L-ascorbic acid	50-81-7	176.14	S	С	ai, l, m, oc, r	0.363	
bisphenol A	80-05-7	228.29	S	DFC	ach, o	0.147	
chlorpheniramine-maleate	113-92-8	390.87	S	С	-	0.287	
eugenol	97-53-0	164.20	Ĺ	DFC	ai, b, l, o, ts, v	0.875	
geranyl acetate	105-87-3	196.32	L	DFC	-	0.302	
4-hexylresorcinol	136-77-6	194.27	L	DFC	ach, l, o, ts	0.103	
oxytetracycline-HCl	2058-46-0	496.90	S	FC	l, ts, w	0.523	
Group III. Very Cytotoxic Che	micals						
anilazine	101-05-3	275.53	s	DFC	b, mo	0.0475	
erythromycin stearate	643-22-1	1018.59	S	AFC	a	0.0746	
ethoxylated dodecyl alcohol	9002-92-0		Ĺ	DC	b, o, v	0.0172	
methoxychlor	72-43-5	345.66	s	DFC	l, mo, o	0.0978	
methyldopa sesquihydrate	555-30-6	238.24	S	DFC	b, ts	0.0810	
propyl gallate	121-79-9		S	DFC	a, b, i, r	0.0631	
rotenone	83-79-4	394.43	S	AFC	ai, b, l, o, ts	0.000464	
sodium diethyldithiocarbamate	148-18-5	171.27	S	C	a, o	0.000142	
stannous chloride	7772-99-8	189.60	S	DC	al, am, b, mo, o	0.0285	
tetrakis(hydroxymethyl) phosphonium chloride	124-64-1	190.58	L	C	b, o, ts	0.00825	
tetrakis(hydroxymethyl) phosphonium sulfate	55566-30-8	406.32	L	С	b, o	0.00438	
triphenyltin hydroxide	76-87-9	367.03	S	FC	a, l, ts	0.000134	

Table A1. Continued.

Abbreviations: CAS No., Chemical Abstract Service registry number; LD₅₀, lethal dose for 50% of the cells; M.W., molecular weight.

Abbreviations for Test Chemical Physiochemical Properties: Physicochemical considered in this study included: [1] physical state (S = solid; L = liquid); [2] solvent vehicle (D = dimethyl sulfoxide, C = culture medium, F = pluronic F68, A = acetone, E = ethanol) and [3] technical problems. The technical problems included test chemicals that were a = reactive with acids; ac = reactive with acid chlorides and acid anhydrides; ai = reactive with air; al = reactive with alcohols; alk = alkylating agent and reacts with labile hydrogen; b = reacts with bases; bc = reacts with biochemicals (amino, hydroxyl, and carboxyl groups); hc = reacts with halogenated chemicals; k = reacts with alpha keto acids; ls = light sensitive; m = binds metals; mel = reacts with hexachloro- and trichloromelamine; met = reacts with metals (aluminum, iron, magnesium, potassium, sodium, tin or zinc); mh = metal halides; msc = reacts with miscellaneous organic chemicals (i.e., alpha-aminoethanol, chlorosulfonic acid, ethylene imine, linseed oil, maleic anhydride, oleum, or K-tert-butyloxide); o = reacts with oxidizing agents; p = reacts with plastics; pi = polymerization initiators; r = reacts with reducing agents; ru = reacts with rubber; sp = solubility problem in culture medium; tc = reacts with thiocyanates; ts = temperature sensitive; vts = very temperature sensitive; v = volatile at 37°C; and w = reacts with water [refer to MATERIALS and METHODS].

^aTest Chemical: Tables A1 and A3 contain 168 chemicals along with their individual CAS registry number and molecular weight. The chemicals were divided into groups of chemicals that correspond to the groups of chemicals that were compared in different text Tables 1–12. Thus, the chemicals were divided into two groups, including 114 cytotoxic test chemicals ($LD_{50} < 5.0 \text{ mM}$) presented in Table A1, and 53 noncytotoxic chemicals ($LD_{50} > 5.0 \text{ mM}$) presented in Table A1, and 53 noncytotoxic chemicals ($LD_{50} > 5.0 \text{ mM}$) presented in Table A4. The 114 cytotoxic chemicals in Table A1 were subdivided into groups of 43 mutagenic carcinogens, 21 mutagenic noncarcinogens, 20 nonmutagenic carcinogens, and 30 nonmutagenic noncarcinogens. The 53 noncytotoxic test chemicals in Table A4 were subdivided into groups of 21 carcinogens, 26 noncarcinogens and 7 model very noncytotoxic chemicals. In addition, all of the cytotoxic test chemicals were separated into three groups, including: group I, moderately cytotoxic test chemicals [$LD_{50} = -5 \text{ mM}$]; group II, cytotoxic chemicals [$LD_{50} < 0.1 \text{ mM}$]; and group III, very cytotoxic chemicals [$LD_{50} < 0.1 \text{ mM}$]. In addition, this table presents important physicochemical properties that influenced the procedure used in testing the chemicals.

^bCytotoxic Response: The co-culture clonal survival assay design used to detect the cytotoxic response of the test chemical is described in Materials and Methods. The cytotoxic responses of chemicals in individual experiments are summarized in terms of the millimolar (mM) LD_{50} treatment dose that resulted in 50% survival of the chemically-treated cells relative to the survival of untreated or solvent control treated cell cultures. The LD_{50} cytotoxic response of each chemical in Tables A1 and A4 is an average of two or more experiments with the chemical. The molecular weight of each chemical is provided in order that treatment doses could be converted from mM to μ g/mL. For example, based upon the molecular weight of 141.61, the LD_{50} detected for the first chemical in Table A1, 5-chloro-o-toluidine, was 1.69 mM or 239 μ g/mL.

MATTHEWS ET AL.

		formation responses of 1	Transformation		
Chemical ^a		Spontaneous ^c	Response		
le	Exp. No.	Foci/Vessel: Rank Order	Benzo(a)pyrene ^d Call : Rank Order	Test Chemical ^e Call : mean <i>t</i> -statisti	
	EXP. NO.	Kank Urger	Call : Rank Urger	tall: mean t-statisti	
	43	Mutagenic Carc	inogens		
Active Chemicals		j	···· 3 ····		
<u>Active Chemicals</u> 2-acetylaminoflourene	1 (17)	.327 83	SP 70	SP 4.15	
,,,	2 (24)	.308 89	SP 87***	SP 2.08	
acrylonitrile	1 (86)	.464 52	SP 79*	LA 5.36	
	2 (92)	.579 41	SP 83*	LA 2.14	
2-amino-5-nitrophenol	1 (62)	6.02 3***	SN 110***	LN .000	
	2 (83)	.351 71	SP 23**	SN .575	
	3 (93)	.416 43	SP 9***	SP 5.41	
	4 (103)	.874 21	SP 53	SP 11.8	
5-azacytidine	1 (6)	.431 45	SP 38	SP 16.7	
	2 (11)	.301 101	SP 104***	SP 9.03	
benzidine-2HCl	1 (43)	1.05 30	SP 4***	SP 4.54	
	2 (52)	1.09 34	SP 45	SP 2.22	
2-biphenylamine	1 (33)	1.04 49	SP 24**	SP 2.63	
	2 (52)	1.09 34	SP 45	SP 3.79	
4-biphenylamine	1 (35)	1.97 14	SP 72	LA 2.21	
	2 (53)	2.78 11*	SP 39	SP 2.51	
3-(chloromethyl)pyridine-	1 (14)	.213 99	SP 82*	LA 1.35	
HCL	2 (22)	.893 36	SP 28	SP 2.77	
4-chloro-0-phenylenediamir		.201 96	SP 86***	LN .870	
	2 (20)	.368 81	SP 22***	SP 2.76	
	3 (101)	.260 62	SP 48	SP 8.92	
4-chloro-0-toluidine-HCl	1 (81)	7.36 2***	SP 2***	SP 7.18	
	2 (92)	.597 41	SP 83*	SP 4.44	
5-chloro-0-toluidine	1 (81)	7.36 2***	SP 2***	SP 3.57	
	2 (92)	.597 41	SP 83*	SP 5.38	
C. I. acid orange 3	1 (70)	.526 47	SP 43	LA 1.55	
	2 (87)	.346 63	SP 101***	SP 4.23	
C. I. disperse blue 1	1 (73)	.274 80	SP 89**	SP 3.53	
	2 (97)	.414 54	SP 44	SN .405	
	3 (107)	2.95 5**	SP 46	SN .000	
C. I. solvent yellow 14	1 (7)	.135 105*	SP 69	SP 3.52	
	2 (67)	.085 107**	SP 106***	SP 4.64	
	3 (IP17) 4 (IP18)	_411 ~99 _189 ~105*	SP ~37 SP ~39	LA 2.16 SP 3.43	
cytembena	1 (70)	.526 47	SP 43	LA 4.34	
	2 (83)	.351 71	SP 23**	SP 7.12	
1,2-dibromo-3-chloropropar	ne 1 (23)	.661 66	SP 81*	LN .333	
	2 (27)	.555 78	SP 58	SP 6.36	
	3 (102)	.697 27	SP 63	SP 4.83	
selenium sulfide	1 (7)	.135 105*	SP 69	SP 3.34	
-	2 (11)	.301 101	SP 104***	SN .223	
	3 (97)	.414 54	SP 44	SP 2.24	

Chemical ^a		Spontaneous ^c Foci/Vessel:		Transformation Response ^b Benzo(a)pyrene ^d		Test	Chemical ^e
e	Exp. No.		k Order		Rank Order		n <i>t</i> -statist
0-toluidine	1 (16)	- 34	4 87	SP	64	LA	.900
	2 (25) 3 (98)	.10	1 106* 8 59	SP SP	51 17***	SP SP	9.28 4.31
ziram	1 (77) 2 (91)	.97	2 17 2 56	SP SP	6*** 109***	LA	1.17 4.10
		. 52	2 30	54	109***	58	4.10
<u>Chemical with an Equivoca</u> dichlorvos		224	09	SP	40	CN	(40
(uncoded)	1 (68) 2 (DRI5)	.226 1.27	98 ~72	58	60 NA	SN	.460 3.51
(uncoded)	3 (98)	.618	59	SP	NA 17***	LA SN	.000
dichlorvos	1 (78)	3.28	9*	SP	37	SN	.697
(coded)	2 (90)	1.95	15	SP	21**	SP	2.66
Inactive Chemicals							
C. I. basic red 9-HCl	1 (48)	.537	64	SP	84*	SN	.353
(uncoded)	2 (66)	.056	108**	SP	99***	SN	.700
	3 (DRI4)	.668	~82	NA		SN	.000
C. I. basic red 9-HCl	1 (73)	.274	80	SP	89**	SN	.098
(coded)	2 (95)	2.84	8*	SP	29	SN	.000
2,4-dinitrotoluene	1 (46)	.384	88	SP	77	SN	1.57
2, ·	2 (55)	.129	104*	SP	90***	SN	.478
	3 (DR12)	.503	~88		NA	SN	.000
Chemicals with an Indetern	minate Activity						
2-amino-4-nitrophenol	1 (63)	1.92	13	SP	66	SN	.000
	2 (91) 3 (NA)	.322	56	LA	109	SN	.000
C. I. disperse yellow 3	1 (71)	1.06	24	SP	10***	SN	.000
	2 (91)	.322	56	LA	109***	SN	.155
	3 (NA)						
Chemicals with an Indetern							
HC blue 1	1 (15)	.186	100	SP	42	SN	1.51
	2 (21)	.347	79	SP	75	SN	.725
	3 (DRI2) 4 (NA)	.503	88		NA	SP	3.09

21 Mutagenic Non-Carcinogens

Active Chemicals 2-(chloromethyl)pyridine- HCl	1 (14) 2 (22)	.213 .893	99 36	SP SP	82 28*	SP SP	2.36 2.77
3-chloro - <i>p</i> -toluidine	1 (81)	7.36	2***	SP	2***	SP	2.60
	2 (92)	.597	41	SP	83*	SP	3.92
coumaphos	1 (30)	.787	40	SP	54	SN	.000
	2 (95)	2.847	8*	SP	29	SP	3.75
	3 (99)	.586	33	SP	14**	SP	7.60
dimethoate	1 (41)	.274	90	SP	13***	LA	1.24
	2 (94)	1.52	18	SP	31	SP	5.39
HC red 3	1 (40)	.533	60	SP	27*	SP	2.50
	2 (57)	.278	86	SP	74	SP	2.77

MATTHEWS ET AL.

Chemi ca l ª		Sponta	aneous ^c	Transforma Respons			
onem real			/essel:	Benzo(a)py		Test (hemical ^e
e	Exp. No.	Rank	Order		ank Order	Call:mean	n <i>t</i> -statisti
		222	07		100444		
HC red 3 (260886)	1 (61)	.222	93	SP	100***	LA	1.61
	2 (99)	.586	33	SP	14**	SP	9.58
malaoxon	1 (16)	.344	87	SP	64	LA	4.17
	2 (25)	.101	106*	SP	51	SP	9.46
1-naphthylamine	1 (13)	.201	96	SP	86***	SP	2.66
	2 (19)	.357	77	SP	67	SP	2.97
4-nitro-0-phenylenediamine	1 (14)	.213	99	SP	82	SP	3.83
	2 (18)	.663	46	SP	80*	LA	1.27
3-nitropropionic acid	1 (39)	.427	82 67	SP SP	18*** 78	SP	3.90 5.47
p-phenylenediamine-2HCl	2 (85) 1 (37)	.566	58	SP SP	55	SP SP	3.81
	2 (89)	.492	51	SP	50	SP	2.27
N-phenyl-2-naphthylamide	1 (61)	.222	93	SP	100***	SP	4.79
	2 (87)	.346	63	SP	101***	SP	3.71
tetraethylthiuram disulfide	e 1 (80)	3.024	10*	SP	5***	SP	4.60
	2 (93)	.416	43	SP	9***	SP	2.92
2,6-toluenediamine	1 (29)	.606	68	SP	40	SP	3.89
	2 (44)	1.52	23	SP	11***	SP	10.0
4'-(chloroacetyl)-	1 (37)	.631	58	SP	55	LA	1.85
acetanilide	2 (95)	2.84	8*	SP	29	LA	1.46
2,4-dimethoxyaniline	1 (34) 2 (87) 7 (07)	2.51 .346	7* 63	SP SP	56 101***	SP SN	5.95 1.32
8-hydroxyquinoline	3 (97)	.414	54	SP	44	SN	.960
	1 (3)	.285	94	SP	91***	SP	2.46
	2 (9)	.149	102*	SP	95***	SN	.170
	3 (28)	.818	39	SP	68	SN	.128
N-(1-naphthyl)ethylene-	1 (38)	.496	69	SP	12***	LA	.957
diamine-2HCl	2 (87)	.346	63	SP	101***	LA	2.31
2,3,7,8-tetrachloro-4-	1 (29)	.606	68	SP	40	LA	2.47
nitroanisole	2 (93)	.416	43	SP	9***	LA	1.70
<u>Inactive Chemicals</u> HC blue 2	1 (5) 2 (10)	.035 .053	110*** 109**	SP	107*** 103***	LA	4.31
Chemicals with an Indetermi			107	SP	105	SN	1.43
4-acetylaminofluorene	1 (12)	. 160	103*	SP	73	LN	.963
	2 (17)	. 327	83	SP	70	LN	1.64
1-nitronaphthalene	1 (33)	1.04	49	SP	24**	SN	.000
	2 (87)	.346	63	SP	101***	SP	2.53

		Table A2. Continued	Transformation	
Chemical ^a		Spontaneous ^c	Response ^b	
	·····	Foci/Vessel:	Benzo(a)pyrene ^d	Test Chemical ^e
e	Exp. No.	Rank Order	Call : Rank Order	Call:mean <i>t</i> -statisti
2,6-dichloro-p-phenylene-	1 (32)	1.99 19	SP 34	SP 2.50
diamine	2 (54)	.265 91	SP 85	SP 2.03
1,3-dichloropropene	1 (79)	5.12 4**	SP 1***	SP 3.11
	2 (94) 3 (104)	1.52 18 .878 26	SP 31 SP 93**	SN .000 LA 1.75
diglycidyl resorcinol ether	1 (6) 2 (12)	.348 45 .160 103*	SP 38 SP 73	SP 15.2 SP 6.66
epichlorohydrin	1 (68) 2 (DRI5)	.226 98 1.27 ~72	SP 60 NA	LA 2.38 SP 3.47
			SP 1***	
1,2-epoxybutane	1 (79) 2 (104)	5.12 4** .878 26	SP 1*** SP 93***	LN NA SP 3.64
	3 (108)	1.17 20	SP 19**	SP 2.50
1,2-epoxypropane	1 (72)	.289 70	SP 41	SP 4.04
	2 (88)	.406 57	SP 88***	SP 4.93
ethylene dibromide	1 (74)	.657 32	SP 108***	SP 8.53
	2 (92)	.597 41	SP 83*	SP 2.83
iodinated glycerol	1 (74)	.657 32	SP 108***	SP 6.04
	2 (106)	1.30 28	SP 15***	SN 1.31
melphalan	1 (80)	3.02 10*	SP 5***	LA 1.37
	2 (96)	.660 31	SP 52	SP 4.81
N-methyl-0-acrylamide	1 (70)	.526 47	SP 43	LA 1.53
	2 (85)	.313 67	SP 78	SP 3.88
4,4-methylenedianiline	1 (40)	.533 60	SP 27*	SP 1.93
	2 (55)	.129 104*	SP 90***	SP 1.82
N-methyl-N'-nitro-N-	1 (93)	.416 43	SP 9***	SP 10.1
nitrosoguanidine	2 (IP2)	1.13 ~54	NA	SP 7.52
2-naphthylamine	1 (13)	.201 96	SP 86*** SP 20***	SP 3.33 SP 3.99
	2 (26)	.907 37	SP 20***	58 2.99
nitrofurantoin	1 (61)	.222 93 .416 43	SP 100*** SP 9***	SN .778 SP 4.25
	2 (93)	.416 43		
nitrofurazone	1 (71)	1.06 24	SP 10*** SP 6***	LN .000 SP 3.26
	2 (77) 3 (87)	.972 17 .346 63	SP 6*** SP 101***	SP 3.20 SP 4.99
2-nitro-p-phenylene-	1 (15)	.186 100	SP 42	SP 4.21
diamine	2 (21)	.347 79	SP 75	SN 1.38
	3 (96)	.660 31	SP 52	SP 4.38
4,4-oxydianiline	1 (1)	1.44 25	SP 36 SP 7***	SP 1.81
	2 (8)	2.19 16	SP 7***	SP 3.72
quinoline	1 (16)	.344 87	SP 64	LN .000
	2 (27) 3 (31)	.555 78 .930 42	SP 58 SP 25*	LN .000 LA 1.93
	4 (104)	.878 26	SP 23***	SP 3.96

MATTHEWS ET AL.

Chemical*		Spontaneous ^c Foci/Vessel:		Transformat Response ^b		Test Chem	icale		
E	xp.No.	Rank Order			Benzo(a)pyrene ^d Call : Rank Order		Call: mean t-statistic		
	20 N	lon-Mutag	enic Ca	arcinogens					
<u>Active Chemicals</u>	1 (41)	.274	90	SP	13***	LA	1.62		
allyl isothiocyanate	2 (98)	.226	98	SP	60	SP	4.09		
chlorendic acid	1 (63)	1.92	13	SP	66	SP	1.96		
	2 (83)	.351	71	SP	23**	LA	2.01		
3-chloro-2-methylpropene	1 (29)	3.28	9*	SP	37	LA	1.62		
	2 (31)	.406	57	SP	88***	SP	2.66		
diethylstilbestrol	1 (42)	.861	55	SP	8***	LA	2.22		
	2 (96)	.660	31	SP	52	SP	3.38		
dimethylvinyl chloride	1 (76)	1.79	12*	SP	98***	LA	1.45		
	2 (102)	.697	27	SP	63	SP	3.74		
ethyl acrylate	1 (23)	.661	66	SP	81	LA	2.49		
	2 (36)	.424	74	SP	35	SP	6.02		
isophorone	1 (25)	.101	106*	SP	51	LN	.203		
	2 (36)	.424	74	SP	35	SP	3.46		
	3 (104)	.878	26	SP	93***	SP	2.06		
malonaldehyde, sodium salt	1 (75)	.882	21	SP	26*	SP	1.92		
	2 (97)	.414	54	SP	44	LA	1.55		
nitrilotriacetic acid	1 (73)	.274	80	SP	89**	SP	2.46		
	2 (99)	.586	33	SP	14**	SP	8.41		
polybrominated biphenyl	1 (20)	.368	81	SP	22***	SP	2.22		
mixture	2 (28)	.818	39	SP	68	SP	1.64		
<u>Chemical with an Equivocal</u> 2-mercaptobenzothiazole	Activity 1 (62) 2 (77) 3 (89)	6.02 .970 .492	3* 17 51	LA SP SP	110*** 6** 50	LN LA LA	.000 1.23 1.22		
<u>Inactive Chemicals</u> allyl isovalerate	1 (23) 2 (27) 3 (31)	.661 .555 .930	66 78 42	SP SP SP	81* 58 25*	LN LN SN	.080 .055 .591		
chlorowax 40	4 (102)	.697	27	SP	63	LA	2.35		
	1 (76)	1.79	12*	SP	98***	LA	.850		
	2 (104)	.878	26	SP	93***	SN	.078		
chlorowax 500	1 (74)	.657	32	SP	108***	SN	.185		
	2 (90)	1.95	15	SP	21***	SN	.000		
cinnamyl anthranilate	1 (2) 2 (9) 3 (DFR3)	.660 .149 .424	53 102* ~92	SP SP NA	30 95***	SN SN SN	.010 .000 .000		
D-limonene	1 (72)	.289	70	SP	41	LN	1.02		
	2 (76)	1.79	12*	SP	98***	SN	.473		
	3 (88)	.406	57	SP	88***	SN	.000		
methapyrilene-HCl	1 (40) 2 (54)	.533	60 91	SP SP	27* 85	SN SN SN	.000 .000 .417		

Chamina 1ª		Sacat and and a		Transform			
Chemical ^a		Spontaneous ^c Foci/Vessel:		Response ^b Benzo (a) pyrene ^d		Test ()	nemical ^e
н. Н	Exp. No.		k Order		ank Order	Call:mean	
			· · · · · · · · · · · · · · · · · · ·	Gutt . P			
nacamina	1 (1)	1.44	25	SP	36	LA	1.38
reserpine	2 (8)	2.19	16	SP	7***	SN	.000
	3 (DR3)	.424	~92	NA	·	SN	.887
tris(2-ethylhexyl)phosphat	a 1 (88)	.406	57	SP	88***	SN	.000
	2 (98)	.618	59	SP	17***	SN	.000
<i>,</i>	4 (7)	/57	70	6D	100+++	C 1	000
4-vinylcyclohexene	1 (74) 2 (110)	.657 .609	32 38	SP SP	108*** 16***	SN SN	.000 .000
	30 Non	-Mutager	nic Non-(Carcinoger	าร		
Active Chemicals		•		Ū			
C. I. acid red 14	1 (30)	.787	40	SP	54	SP	2.26
	2 (45)	.732	35	SP	57	SP	2.05
phenol	1 (76)	1.79	12*	SP	26*	SP	10.5
	2 (90)	1.95	15	SP	21**	SP	4.60
propyl gallate	1 (3)	.285	94	SP	91***	SP	2.42
	2 (9)	. 149	102*	SP	95***	LA	.958
sodium diethyldithio-	1 (38)	.496	69	SP	12***	SP	3.37
carbamate	2 (96)	.660	31	SP	52	SP	2.52
Weakly Active Chemicals							
carbromal	1 (35)	1.97	14	SP	72	SN	.673
	2 (44)	1.52	23	SP	11***	SP	3.94
chlorpheniramine-maleate	1 (70)	.526	47	SP	43	SN	.000
	2 (85)	.313	67	SP	78	SP	1.97
		• • • • • • • • • • • • • •	•••••				
Chemicals with an Equivoca	al Activity						
anilazine	1 (29) 2 (85)	.606	68	SP	40	LA	1.09
					70		
	2 (65)	.313	67	SP	78	LA	2.81
Chemicals with an Equivoca	al Activity			SP			2.81
tetrakis(hydroxymethyl)	al Activity 1 (72)	.289	70	SP SP	41	SN	2.81 .288
<u>Chemicals with an Equivoca</u> tetrakis(hydroxymethyl) phosphonium chloride	al Activity			SP		SN SP	2.81 .288 3.53
tetrakis(hydroxymethyl) phosphonium chloride	al <u>Activity</u> 1 (72) 2 (90)	.289 1.95	70 15	SP SP SP	41 21**	SN	2.81 .288
tetrakis(hydroxymethyl) phosphonium chloride <u>Inactive Chemicals</u>	al <u>Activity</u> 1 (72) 2 (90) 3 (98)	.289 1.95 .618	70 15 59	SP SP SP SP	41 21** 17***	SN SP SN	2.81 .288 3.53 .000
tetrakis(hydroxymethyl) phosphonium chloride	al <u>Activity</u> 1 (72) 2 (90)	.289 1.95	70 15	SP SP SP	41 21**	SN SP	2.81 .288 3.53
tetrakis(hydroxymethyl) phosphonium chloride <u>Inactive Chemicals</u> L-ascorbic acid	al Activity 1 (72) 2 (90) 3 (98) 1 (4) 2 (11)	.289 1.95 .618 1.51 .301	70 15 59 50 101	SP SP SP SP SP	41 21** 17*** 59 104***	SN SP SN SN SN	2.81 .288 3.53 .000 .300 .348
tetrakis(hydroxymethyl) phosphonium chloride <u>Inactive Chemicals</u>	al <u>Activity</u> 1 (72) 2 (90) 3 (98) 1 (4)	.289 1.95 .618 1.51	70 15 59 50	SP SP SP SP	41 21** 17*** 59	SN SP SN SN	2.81 .288 3.53 .000 .300
tetrakis(hydroxymethyl) phosphonium chloride <u>Inactive Chemicals</u> L-ascorbic acid	al Activity 1 (72) 2 (90) 3 (98) 1 (4) 2 (11) 1 (2) 2 (8) 3 (1P17)	.289 1.95 .618 1.51 .301 .660	70 15 59 50 101 53	SP SP SP SP SP SP	41 21** 17*** 59 104*** 30	SN SP SN SN SN	2.81 .288 3.53 .000 .300 .348 .060
tetrakis(hydroxymethyl) phosphonium chloride <u>Inactive Chemicals</u> L-ascorbic acid	al Activity 1 (72) 2 (90) 3 (98) 1 (4) 2 (11) 1 (2) 2 (8)	.289 1.95 .618 1.51 .301 .660 2.196	70 15 59 50 101 53 16	SP SP SP SP SP SP SP	41 21** 17*** 59 104*** 30 7***	SN SP SN SN SN LA	2.81 .288 3.53 .000 .300 .348 .060 1.15
tetrakis(hydroxymethyl) phosphonium chloride <u>Inactive Chemicals</u> L-ascorbic acid	al Activity 1 (72) 2 (90) 3 (98) 1 (4) 2 (11) 1 (2) 2 (8) 3 (1P17)	.289 1.95 .618 1.51 .301 .660 2.196 .411	70 15 59 50 101 53 16 ~99	SP SP SP SP SP SP SP SP	41 21** 17*** 59 104*** 30 7*** ~37 ~39 6***	SN SP SN SN SN LA SN	2.81 .288 3.53 .000 .300 .348 .060 1.15 .393
tetrakis(hydroxymethyl) phosphonium chloride <u>Inactive Chemicals</u> L-ascorbic acid bisphenol A	al Activity 1 (72) 2 (90) 3 (98) 1 (4) 2 (11) 1 (2) 2 (8) 3 (1P17) 4 (1P18)	.289 1.95 .618 1.51 .301 .660 2.196 .411 .789	70 15 59 50 101 53 16 ~99 ~105*	SP SP SP SP SP SP SP SP SP	41 21** 17*** 59 104*** 30 7*** ~37 ~39	SN SP SN SN SN LA SN SN	2.81 .288 3.53 .000 .300 .348 .060 1.15 .393 .000
tetrakis(hydroxymethyl) phosphonium chloride <u>Inactive Chemicals</u> L-ascorbic acid bisphenol A C. I. acid yellow 73	al Activity 1 (72) 2 (90) 3 (98) 1 (4) 2 (11) 1 (2) 2 (8) 3 (IP17) 4 (IP18) 1 (77) 2 (83)	.289 1.95 .618 1.51 .301 .660 2.196 .411 .789 .972 .351	70 15 59 50 101 53 16 ~99 ~105* 17 71	SP SP SP SP SP SP SP SP SP	41 21** 17*** 59 104*** 30 7*** ~37 ~39 6***	SN SP SN SN SN LA SN SN SN SN	2.81 .288 3.53 .000 .300 .348 .060 1.15 .393 .000 .000 .065
tetrakis(hydroxymethyl) phosphonium chloride <u>Inactive Chemicals</u> L-ascorbic acid bisphenol A	al Activity 1 (72) 2 (90) 3 (98) 1 (4) 2 (11) 1 (2) 2 (8) 3 (IP17) 4 (IP18) 1 (77)	.289 1.95 .618 1.51 .301 .660 2.196 .411 .789 .972	70 15 59 50 101 53 16 ~99 ~105* 17	SP SP SP SP SP SP SP SP SP SP SP	41 21** 17*** 59 104*** 30 7*** ~37 ~39 6*** 23***	SN SP SN SN SN LA SN SN SN	2.81 .288 3.53 .000 .300 .348 .060 1.15 .393 .000 .000
tetrakis(hydroxymethyl) phosphonium chloride <u>Inactive Chemicals</u> L-ascorbic acid bisphenol A C. I. acid yellow 73	al Activity 1 (72) 2 (90) 3 (98) 1 (4) 2 (11) 1 (2) 2 (8) 3 (1P17) 4 (1P18) 1 (77) 2 (83) 1 (71)	.289 1.95 .618 1.51 .301 .660 2.196 .411 .789 .972 .351 1.061	70 15 59 50 101 53 16 ~99 ~105* 17 71 24	SP SP SP SP SP SP SP SP SP SP SP	41 21** 17*** 59 104*** 30 7*** ~39 6*** 23*** 10***	SN SP SN SN SN LA SN SN SN SN	2.81 .288 3.53 .000 .300 .348 .060 1.15 .393 .000 .000 .065 .810
tetrakis(hydroxymethyl) phosphonium chloride <u>Inactive Chemicals</u> L-ascorbic acid bisphenol A C. I. acid yellow 73	al Activity 1 (72) 2 (90) 3 (98) 1 (4) 2 (11) 1 (2) 2 (8) 3 (1P17) 4 (1P18) 1 (77) 2 (83) 1 (71) 2 (77)	.289 1.95 .618 1.51 .301 .660 2.196 .411 .789 .972 .351 1.061 .972	70 15 59 50 101 53 16 99 105* 17 71 24 17	SP SP SP SP SP SP SP SP SP SP SP SP	41 21** 17*** 59 104*** 30 7*** ~39 6*** 23*** 10*** 6***	SN SP SN SN SN LA SN SN SN SN SN	2.81 .288 3.53 .000 .300 .348 .060 1.15 .393 .000 .065 .810 .000

MATTHEWS ET AL.

		Table A2	. Continued.	T			
Chemical ^a		Foci/Ve	Spontaneous ^c Foci/Vessel:		Transformation Response ^b Benzo(a)pyrene ^d		mical ^e
	Exp. No.	Rank O	rder	Call:Ra	nk Order	Call:mean t	-statist
Inactive Chemicals Cont	inued						
ethoxylated dodecyl alcoh	ol 1 (82)	8.01	1***	SP	3***	SN	.000
	2 (90)	1.95	15	SP	21**	SN	.583
ethylenediamine tetraacet	ic 1 (73)	.274	80	SP	89***	LA	2.49
acid, trisodium salt	2 (85)	.313	67	SP SP	78	SN	.810
	2 (0)/	1010	0.	•		•	
geranyl acetate	1 (84)	.511	44	SP	65	SN	.530
	2 (92)	.597	41	SP	83*	SN	.090
(have descendent)	1 ((7)	1 02	13	en	66	SN	.000
4-hexylresorcinol	1 (63) 2 (85)	1.92 .313	67	SP SP	00 78	SN LA	.000
D,L-menthol	1 (18)	.663	46	SP	80*	SN	.215
D, L-merchot	2 (24)	.308	89	SP	87***	SN	.083
	- ()			-			
methoxychlor	1 (37)	.631	58	SP	55	SN	.705
	2 (89)	.492	51	SP	50	LA	1.26
	4 (75)	000	24	CD	26*		1.67
methyldopa sesquihydrate	1 (75)	.882 .322	21 56	SP SP	26* 109***	LA SN	.600
	2 (91)	.522	96	56	109	31	.000
methylphenidate-HCl	1 (48)	.537	64	SP	84*	SN	1.31
	2 (57)	.278	86	SP	74	SN	.780
oxytetracycline-HCl	1 (73)	.274	80	SP	89***	SN	.000
	2 (103)	.874	22 5***	SP	53 46	SN SN	.000 .000
	3 (107)	2.95	5	SP	40	SN	.000
phenylephrine-HCl	1 (73)	.274	80	SP	89**	SN	.385
piletty repit the not	2 (105)	.581	29	SP	97***	SN	.260
rotenone	1 (75)	.882	21	SP	26*	SN	.000
	2 (96)	.660	31	SP	52	SN	.510
stannous chloride	1 (19)	.357	77	SP	67	SN	.175
stannous entor rac	2 (26)	.907	37	SP	20***	SN	1.38
tetracycline-HCl	1 (71)	1.06	24	SP	10***	SN	.000
	2 (89)	.492	51	SP	50	SN	.043
tetrakis(hydroxymethyl)	1 (72)	.289	70	SP	41	SN	.125
phosphonium sulfate	2 (84)	.511	44	SP	65	• SN	.000
Filospheritain Sacrace	- \- \/					2	
xylenes, mixed	1 (72)	.289	70	SP	41	SN	.000
-	2 (100)	.268	73	SP	49	SN	.945
Chomicalo with an Indata-	minato Activit	,					
Chemicals with an Indeter eugenol	<u>minate Activity</u> 1 (74)	.657	32	SP	108***	LN	1.88
cuyenor	2 (94)	1.52	18	SP	31	SN	.000
				-		514	
triphenyltin hydroxide	1 (39)	.427	82	SP	18***	SN	.828
	2 (93)	.416	43	SP	9***	SP	3.27

General Abbreviations: Exp. No., experiment number; NA, not available.

Abbreviations for Transformation Responses: SP, sufficient positive; LA, limited activity; SN, sufficient negative; LN, limited negative. ^aThe 114 cytotoxic chemicals in Table A2 are identical to those in Table A1, and they are subdivided into groups of 43 mutagenic carcinogens, 21 mutagenic noncarcinogens, 20 nonmutagenic carcinogens, and 30 nonmutagenic noncarcinogens.

^bTransformation Response: This table presents a summary of the spontaneous, BaP, and test chemical transformation responses detected in two or more experiments per test chemical. The assay design and procedures used in the standard transformation assay are described in the Materials and Methods. The transforming activities of individual chemical treatment doses (i.e., focus data), as well as the individual transformation responses (i.e., type III foci/vessel), are provided in detail in the Appendices B–H. Appendices B, C, D, E, F, G and H contain the activities of the 43 cytotoxic, mutagenic carcinogens; 21 cytotoxic, mutagenic noncarcinogens; 20 cytotoxic, nonmutagenic carcinogens; 30 cytotoxic, nonmutagenic, noncarcinogens; 21 noncytotoxic carcinogens; 26 noncytotoxic noncarcinogens; and 7 very noncytotoxic model test chemicals.

Table A2. Continued.

^cSpontaneous Transformation Response: The method used to calculate the spontaneous transformation response, as well as the positive control and test chemical responses, is explained in the Materials and Methods. The transformation responses are expressed as type III foci/vessel and were calculated using a \log_{10} mathematical transformation procedure. The arithmetic value for foci/vessel in this table is the antilog of the \log_{10} mean transformation response minus one. The procedure for rank ordering the spontaneous responses from 110 experiments is based upon the different statistical sensitivities of transformation experiments with different spontaneous responses is explained in the Statistical Sensitivity versus Spontaneous Response section of the Materials and Methods. Experiments with high spontaneous responses had a high statistical sensitivity and have relatively low rank-order numbers. For example, 2-amino-5-nitrophenol had a high spontaneous response of 6.02 foci/vessel in experiment 62, which had a high statistical sensitivity had high rank-order numbers. For example, C.I. solvent yellow 14 had a low spontaneous response of 0.085 foci/vessel in experiment 67, which had a low statistical sensitivity and high rank-order numbers. For example, C.I. solvent yellow 14 had a low spontaneous response of 0.085 foci/vessel in experiment 67, which had a low statistical sensitivity and high rank-order numbers.

*Significant spontaneous or BaP transformation response, 0.01 .

**Significant transformation response, 0.001 .

***Significant transformation response, $p \le 0.001$.

^dBenzo(a)pyrene Transformation Response. The method used to call individual transformation experiments is described in detail in Materials and Methods. The method used to rank order the BaP transformation responses from the 110 experiments is based upon statistical comparison of the BaP transformation at the two treatment doses detected in an individual experiment with the median historical activity of the assay. This procedure is described in the Detection Sensitivity versus Benzo(a)pyrene Transformation Response section of the Materials and Methods. The rational for rankordering the experiments is analogous to that described for the spontaneous transformation responses (refer to footnote c above).

^cTest Chemical Transformation Response: The method used to call individual experiments is described in detail in Materials and Methods, and the abbreviations for the calls are provided above. The significance of the transformation responses of individual chemical treatment doses were calculated using SAS statistical software (22). The mean *t*-statistic represents the average of the *t*-statistics of the four test chemical treatment doses in the experiment. The *t*-statistics for individual chemical treatment doses which were used to calculate the mean *t*-statistic are provided in the Appendices B–H.

MATTHEWS ET AL.

Table A3. Rank-ordered potency of the transformation responses of 114 cytotoxic chemicals compared to rodent bioassay activities

Test Chemical	Rodent Bioas	say ^b	Transformatio	on Response ^c	
	Level of Act	ivity	Rank <i>t</i> -statistic		
Name	High Low	None	Actual Es	stimated ^d	
43	Mutagenic	Carcinoge	ns		
otal Active Chemicals [92.5%] ^e					
<u>ctive Chemicals</u>					
-azacytidine	l)	12.8	16.8	
iglycidyl resorcinol ether	Α		9.31	11.0	
-methyl-N-nitro-N'-nitrosoguanidine	Α		10.3	10.3	
thylenedibromide	Α		5.68	6.82	
-amino-5-nitrophenol	I)	5.94	5.94	
ytembena	В		5.93	5.93	
-chloro-0-phenylenediamine	Α		5.84	5.84	
,2-dibromo-3-chloropropane	Α		5.59	5.74	
-toluidine	Α		4.83	5.62	
-chloro-0-toluidine-HCl		3	5.61	5.61	
. I. solvent yellow 14		3	3.52	5.34	
,2-epoxypropane	Α		4.48	5.21	
-acetylaminofluorene	Α		3.12	4.67	
crylonitrile	В		3.75	4.35	
pichlorohydrin	Ā		3.03	4.22	
-nitro- <i>p</i> -phenylenediamine)	3.60	4.13	
itrofurazone	Α		4.12	4.12	
-naphthylamine	В		3.66	3.98	
-chloro-0-toluidine	B		3.92	3.92	
odinated glycerol	Ā		3.68	3.68	
elphalan	Â		3.66	3.66	
enzidine-2HCl	A		3.38	3.38	
. I. acid orange 3	, i)	2.89	3.34	
-methyl-0-acrylamide	В	•	3.10	3.31	
-biphenylamine	, j	n	3.21	3.21	
,2-epoxybutane	В	•	2.99	2.99	
uinoline	5 (•	2.94	2.94	
elenium sulfide	A	•	1.92	2.78	
iram		, ,	2.72	2.78	
,4-oxydianiline	A	,	2.60	2.60	
itrofurantoin			2.26	2.50	
	A				
,4-methylenedianiline	A		1.87	2.39	
-biphenylamine	A		2.38	2.38	
,6-dichloro-p-phenylenediamine		•	2.26	2.35	
-(chloromethyl)pyridine-HCl	A		2.06	2.29	
,3-dichloropropene	A	•	1.77	1.77	
. I. disperse blue 1	(,	1.31 (7.)		
otal Inactive Chemicals [7.5%] ^e					
hemicals with Equivocal Activity	-	_			
ichlorvos (uncoded)	A	F	1.49	1.66	
(coded)	Α	F	1.68	1.68	
<u>nactive Chemicals</u>					
. I. basic red 9-HCl (uncoded)	Α		.41	.65	
(coded)	Â		.05	.05	
	B		.73	1.19	
,4-dinitrotoluene					
	F				
hemicals with an Indeterminate Activity					
<i>hemicals with an Indeterminate Activity</i> -amino-4-nitrophenol	<u>^</u>)	.00	.00	
hemicals with an Indeterminate Activity)	.00 .07 1.72	.00 .07 2.40	

Test Chemical	Rodent	Bioassa	y [⊳]	Transformati	ion Response ^c	
	Level of Activity			Rank <i>t</i> -statistic		
Name	High Low None			Actual Estimated ^d		
21	Mutagenic	Non-	Carcinog	ens		
Total Active Chemicals [65.0%]						
Active Chemicals						
malaoxon			F	8.14	11.4	
2,6-toluenediamine-2HCl			F	6.95	6.95	
N-phenyl-2-naphthylamine		Ε		4.25	6.90	
3-nitropropionic acid		E		4.69	5.22	
HC red 3 (AVG.)		-		4.12	4.54	
(coded)		Е		5.60	6.11	
(uncoded)		Ē		2.64	2.96	
1-naphthylamine		-	F	2.82	4.18	
coumaphos			F	4.12	4.12	
tetraethylthiuram disulfide			F	3.88	3.88	
4-nitro-0-phenylenediamine			F	2.54	3.54	
dimethoate			F	3.31	3.31	
3-chloro-p-toluidine			r 5	3.26	3.26	
p-phenylenediamine-2HCl			F	3.04		
			F	2.56	3.04	
2-(chloromethyl)pyridine-HCl			r	2.56	2.85	
	•••••	•••••		••••••		
Total Inactive Chemicals [35.0%]						
Chemicals with Equivocal Activity						
2,4-dimethoxyaniline-HCL			F	3.06	3.06	
2,3,5,6-tetrachloro-4-nitroanisole			F	2.08	2.08	
N-(1-naphthyl)ethylenediamine-2HCl			F	1.64	1.83	
4'-(chloroacetyl)acetanilide			F	1.65	1.65	
8-hydroxyquinoline			F	.78	1.16	
<u>Inactive Chemical</u>						
HC blue 2			F	1.80	3.51	
Inactive Chemical (Indeterminate Activ	<u>vity)</u>					
			F (I)	1.30	1.94	
4-acetylaminofluorene						
4-acetylaminofluorene	· · · · · · · · · · · · · · · · · · ·					
4-acetylaminofluorene Chemicals with an Indeterminate Activi	ty					

zu won-mutagenic tarcinogens

<u>Active Chemicals</u> nitrilotriacetic acid	A	5.86	5.86
ethyl acrylate	Â	4.51	5.25
allyl isothiocyanate	D	2.86	3.39
liethylstilbestrol	Α	2.91	2.91
sophorone	D	2.76	2.86
limethylvinyl chloride	Α	2.59	2.59
-chloro-2-methylpropene	Α	2.14	2.14
hlorendic acid	Α	1.98	1.98
oolybrominated biphenyl mixture	А	1.93	1.93
nalonaldehyde, sodium salt	С	1.87 (5.	81) 1.87

Total Inactive Chemicals [47.4%]

Total Active Chemicals [52.6%]

MATTHEWS ET AL.

Test Chemical	Rodent Bio	. <i>Continued.</i> Dassay ^b	Transformat	tion Response ^c
	Level of A			statistic
Name	High L	ow None	Actual	Estimated ^d
Chemical with Equivocal Activity		_	4.07	4.07
2-mercaptobenzothiazole		С	1.23	1.23
<u>Inactive Chemicals</u> allyl isovalerate	A		1.65	1.65
D-limonene	~	D	.24	.27
reserpine	A		.24	.24
methapyrilene-HCl		С	. 14	.17
chlorowax 500	A		.06	.06
cinnamyl anthranilate	A	_	.004	.005
tris(2-ethylhexyl)phosphate 4-vinylcyclohexene		D D	.00 .00	.00 .00
••••••	•••••	•••••		•••••
Chemicals with an Indeterminate Activity				
chlorowax 40		D	.46	-48
	Mutageni	c Non-Carc	inogens	
Total Active Chemicals [20.0%]	nabagenn		mogeno	
Active Chemicals				
phenol		F	7.60	7.60
propyl gallate	E	•	1.70	2.95
sodium diethyldithiocarbamate		F	2.94	2.94
C. I. acid red 14		F	2.15	2.15
<u>Weakly Active Chemicals</u>				
carbromal		F	2.26	2.26
chlorpheniramine-maleate		F	1.18	1.26
		•••••		
Total Inactive Chemicals [80.0%]				
<u>Chemicals with Equivocal Activity</u>				
anilazine		F	1.82	2.09
tetrakis(hydroxymethyl) phosphonium chloride		F	1.27	1.27
Inactive Chemicals				
ethylenediamine tetraacetic acid, Na ³		F	1.41	2.01
methylphenidate-HCl		I	1.05	1.47
methyldopa sesquihydrate	E		1.21	1.21
methoxychlor		F	1.08	1.08
bisphenol A	E		.79	.79
stannous chloride	Е	-	.78	.78
xylenes, mixed	E	F	.47	.50
4-hexylresorcinol L-ascorbic acid		F	.46 .32	.47 .46
phenylephrine-HCl		F	.32	.40
geranyl acetate		F	.35	.42
ethoxylated dodecyl alcohol		F (I)	.29	.29
rotenone	E		.26	.26
D,L-menthol		F	. 16	.22
ephedrine sulfate		F	. 16	.16
erythromycin stearate		F	.08	.08
tetrakis(hydroxymethyl)phosphonium SO ₄		F	.083	.083
C. I. acid yellow 73 tetracycline-HCl		F	.021	30 .030 .021
oxytetracycline-HCl	Е		.000	.000
	-		.000	.000

(Continued on next page)

.

Test Chemical	Rodent Bioassay ^b	Transformation Response ^c
	Level of Activity	Rank <i>t</i> -statistic
Name	High Low None	Actual Estimated ^d

Chemicals with an Indeterminate Activity

triphenyltin hydroxide eugenol	F	1.64 1.07	1.64 1.07	
eugenot	L			

^aTest Chemical: The 114 cytotoxic chemicals in Table A3 are identical to those in Table A1, and they are subdivided into groups of 43 mutagenic carcinogens, 21 mutagenic noncarcinogens, 20 nonmutagenic carcinogens, and 30 nonmutagenic noncarcinogens.

^bRodent Bioassay Level of Activity: The relative carcinogenic activity of chemicals in rodent bioassay has been described in terms of the chemical's level of effect (1,3). The highest level A corresponds to chemicals that cause cancer in both mice and rats at one or more sites, and level B refers to chemicals that cause cancer at multiple sites in one species of rodent. Level C includes chemicals carcinogenic at one site in both sexes of one species, and D includes chemicals carcinogenic at one site in only one sex of a single species. Level E chemicals that only equivocal evidence of carcinogenic activity. Finally, level F includes both noncarcinogens and chemicals that had inadequate carcinogenicity studies.

^cTransformation Response Rank *t*-statistic: The method used to calculate the significance of test chemical transformation responses employed SAS statistical software (22) and is described in detail in Materials and Methods. The correct *t*-statistics of each treatment dose of the test chemical in a single experiment are presented in the Appendices B–H, and these *t*-statistics were averaged to determine the mean *t*-statistic of the test chemical for the experiment (refer to Table A2). The mean *t*-statistics for two or experiments for each chemical was weighted according to the number of treatment dose evaluated and averaged to determine the actual rank *t*-statistic presented in this table. For example, the actual rank *t*-statistic of 5-azacytidine transformation responses in experiments 6 and 11 is equal to 12.8 [i.e., 8.36 + 9.11 + 15.3 + 33.9 (Exp. 6) + 14.7 + 16.5 + 4.21 + .70 (Exp. 11)/8 = 12.8; Appendix B].

^dEstimated Rank *t*-statistic: The estimated rank *t*-statistic is used to estimate both the historical behavior of the test chemical in the transformation assay, as well as predicting the future behavior or the chemical. It is calculated by correcting the actual rank *t*-statistic. The data presented in Table A2 showed that individual experiments had very different rank-ordered sensitivities to detect chemical-induced transformation. Therefore, the estimated rank *t*-statistic modified the actual rank *t*-statistic to correct for differences in the sensitivities of individual experiments. The method uses the rank ordered sensitivity of individual experiments to detect spontaneous and BaP-induced transformation, and an example calculation is provided below.

The most active test chemical, 5-azacytidine, had statistical sensitivities for spontaneous transformation responses of 45 and 101/110 for experiments 6 and 11, respectively, and detection sensitivities for BaP of 38 and 104/110 (Table A2). Therefore, the average rank order of the two experiments was 72.0 (i.e., 45 + 101 + 38 + 104/4 = 72). For a total of 110 experiments, the median experiment has an automatic average rank order of 55.0 (i.e., 110/2 = 55.0). Therefore, the correction factor for the experimental sensitivity to detect chemical transformation was 72.0/55.0 or 1.31. Because the correction factor had been more than one, the actual rank *t*-statistic would have been multiplied by the correction factor to obtain the estimated rank *t*-statistic of 16.8. A justification for this correction factor has been reported (18), and it is explained in the Materials and Methods.

^ePercentage (%) of Active Chemicals: Active chemicals included chemicals with active and weakly active transformation responses. In contrast, inactive chemicals included chemicals with equivocal and inactive transformation responses. Chemicals with an indeterminate activity have to be retested in an additional experiment in order to determine their activity in the standard transformation assay. Therefore, chemicals with indeterminate transformation responses were omitted from the computation of the percentage (%) of the total chemicals that were either active or inactive in the assay.

Mutagenic Carcinogens

2-Biphenylamine. 2-Biphenylamine was a relatively weak level D carcinogen (Table A3) with no serious technical problems reported (Table A1). However, an isomer of the chemical, 4-biphenylamine, has been reported to be oxidized upon exposure to air. It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.421 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 49 and 34/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 24 and 45/110, respectively (Table A2). In trial 1 and 2 the chemical had a SP transformation response. 2-Biphenylamine was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 3.21 (Table A3).

4-Biphenylamine. 4-Biphenylamine was a level A carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of .479 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 14 and 11/110, respectively; the detection sensitivities for

BaP of trials 1 and 2 were 72 and 39/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. 4-Biphenylamine was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 2.38 (Table A3).

4-Chloro-o-Phenulenediamine. 4-Chloro-o-phenulenediamine was a potent level A carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.0318 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 96, 81 and 62/110, respectively; the detection sensitivities for BaP of trials 1-3 were 86, 22 and 48/110, respectively (Table A2). In a preliminary trial 1, the chemical had a LN transformation response because the test chemical treatment doses did not induce significant cytotoxic activity. In trials 2 and 3 the chemical had an SP transformation response. 4-Chloro-o-phenylenediamine was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 5.84 (Table A3).

3-(Chloromethyl)pyridine-HCl. 3-(Chloromethyl)pyridine-HCl was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.0756 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 99 and 36/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 82 and 28/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. 3-(Chloromethyl)pyridine-HCl was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 2.06 and 2.29, respectively (Table A3).

4-Chloro-o-Toluidine-HCl. 4-Chloro-*o*-toluidine-HCl was a relatively weak level C carcinogen (Table A3) with no serious technical problems reported (Table A1). However, an isomer of the chemical, 5-chloro-o-toluidine, has been reported to be oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.650 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 2 and 41/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 2 and 83/110, respectively (Table A2). In trial 1 and 2 the chemical had an SP transformation response. 4-Chloro-*o*-toluidine-HCl was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 5.61 (Table A3).

5-Chloro-o-Toluidine. 5-Chloro-o-toluidine was a potent level *B* carcinogen (Table A3). It had one serious technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.69 mM (Table A1). The stalistical sensitivities of transformation assay trials 1 and 2 were 2 and 41/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 2 and 83/110, respectively (Table A2). In trial 1 and 2 the chemical had an SP transformation response. 5-Chloro-o-toluidine was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 3.92 (Table A3).

C. I. Acid Orange 3. C. I. Acid orange 3 was a relatively weak level D carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.102 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 47 and 63/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 43 and 101/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. C. I. acid orange 3 was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 2.89 and 3.34, respectively (Table A3).

C. I. Basic Red 9-HCl. C. I. Basic red 9-HCl was one of five chemicals that was tested as both a coded and an uncoded test chemical in this investigation. It was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). Both chemical samples were very cytotoxic to the BALB/c-3T3 cells with an

average LD_{50} of 0.00281 and 0.00216 mM (Table A1). For the uncoded test chemical, the statistical sensitivities of transformation assay trials 1-3 were 64, 108 and 82/110. respectively: the detection sensitivities for BaP of trials 1-3 were 84, 99 and NA/110, respectively (Table A2). For the coded test chemical, the statistical sensitivities of trials 1 and 2 were 80 and 8/110; the detection sensitivities for BaP were 89 and 29/110, respectively. The coded and uncoded test chemical had SN transformation responses in a total of 5 trials. Therefore, C. I. basic red 9-HCl was evaluated as inactive in the transformation assay. The actual and estimated rank t-statistics of the uncoded test chemical were 0.41 and 0.65, respectively (Table A3). The actual and estimated rank t-statistics of the coded test chemical were both 0.05 (Table A3). Taken together, the coded and uncoded test chemicals had nearly identical cytotoxic and transforming activities in the BALB/c-3T3 cell transformation assay.

C. I. Disperse Blue 1. C. 1. Disperse blue 1 was a level C carcinogen (Table A3). It had one difficult technical problem. It was insoluble in culture medium at a portion of the treatment doses that were used to evaluate both cytotoxic and transforming activity (Table A1). In addition, this test chemical was observed to bind to the target cells, and it could not be removed using the standard washing procedure. It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.240 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 80, 54 and 5/110, respectively; the detection sensitivities for BaP of trials 1-3 were 89, 44 and 46/110, respectively (Table A2). In a preliminary trial 1, the chemical had a SP type III focus transformation response. In trials 2 and 3, the chemical had a SN type III transformation response. In contrast, the test chemical had an SP type I-III transformation response for all three trials. Thus, this test chemical had the unusual and consistent capability of inducing very significant levels of type I and II foci, but not for type III foci. This type of transformation response is shared by two other carcinogens, asbestos and polybrominated biphenyl mixture. Taken together, C. I. acid orange 3 was evaluated as weakly active in the transformation assay. Its actual and estimated rank t-statistics for the type III transformation response were both 1.31; however, the actual and estimated rank t-statistics for the type I-III response were both 7.08 (Table A3).

C. I. Disperse Yellow 3. C. I. Disperse yellow 3 was a level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.50 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 24 and 56/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 10 and 109/110, respectively (Table A2). In trials 1 and 2 the chemical had an SN transformation response. C. I. disperse yellow 3 was evaluated as having had an indeterminate activity in the transformation assay. Its actual and estimated rank t-statistics were both 0.07 (Table A3).

C. I. Solvent Yellow 14. C. I. Solvent yellow 14 was a relatively weak level C carcinogen (Table A3). It was insoluble at a portion of the treatment doses that were

evaluated for both cytotoxic and transforming activities (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.199 mM (Table A1). The statistical sensitivities of transformation assay trials 1-4 were 105, 107, 99 and 105/110, respectively; the detection sensitivities for BaP of trials 1-4 were 69, 106, 37, and 39/110, respectively (Table A2). In trials 1, 2 and 4 the chemical had SP transformation responses. In trial 3 the chemical had an LA transformation response. The test chemical was evaluated in more than two experiments, because it was used as a model test chemical in the development of additional assay protocols. C. I. solvent yellow 14 was evaluated rank *t*-statistics were 3.52 and 5.34, respectively (Table A3).

Cytembena. Cytembena was a level *B* carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.153 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 47 and 71/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 43 and 23/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Cytembena was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 5.93 (Table A3).

1,2-Dibromo-3-Chloropropane. 1,2-Dibromo-3-chloropropane was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.401 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 66, 78 and 27/110, respectively; the detection sensitivities for BaP of trials 1-3 were 81, 58 and 63/110, respectively (Table A2). In a preliminary trial 1, the test chemical had an LN transformation response, because the chemical treatment doses were noncytotoxic to the target cells. In trials 2 and 3 the chemical had an SP transformation response. 1,2-Dibromo-3-chloropropane was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 5.59 and 5.74, respectively (Table A3).

2,6-Dichloro-p-Phenylenediamine. 2,6-Dichlorop-phenylenediamine was a relatively weak level C carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.921 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 19 and 91/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 34 and 85/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. 2,6-Dichlorop-phenylenediamine was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 2.26 and 2.35, respectively (Table A3).

1,3-Dichloropropene. 1,3-Dichloropropene was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.280 mM

(Table A1). The statistical sensitivities of transformation assay trials 1-3 were 4, 18 and 26/110, respectively; the detection sensitivities for BaP of trials 1-3 were 1, 31 and 93/110, respectively (Table A2). In a preliminary trial 1 the chemical had a SP transformation response, and in trial 2 the chemical had a SN transformation response. Because these responses were disparate and significantly different from one another, the test chemical was evaluated in a third trial. In the third experiment the chemical had an LA transformation response. 1,3-Dichloropropene was evaluated as weakly active in the transformation assay. Its actual and estimated rank *t*-statistics were both 1.77, respectively (Table A3).

Dichlorvos. Dichlorvos was one of five chemicals that was tested as both a coded and an uncoded test chemical in this investigation. It was evaluated as a noncarcinogen is its first rodent bioassay trial; however, it was determined in a second trial using a different route of exposure to be a potent level A carcinogen (Table A3). This test chemical had one difficult technical problem because it was rapidly hydrolyzed in water (Table A1). Both chemical samples were cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.145 and 0.140 mM (Table A1). For the uncoded test chemical, the statistical sensitivities of transformation assay trials 1-3 were 98, 72 and 59/110, respectively; the detection sensitivities for BaP of trials 1-3 were 60, NA and 17/110, respectively (Table A2). For the coded test chemical, the statistical sensitivities of trials 1 and 2 were 9 and 15/110, the detection sensitivities for BaP were 37 and 21/110, respectively. The uncoded test chemical had SN transformation responses in 2 trials and an LA transformation response in one trial. The coded test chemical had an SN transformation response in a preliminary trial and an SP transformation response in trial 2. The mean t-statistics of the SP and LA transformation responses were not significantly different from the corresponding SN responses, which showed that the test chemical activity in the assay was relatively weak. Taken together, dichlorvos was evaluated as having had equivocal activity in the transformation assay. The actual and estimated rank t-statistics of the uncoded test chemical were 1.49 and 1.66, respectively (Table A3). The actual and estimated rank t-statistics of the coded test chemical were both 1.68 (Table A3). Taken together, the coded and uncoded test chemicals had nearly identical cytotoxic and transforming activities in the BALB/c-3T3 cell transformation assay.

Diglycidyl Resorcinol Ether. Diglycidyl resorcinol ether was a potent level A carcinogen (Table A3). It is an alkylating chemical; thus, it could react with labile hydrogen atoms not only on DNA, but also on a variety of biochemicals in the culture medium (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.00416 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 45 and 103/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 38 and 73/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. Diglycidyl resorcinol ether was evaluated as one of the most active chemicals in the transformation assay. Its actual and estimated rank t-statistics were 9.31 and 11.0, respectively (Table A3). 2,4-Dinitrotoluene. 2,4-Dinitrotoluene is a relative potent level *B* carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.917 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 88, 104 and 88/110, respectively; the detection sensitivities for BaP of trials 1-3 were 77, 90 and NA/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trials 1-3 the chemical had SN transformation responses. 2,4-Dinitrotoluene was evaluated as inactive in the transformation assay. Its actual and estimated rank *t*-statistics were 0.73 and 1.19, respectively (Table A3).

Epichlorohydrin. Epichlorohydrin was a level A carcinogen (Table A3). It had two serious technical problems, because it was reported to become oxidized upon exposure to air and it reacts with water (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of .364 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 98 and 72/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 60 and NA/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Epichlorohydrin was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 3.03 and 4.22, respectively (Table A3).

1,2-Epoxybutane. 1,2-Epoxybutane was a relatively weak level D carcinogen (Table A3). It was reported to be a highly reactive chemical (Table A1), and it reacts with carboxyl and hydroxyl groups found on constituent biochemicals in culture medium, as well as in the target cells. It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.45 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 4, 26 and 20/110, respectively; the detection sensitivities for BaP of trials 1-3 were 1, 93 and 19/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LN transformation response because the chemical treatment doses were too high and completely cytotoxic to the cells. In trials 2 and 3 the chemical had SP transformation responses. 1,2-Epoxybutane was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 2.99 (Table A3).

1,2-Epoxypropane. 1,2-Epoxypropane was a potent level A carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.60 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 70 and 57/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 41 and 88/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. 1,2-Epoxypropane was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 4.48 and 5.21, respectively (Table A3).

Ethylene Dibromide. Ethylene dibromide was a level *A* carcinogen (Table A3). It was reported to be highly reactive chemical, but none of these problems were serious

(Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.69 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 32 and 41/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 108 and 83/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. Ethylene dibromide was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 5.68 and 6.82, respectively (Table A3).

HC Blue 1. HC Blue 1 was a level A carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.96 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 100, 79 and 88/110, respectively; the detection sensitivities for BaP of trials 1-3 were 42, 75 and NA/110, respectively (Table A2). In trials 1 and 2 the chemical had an SN transformation response. Ordinarily this chemical would not have been tested in a third experiment, but it was selected as a model chemical with an inactive response in the transformation assay. In the third experiment, the test chemical had an SP transformation response. This disparate transformation response could have been caused by the different sample batches of test chemicals that were tested in experiments 1 and 2 versus experiment 3. Therefore, the test chemical has to be tested in a fourth experimental trial. HC blue 1 was evaluated as having had an indeterminate activity in the transformation assay. Its actual and estimated rank t-statistics were 1.72 and 2.40, respectively (Table A3).

Iodinated Glycerol. Iodinated glycerol was a level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 3.47 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 32 and 28/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 108 and 15/110, respectively (Table A2). In a preliminary trial 1 the chemical had an SP transformation response. In trial 2 the chemical had an SN transformation response. The disparate transformation responses were examined further, and the mean t-statistics of the two experiments were not significantly different from one another. In addition, there was a dose-related increase in test chemical activity in the experiment with an SN response at treatment doses that were comparable to that inducing an SP response. Taken together, iodinated glycerol was evaluated as weakly active in the transformation assay. Its actual and estimated rank *t*-statistics were both 3.68, respectively (Table A3).

Melphalan. Melphalan was a level A carcinogen (Table A3). It had one serious technical problem because it was reported to react with water (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.00120 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 10 and 31/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 5 and 52/110, respectively (Table A2). In a

preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Melphalan was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 3.66, respectively (Table A3).

N-Methyl-o-Acrylamide. N-Methyl-o-acrylamide is a level *B* carcinogen (Table A3) with no insurmountable technical problems (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.75 mM (Table A1). The statistical sensitivities of trials 1 and 2 were 47 and 67/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 43 and 78/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. N-Methyl-o-acrylamide was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 3.10 and 3.31, respectively (Table A3).

4,4-Methylenediamine. 4,4-Methylenediamine was a potent level A carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.56 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 60 and 104/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 27 and 90/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. **4,4-Methylenedianiline** was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 1.87 and 2.39, respectively (Table A3).

N-Methyl-N'-Nitro-N-Nitrosoguanidine. N-Methyl-N'-Nitro-N-Nitrosoguanidine was a potent level A carcinogen (Table A3). It had one serious technical problem because it reacts with water (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.0154 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 43 and 54/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 9 and NA/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. N-Methyl-N'-nitro-N-nitrosoguanidine was one of the most active chemicals in the transformation assay. Its actual and estimated rank *t*-statistics were both 10.3 (Table A3).

2-Naphthylamine. 2-Naphthylamine was a level *B* carcinogen (Table A3). It had one serious technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.59 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 96 and 37/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 86 and 20/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. 2-Naphthylamine was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 3.66 and 3.98, respectively (Table A3).

Nitrofurantoin. Nitrofurantoin was a potent level A carcinogen (Table A3). It was reported to be a highly

reactive chemical, but none of the problems were serious (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.106 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 93 and 43/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 100 and 9/110, respectively (Table A2). In a preliminary trial 1 the chemical had an SN transformation response. In trial 2 the chemical had an SP transformation response. The disparate transformation responses were examined further, and the mean t-statistics of the two experiments were not significantly different from one another. In addition, there was a dose-related increase in test chemical activity in the experiment with an SN response at treatment doses that were comparable to that inducing an SP response. Taken together, nitrofurantoin was evaluated as having had weak activity in the transformation assay. Its actual and estimated rank t-statistics were 2.26 and 2.52, respectively (Table A3).

Nitrofurazone. Nitrofurazone was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was very cytotoxic to the BALB/ c-3T3 cells with an average LD_{50} of 0.0515 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 24, 17 and 63/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 10, 6 and 101/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LN transformation response, because the chemical treatment doses were too cytotoxic. In trials 2 and 3 the chemical had an SP transformation response. Nitrofurazone was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 4.12, respectively (Table A3).

2-Nitro-p-Phenylenediamine. 2-Nitro-p-phenylenediamine was a relatively weak level D carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 0.947 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 100, 79 and 31/110, respectively; the detection sensitivities for BaP of trials 1-3 were 42, 75 and 52/110, respectively (Table A2). In a preliminary trial 1 the chemical had an SP transformation response. In trial 2 the chemical had an SN transformation response. The disparate transformation responses were examined further, and the mean *t*-statistics of the two experiments were significantly different from one another. Therefore, the chemical was tested in a third trial, and the activity in this experiment was evaluated as an SP. There was no obvious reason for the absence of activity of the test chemical in the second experiment. Taken together, 2-nitro-p-phenylenediamine was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 3.60 and 4.13, respectively (Table A3).

4,4-Oxydianiline. 4,4-Oxydianiline was a potent level A carcinogen (Table A3). It had one serious technical problem, because it was reported to become oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/ c-3T3 cells with an average LD_{50} of 0.270 mM (Table A1). The statistical sensitivities of trials 1 and 2 were 25 and

16/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 36 and 7/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. 4,4-Oxydianiline was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 2.60 (Table A3).

Quinoline. Quinoline was a level C carcinogen (Table A3). It was reported to be a highly reactive chemical, but none of the problems were serious (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 4.09 mM (Table A1). The statistical sensitivities of transformation assay trials 1-4 were 87, 78, 42 and 26/110, respectively; the detection sensitivities for BaP of trials 1-4 were 64, 58, 25 and 93/110, respectively (Table A2). In trials 1 and 2 the chemical had an LN transformation response because the chemical treatment doses did not induce a significant cytotoxic activity. In trial 3 the chemical had an LA transformation response, and trial 4 the response was evaluated as an SP. Quinoline was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 2.94 (Table A3).

Selenium Sulfide. Selenium sulfide was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.125 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 105, 101 and 54/110, respectively; the detection sensitivities for BaP of trials 1-3 were 69, 104 and 44/110, respectively (Table A2). In a preliminary trial 1, the chemical had an SP transformation response. In trial 2, the chemical had an SN transformation response. The disparate transformation responses were examined further. and the mean *t*-statistics of the two experiments were significantly different from one another. Therefore, the test chemical had to be tested in a third experiment, and the activity in this trial was evaluated as an SP. There was no obvious explanation for the disparate transformation responses in second experiment, verses the experiments 1 and 3. Taken together, selenium sulfide was evaluated as weakly active in the transformation assay. Its actual and estimated rank t-statistics were 1.92 and 2.78, respectively (Table A3).

o-Toluidine. o-Toluidine was a potent level A carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 4.33 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 87, 106 and 59/110, respectively; the detection sensilivities for BaP of trials 1 and 2 were 64, 51 and 17/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response, but it did not induce a significant increase in type I and II foci (data not presented). Because of this unusual activity, the test chemical was tested in a third trial. In the third experiment the chemical response was evaluated as an SP. Taken together, o-toluidine was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 4.83 and 5.62, respectively (Table A3).

Ziram. Ziram is a relatively weak level D carcinogen (Table A3) with no serious technical problems reported (Table A1). It was the most cytotoxic chemical in this group of test chemicals, and it had an average LD_{50} of 0.0000373 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 17 and 56/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 6 and 109/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Ziram was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 2.72 (Table A3).

Cytotoxic, Mutagenic Noncarcinogens

4-Acetylaminonuorene. 2-Acetylaminofluorene is a level F(I) noncarcinogen because it has not been evaluated in a complete rodent bioassay (Table A3). It had one difficult technical problem, because it had a solubility limit in culture medium supplemented with pluronic F68 of 200 μ g/ml (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} estimated to be over 900 µg/ml or about 0.07 mM (Table A1). Thus, the LD_{50} was considerably above the solubility limit of the test chemical. The statistical sensitivities of transformation assay trials 1 and 2 were 103 and 83/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 73 and 70/110, respectively (Table A2). The test chemical had an LN transformation response in both experiments, and it was tested at treatment doses that were both above and below its solubility limit. Taken together, 4-acetylaminofluorene was evaluated as an inactive chemical with an indeterminate activity in the transformation assay. Its actual and estimated rank t-statistics were 1.30 and 1.49, respectively (Table A3).

4'-(Chloroacetyl)acetanilide. 4'-(Chloroacetyl)acetanilide is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.00336 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 58 and 8/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 55 and 29/110, respectively (Table A2). In trials 1 and 2 the test chemical had LA transformation responses. 4'-(Chloroacetyl)acetanilide evaluated as having equivocal activity in the transformation assay, and its actual and estimated rank *t*-statistics were both 1.65 (Table A3).

2-(Chloromethyl)pyridine-HCl. 2-(Chloromethyl)pyridine is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.118 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 99 and 36/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 82 and 28/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. 2-(Chloromethyl)pynidine was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 2.56 and 2.85, respectively (Table A3).

3-Chloro-p-Toluidine. 3-Chloro-p-toluidine is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 1.17 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 2 and 41/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 2 and 83/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. 3-Chloro-p-toluidine was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 3.26 (Table A3).

Coumaphos. Coumaphos is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/ c-3T3 cells and had an average LD_{50} of 0.218 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 40, 8 and 33/110, respectively; the detection sensitivities for BaP of trials 1-3 were 54, 29 and 14/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Because the mean t-statistics of the transformation responses in the first two experiments were significantly different from one another, the test chemical was evaluated in a third trial. In the third experiment the test chemical had an SP transformation response. Coumaphos was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 4.12 (Table A3).

Dimethoate. Dimethoate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.602 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 90 and 18/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 13 and 31/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiment, and an SP response in the second experiment. Dimethoate was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 3.31 (Table A3).

2,4-Dimethoxyaniline-HCl. 2,4-Dimethoate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 1.13 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 7, 63 and 54/110, respectively; the detection sensitivities for BaP of trials 1-3 were 56, 101 and 44/110, respectively (Table A2). The test chemical had a SP transformation response in the first experiment, and a SN response in the second experiment. Because the mean *t*-statistics of the transformation responses in the first two experiments were significantly different from one another, the test chemical was evaluated in a third trial. The test chemical had a SN transformation

mation response in the third experiment. 2,4-Dimethoxyaniline was evaluated as having had equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were both 3.06 (Table A3).

HC Red 3. HC red 3 was one of five chemicals that was tested as both a coded and an uncoded test chemical in this investigation. It is a level E noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/ c-3T3 cells and had an average LD_{50} of 3.72 mM as a uncoded test chemical and 4.50 mM as a coded chemical (Table A1). For the uncoded test chemical the statistical sensitivities of transformation assay trials 1 and 2 were 60 and 86/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 27 and 74/110, respectively (Table A2). In trials 1 and 2 the uncoded test chemical had SP transformation responses. For the coded test chemical the statistical sensitivities of transformation assay trials 1 and 2 were 93 and 33/110, respectively; the detection sensitivities for BaP were 100 and 14, respectively. The coded test chemical had an LA transformation response in the first experiment, and an SP transformation response in the second experiment. Both the uncoded and the coded HC Red 3 were evaluated as active in the transformation assay. The coded test chemical actual estimated rank t-statistics were 5.60 and 6.11, respectively; the uncoded test chemical actual and estimated rank t-statistics were 2.64 and 2.96, respectively (Table A3).

8-Hydroxyquinoline. 8-Hydroxyquinoline is a level F noncarcinogen (Table A3). It had one difficult technical problem because it was reported to combine with different metal salts (Table A1). Thus, it could have combined with metal salts in FBS and EMEM medium. The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.00251 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 94, 102 and 39/110, respectively; the detection sensitivities for BaP of trials 1-3 were 91, 95 and 68/110, respectively (Table A2). The test chemical had an SP transformation response in the first experiment, and an SN response in the second experiment. Because the mean *t*-statistics of the transformation responses of the first two experiments were significantly different from one another the chemical was evaluated in a third trial. The test chemical had an SN transformation response in the third experiment. 8-Hydroxyquinoline was evaluated as having equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were 0.78 and 1.16, respectively (Table A3).

Malaoxon. Malaoxon is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.468 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 87 and 106/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 64 and 51/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiment, and an SP response in the

second experiment. Malaoxon was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were 8.14 and 11.4, respectively (Table A3).

1-Naphthylamine. 1-Naphthylamine is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was cytotoxic to the BALB/ c-3T3 cells and had an average LD_{50} of 0.506 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 96 and 77/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 86 and 67/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. 1-Naphthylamine was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 2.82 and 4.18, respectively (Table A3).

N-(1-Naphthyl)ethylenediamine-2HCl. N-(1-Naphthyl)ethylenediamine-2HCl is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/ c-3T3 cells and had an average LD_{50} of 0.125 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 69 and 63/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 12 and 101/110, respectively (Table A2). In trials 1 and 2 the test chemical had LA transformation responses. *N*-(1-naphthyl)ethylenediamine-2HCl evaluated as having equivocal activity in the transformation assay, and its actual and estimated rank *t*-statistics were 1.64 and 1.83, respectively (Table A3).

1-Nitronaphthalene. 1-Nitronaphthalene is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.464 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 49 and 63/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 24 and 101/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Because the mean t-statistic responses of the two transformation experiments were significantly different from one another, this chemical has to be tested in a third trial. In the absence of these data 1-nitronaphthalene was evaluated as having had an indeterminate activity in the transformation assay, and its actual and estimated rank t-statistics were 1.45 and 1.56, respectively (Table A3).

4-Nitro-o-Phenylenediamine. 4-Nitro-o-phenylenediamine is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.292 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 99 and 46/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 82 and 80/110, respectively (Table A2). The test chemical had an SP transformation response in the first experiment, and an LA response in the second experiment. 4-Nitro-o-phenylenediamine was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were 2.54 and 3.54, respectively (Table A3).

3-Nitropropionic Acid. 3-Nitropropionic acid is a level E noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 1.23 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 82 and 67/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 18 and 78/110, respectively (Table A2). The test chemical had an SP transformation response in the first and second experiments. 3-Nitropropionic acid was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 4.69 and 5.22, respectively (Table A3).

p-Phenylenediamine-2HCl. p-Phenylenediamine-2HCl is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.0712 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 58 and 51/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 55 and 50/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. p-Phenylenediamine-2HCl was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 3.04 (Table A3).

N-Phenyl-2-Naphthylamide. N-Phenyl-2-naphthylamide is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.195 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 93 and 63/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 100 and 101/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. N-Phenyl-2-naphthylamide was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were 4.25 and 6.90, respectively (Table A3).

2,3,5,6-Tetrachloro-4-Nitroanisole. 2,3,5,6-Tetrachloro-4-nitroanisole is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.0437 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 68 and 43/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 40 and 9/110, respectively (Table A2). In trials 1 and 2 the test chemical had LA transformation responses. 2,3,5,6,-Tetrachloro-4-nitroanisole was evaluated as having equivocal activity in the transformation assay, and its actual and estimated rank *t*-statistics were both 2.08 (Table A3). **Tetraethylthiuram Disulfide.** Tetraethylthiuram disulfide is a level F noncarcinogen (Table A3). It had one no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.0000583 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 10 and 43/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 5 and 9/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. Tetraethylthiuram disulfide was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 3.88 (Table A3).

2,6-Toluenediamine-2HCl. 2,6-Toluenediamine-2HCl is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 4.11 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 68 and 23/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 40 and 11/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. 2,6-Toluenediamine-2HCl was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 6.95 (Table A3).

Cytotoxic, Nonmutagenic Carcinogens

Allyl Isothicyanate. Allyl isothiocyanate is a level D carcinogen (Table A3). It had one difficult technical problem because it was reported to react with water (Table A1). The test chemical was a very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.00712 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 90 and 98/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 13 and 60/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiment, and an SP response in the second experiment. Allyl isothiocyanate evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were 2.86 and 3.39, respectively (Table A3).

Allyl Isovalerate. Allyl isovalerate is a level A carcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 4.51 mM (Table A1). The statistical sensitivities of transformation assay trials 1–4 were 66, 78, 42, and 27/110, respectively; the detection sensitivities for BaP of trials 1–4 were 81, 58, 35, and 63/110, respectively (Table A2). The test chemical had an LN transformation response in the first two experiments, an SN response in the third experiment, and an LA response in the fourth experiment. Allyl isovalerate was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 1.65 (Table A3).

Chlorendic Acid. Chlorendic acid was a level *A* carcinogen (Table A3). This chemical was reported to bind metal salts (Table A1); thus, it could have affected the concentration of metal salts in FBS and culture medium.

The test chemical was moderately cytotoxic chemical with an average LD_{50} of 4.07 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 9 and 57/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 37 and 88/110, respectively (Table A2). In a preliminary trial 1 the chemical had an SP transformation response. In trial 2 the chemical had an LA transformation response. Chlorendic acid was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 1.98 (Table A3).

3-Chloro-2-Methylpropene. 3-Chloro-2-methylpropene was a level A carcinogen (Table A3). It had many technical problems including its reported reaction (Table A1). The test chemical was a cytotoxic chemical with an average LD_{50} of 0.662 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 9 and 57/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 37 and 88/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation responses. In trial 2 the chemical had an SP transformation response. 3-Chloro-2-methylpropene was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 2.14 (Table A3).

Chlorowax 40. Chlorowax 40 is a level *D* carcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 1.43 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 12 and 26/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 98 and 93/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiments and an SN response in the second experiment. Chlorowax 40 was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were 0.46 and 0.48, respectively (Table A3)

Chlorowax 500. Chlorowax 500 is a level A carcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 1.58 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 32 and 15/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 108 and 21/110, respectively (Table A2). The test chemical had an SN transformation response in both experiments. Chlorowax 500 was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 0.06 (Table A3).

Cinnamyl Anthranilate. Cinnamyl anthranilate is a level *A* carcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized by air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.0947 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 53, 102 and 92/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 30, 95 and ND/110, respectively (Table A2). The test chemical had an SN transformation response in all three experiments. Cinnamyl anthranilate was evaluated as inactive in

the transformation assay, and its actual and estimated rank *t*-statistics were 0.004 and 0.005, respectively (Table A3).

Diethylstilbestrol. Diethylstilbestrol is a level A carcinogen (Table A3) with no technical problems (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.0858 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 55 and 31/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 8 and 52/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Diethylstilbestrol was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 2.91, respectively (Table A3).

Dimethylvinyl Chloride. Dimethylvinyl chloride is a level A carcinogen (Table A3). It had one serious technical problem because it was noted to be oxidized upon exposure to air (Table A1). It was moderately cytotoxic to the BALB/ c-3T3 cells with an average LD_{50} of 4.74 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 12 and 27/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 98 and 63/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Dimethylvinyl chloride was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 2.59 (Table A3).

Ethyl Acrylate. Ethyl acrylate is a level A carcinogen (Table A3). It has one difficult technical problem because it was reported to react with water (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.0746 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 66 and 74/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 81 and 35/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Ethyl acrylate was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 4.51 and 5.25, respectively (Table A3).

Isophorone. Isophorone is a level D carcinogen (Table A3) with no insurmountable technical problems (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 5.18 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 106, 74 and 26/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 51, 35 and 93/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LN transformation response because the test chemical treatment doses were noncytotoxic to the cells. In trials 2 and 3 the chemical had an SP transformation response. Isophorone was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 2.76 and 2.86, respectively (Table A3).

D-Limonene. D-Limonene is a level *D* carcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized by air; thus, it could have reacted with air during the treatment period (Table A1). The test

chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.988 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 70, 12 and 57/110, respectively; the detection sensitivities for BaP of trials 1-3 were 41, 98 and 88/110, respectively (Table A2). The test chemical had an LN transformation response in the first experiments and an SN response in the second and third experiments. D-Limonene was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were 0.24 and 0.27, respectively (Table A3).

Malonaldehyde, Sodium Salt. Malonaldehyde, sodium salt, is a level *C* carcinogen (Table A3). It was had one serious technical problem because it is very temperature sensitive (Table 1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 3.74 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 21 and 54/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 26 and 44/110, respectively (Table A2). In a preliminary trial 1 the chemical had an SP transformation response. In trial 2 the chemical had an LA transformation response. Malonaldehyde, sodium salt, was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were 1.87 and 1.87, respectively (Table A3).

Methapyrilene-HCl. Methapyrilene-HCl is a level C carcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.812 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 60, 91 and 82/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 27, 85 and ND/110, respectively (Table A2). The test chemical had an SN transformation response in all three experiments. Methapyrilene-HCL was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were 0.14 and 0.17, respectively (Table A3).

2-Mercaptobenzothiazole. 2-Mercaptobenzothiazole is a level C carcinogen (Table A3). It had one serious technical problem. It was reported to react with water; thus, its activity in the transformation assay could have been unavoidably affected by its exposure to an aqueous environment during the 48-hr treatment period (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.130 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 3,17 and 51/110, respectively, the detection sensitivities for BaP of trials 1-3 were 110, 6 and 50/110, respectively (Table A2). The test chemical had a LN transformation response in the first experiment, because the positive control did not induce significant transformation in this experiment. In the second and third experiments the test chemical had LA transformation responses. 2-Mercaptobenzothiazole was evaluated as having had equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.23 (Table A3).

Nitrilotriacetic Acid, Trisodium Salt. Nitrilotriacetic acid, trisodium salt, is a level A carcinogen (Table A3).

Because this chemical was reported to binds metal salts, it could have affected the concentration of metal salts in FBS and culture medium (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 5.98 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 80 and 33/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 89 and 14/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. Nitrilotriacetic acid, trisodium salt, was evaluated as active in the transformation assay. Its actual and estimated rank *t*-statistics were both 5.86, respectively (Table A3).

Polybrominated Biphenyl Mixture. Polybrominated biphenyl mixture is a level A carcinogen (Table A3). This test chemical was insoluble in culture medium at a portion of the treatment doses that were used to induce both cytotoxic and transforming activity (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.291 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 81 and 39/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 22 and 68/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation responses for both type III and type I-III focus transformation responses. However, this test chemical was very unusual in that it induced proportionally a much higher response for the type I and II foci, than for the type III foci (refer to the Discussion). Polybrominated biphenyl mixture was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 1.93 for the type III focus response, and 5.81 for the type I and II focus response (Table A3).

Reserpine. Reserpine is a level A carcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized by air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.0133 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 25, 16 and 92/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 36 and 7/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiment and an SN response in the second and third experiments. Reserpine was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 0.24, respectively (Table A3).

Tris(2-ethylhexyl)phosphate. Tris(2-ethylhexyl)phosphate is a level D carcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c3T3 cells and had an average LD_{50} of 0.338 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 57 and 59/110, respectively, the detection sensitivities for BaP of trials 1 and 2 were 88 and 17/110, respectively (Table A2). The test chemical had an SN transformation response in both experiments. Tris(2-ethylhexyl)-phosphate was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 0.00 (Table A3).

4-Vinylcyclohexene. 4-Vinylcyclohexene is a level D carcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 3.88 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 32 and 38/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 108 and 16/110, respectively (Table A2). The test chemical had an SN transformation response in both experiments. Vinylcyclohexane was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 0.00 (Table A3).

Cytotoxic, Nonmutagenic Noncarcinogens

Anilazine. Anilazine is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table 1). The test chemical was a very cytotoxic to the BALB/ c-3T3 cells and had an average LD_{50} of 0.0475 (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 68 and 67/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 40 and 78/110, respectively (Table A2). In trials 1 and 2 the test chemical had LA transformation responses. Aniline was evaluated as having equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were 1.82 and 2.09, respectively (Table A3).

L-Ascorbic Acid. L-Ascorbic acid is a level F noncarcinogen (Table A3). It had two difficult technical problems. It was reported to become oxidized upon exposure to air; thus, it could have reacted with air during the treatment period. In addition, it was noted to bind metal salts; thus, it could have combined with metal salts in FBS and EMEM medium (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.363 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 50 and 101/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 59 and 104/110, respectively (Table A2). In trials 1 and 2 the test chemical had SN transformation responses. L-Ascorbic acid was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.32 and 0.46, respectively (Table A3).

Bisphenol A. Bisphenol A is a level E noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.147 mM (Table A1). The statistical sensitivities of transformation assay trials 1-4 were 53, 16, 99 and 105/110, respectively; the detection sensitivities for BaP of trials 1-4 were 30, 7, 37 and 39/110, respectively (Table A2). The test chemical had an SN transformation response in all four experiments. Bisphenol A was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 0.79 (Table A3).

Carbromal. Carbromal is a level *F* noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized by air; thus, it could have reacted with

air during the treatment period (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 3.60 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 14 and 23/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 72 and 11/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Although the test chemical had disparate transformation responses in two experiments, the mean *t*-statistics of the two responses were not significantly different from one another. Carbromal was evaluated as weakly active in the transformation assay, and its actual and estimated rank *t*-statistics were both 2.26 (Table A3).

Chlorpheniramine-Maleate. Chlorpheniramine maleate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.287 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 47 and 67/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 43 and 78/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Although the test chemical had disparate transformation responses, the mean t-statistics of the two responses were not significantly different from one another. Chlorpheniramine-maleate was evaluated as weakly active in the transformation assay, and its actual and estimated rank t-statistics were 1.18 and 1.26, respectively (Table A3).

C. I. Acid Red 14. C. I. Acid red 14 is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 3.38 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 40 and 35/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 54 and 57/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. C. I. Acid red 14 was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were 60th 2.15 (Table A3).

C. I. Acid Yellow 73. C. I. Acid yellow 73 is a level F(I) noncarcinogen which has been reclassified as an incomplete bioassay study (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 4.65 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 17 and 71/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 6 and 23/110, respectively (Table A2). In trials 1 and 2 the test chemical had SN transformation responses. C. I. Acid yellow 73 was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.03 (Table A3).

Ephedrine Sulfate. Ephedrine sulfate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 1.53 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 24, 17 and 51/110, respectively; the detection sensitivities for BaP of trials 1-3 were 10, 6 and 50/110, respectively (Table A2). The test chemical had an LN transformation response in the firsl experiment because the test chemical did not have significant cytotoxic activity. The test chemical had an SN response in the second and third experiments. Ephedrine sulfate evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 0.16 (Table A3).

Erythromycin Stearate. Erythromycin stearate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.0746 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 24 and 51/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 10 and 50/110, respectively (Table A2). The test chemical had an SN transformation response in both the first and second experiments. Erythromycin stearate was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 0.08 (Table A3).

Ethoxylated Dodecyl Alcohol. Ethoxylated dodecyl alcohol is a level F(I) noncarcinogen which has been reclassified as an incomplete study (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.0172 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 1 and 15/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 3 and 21/110, respectively (Table A2). The test chemical had an SN transformation response in both the first and second experiments. Ethoxylated dodecyl alcohol was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 0.29 (Table A3).

Ethylenediamine Tetraacetic Acid, Trisodium Salt. Ethylenediamine tetraacetic acid, trisodium salt, is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to bind with certain metal salts; thus, it could have reacted with metal salts in FBS and EMEM medium (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 1.89 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 80 and 67/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 89 and 78/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiment, and an SN response in the second experiment. Ethylenediamine tetraacetic acid, trisodium salt, was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 1.41 and 2.01, respectively (Table A3).

Eugenol. Eugenol is a level *E* noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air; thus, it could have reacted with air during the treatment period (Table A1).

The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.875 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 32 and 18/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 108 and 31/110, respectively (Table A2). The test chemical had an LN transformation response in the first experiment, because the test chemical did not induce significant cytotoxic activity. In the second experiment the test chemical had an SN transformation response. Since the test chemical had an LN transformation response in the first experiment, it had to be tested in two additional trials. Therefore, eugenol was evaluated as having had an indeterminate activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.07 (Table A3).

Geranyl Acetate. Geranyl acetate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.302 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 44 and 41/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 65 and 83/110, respectively (Table A2). The test chemical had an SN transformation response in the first and second experiments. Geranyl acetate was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were 0.35 and 0.37, respectively (Table A3).

4-Hexylresorcinol. 4-Hexylresorcinol is a level E noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.103 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 13 and 67/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 66 and 78/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an LA response in the second experiment. 4-Hexylresorcinol was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were 0.46 and 0.47, respectively (Table A3).

D,L-Menthol. D,L-Menthol is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 4.63 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 46 and 89/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 80 and 87/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment and second experiments. D,L-Menthol was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were 0.16 and 0.22, respectively (Table A3).

Methoxychlor. Methoxychlor is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.0978 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 58 and 51/110, respectively; the

detection sensitivities for BaP of trials 1 and 2 were 55 and 50/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an LA response in the second experiment. Methoxychlor was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 1.08 (Table A3).

Methyldopa Sesquihydrate. Methyldopa sesquihydrate is a level E noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.0810 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 21 and 56/110, respectively, the detection sensitivities for BaP of trials 1 and 2 were 26 and 109/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiment, and an SN response in the second experiment. Methyldopa sesquihydrate was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 1.21, respectively (Table A3).

Methylphenidate-HCl. Methylphenidate is a level I noncarcinogen because it has not been evaluated in a complete rodent bioassay study (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 5.63 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 64 and 86/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 84 and 74/110, respectively (Table A2). In trials 1 and 2 the test chemical had SN transformation responses. C. I. Acid red 14 was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were 1.05 and 1.47, respectively (Table A3).

Oxytetracycline-HCl. Oxytetracycline is a level E noncarcinogen (Table A3). It had one difficult technical problem. It was reported to hydrolyze in water; thus, it could have reacted with water during the treatment period (Table A1). The test chemical was cytotoxic to the BALB/ c-3T3 cells and had an average LD_{50} of 0.523 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 80, 22 and 5/110, respectively; the detection sensitivities for BaP of trials 1-3 were 89, 53 and 46/110, respectively (Table A2). The test chemical had an SN transformation response in all three experiments. The test chemical was tested in the third experiment, because the its cytotoxic activity in the first experiment was excessive. Oxytetracycline-HCI was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.00, respectively (Table A3).

Phenol. Phenol is a level F noncarcinogen (Table A3). It had two difficult technical problems. It was reported to become oxidized by air; thus, it could have reacted with air during the treatment period. In addition, it was reported to react with sulfate groups on chemicals; thus, it could have reacted with biochemicals in culture medium, as well as biochemicals in the target cells (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 3.29 mM (Table A1). The

statistical sensitivities of transformation assay trials 1 and 2 were 12 and 15/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 26 and 21/110, respectively (Table A2). The test chemical had an SP transformation response in the first and second experiments. Phenol was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 7.60 (Table A3).

Phenylephrine-HCl. Phenylephrine-HCl is a level F noncaranogen (Table A3). It had one difficult technical problem. It was reported to become oxidized by air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was moderately cytotoxic to the BALB/c3T3 cells and had an average LD_{50} of 3.52 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 80 and 29/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 89 and $^{97}/_{110}$, respectively (Table A2). The test chemical had an SN transformation response in the first and second experiments. Phenylephrine-HCl was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were 0.31 and 0.42, respectively (Table A3).

Propyl Gallate. Propyl gallate is a level E noncarcinogen (Table A3). It had one difficult technical problem. It was reported to react with iron; thus, it could have reacted with the iron in FBS (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD50 of 0.0631 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 94 and 102/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 91 and 95/110, respectively (Table A2). The test chemical had an SP transformation response in the first experiment, and an LA response in the second experiment. Propyl gallate was evaluated as active in the transformation assay. Because the statistical sensitivity and detection sensitivity for BaP in both of the experiments were significantly low, and the test chemicals actual and estimated rank t-statistics were very different (i.e., 1.70 and 2.95, respectively (Table A3).

Rotenone. Rotenone is a level E noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized by air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.000464 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 21 and 31/110, respectively, the detection sensitivities for BaP of trials 1 and 2 were 26 and 52/110, respectively (Table A2). The test chemical had an SN transformation response in the first and second experiments. Rotenone was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 0.26 (Table A3).

Sodium Diethyldithiocarbamate. Sodium diethyldithiocarbamate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.000142 mM (Table A1). The statistical sensilivities of transformation assay trials 1 and 2 were 69 and 31/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 12 and 52/110, respectively (Table A2). The test chemical had an SP transformation response in the first and second experiments. Sodium diethyldithiocarbamate was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 2.94 (Table A3).

Stannous Chloride. Stannous chloride is a level E noncarcinogen (Table A3). It had two difficult technical problems. It was reported to react with both alcohols and amines; thus, it could have reacted with biochemicals with this groups in both FBS and EMEM medium (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.0285 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 77 and 37/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 67 and 20/110, respectively (Table A2). The test chemical had an SN transformation response in the first and second experiments. Stannous chloride was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 0.78 (Table A3).

Tetracycline-HCl. Tetracycline-HCl is a level F noncarcinogen (Table A3). It had one difficult technical problem, because it was reported to become oxidized upon exposure to air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 3.24 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 24 and 51/110, respectively, the detection sensitivities for BaP of trials 1 and 2 were 10 and 50/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment and second experiments. Tetracycline-HCl was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.021 (Table A3).

Tetrakis(hydroxymethyl)phosphonium Chloride. Tetrakis(hydrosymethyl)-phosphonium chloride is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.00825 mM (Table A1). The slatistical sensitivities of transformation assay trials 1-3 were 70, 15 and 59/110, respectively; the detection sensitivities for BaP of trials 1-3 were 41, 21 and 17/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Because the mean *t*-statistics of the test chemical transformation responses in the first two experiments were significantly different from one another, the test chemical had to be tested in a third trial. The test chemical had a SN transformation response in the third experiment. Tetrakis(hydroxymethyl)phosphonium chloride was evaluated as having had equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.27 (Table A3).

Tetrakis(hydroxymethyl)phosphonium Sulfate. Tetrakis(hydroxymethyl)phosphonium sulfate is a level *F* noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.00438 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 70 and 44/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 41 and 65/110, respectively (Table A2). The test chemical had an SN transformation response in the first and second experiments. Tetrakis-(hydroxymethyl)phosphonium sulfate evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.083 (Table A3).

Triphenyltin Hydroxide. Triphenyltin hydroxide is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 0.000134 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 82 and 43/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 18 and 9/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Since the mean t-statistics of the test chemical transformation responses in the first two experiments were significantly different from one another, it had to be tested in a third experiment. Therefore, triphenyltin hydroxide was evaluated as having had an indeterminate activity in the transformation assay, and its actual and estimated rank *t*-statistics were both 1.64 (Table A3).

Xylenes, (mixed). Xylenes (mixed) is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 3.20 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 70 and 73/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 41 and 49/110, respectively (Table A2). The test chemical had an SN transformation response in the first and second experiments. Xylenes (mixed) was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were 0.47 and 0.50, respectively (Table A3).

Noncytotoxic, Mutagenic Carcinogens

DC Red No. 9. DC Red no. 9 is a level *B* carcinogen (Table A6). It had no insurmountable technical problems;

however it had a solubility limit in culture medium of about 500 μ g/ml. This improved to 2250 μ g/ml when the medium was supplemented with the solvent vehicle pluronic F68 (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 3.82 mM and 6.52 mM, either with or without using pluronic F68 (Table A4). The statistical sensitivities of transformation assay trials 1-3 were 30, 91 and 107/110, respectively; the detection sensitivities for BaP of trials 1-3 were 4, 85 and 106/110, respectively (Table A5). The test chemical had an SP transformation response in two experiments, and an LA response in one experiment. Significant test chemical transforming activity was detected at doses both above and below its solubility limit in culture medium. DC Red No. 9 was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 4.33 and 5.50, respectively (Table A6).

Diethanolnitrosamine. Diethanolnitrosamine is a level I carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 61.1 mM (Table A4). The test chemical was only evaluated in one trial due to the limited availability during this investigation. The statistical sensitivity of transformation assay trial 1 was 52/110; the detection sensitivity for BaP of trial 1 was 79/110, respectively (Table A5). The test chemical had an SP transformation response in the only experiment conducted for this test chemical. Diethanolnitrosamine was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were 4.01 and 4.87, respectively (Table A6).

Diethylnitrosamine. Diethylnitrosamine is a level A carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 46.0 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 4 and 27/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 1 and 63/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. Diethylnitrosamine was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 4.69 (Table A6).

MATTHEWS ET AL.

Test Chemical	a		Phy	sicoche	mical Properties	Cytotoxic Responses ^b (millimolar LD ₅₀)	
Name	CAS No.	M.W.	1	2	3	C	o-culture Assay
		21 Car	cino	gens			
Convo I Very Ner Cutatoria	Chemicals			J			
<u>Group I. Very Non-Cytotoxic (</u> 3-amino-1,2,4-triazole	61-82-5	84.08	S	С	a, ach, m, o		109.
cyclamate, sodium salt	139-05-9	201.22	S	c	a, b, m, n, o		132.
dimethyl hydrogen phosphite	868-85-9	110.05	Ľ	č	ac, b, o, v, W		130. (260 mOsM)
dimethyl methyl phosphonate	756-79-6	124.08	Ľ	č	ai, alk, b, o,	oh.v	172.
dimethylnitrosamine	62-75-9	74.08	Ē	č	ai, b, o, v		256.
methyl carbamate (uncoded)	598-55-0	75.07	ŝ	č			225.
(coded)	"		•	-			195.
saccharin, sodium salt	81-07-2	205.2	S	С			76.5 (153 mOsM)
Group II. Non-Cytotoxic Chem	icals						
11-aminoundecanoic acid	2432-99-7	201.35	S	FC	a, b, o		19.4
D & C red no. 9	5160-02-1	444.49	S	FC	o, sp		3.82 (6.52)
decabromodiphenyloxide	1163-19-5	959.22	S	FC	l, o, sp		>6.26
di(2-ethylhexyl)adipate	103-23-1	370.57	L	FC	o, sp, v		98.4
di(2-ethylhexyl)phthalate	117-81-7	390.54	L	FC	a, b, n, o, v		21.4
diethanolnitrosamine			L	С	a, l, v		61.1
diethylnitrosamine	55-18-5	102.14	L	С	l, o, r, v		46.0
dimethylmorpholino- (uncoded)	597-25-1	195.18	L	С	a, ai, v		17.1
phosphoramidate (coded)							24.4
ethylene thiourea	96-45-7	102.16	S	FC	٥,		91.4
hexamethylphosphoramide	680-31-9	179.2	L	С	v		64.4
melamine	108-78-1	126.12	S	FC	a, o, sp		39.6
monuron	150-68-5	198.65	S	С	a, b, sp		5.54
phenobarbital, sodium salt	57-30-7	254.22	S	FC	a, ai, o		6.11
2,4- & 2,6-toluene diiso-	26471-62-5	174.16	L	FC	am, b, l, ts, v	/, W	7.93
thiocyanate	2	6 Non C	anai	~~~~	n 0		
Crown I. Kony Non Cutotovic		6 Non-C	arci	noge	115		
<u>Group I. Very Non-Cytotoxic (</u> D-mannitol	<u>69-65-8</u>	182.18	S	С			>329.
3-sulfolene	77-79-2	118.15	S	Ċ	ts		117.
witch hazel	68916-39-2	46.07	L	С	0, V		540.
Group II. Non-Cytotoxic Chem	icals						
aldicarb	116-06-3	190.27	S	FC	a, b, ts		10.7
ampicillin trihydrate	7177-48-2	403.50	Š	FC	ts		23.8
o-anthranilic acid	118-92-3	137.14	S	FC	ai, l, ts		72.9
benzoin	119-53-9	212.25	S	FC	sp,		14.8
benzyl alcohol	100-51-6	108.13	L	FC	a, ach, ai, ts		17.9
caprolactam	105-60-2	113.16	S	С	ai, b, ch, o, ts	3	71.8
2-chloroethanol	107-07-3	80.52	L	С	b, o, ts, W		81.0
(2-chloroethyl)trimethyl- ammonium chloride	999-81-5	158.07	S	С	m, o		62.0
C. I. acid orange 10	1936-15-8	452.38	s	FC			26.5
dimethyl terephthalate	120-61-6	194.19	S	FC	a, ai, b, o, sp,	ts, w	>15.4
diphenylhydantoin	57-41-0	252.27	S	FC	b, o, sp	•	5.02
FD & C yellow No. 6	2783-94-0	452.37	S	FC	· · ·		67.7
methyl methacrylate	80-62-6	100.12	L	DFC	ai, am, b, l, ra	a, ts	10.8
molybdenum trioxide	1313-27-5	144.	S	FC	a&b, ts		9.38
4-nitroanthranilic acid	619-17-0	182.15	S	FC	a, ach, b, o		8.58
penicillin VK+	132-98-9	388.51	S	С			17.8
phthalamide	88-96-0	164.18	S	FC	a, sp		73.1
phthalic anhydride	85-44-9	148.12	S	FC	a, am, b, o, ra,	ts, w.	13.2
roxarsone	121-19-7		S	FC	a, l, o, ts		43.8
	126-92-1	232.28	L	С	-		12.5
sodium(2-ethylhexyl) alcohol sulfate							
sulfate	127-69-5	267.32	S	FC	ai.l		18.7
sodium(2-ethylhexyl) alcohol sulfate sulfisoxazole tetrahydrofuran		267.32 72.11	S L	FC FC	ai, l a, ai, b, o, ts		18.7 90.3

Test Che	Cytotoxic Responses ^b (millimolar LD _{so})					
Name	CAS No.	M.W.	1	2	emical Properties	Co-culture Assay
Group I. Non-Cytotoxic Cl	hemicals					
, ,	hemicals 67-64-1	58.08	L	С	a, l, o, oc, ts	257.
acetone		58.08 78.13	L	C C	a, l, o, oc, ts a, ach, am, r, o	257. 507.
acetone dimethyl sulfoxide	67-64-1		L L L			
acetone dimethyl sulfoxide ethanol	67-64-1 67-68-5	78.13	L L L	С	a, ach, am, r, o	507.
acetone dimethyl sulfoxide ethanol glycerol	67-64-1 67-68-5 64-17-5	78.13 46.07	L L L S	C C	a, ach, am, r, o a, ach, o, am	507. 429.
Group I. Non-Cytotoxic CH acetone dimethyl sulfoxide ethanol glycerol sodium chloride sucrose	67-64-1 67-68-5 64-17-5 56-81-5	78.13 46.07 92.09	L L L S S	C C C	a, ach, am, r, o a, ach, o, am	507. 429. 401.

Abbreviations: CAS No., Chemical Abstract Service registry number; LD₅₀, lethal dose for 50% of the cells; M.W., molecular weight.

Abbreviations for Test Chemical Physicochemical Properties: Physicochemical considered in this study included: [1] physical state (S = solid, L = liquid); [2] solvent vehicle (D = dimethyl sulfoxide, C = culture medium, F = pluronic F68, A = acetone, E = ethanol) and [3] technical problems. The technical problems included test chemicals that were a = reacts with acids; ac = reacts with acid chlorides and acid anhydrides; ai = reacts with air, al = reacts with alcohols; alk = alkylating agent and reacts with labile hydrogen; b = reacts with bases; bc = reacts with biochemicals (amino, hydroxyl, and carboxyl groups); hc = reacts with halogenated chemicals; k = reacts with alpha keto acids; ls = light sensitive; m = binds metals; mel = reacts with hexachloro- and trichloromelamine; met = reacts with metals (aluminum, iron, magnesium, potassium, sodium, tin or zinc); mh = metal halides; msc = reacts with miscellaneous organic chemicals (i.e. alpha-aminoethanol, chlorosulfonic acid, ethylene imine, linseed oil, maleic anhydride, oleum, or K-tert-butyloxide); o = reacts with oxidizing agents; p = reacts with plastics; pi = polymerization initiators; <math>r = reacts with rubber; sp = solubility problem in culture medium; tc = reacts with thiocyanates; ts = temperature sensitive; vts = very temperature sensitive; v = volatile at 37,C; and w = reacts with water [refer to MATERIALS and METHODS].

^aTest Chemical: Tables A1 and A3 contain 168 chemicals along with their individual CAS registry number and molecular weight. The chemicals were divided into groups of chemicals that correspond to the groups of chemicals that were compared in different text Tables 1–12. Thus, the chemicals were divided into two groups, including 114 cytotoxic test chemicals ($LD_{50} < 5.0$ mM) presented in Table A1, and 53 noncytotoxic chemicals ($LD_{50} > 5.0$ mM) presented in Table A1, and 53 noncytotoxic chemicals ($LD_{50} > 5.0$ mM) presented in Table A4. The 114 cytotoxic chemicals in Table A1 were subdivided into groups of 43 mutagenic carcinogens, 21 mutagenic noncarcinogens, 20 nonmutagenic carcinogens, and 30 non-mutagenic noncarcinogens. The 53 noncytotoxic test chemicals in Table A4 were subdivided into groups of 21 carcinogens, 26 noncarcinogens and 7 model very noncytotoxic chemicals. In addition, all of the cytotoxic test chemicals were separated into three groups, including: Group I, moderately cytotoxic test chemicals [LD_{50} 1-5 mM]; Group II, cytotoxic chemicals [LD_{50} 0.1-1.0 mM]; and Group III, very cytotoxic chemicals [$LD_{50} < 0.1$ mM]. In addition, this table presents important physicochemical properties that influenced the procedure used in testing the chemicals.

^bCytotoxic Response: The co-culture clonal sulvival assay design used to detect the cytotoxic response of the test chemical is described in Materials and Methods. The cytotoxic responses of chemicals in individual experiments are summarized in terms of the millimolar (mM) LD_{50} treatment dose that resulted in 50% survival of the chemically-treated cells relative to the survival of untreated or solvent control treated cell cultures. The LD_{50} cytotoxic response of each chemical in Tables A1 and A4 is an average of two or more experiments with the chemical. The molecular weight of each chemical is provided in order that treatment doses could be converted from mM to $\mu g/ml$. For example, based upon the molecular weight of 84.08, the LD_{50} detected for the first chemical in Table A4, 3-amino-1,2,4-triazole, was 109 mM or 9165 $\mu g/ml$.

MATTHEWS ET AL.

Table A5. Transformation responses of 54 noncytotoxic chemicals

Chemica 1ª		nsformation responses of 54 noncytotoxic chemicals. Transformation Response ^b							
		Sponta	neous ^c		a)pyrene ^d	Test Ch	emical ^e		
Name	Exp. No.	Foci/Vessel			Rank Order	Call: Mean			
		21 Ca	rcinogens						
Active Chemicals (false)	<u>positives)</u>								
dimethyl hydrogen phosph	ite 1 (84) 2 (104)	.511 .878	-44 26	SP SP	65 93***	SP SP	6.02 5.93		
dimethyl methyl phosphon	ate 1 (84) 2 (102)	.511 .697	44 27	SP SP	65 63	LA SP	2.17		
	2 (102)	.097	21	58	63	58	3.63		
<u>Active Chemicals</u> 3-amino-1,2,4-triazole	1 (69)	.288	85	SP	102***	SP	3.54		
5-amino-1,2,4-thazote	2 (99)	.586	33	SP	14***	SP SP	3.04 8.08		
11-aminoundecanoic acid	1 (17)	.327	83	SP	70	LN	1.10		
	2 (24)	.308	89	SP	87***	LN	.000		
	3 (32)	1.99	19	SP	34	SP	1.86		
	4 (67)	.085	107**	SP	106***	SP	2.37		
cyclamate, sodium salt	1 (71)	1.06	24	SP	10***	SP	2.76		
	2 (107)	2.95	5***	SP	46	SP	5.24		
D & C red No. 9	1 (43)	1.05	30	SP	4***	SP	8.46		
	2 (54)	.265	91	SP	85	LA	1.10		
	3 (67)	.085	107***	SP	106***	SP	3.42		
diethanolnitrosamine	1 (86)	.464	52	SP	79*	SP	4.01		
	2 (NA)			NA		NA			
diethylnitrosamine	1 (79)	5.12	4**	SP	1***	SP	5.91		
	2 (102)	.697	27	SP	63	SP	3.88		
dimethylmorpholinophos-	1 (86)	.464	52	SP	79*	SP	3.70		
phoramidate (uncoded)	2 (106)	1.30	28	SP	15***	SP	2.68		
dimethylmorpholinophos-	1 (86)	.464	52	SP	79*	SP	4.44		
phoramidate (coded)	2 (108)	1.17	20	SP	19**	SP	4.02		
dimethylnitrosamine	1 (31)	.930	42	SP	25*	SP	3.64		
,	2 (100)	.268	73	SP	49	SP	5.66		
hexamethylphosphoramide	1 (78)	3.28	9*	SP	37	SP	2.62		
	2 (98)	.618	59	SP	17***	SP	1.53		
melamine	1 (43)	1.05	30	SP	4***	SP	2.21		
	2 (58)	.189	97	SP	94**	LA	1.99		
		21 Carcin	Ogens cont	tinued					
Active Chemicals Conti	nued								
methyl carbamate	1 (42)	.861	55	SP	8***	SP	7.80		
	2 (66)	.056	108**	SP	99***	LA	1.53		
	3 (80)	3.02	10*	SP	5***	SP	5.08		
methyl carbamate (315183		.351	71	SP	23**	SP	2.38		
	2 (99)	.586	33	SP	14**	SP	4.81		
phenobarbital, sodium sa	lt 1 (59)	.297	75	SP	76	LA	2.01		
,	2 (109)	2.55	6*	SP	92***	SP	3.52		
saccharin, sodium salt	1 (75)	.882	21	SP	26*	SP	4.95		
satunarin, sourum salt	1 (72)	.002	2 1	52	20"	SP	4.77		

		Table A5. Continued. Transformation Response ^b							
Chemical*		· · · · · · · · · · · · · · · · · · ·							
			ntaneous ^c		co(a)pyrene ^d		t Chemical ^e		
Name	Exp. No.	Foci/Vess	sel : Rank Order	Call	: Rank Order	Call : Me	an <i>t</i> -statisti		
2,4- & 2,6-toluene	1 (76)	1.79	12*	SP	98***	SP	2.61		
diisothiocyanate	2 (106)	1.30	28	SP	15***	SP	3.54		
<u>Weakly Active Chemicals</u>	1 (59)	.297	75	SP	76	LN	1.57		
ethylene thiourea	2 (65)	.244	95	SP	61	SP	2.17		
				•••••••					
<u>Inactive Chemicals</u>	1 (88)	.406	57	SP	88***	SN	.000		
di(2-ethylhexyl)adipate	2 (108)	1.17	20	SP	19**	SN	.000		
di(2-ethylhexyl)phthalate	1 (36)	.424	74	SP	35	SN	.000		
	2 (100)	.268	73	SP	49	SN	.000		
monuron	1 (20)	.368	81	SP	22***	LA	1.57		
	2 (28)	.818	39	SP	68	Sn	.453		
<u>Inactive Chemical with an</u> decabromodiphenyloxide	<u>Indeterminate</u> 1 (75) 2 (101)	<u>Activity</u> .882 .260	21 62	SP SP	26* 48	LN LN	. 150 . 430		
		26 Non-0	Carcinogens						
<u>Active Chemicals</u>	1 (81)	7.36	2***	SP	2***	LA	2.11		
benzyl alcohol	2 (110)	.609	38	SP	16***	SP	1.79		
2-chloroethanol	1 (78)	3.28	9*	SP	37	SP	3.78		
	2 (100)	.268	73	SP	49	SP	2.66		
(2-chloroethyl)trimethyl-	1 (30)	.787	40	SP	54	SP	1.90		
ammonium chloride	2 (45)	.732	35	SP	57	LA	1.68		
FD & C yellow No. 6	1 (34)	2.51	7*	SP	56	SP	8.18		
	2 (65)	.244	95	SP	61	SP	4.85		
	3 (103)	.874	22	SP	53	SP	9.90		
penicillin VK+	1 (80)	3.02	10*	SP	5***	SP	6.26		
	2 (101)	.260	62	SP	48	SP	5.76		
3-sulfolene	1 (33)	1.04	49	SP	24**	SP	3.84		
	2 (44)	1.52	23	SP	11***	LA	3.00		
<u>Weakly Active Chemicals</u>	1 (79)	5.12	4**	SP	1***	SP	4.34		
methyl methacrylate	2 (106)	1.30	28	SP	15***	SN	1,19		
4-nitroanthranilic acid	1 (34)	2.51	7*	SP	56	SN	.015		
	2 (103)	.874	22	SP	53	SP	2.16		
<u>Chemical with an Equivocal</u>	Activity								
ampicillin trihydrate	1 (83)	.351	71	SP	23***	LA	1.04		
	2 (105)	.581	29	SP	97***	LA	1.52		

MATTHEWS ET AL.

Chemical ^a	······		5. Continued.	ion Response ^b			
		Sponta	neous ^c		(a) pyrene ^d	Test C	nemical®
Name	Exp. No.	Foci/Vessel			Rank Order	Call: Mean	
Inactive Chemicals							
benzoin	1 (4)	1.51	50	SP	59	SN	.000
	2 (10)	.053	109**	SP	103***	SN	1.48
caprolactam	1 (5)	.035	110***	SP	107***	SN	1.37
	2 (10)	.053	109**	SP	103***	SN	1.08
C. I. acid orange 10	1 (64)	.291	92	SP	71	SN	. 825
	2 (103)	.874	22	SP	53	SN	. 435
diphenylhydantoin	1 (56)	.260	84	SP	105***	SN	.00
	2 (65)	.244	95	SP	61	SN	.00
molybdenum trioxide	1 (47) 2 (56)	.579	61 84	SP SP	47 105***	LA SN	.830 .347
phthalic anhydride	1 (39)	.427	82	SP	18***	LA	1.60
	2 (107)	2.95	5**	SP	46	SN	.000
tetrahydrofuran	1 (82)	8.01	1***	SP	3***	SN	.393
	2 (106)	1.30	28	SP	15***	LA	1.36
<u>Inactive Chemical with an</u> titanium dioxide	n <u>Indeterminat</u> 1 (38)	.496	82	SP	12***	SN	.000.
	2 (109)	2.55	6*	SP	92***	SN	.000
<u>Active Chemicals (false j</u> D-mannitol	<u>positive)</u> 1 (18)	.663	46	SP	80*	LN	.728
	2 (45)	.732	35	SP	57	LA	1.23
	3 (110)	.609	38	SP	16***	SP	4.69
witch hazel	1 (81)	7.36	2***	SP	2***	LA	1.61
	2 (110)	.609	38	SP	16***	LA	2.17
Chemicals with an Indeter	rminate Activi	ty					
aldicarb	1 (32)	1.99	19	SP	34	SN	.267
	2 (99)	.586	33	SP	14***	SP	3.17
0-anthranilic acid	1 (15)	. 186	100	SP	42	SN	1.47
	2 (22)	. 893	36	SP	28*	SP	2.99
dimethyl terephthalate	1 (103)	.874	22	SP	53	SP	1.71
	2 (107)	2.95	5***	SP	46	LA	1.86
phthalamide	1 (35)	1.97	14	SP	72	LN	.000
	2 (110)	.609	38	SP	16***	LA	2.02
roxarsone	1 (80)	3.02	10*	SP	5***	SP	2.94
	2 (109)	2.55	27	SP	92***	SN	.000
sodium(2-ethylhexyl)	1 (82)	8.01	1***	SP	3***	SN	.180
alcohol sulfate	2 (108)	1.17	6*	SP	19***	SP	3.42
sulfisoxazole	1 (19)	.357	77	SP	67	LN	.690

.

Chemical ^a		Transformation Response ^b						
		Spont	aneous ^c	Benzo (a)pyrene ^d	Test Cl	nemical ^e	
Name	Exp. No.	Foci/Vessel	Foci/Vessel : Rank Order		Call : Rank Order		<i>t</i> -statisti	
	7 Model	Very Non	-Cytotoxic	Chemic	als			
Active Chemicals (false	e positives)							
acetone	1 (82)	8.01	1***	SP	3***	LA	8.19	
	2 (102)	.697	27	SP	63	SP	3.25	
dimethyl sulfoxide	1 (41)	.274	90	SP	13***	LA	3.92	
,, _,, _	2 (100)	.268	73	SP	49	SP	2.97	
ethanol	1 (81)	7.36	2***	SP	2***	LA	3.03	
	2 (108)	1.17	20	SP	19***	SP	2.23	
glycerol	1 (82)	8.01	1***	SP	3***	SP	2.55	
	2 (108)	1.17	20	SP	19***	SP	3.69	
sodium chloride	1 (80)	3.02	10*	SP	5***	SP	12.2	
	2 (109)	2.55	6*	SP	92***	SN	.855	
	3 (R1)	.416	106*	NA		SP	4.35	
sucrose	1 (101)	.260	62	SP	48	SP	10.4	
	2 (107)	2.95	5**	SP	46	SP	2.24	
urea	1 (109)	2.55	6*	SP	92***	SP	1.81	
	2 (NA)							

General Abbreviations: Exp. No., experiment number; NA, not available.

Abbreviations for the Transformation Responses: SP, sufficient positive; LA, limited activity; SN, sufficient negative; LN, limited negative.

^aTest Chemical: The 54 noncytotoxic chemicals in Table A5 are identical to those in Table A4, and they are subdivided into groups of 21 carcinogens, 26 noncarcinogens and 7 model very noncytotoxic chemicals.

^bTransformation Response: This table presents a summary of the spontaneous, BaP, and test chemical transformation responses detected in two or more experiments per test chemical. The assay design and procedures used in the standard transformation assay are described in the Materials and Methods. The transforming activities of individual chemical treatment doses (i.e. focus data), as well as the individual transformation responses (i.e. type III foci/vessel), are provided in detail in the Appendices B-H. Appendices B, C, D, E, F, G and H contain the activities of the 43 cytotoxic, mutagenic carcinogens; 21 cytotoxic, mutagenic noncarcinogens; 20 cytotoxic, non-mutagenic carcinogens; 30 cytotoxic, nonmutagenic, noncarcinogens; 21 noncytotoxic carcinogens; 26 noncytotoxic noncarcinogens; and 7 very noncytotoxic model test chemicals.

^cSpontaneous Transformation Response: The method used to calculate the spontaneous transformation response, as well as the positive control and test chemical responses, is explained in the Materials and Methods. The transformation responses are expressed as type III foci/vessel and were calculated using a \log_{10} mathematical transformation procedure. The arithmetic value for foci/vessel in this table is the antilog of the \log_{10} mean transformation response minus one.

The procedure for rank ordering the spontaneous responses from 110 experiments is based upon the different statistical sensitivities of transformation experiments with different spontaneous responses is explained in the Statistical Sensitivity versus Spontaneous Transformation Response section of the Materials and Methods. Experiments with high spontaneous responses had a high statistical sensitivity and have relatively low rank-order numbers. For example, diethylnitrosamine had a high spontaneous response of 5.12 foci/vessel in exp. 79, which had a high statistical sensitivity and rank order number 4/110. Conversely, experiments with a low statistical sensitivity and have high rank-order numbers. For example, 11-aminoundecanoic acid had a low spontaneous response of .085 foci/vessel in exp. 67, which had a low statistical sensitivity with a high rank order number 107/110.

^dBenzo(a)pyrene Transformation Response. The method used to call individual transformation experiments is described in detail in Materials and Methods. The method used to rank order the BaP transformation responses from the 110 experiments is based upon statistical comparison of the BaP transformation at the two treatment doses detected in an individual experiment with the median historical activity of the assay. This procedure is described in the Detection Sensitivity versus Benzo(a)pyrene Transformation Response section of the Materials and Methods. The rational for rankordering the experiments is analogous to that described for the spontaneous transformation responses (refer to footnote c above).

^eTest Chemical Transformation Response: The method used to call individual experiments is described in detail in Materials and Methods, and the abbreviations for the calls are provided in footnote d above. The significance of the transformation responses of individual chemical treatment doses were calculated using SAS statistical software (22). The mean *t*-statistic represents the average of the *t*-statistics of the four test chemical treatment doses in the experiment. The *t*-statistics for individual chemical treatment doses which were used to calculate the mean *t*-statistic are provided in Appendices B-H.

^{*}Significant spontaneous or BaP transformation response, 0.01 .

**Significant spontaneous or BaP transformation response, 0.001 .

***Significant spontaneous or BaP transformation response, $p \le 0.001$.

MATTHEWS ET AL.

	Roder	nt Bioa	ssay ^b	Transformati	on Response ^c
Test Chemical*	Level	of Act	ivity	Rank t-st	
Name		Low		Actual	Estimated ^d
6 M	utageni	c Ca	ircinog	ens	
Total Active Chemicals [100.%]					
<u>Active Chemicals</u>	_				
D & C red no. 9	В			4.33	5.50
diethanolnitrosamine		I		4.01 4.69	4.87 4.69
diethylnitrosamine	A			4.45	4.45
dimethylnitrosamine phenobarbital, sodium salt	A			2.77	3.14
2,4- & 2,6-toluene diisothiocyanate	Â			3.01	3.01
15 Nor	n-Mutage	enic	Carcin	logens	
Total Active Chemicals [73.3%]				.egene	
Active Chemicals (false positive)					
dimethyl hydrogen phosphite	В			5.97	6.19
dimethyl methyl phosphonate	-	D		2.90	2.90
Active Chemicals					
saccharin, sodium salt	Α			7.99	7.99
3-amino-1,2,4-triazole	Α			6.14	6.53
methyl carbamate (Average)		С		4.12	4.12
(uncoded)				(4.48)	
(coded)				(3.76)	
cyclamate, sodium salt	A	_		4.09	4.09
dimethyl morpholino- (average)	•	С		3.71	3.71
phosphoramidate (uncoded)				(3.19)	
(coded)				(4.23) 2.11) (4.23) 2.55
11-aminoundecanoic acid	В	n		2.10	2.15
melamine hexamethylphosphoramide		D C		2.08	2.08
Weakly Active Chemical					
ethylene thiourea	A			2.84	3.96
Total Inactive Chemicals [26.7%]					
Inactive Chemicals					
monuron	В			1.01	1.01
di(2-ethylhexyl)adipate		С		.00	.00
di(2-ethylhexyl)phthalate	A			.00	.00
<u>Inactive Chemical (Indeterminate Activity</u> decabromodiphenyloxide	2	С		.29	.29
			_		• • • 7
3 Mut	agenic	Non	Carcin	ogens	
Total Active Chemicals [100.%]					
<u>Active Chemicals</u>					
2-chloroethanol			F	3.22	3.22
Weakly Active Chemicals					
methyl methacrylate			F	2.54	2.54
4-nitroanthranilic acid					1.09

.

	Rodent Bioa	issay ^b	Transformat	ion Response ^c	
Test Chemical [®]	Level of Act	tivity_	Rank t-s	tatistic	
Name	High Low	None	Actual	Estimated ^d	
23 Non-I	Mutagenic No	on-Carci	nogens		
Total Active Chemicals [23.8%]					
Active Chemicals					
FD & C yellow No. 6		F	7.65	7.65	
penicillin VK+		F	5.96	5.96	
benzyl alcohol		F	1.95	1.95	
(2-chloroethyl)trimethylammonium Cl		F	1.74	1.74	
3-sulfolene		F	3.24	3.24	
Fotal Inactive Chemicals F76 241					
Chemical with Equivocal Activity		Е	1.32	1.32	
<u>Chemical with Equivocal Activity</u> ampicillin trihydrate		E	1.32	1.32	
Total Inactive Chemicals [76.2%] <u>Chemical with Equivocal Activity</u> ampicillin trihydrate <u>Inactive Chemicals</u> cappolactam					
<u>Chemical with Equivocal Activity</u> ampicillin trihydrate Inactive Chemicals caprolactam		F	1.20	2.34	
<u>Chemical with Equivocal Activity</u> ampicillin trihydrate <u>Inactive Chemicals</u> caprolactam phthalic anhydride		F F	1.20	2.34	
<u>Chemical with Equivocal Activity</u> ampicillin trihydrate <u>Inactive Chemicals</u> caprolactam phthalic anhydride benzoin		F F E	1.20 .80 .74	2.34 .80 1.08	
<u>Chemical with Equivocal Activity</u> ampicillin trihydrate <u>Inactive Chemicals</u> caprolactam phthalic anhydride benzoin C. I. acid orange 10		F F	1.20 .80 .74 .63	2.34 .80 1.08 .68	
<u>Chemical with Equivocal Activity</u> ampicillin trihydrate <u>Inactive Chemicals</u> caprolactam phthalic anhydride benzoin C. I. acid orange 10 diphenylhydantoin		F F E	1.20 .80 .74 .63 .00	2.34 .80 1.08 .68 .00	
<u>Chemical with Equivocal Activity</u> ampicillin trihydrate <u>Inactive Chemicals</u> caprolactam ohthalic anhydride oenzoin C. I. acid orange 10		F F F F I	1.20 .80 .74 .63	2.34 .80 1.08 .68	
<u>Chemical with Equivocal Activity</u> ampicillin trihydrate <u>Inactive Chemicals</u> caprolactam ohthalic anhydride penzoin C. I. acid orange 10 diphenylhydantoin molybdenum trioxide)	F F F F I	1.20 .80 .74 .63 .00 .64	2.34 .80 1.08 .68 .00 .86	

23 Non-Mutagenic Non-Carcinogens Continued

Total Inactive Chemicals [23.8%] Continued

Chemicals with Indeterminate Activity			
aldicarb	F	1.93	1.93
o-anthranilic acid	F	2.19	2.19
dimethyl terephthalate	E	1.79	1.79
phthalamide	F	1.01	.64
roxarsone	E	1.67	1.67
sodium(2-ethylhexyl)alcohol sulfate	F(I)	2.04	2.04
sulfisoxazole	F	1.26	1.26
Active Chemicals (false positives)			
D-mannitol	F	3.00	1.99
witch hazel	F	1.89	1.89

7 Model Very Non-Cytotoxic Chemicals

Total Active Chemicals [100%]

False Positive Active Chemicals			
sodium chloride	I	6.53	6.53
SUCFOSE	I	5.73	5.73
acetone	I	4.49	4.49
dimethyl sulfoxide	I	3.38	3.45
•	I	3.09	3.09
	I	2.50	2.50
urea	I	1.81	1.81
glycerol ethanol	I I I	2.50	2.50

Table A6. Continued.

^aTest Chemical: The 54 noncytotoxic chemicals in Table A6 are idenical to those in Table A4, and they are subdivided into groups of 21 carcinogens, 26 noncarcinogens and 7 model very noncytotoxic chemicals.

^bRodent Bioassay Level of Activity: The relative carcinogenic activity of chemicals in rodent bioassay has been described in terms of the chemical's level of effect (1,3). The highest level A corresponds to chemicals that cause cancer in both mice and rats at one or more sites, and level B refers to chemicals that cause cancer at multiple sites in one species of rodent. Level C includes chemicals carcinogenic at one site in both sexes of one species, and D includes chemicals carcinogenic at one site in only one sex of a single species. Level E includes chemicals that only equivocal evidence of carcinogenic activity. Finally, level F includes both noncarcinogens and chemicals that had inadequate carcinogenicity studies.

^cTransformation Response Rank *t*-statistic: The method used to calculate the significance of test chemical transformation responses employed SAS statistical software (22) and is described in detail in Materials and Methods. The correct *t*-statistics of each treatment dose of the test chemical in a single experiment are presented in the Appendices B-H, and these *t*-statistics were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Table A2). The mean *t*-statistics for two or experiments for each chemical was weighted according to the number of treatment doses evaluated and averaged to determine the actual rank *t*-statistic presented in this table. For example, the actual rank *t*-statistic of D&C red no. 9 in experiments 43, 54 and 67 is equal to 4.33 [i.e., 10.9 + 10.5 + 7.16 + 5.26 (exp. 43) + 2.96 + 1.39 + .04 + .00 (Exp. 54) + 5.47 + 3.37 + 3.07 + 1.78 (exp. 67); Appendix F].

^aEstimated Rank *t*-statistic: The estimated rank *t*-statistic is used to estimate both the historical behavior of the test chemical in the transformation assay, as well as predicting the future behavior or the chemical. It is calculated by correcting the actual rank *t*-statistic. The data presented in Table A5 showed that individual experiments had very different rank-ordered sensitivities to detect chemical-induced transformation. Therefore, the estimated rank *t*-statistic modified the actual rank *t*-statistic to correct for differences in the sensitivities of individual experiments. The method uses the rank ordered sensitivity of individual experiments to detect spontaneous and BaP-induced transformation, and an example calculation is provided below.

The most active mutagenic carcinogen. D&C red no. 9, had statistical sensitivities for spontaneous transformation responses of 30, 91 and 107/110 for experiments 43, 54 and 67, respectively, and detection sensitivities for BaP of 4, 85 and 106/110 for the same experiments. The average rank order of the three experiments was 70.5 (i.e., 30 + 91 + 107 + 4 + 85 + 106/110 = 78.5). For a total of 110 experiments, the median experiment has an automatic average rank order of 55.0 (i.e. 110/2 = 55.0). Therefore, the correction factor for the experimental sensitivity to detect chemical-induced transformation was 70.5/55.0 or 1.28.

Thus, these two experiments had a combined statistical sensitivity and detection sensitivity that was above the median of 55.0. The actual rank t-statistic was multiplied by the correction factor to obtain the estimated rank t-statistic (i.e., 5.50). A justification for this correction factor has been reported (18), and it is explained in the Materials and Methods.

^cPercentage (%) of Active Chemicals: Active chemicals included chemicals with active and weakly active transformation responses. In contrast, inactive chemicals included chemicals with equivocal and inactive transformation responses. Chemicals with an indeterminate activity have to be retested in an additional experiment in order to determine their activity in the standard transformation assay. Therefore, chemicals with indeterminate transformation responses were omitted from the computation of the percentage (%) of the total chemicals that were either active or inactive in the assay.

Dimethylnitrosamine. Dimethylnitrosamine is a level A carcinogen (Table A6). It had one difficult technical problem. It was reported to be oxidized upon exposure to air, and it was exposed to air during the standard treatment period (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 256 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 42 and 73/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 25 and 49/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. Dimethyl-nitrosamine was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 4.45 (Table A6).

Phenobarbital, Sodium Salt. Phenobarbital, sodium salt, is a level A carcinogen (Table A6). It had one difficult technical problem. It was reported to be oxidized by air, and it was exposed to air during the standard treatment period (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 6.11 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 75 and 6/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 76 and 92/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. Phenobarbital was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were 2.77 and 3.14, respectively (Table A6).

2.4- and 2.6-Toluene Diisothiocyanate. 2.4- and 2.6-Toluene diisothiocyanate is a level A carcinogen (Table A6). It had three difficult technical problems. It was reported to react with strong bases such as NaOH, and stock solutions were acidic and had to be neutralized before testing. It was also reported to react with water, and treatments were performed in an aqueous environment. Finally, it was noted to react with amines; thus, it could have reacted with the amine portion of biochemicals in culture medium, as well as in the target BALB/c-3T3 cells (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 7.93 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 12 and 28/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 98 and 15/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. 2,4 and 2,6-Toluene diisothiocyanate was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 3.01 (Table A6).

Noncytotoxic, Nonmutagenic Carcinogens

3-Amino-1,2,4-Triazole. 3-Amino-1,2,4-triazole is a level A carcinogen (Table A6). It had one difficult technical problem. It was reported to bind metals; thus, it could have bound metals contained in FBS and EMEM medium (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 109 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 85 and 33/110, respectively; the

detection sensitivities for BaP of trials 1 and 2 were 102 and 14/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. 3-Amino-1,2,4-triazole was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were 6.14 and 6.53, respectively (Table A6).

11-Aminoundecanoic Acid. 11-Aminoundecanoic acid is a level B carcinogen (Table A6). It had no insurmountable technical problems; however, it had a limited solubility of 1500 µg/ml in culture medium supplemented with pluronic F68 (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 19.4 mM (Table A4). The statistical sensitivities of transformation assay trials 1-4 were 83, 89,19 and 107/110, respectively; the detection sensitivities for BaP of trials 1-4 were 70, 87, 34 and 106/110, respectively (Table A5). The test chemical had a LN transformation response in the first two experiments because it was not tested at cytotoxic treatment doses. In contrast, it had an SP transformation response in the last two experiments. Significant transforming activity was only detected at treatment doses that were slightly above the solubility limit of the test chemical in culture medium. 11-Aminoundecanoic acid was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 2.11 and 2.55, respectively (Table A6).

Cyclamate, Sodium Salt. Cyclamate, sodium salt, is a level A carcinogen (Table A6). It had one difficult technical problem. It was reported to bind potassium salts; thus, it could have bound the potassium in culture medium (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 132 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 24 and 5/110, respectively, the detection sensitivities for BaP of trials 1 and 2 were 10 and 46/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. Cyclamate was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 4.09 (Table A6).

Decabromodiphenyloxide. Decabromodiphenyloxide is a level C carcinogen (Table A6). It had one difficult technical problem. It had a limited solubility in culture medium of 250 µg/ml (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 6.26 mM (Table A4). Thus, the test chemical LD_{50} was about 24-fold higher than its solubility limit in culture medium. The statistical sensitivities of transformation assay trials 1 and 2 were 21 and 62/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 26 and 48/110, respectively (Table A5). The test chemical had an LN transformation response in the two consecutive experiments. It was tested at treatment doses that far exceeded its solubility limit in culture medium, but these doses were not cytotoxic to the target cells. Taken together, decabromodiphenyloxide was evaluated as both inactive and indeterminate in the transformation assay, and its actual and estimated rank t-statistics were both 0.29 (Table A6).

Di(2-ethylhexyl)adipate. Di(2-ethylhexyl)adipate is a level C carcinogen (Table A6). It had one difficult technical problem. Its solubility limit in culture medium supplemented with pluronic F68 was only 1000 nl/ml (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 98.4 mM (Table A4). Thus, this LD_{50} far exceeded the solubility limit of the test chemical. The statistical sensitivities of transformation assay trials 1 and 2 were 57 and 20/110 respectively; the detection sensitivities for BaP of trials 1 and 2 were 88 and 19/110, respectively (Table A5). The test chemical had an SN transformation response in the two consecutive experiments. The test chemical was tested using treatment doses that were both above and below its solubility limit. Di(2-ethylhexyl)adipate was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.00 (Table A6).

Di(2-ethylhexyl)phthalate. Di(2-elhylhexyl)phthalate is a level A carcinogen (Table A6). It had no insurmountable technical problems, and its solubility limit in culture medium supplemented with pluronic F68 was 12000 nl/ml (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 21.4 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 74 and 73/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 35 and 49/110, respectively (Table A5). The test chemical had an SN transformation response in the two consecutive experiments. Di(2-ethylhexy1)phthalate was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 0.00 (Table A6).

Dimethyl Hydrogen Phosphite. Dimethyl hydrogen phosphite is a level B carcinogen (Table A6). It had two difficult technical problems. It was a very acidic test chemical, and stock solutions had to be neutralized with NaOH. Unfortunately, the test chemical was reported to react with strong bases and with water; thus, it could have been altered during the treatment period (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 130 mM (Table A4). Since it required an equal molar concentration of NaOH to neutralize the test chemical, this LD_{50} was actually equal to 260 mOsM. The statistical sensitivities of transformation assay trials 1 and 2 were 44 and 26/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 65 and 93/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments; however, significant transforming activity was detected at treatment doses that exceeded the upper dose limit of the assay of 100 mOsM. Taken together, dimethyl hydrogen phosphite was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were 5.97 and 6.19, respectively (Table A6).

Dimethyl Methyl Phosphonate. Dimethyl methyl phosphonate is a level D carcinogen (Table A6). It had two difficult technical problems. It was reported to react with air, and it was exposed to air during the treatment period. In addition, it was noted to be an alkylating agent and reacted with basic nitrogen compounds. Thus, this test

chemical could have reacted not only with biochemicals in culture medium, but also with biochemicals in the target cells (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 172 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 44 and 27/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 65 and 63/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment, and an SP transformation response in the second experiment. Significant transforming activity for this test chemical was detected using treatment doses that exceeded the upper dose limit of the assay of 100 mOsM. Taken together, dimethyl methyl phosphonate was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were both 2.90 (Table A6).

Dimethylmorpholinophosphoramidate. Dimethylmorpholinophosphoramidate is one of five chemicals that was tested as a coded and as a uncoded test chemical in this investigation. It is a level C carcinogen (Table A6), and it had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells, and the uncoded and coded test chemicals had an average LD₅₀ of 17.1 and 24.4 mM, respectively (Table A4). For the uncoded test chemical the statistical sensitivities of transformation assay trials 1 and 2 were 52 and 28/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 79 and 15/110, respectively (Table A5). For the coded test chemical the statistical sensitivities of transformation assay trials 1 and 2 were 52 and 20/110; the detection sensitivities for BaP of trials 1 and 2 were 79 and 19/110, respectively. Both the uncoded and coded test chemical had an SP transformation response in the two consecutive experiments. Dimethylmorpholinophosphoramidate was evaluated as active in the transformation assay. The actual and estimated rank t-statistics for the uncoded test chemical were both 3.19; the actual and estimated rank t-statistics for the coded test chemical were both 4.23 (Table A6). Taken together, the coded and uncoded test chemicals had virtually identical cytotoxic and transforming activities in the BALB/c-3T3 cell transformation assav.

Ethylene Thiourea. Ethylene thiourea is a level A carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 91.4 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 75 and 95/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 76 and 61/110, respectively (Table A5). The test chemical had an LN transformation response in the first experiment and an SP transformation response in the second experiment. Ethylene thiourea was evaluated as weakly active in the transformation assay, and its actual and estimated rank *t*-statistics were 2.84 and 3.96, respectively (Table A6).

Hexamethylphosphoramide. Hexamethylphosphoramide is a level C carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 64.4 mM CTable A4). The statistical sensitivities of transformation assay trials 1 and 2 were 9 and 59/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 37 and 17/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. Hexamethyl-phosphoramide was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 2.08 (Table A6).

Melamine. Melamine is a level D carcinogen (Table A6). It had one difficult technical problem, because its solubility limit in culture medium supplemented with pluronic F68 was about 1000 μ g/ml (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 39.6 mM (Table A4). Thus, this LD_{50} far exceeded the solubility limit of the test chemical in culture medium. The statistical sensitivities of transformation assay trials 1 and 2 were 30 and 97/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 4 and 94/110, respectively (Table A5). The test chemical had an SP transformation response in the first experiment, and an LA transformation response in the second experiment. Melamine was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 2.10 and 2.15, respectively (Table A6).

Methyl Carbamate. Methyl carbamate is one of five chemicals that was tested as a coded and as a uncoded test chemical in this investigation. It is a level C carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells, and the uncoded and coded test chemicals had an average LD₅₀ of 225 and 195 mM, respectively (Table A4). For the uncoded test chemical the statistical sensitivities of transformation assay trials 1-3 were 55, 108 and 10/110, respectively; the detection sensitivities for BaP of trials 1-3 were 8, 99 and 5/110, respectively (Table A5). For the coded test chemical the statistical sensitivities of transformation assay trials 1 and 2 were 71 and 33/110; the detection sensitivities for BaP of trials 1 and 2 were 23 and 14/110, respectively. The uncoded test chemical had two SP and a LA transformation responses in three experiments. The coded test chemical had an SP transformation response in the two consecutive experiments. Methyl carbamate was evaluated as active in the transformation assay. The actual and estimated rank t-statistics for the uncoded test chemical were both 4.48; the actual and estimated rank *t*-statistics for the coded test chemical were 3.76 (Table A6). Taken together, the coded and uncoded test chemicals had virtually identical cytotoxic and transformation responses in the BALB/c-3T3 cell transformation assav.

Monuron. Monuron is a level *B* carcinogen (Table A6). It had one difficult technical problem. It had a limited solubility in culture medium supplemented with pluronic F68 of about 25 μ g/ml (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 5.54 mM (Table A4). Thus, this LD₅₀ far exceeded the solubility limit of the test chemical in culture medium. The statistical sensitivities of transformation assay trials 1 and 2 were 81 and 39/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 22 and 68/110,

respectively (Table 2). The test chemical had an LA transformation response in the first experiment and an SN transformation response in the second experiment. Monuron was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 1.01 (Table A6).

Saccharin, Sodium Salt. Saccharin, sodium salt, is a level A caranogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 76.5 mM and 153 mOsM (Table A4). The statistical sensitivities of transformation assay Irials 1 and 2 were 21 and 62/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 26 and 48/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. Significant transforming activity was detected at treatment doses that were below the upper dose limit of the assay of 100 mOsM. Saccharin was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 7.99 (Table A6).

Noncytotoxic, Mutagenic Noncarcinogens

2-Chloroethanol. 2-Chloroethanol is a level F noncarcinogen (Table A6). It had one difficult technical problem. It was reported to react with water; thus, it may have been altered by the aqueous environment during the treatment period (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 81.0 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 9 and 73/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 37 and 49/110, respectively (Table A5). The test chemical had an SP transformation response in the both the first and second experiments. 2-Chloroethanol was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 3.22 (Table A6).

Methyl Methacrylate. Methyl methacrylate is a level F noncarcinogen (Table A6). It had two difficult technical problems. It was reported to react with air; thus, it may have been altered by exposure to air during the treatment period. In addition, it was noted to react with amines; therefore, it may have reacted with amines on biochemicals in culture medium and in the target BALB/c-3T3 cells (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 10.8 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 4 and 28/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 1 and 15/110, respectively (Table A5). The test chemical had an SP transformation response in the first experiment and an SN transformation response in the second experiment. Since the mean *t*-statistics of the two transformation responses were not significantly different from one another, the test chemical did not have to be evaluated in a third trial. Methyl methacrylate was evaluated as having been weakly active in the transformation assay, and its actual and estimated rank t-statistics were both 2.54 (Table A6).

4-Nitroanthranilic Acid. 4-Nitroanthranilic acid is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 8.58 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 7 and 22/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 56 and 53/110, respectively (Table A5). The test chemical had an SN transformation response in the first experiment and an SP transformation response in the second experiment. Because the mean *t*-statistics of the two transformation responses were not significantly different from one another, the test chemical was not evaluated in a third trial. 4-Nitroanthranilic acid was evaluated as having been weakly active in the transformation assay, and its actual and estimated rank t-statistics were both 1.09 (Table A6).

Noncytotoxic, Nonmutagenic Noncarcinogens

Aldicarb. Aldicarb is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 10.7 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 19 and 33/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 34 and 14/110, respectively (Table A5). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Since the mean t-statistics of the transformation responses in the two experiments were significantly different from one another, the test chemical has to be evaluated in a third trial. In the absence of the data from a third trial, aldicarb was evaluated as having an indeterminate activity in the transformation assay. Its actual and estimated rank t-statistics were both 1.93 (Table A6).

Ampicillin Trihydrate. Ampicillin trihydrate is a level E noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 23.8 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 71 and 29/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 23 and 97/110, respectively (Table A5). The test chemical had an LA transformation response in the both the first and second experiments. Ampicillin trihydrate was evaluated as having an equivocal activity in the transformation assay, and its actual and estimated rank *t*-statistics were both 1.32 (Table A6).

o-Anthranilic Acid. o-Anthranilic acid is a level F noncarcinogen (Table A6). It had one difficult technical problem. It was reported to become oxidized by air; thus, it may have been altered by exposure to air during the treatment (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 72.9 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 100 and 36/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 42 and 28/110, respectively (Table A5). The test chemical had an SN transformation response in the first experiment and an SP transformation response in the second experiment. Since the mean *t*-statistics of the two transformation responses were significantly different from one another, the test chemical has to be evaluated in a third trial. In the absence of data from a third trial, *o*-anthranilic acid was evaluated as having an indeterminate activity in the transformation assay. Its actual and estimated rank *t*-statistics were both 2.19 (Table A6).

Benzoin. Benzoin is a level E noncaranogen (Table A6). It had one difficult technical problem. The solubility limit of this test chemical in culture medium supplemented with pluronic F68 was about 500 μ g/ml (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 14.8 mM (Table A4). Thus, this test chemical had a LD_{50} that far exceeded its solubility in culture medium. The statistical sensitivities of transformation assay trials 1 and 2 were 50 and 109/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 59 and 103/110, respectively (Table A5). The test chemical had an SN transformation response in the both the first and second experiments. The test chemical was tested at treatment doses that far exceeded its solubility limit in culture medium. Benzoin was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.74 and 1.08, respectively (Table A6).

Benzyl Alcohol. Benzyl alcohol is a level F noncarcinogen (Table A6). It had one difficult technical problem. It was reported to become oxidized by air; thus, it may have been altered by exposure to air during the treatment period (Table A4. The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 17.9 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 2 and 38/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 2 and 16/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment and an SP transformation response in the second experiment. Benyl alcohol was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 1.95 (Table A6).

Caprolactam. Caprolactam is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 71.8 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 110 and 109/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 107 and 103/110, respectively (Table A5). Thus, both of these experiments had an unusually low statistical sensitivity and detection sensitivity for BaP. The test chemical had an SN transformation response in the both the first and second experiments. Caprolactam was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 1.20 and 2.34, respectively (Table A6).

(2-Chloroethyl)trimethylammonium Chloride. (2-Chloroethyl)trimethylammonium chloride is a level F non-

carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 62.0 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 40 and 35/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 54 and 57/110, respectively (Table A5). The test chemical had an SP transformation response in the first experiment and an LA transformation response in the second experiment. (2-Chloroethyl)trimethylammonium chloride was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 1.74 (Table A6).

C. I. Acid Orange 10. C. I. Acid orange 10 is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 26.5 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 92 and 22/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 71 and 53/110, respectively (Table A5). The test chemical had an SN transformation response in the both the first and second experiments. C. I. Acid orange 10 was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.63 and 0.68, respectively (Table A6)

Dimethyl Terephthalate. Dimethyl terephthalate is a level E noncarcinogen (Table A6). It two difficult technical problems. It was reported to be very temperature sensitive and react with water. Because the test chemical was insoluble in water, it had to be sonicated and warmed at 37°C for 30 minutes or more to become a fine particulate suspension in culture medium supplemented with pluronic F68. Its solubility in culture medium was about $125 \,\mu g/ml$ (Table A4). Thus, it is possible that the test chemical was altered during the procedure to solubilize the test chemical as well as the treatment period. The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 15.4 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 22 and 5/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 53 and 46/110, respectively (Table A5). The test chemical had an SP transformation response in the first experiment and an LA transformation response in the second experiment. The test chemical was tested at doses that far exceeded its solubility in culture medium. Taken together, dimethyl terephthalate was evaluated as having an indeterminate activity in the transformation assay, because it needs to be retested at treatment doses closer to its solubility limit in culture medium. Furthermore, it must be evaluated using a procedure less likely to alter it while it is being solubilized for testing. Its actual and estimated rank t-statistics were both 1.79 (Table A6).

Diphenylhydantoin. Diphenylhydantoin is a level I chemical, because its testing in rodent bioassay is incomplete (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 5.02 mM (Table A4). The solubility limit of this test chemical was about 500 µg/ml in culture medium supplemented with pluronic F68. The statistical sensitivities of transforma-

tion assay trials 1 and 2 were 84 and 95/I10, respectively; the detection sensitivities for BaP of trials 1 and 2 were 105 and 61/110, respectively (Table A5). The test chemical had an SN transformation response in two consecutive experiments, and it was tested at treatment doses above its solubility limit. Diphenylhydantoin was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 0.00 (Table A6).

FD and C Yellow No. 6. FD and C Yellow no. 6 is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 67.7 mM (Table A4). The statistical sensitivities of transformation assay trials 1-3 were 7, 95 and 22/110, respectively; the detection sensitivities for BaP of trials 1-3 were 56, 61 and 53/110, respectively (Table A5). The test chemical had an SP transformation response in the all three experiments. FD and C Yellow No. 6 was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 7.65 (Table A6).

D-Mannitol. D-Mannitol is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ estimated to be over 324 mM (Table A4). The statistical sensitivities of transformation assay trials 1-3 were 46, 35 and 38/110, respectively; the detection sensitivities for BaP of trials 1-3 were 80, 57 and 16/110, respectively (Table A5). The test chemical had an LN transformation response in the first experiment, an LA response in the second experiment, and an SP response in the third experiments. In all three experiments significant transforming activity was only detected at treatment doses that exceeded the upper dose limit of the assay of 100 mOsM. Taken together, D-mannitol was evaluated as active and a false positive in the transformation assay, and its actual and estimated rank t-statistics were 3.00 and 1.99, respectively (Table A6).

Molybdenum Trioxide. Molybdenum trioxide is a level I noncarcinogen (Table A6). It had one difficult technical problem. It was reported to form polymeric compounds when it was exposed to acids and bases. Since stocks of the test chemical were acidic and had to be neutralized with NaOH in order to tested, it is possible that the test chemical was altered during preparation of the dosing solutions (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 9.38 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 61 and 84/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 47 and 105/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment and an SN transformation response in the second experiment. Molybdenum trioxide was evaluated as inactive in the transformation assay, and ils actual and estimated rank t-statistics were 0.64 and 0.86, respectively (Table A6).

Penicillin VK+. Penicillin VK+ is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 17.8 mM

(Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 10 and 62/110, respectively, the detection sensitivities for BaP of trials 1 and 2 were 5 and 48/110, respectively (Table A5). The test chemical had an SP transformation response in two consecutive experiments. Penicillin VK + was evaluated as active in the transformation assay, and its actual and estimated rank *t*-statistics were both 5.96 (Table A6).

Phthalamide. Phthalamide is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The lest chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 73.1 mM (Table A4). This LD_{50} was far above the solubility limit of the test chemical of $1000 \,\mu g/ml$ in culture medium supplemented with pluronic F68. The statistical sensitivities of transformation assay trials 1 and 2 were 14 and 38/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 72 and 16/110, respectively (Table A5). The test chemical had an LN transformation response in the first experiment and an LA transformation response in the second experiment. Phthalamide was evaluated as having an indeterminate activity in the transformation assay, and its actual and estimated rank t-statistics were 1.01 and 0.64, respectively (Table A6).

Phthalic Anhydride. Phthalic anhydride is a level F noncarcinogen (Table A6). It had three difficult technical problems. It was reported to react with water and strong bases. Because the test chemical stock solutions were very acidic, they had to be neutralized with NaOH; thus, the test chemical may have been altered during the preparation of dosing solutions. In addition, the test chemical was noted to react with amine groups, thus it may have reacted with amine groups on biochemicals in culture medium, as well as biochemicals in the target cells (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 13.2 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 82 and 5/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 18 and 46/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment and an SN transformation response in the second experiment. Phthalic anhydride was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.80 (Table A6).

Roxarsone. Roxarsone is a level E noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/ c-313 cells and had an average LD_{50} of 43.8 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 10 and 27/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 5 and 92/110, respectively (Table A5). The test chemical had an SP transformation response in the first experiment and an SN transformation response in the second experiment. Since the mean *t*-statistics of the two test chemical transformation responses were significantly different from one another, it has to be evaluated in a third trial. In the absence of data from a third trial, roxarsone was evaluated as having an indeterminate activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.67 (Table A6).

Sodium(2-ethylhexyl) Alcohol Sulfate. Sodium(2ethylhexyl) alcohol sulfate is a level F(I) noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 12.5 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 1 and 6/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 3 and 19/110, respectively (Table A5). The test chemical had an SN transformation response in the first experiment and an SP transformation response in the second experiment. Since the mean *t*-statistics of the two test chemical transformation responses were significantly different from one another, the chemical has to be evaluated in a third trial. In the absence of data from a third experiment, sodium(2ethylhexyl alcohol sulfate was evaluated as having an indeterminute activity in the transformation assay, and its actual and estimated rank t-statistics were both 2.04 (Table A6).

Sulfisoxazole. Sulfisoxazole is a level F noncarcinogen (Table A6). It had one difficult technical problem. It was reported to become oxidized upon exposure to air; thus, it may have been altered by exposure to air during the treatment period (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} estimated to be 18.7 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 1 and 6/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 3 and 19/110, respectively (Table A5). The test chemical had an LN transformation response in the first experiment and an SP transformation response in the second experiment. Since the LN transformation response did not qualify as one of the two required trials, the test chemical has to be tested in a third experiment. Taken together, sulfisoxazole was evaluated as having an indeterminate activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.26 (Table A6).

3-Sulfolene. 3-Sulfolene is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 117 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 49 and 23/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 24 and 11/110, respectively (Table A5). The test chemical had an SP transformation response in two consecutive experiments. 3-Sulfolene was evaluated as having been weakly active in the transformation assay, and its actual and estimated rank *t*-statistics were both 3.24 (Table A6).

Tetrahydrofuran. Tetrahydrofuran is a level *I* chemical because its testing in rodent bioassay is incomplete (Table A6). It had one difficult technical problem because it was reported to react with water (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 90.3 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 1 and 28/110, respectively; the detection sensitivities for BaP of

trials 1 and 2 were 3 and 15/110, respectively (Table A5). The test chemical had an SN transformation response in two consecutive experiments. Tetrahydrofuran was evaluated as inactive in the transformation assay, and its actual and estimated rank *t*-statistics were both 0.72 (Table A6).

Titanium Dioxide. Titanium dioxide is a level F noncarcinogen (Table A6). It had one difficult technical problem. It was reported to be reduced by metals such as calcium, magnesium, potassium and sodium; thus, it could have been altered by these metals in culture medium. In addition, this test chemical was very insoluble in culture medium supplemented with pluronic F68, and had a solubility limit of about 125 µg/ml (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 12.1 mM (Table A4). Thus, this LD_{50} , far exceeded the solubility limit of the test chemical in culture medium. The statistical sensitivities of transformation assay trials 1 and 2 were 82 and 6/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 12 and 92/110, respectively (Table A5). The test chemical had an LN transformation response in two consecutive experiments, and it was tested at treatment doses that far exceeded its solubility limit. Titanium dioxide was evaluated as an inactive with an indeterminate activity in the transformation assay. Its actual and estimated rank t-statistics were both 0.00 (Table A6).

Witch Hazel. Witch hazel is a mixture of chemicals that include 15% v/v ethanol, 85% v/v water and some inert ingredients. It has been shown to be a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ estimated to be 540 mOsM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 2 and 38/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 2 and 16/110, respectively (Table A5). The test chemical had an LA transformation response in two consecutive experiments. This test chemical only induced significant transforming activity at treatment doses that exceeded the upper dose limit of the assay of 100 mOsM. Taken together, witch hazel was evaluated as having an equivocal activity and a false positive in the transformation assay. Its actual and estimated rank *t*-statistics were both 1.95 (Table A6).

Very Noncytotoxic Chemicals

Acetone. Acetone has not been evaluated in rodent bioassay, therefore, its level of carcinogenicity is classified as a level *I* chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of about 257 mOsM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 1 and 27/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 3 and 63/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment, and an SP response in the second experiment. This test chemical induced significant transforming activity only at treatment doses above the upper

dose limit of the assay of 100 mOsM. Taken together, acetone was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were both 4.49 (Table A6).

Dimethyl Sulfoxide. Dimethyl sulfoxide has not been evaluated in rodent bioassay; therefore, its level of carcinogenicity is classified as a level I chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncvtotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 507 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 90 and 73/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 13 and 49/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment, and an SP response in the second experiment. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, dimethyl sulfoxide was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were 3.38 and 3.45, respectively (Table A6).

Ethanol. Ethanol has not been evaluated in rodent bioassay; therefore, its level of carcinogenicity is classified as a level I chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALBtc-3T3 cells and had an average LD_{50} of 429 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 2 and 20/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 2 and 19/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment, and an SP response in the second experiment. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, ethanol was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were both 2.50 (Table A6).

Glycerol. Glycerol has not been evaluated in rodent bioassay; therefore, its level of carcinogenicity is classified as a level I chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 401 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 1 and 20/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 3 and 19/110, respectively (Table A5). The test chemical had an SP transformation response in both the first and second experiments. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, glycerol was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were both 3.09 (Table A6).

Sodium Chloride. Sodium chloride has not been evaluated in rodent bioassay; therefore, its level of carcinogenicity is classified as a level *I* chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of about 144 mM (288 mOsM) (Table A4). The statistical sensitivities of transformation assay trials 1-3 were 10, 6 and 106/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 5, 92 and ND/110, respectively (Table A5). The test chemical had an SP transformation response in the first and third experiments, and an SN response in the second experiment. There was no apparent explanation for the absence of test chemical transforming activity in the second experiment. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, sodium chloride was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank *t*-statistics were both 6.53 (Table A6).

Sucrose. Sucrose has not been evaluated in rodent bioassay, therefore, its level of carcinogenicity is classified as a level *I* chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 240 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 62 and 5/110, respectively; the detection sensitivities for BaP of trials 1

and 2 were 48 and 46/110, respectively (Table A5). The test chemical had an SP transformation response in both the first and second experiments. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, sucrose was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank *t*-statistics were both 5.73 (Table A6).

Urea. Urea has not been evaluated in rodent bioassay; therefore, its level of carcinogenicity is classified as a level *I* chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of about 254 mM (Table A4). The statistical sensitivity of transfonnation assay trial 1 was 6/110; the detection sensitivity for BaP of trial 1 was 92/110 (Table A5). The test chemical had an SP transformation response in the first experiment. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, urea was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank *t*-statistics were both 1.81 (Table A6).

Appendix B.

.

	eatment ndition ^a		toxic vity ^b	Transfo Activ		Transformation Response ^d	Significance ^e
		RCE	(%)	Focus	Data	Foci/Vessel	
Drug	Conc., mM	S.A	CC.A.	Type Ve III		Focus Type III	<i>t</i> -statistic
Drug		<u> </u>			(11)		
Acet	ylaminofluc	orene [2AAI	F, M.W. =223	3.3]			
ial 1	[17] .000 79 1	.000	52.9	94	(20)	4.43 ***	+ 13.5
a)P a)P	.000250	3.54	79.1	86	(20)	3.91 ***	+ 11.6
AF	.358	.442	47.4	36	(20)	1.54 ***	+ 5.56
AF	.179	3.54	55.6	62	(20)	2.34 ***	+ 5.81
AF	.0900	19.5	102.	30	(20)	1.25 ***	+ 4.39
AF	.0450	66.8	113.	14	(20)	.473	+ .85 Control
:-1	Control	100.	100.	18	(40)	.327 Me	<u>Control</u> an t = 4.73
ial 2		000	18.7	83	(20)	3.65 ***	+ 10.7
a)P a)P	.000791 .000250	.000 5.66	70.0	85 86	(20)	3.73 ***	+ 10.7
AF	.358	.000	34.8	21	(20)	.781*	+ 2.19
AF	.179	7.55	47.1	31	(20)	1.18 ***	+ 4.06
AF	.0900	23.3	83.3	18	(20)	.686*	+ 2.08
AF	.0450	59.7	108.	2	(20)	.072	.00 (-1.01)
:-1	Control	100.	100.	18	(40)	.308 Me	ean t = 2.08
rvlo	nitrile [AC	RIMW.=	53.06. Dens	sitv = 0.80)6 a/m]]		
•	_	NE, 11.01.	00.00, 2010		,		
rial 1 (a)P	[86] .000791	18.7	63.0	64	(18)	3.32***	+ 9.07
a)P (a)P	.000250	47.9	87.6	42	(18)	2.02***	+ 5.74
		იიი	.000	4	(15,18)	.203	+ 0.84
RL	.608	.000 1.17	.000 71.7	4 79	(15,18) (18)	.203 3.90***	+ 0.84 + 12.5
						3.90*** .503	+ 12.5 + 2.28
CRL CRL CRL CRL	.608 .304 .152 .0760	1.17 49.0 84.4	71.7 83.9 94.0	79 13 8	(18) (18) (18)	3.90*** .503 .297	+ 12.5 + 2.28 + 1.31
RL RL RL	.608 .304 .152	1.17 49.0	71.7 83.9	79 13	(18) (18)	3.90*** .503 .297 .464	+ 12.5 + 2.28
CRL CRL CRL CRL CRL C-1 rial 2	.608 .304 .152 .0760 Control	1.17 49.0 84.4 100.	71.7 83.9 94.0 100.	79 13 8 47	(18) (18) (18) (72)	3.90*** .503 .297 .464 Me	+ 12.5 + 2.28 + 1.31 <u>Control</u> ean t = 5.36
CRL CRL CRL CRL CRL C-1 rial 2 (a)P	.608 .304 .152 .0760 Control [92] .00250	1.17 49.0 84.4 100. .394	71.7 83.9 94.0 100.	79 13 8 47 69	(18) (18) (18) (72) (18)	3.90*** .503 .297 .464 Me 3.54***	+ 12.5 + 2.28 + 1.31 <u>Control</u> ean t = 5.36 + 8.31
CRL CRL CRL CRL CRL C-1 rial 2	.608 .304 .152 .0760 Control	1.17 49.0 84.4 100.	71.7 83.9 94.0 100.	79 13 8 47	(18) (18) (18) (72)	3.90*** .503 .297 .464 Me	+ 12.5 + 2.28 + 1.31 <u>Control</u> ean t = 5.36
RL RL RL C-1 Ca)P Ca)P Ca)P	.608 .304 .152 .0760 Control [92] .00250 .000791 .000250	1.17 49.0 84.4 100. .394 18.2 19.4	71.7 83.9 94.0 100. 45.3 72.2 78.2	79 13 8 47 69 44 32	(18) (18) (18) (72) (18) (18) (17)	3.90*** .503 .297 .464 Me 3.54*** 2.14***	+ 12.5 + 2.28 + 1.31 Control ean t = 5.36 + 8.31 + 5.20
RL RL RL C-1 Ca)P Ca)P Ca)P	.608 .304 .152 .0760 Control [92] .00250 .000791	1.17 49.0 84.4 100. .394 18.2	71.7 83.9 94.0 100. 45.3 72.2	79 13 8 47 69 44	(18) (18) (18) (72) (18) (18)	3.90*** .503 .297 .464 Me 3.54*** 1.52*** .000 .479	+ 12.5 + 2.28 + 1.31 control ean t = 5.36 + 8.31 + 5.20 + 3.32
RL RL RL C-1 Ca)P Ca)P Ca)P	.608 .304 .152 .0760 Control [92] .00250 .000791 .000250 .000250	1.17 49.0 84.4 100. .394 18.2 19.4 .000	71.7 83.9 94.0 100. 45.3 72.2 78.2 .000 .000 39.3	79 13 8 47 69 44 32 0 11 57	(18) (18) (18) (72) (18) (18) (17) (15,18) (18) (18) (18)	3.90*** .503 .297 .464 Me 3.54*** 1.52*** 1.52*** .000 .479 2.57***	+ 12.5 + 2.28 + 1.31 Control ean t = 5.36 + 8.31 + 5.20 + 3.32 .00 (-7.93) .00 (41) + 6.43
CRL CRL CRL CRL CA CA CA CRL CRL CRL CRL CRL CRL CRL	.608 .304 .152 .0760 Control [92] .00250 .000791 .000250 .608 .456 .304 .152	1.17 49.0 84.4 100. .394 18.2 19.4 .000 .000 .396 28.5	71.7 83.9 94.0 100. 45.3 72.2 78.2 .000 .000 39.3 80.5	79 13 8 47 69 44 32 0 11 57 10	(18) (18) (18) (72) (18) (18) (17) (15,18) (18) (18) (18) (18)	3.90*** .503 .297 .464 Me 3.54*** 1.52*** 1.52*** .000 .479 2.57*** .423	+ 12.5 + 2.28 + 1.31 Control ean t = 5.36 + 8.31 + 5.20 + 3.32 .00 (-7.93) .00 (41) + 6.43 .00 (90
RL RL RL CRL C-1 Ca)P Ca)P Ca)P CRL CRL CRL CRL	.608 .304 .152 .0760 Control [92] .00250 .000791 .000250 .608 .456 .304	1.17 49.0 84.4 100. .394 18.2 19.4 .000 .000 .396	71.7 83.9 94.0 100. 45.3 72.2 78.2 .000 .000 39.3	79 13 8 47 69 44 32 0 11 57	(18) (18) (18) (72) (18) (18) (17) (15,18) (18) (18) (18)	3.90*** .503 .297 .464 Me 3.54*** 1.52*** 1.52*** .000 .479 2.57*** .423 .579	+ 12.5 + 2.28 + 1.31 Control ean t = 5.36 + 8.31 + 5.20 + 3.32 .00 (-7.93) .00 (41) + 6.43
RL RL RL C-1 Ca)P Ca)P Ca)P CRL CRL CRL CRL CRL CRL C-1	.608 .304 .152 .0760 Control [92] .00250 .000791 .000250 .608 .456 .304 .152	1.17 49.0 84.4 100. .394 18.2 19.4 .000 .000 .396 28.5 100.	71.7 83.9 94.0 100. 45.3 72.2 78.2 .000 .000 39.3 80.5 100.	79 13 8 47 69 44 32 0 11 57 10 62	(18) (18) (18) (72) (18) (18) (17) (15,18) (18) (18) (18) (18) (18) (71)	3.90*** .503 .297 .464 Me 3.54*** 1.52*** 1.52*** .000 .479 2.57*** .423 .579	+ 12.5 + 2.28 + 1.31 Control ean t = 5.36 + 8.31 + 5.20 + 3.32 .00 (-7.93) .00 (41) + 6.43 .00 (90 Control
RL RL RL C-1 Ca)P Ca)P Ca)P Ca)P CRL CRL CRL CRL CRL CRL CRL CRL CRL CRL	.608 .304 .152 .0760 Control [92] .00250 .000791 .000250 .608 .456 .304 .152 Control	1.17 49.0 84.4 100. .394 18.2 19.4 .000 .000 .396 28.5 100.	71.7 83.9 94.0 100. 45.3 72.2 78.2 .000 .000 39.3 80.5 100.	79 13 8 47 69 44 32 0 11 57 10 62	(18) (18) (18) (72) (18) (18) (17) (15,18) (18) (18) (18) (18) (18) (71)	3.90*** .503 .297 .464 Me 3.54*** 1.52*** 1.52*** .000 .479 2.57*** .423 .579	+ 12.5 + 2.28 + 1.31 Control ean t = 5.36 + 8.31 + 5.20 + 3.32 .00 (-7.93) .00 (41) + 6.43 .00 (90 Control
RL RL RL C-1 Ca)P Ca)P Ca)P Ca)P CRL CRL CRL CRL CRL CRL CRL CRL CRL CRL	.608 .304 .152 .0760 Control [92] .00250 .000791 .000250 .608 .456 .304 .152 Control	1.17 49.0 84.4 100. .394 18.2 19.4 .000 .000 .396 28.5 100.	71.7 83.9 94.0 100. 45.3 72.2 78.2 .000 .000 39.3 80.5 100. 7910-S, M.W. 80.5	79 13 8 47 69 44 32 0 11 57 10 62 $4 = 154.13$ 141	(18) (18) (18) (72) (18) (18) (17) (15,18) (18) (18) (18) (18) (71)	3.90*** .503 .297 .464 Me 3.54*** 1.52*** 1.52*** .000 .479 2.57*** .423 .579 Me 6.13***	+ 12.5 + 2.28 + 1.31 Control ean t = 5.36 + 8.31 + 5.20 + 3.32 .00 (-7.93) .00 (41) + 6.43 .00 (90 Control ean t = 2.14 + 6.33
RL RL RL RL C-1 Ca)P Ca)P Ca)P Ca)P CRL CRL CRL CRL CRL CRL C-1 CAMIT	.608 .304 .152 .0760 Control [92] .00250 .000791 .000250 .608 .456 .304 .152 Control no-4-nitrop	1.17 49.0 84.4 100. .394 18.2 19.4 .000 .396 28.5 100. whenol [847	71.7 83.9 94.0 100. 45.3 72.2 78.2 .000 .000 39.3 80.5 100.	$79 \\ 13 \\ 8 \\ 47 \\ 69 \\ 44 \\ 32 \\ 0 \\ 11 \\ 57 \\ 10 \\ 62 \\ = 154.13$	(18) (18) (18) (72) (18) (18) (17) (15,18) (18) (18) (18) (18) (71)	3.90*** .503 .297 .464 Me 3.54*** 2.14*** 1.52*** .000 .479 2.57*** .423 .579 Me	+ 12.5 + 2.28 + 1.31 Control ean t = 5.36 + 8.31 + 5.20 + 3.32 .00 (-7.93) .00 (41) + 6.43 .00 (90 Control ean t = 2.14
RL RL RL RL C-1 (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P	.608 .304 .152 .0760 Control [92] .00250 .000791 .000250 .608 .456 .304 .152 Control no-4-nitrop 1 [63] .000791 .000250	1.17 49.0 84.4 100. .394 18.2 19.4 .000 .396 28.5 100.	71.7 83.9 94.0 100. 45.3 72.2 78.2 .000 .000 39.3 80.5 100. 7910-S, M.W. 80.5 93.1	79 13 8 47 69 44 32 0 11 57 10 62 $4 = 154.13$ 141	(18) (18) (18) (72) (18) (18) (17) (15,18) (18) (18) (18) (18) (71) (20) (20) (20) (20) (22)	3.90*** .503 .297 .464 Me 3.54*** 1.52*** 1.52*** .000 .479 2.57*** .423 .579 Me 6.13***	+ 12.5 + 2.28 + 1.31 Control ean t = 5.36 + 8.31 + 5.20 + 3.32 .00 (-7.93) .00 (41) + 6.43 .00 (90 ean t = 2.14 + 6.33 + 2.02 .00 (-7.26)
CRL CRL CRL CRL CRL CRL CRL CRL	.608 .304 .152 .0760 Control [92] .00250 .000791 .000250 .608 .456 .304 .152 Control mo-4-nitrop 1 [63] .000791 .000250 -s 2.00 -s 1.00	1.17 49.0 84.4 100. .394 18.2 19.4 .000 .396 28.5 100. .000 .4.00 24.8 .000 .000 .000	71.7 83.9 94.0 100. 45.3 72.2 78.2 .000 .000 39.3 80.5 100. 7910-S, M.W. 80.5 93.1 .201 78.5	79 13 8 47 69 44 32 0 11 57 10 62 = 154.13 141 93 2 2	(18) (18) (18) (72) (18) (18) (17) (15,18) (18) (18) (18) (18) (71) (20) (20) (20) (20) (20) (20) (20) (20	3.90*** .503 .297 .464 Me 3.54*** 1.52*** 1.52*** .000 .479 2.57*** .423 .579 Me 6.13*** 3.20* .122 .167	+ 12.5 + 2.28 + 1.31 Control ean t = 5.36 + 8.31 + 5.20 + 3.32 .00 (-7.93) .00 (41) + 6.43 .00 (90 Control + 6.33 + 2.02 .00 (-7.26) .00 (-6.04)
CRL CRL CRL CRL CRL CRL CRL CRL	.608 .304 .152 .0760 Control [92] .00250 .000791 .000250 .608 .456 .304 .152 Control mo-4-nitrop 1 [63] .000791 .000250 -s 2.00 -s 1.00 -s .500	1.17 49.0 84.4 100. .394 18.2 19.4 .000 .396 28.5 100. .000 .4.00 24.8 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .396 .000 .000 .396 .000 .396 .000 .396 .000 .396 .000 .396 .000 .396 .000 .396 .000 .396 .000 .000 .000 .396 .000 .000 .396 .000 .000 .396 .000 .000 .000 .000 .396 .000	71.7 83.9 94.0 100. 45.3 72.2 78.2 .000 .000 39.3 80.5 100. 2910-S, M.W. 80.5 93.1 .201 78.5 90.6	79 13 8 47 69 44 32 0 11 57 10 62 = 154.13 141 93 2 2 8	(18) (18) (18) (72) (18) (18) (17) (15,18) (18) (18) (18) (71) (20) (20) (20) (20) (20) (21) (9) (13)	3.90*** .503 .297 .464 Me 3.54*** 1.52*** .000 .479 2.57*** .423 .579 Me 6.13*** 3.20* .122 .167 .696	+ 12.5 + 2.28 + 1.31 Control ean t = 5.36 + 8.31 + 5.20 + 3.32 .00 (-7.93) .00 (41) + 6.43 .00 (90 Control ean t = 2.14 + 6.33 + 2.02 .00 (-7.26) .00 (-3.61)
CRL CRL CRL CRL CRL CRL CRL CRL	.608 .304 .152 .0760 Control [92] .00250 .000791 .000250 .608 .456 .304 .152 Control mo-4-nitrop 1 [63] .000791 .000250 -s 2.00 -s 1.00 -s .500	1.17 49.0 84.4 100. .394 18.2 19.4 .000 .396 28.5 100. .000 .4.00 24.8 .000 .000 .000	71.7 83.9 94.0 100. 45.3 72.2 78.2 .000 .000 39.3 80.5 100. 7910-S, M.W. 80.5 93.1 .201 78.5	79 13 8 47 69 44 32 0 11 57 10 62 = 154.13 141 93 2 2	(18) (18) (18) (72) (18) (18) (17) (15,18) (18) (18) (18) (18) (71) (20) (20) (20) (20) (20) (20) (20) (20	3.90*** .503 .297 .464 Me 3.54*** 1.52*** 1.52*** .000 .479 2.57*** .423 .579 Me 6.13*** 3.20* .122 .167	+ 12.5 + 2.28 + 1.31 Control ean t = 5.36 + 8.31 + 5.20 + 3.32 .00 (-7.93) .00 (41) + 6.43 .00 (90 Control + 6.33 + 2.02 .00 (-7.26) .00 (-6.04)

Treatment Condition ^a	Cytotoxic Activity ^b	Transforming Activity ^c	Transformation Response ^d	Significance ^e	
Condition	RCE (%)	Focus Data	Foci/Vessel	Jight I cance	
		Type Vessels	Focus Type		
Drug Conc.,mM	S.A CC.A.	III (N)	III	<i>t</i> -statistic	
rial 2 [91]					
3(a)P .000791	28.9 73.6	60 (20)	2.00***	+ 7.77	
(a)P .000250	58.1 89.9	14 (20)	.503	+ 2.63	
47910-s 1.67	.000 .000	0 (0,20)	.000	.00 (-3.67)	
47910-s 1.25	.000 .000	0 (0,20)	.000	.00 (-7.36)	
47910-S .833	2.36 .000	0 (0,20)	.000 .256	.00 (-4.20) .00 (-1.48)	
847910-S .417 IC-1A+1B Control	54.2 92.5 100. 100.	7 (20) 31 (75)	.322	Control	
C-TA+IB CONTINU	100. 100.	51 (15)		h t = .00	
2-Amino-5-Nitrop	nenol [738717-S, M.W	. =154.13]			
[ria] 1 [62]	5.24 72.5	188 (20)	8.32*	+ 2.50	
3(a)P .000791 3(a)P .000250	5.24 72.5 18.6 85.1	188 (20) 105 (18)	5.59 NS	.00 (62	
738717-S 2.00	.000 32.1	13 (20)	.473	.00 (- 13.6)	
738717-S .632 738717-S .200	1.43 26.2 10.5 78.6	5 (19) 30 (20)	.182 1.26	.00 (- 17.0) .00 (- 9.93	
738717-S .0632	46.2 95.0	96 (20)	4.31	.00 (- 2.54	
IC-1 Control	100. 100.	261 (40)	6.02	Control	
			Mea	an $t = .00$	
[rial 2 [83] 3(a)P .000791	2.86 73.0	141 (20)	6.14***	+ 13.5	
3(a)P .000250	13.8 78.9	64 (20)	2.93***	+ 9.12	
738717-S 2.00	.000 20.1	10 (19)	.419	+ .41	
738717-5 .632	3.33 42.7	15 (16)	.738	+ 1.89	
738717-s .200	23.3 71.7	5 (14)	.281	.00 (39)	
738717-S .0632	31.9 85.1	6 (15)	.294	.00 (32) Control	
NC-1A+1B Control	100. 100.	48 (80)	.351 Mea	<u>Control</u> an t = .575	
Trial 3 [93]		470 (00)	((0+++		
B(a)P .000791	2.65 46.7 7.96 79.9	138 (20) 115 (20)	6.48*** 4.80***	+ 16.8 + 12.0	
3(a)P .000250	1.90 19.9	115 (20)	4.00	12.0	
738717-5 1.33	.000 7.92	38 (20)	1.44***	+ 3.66	
738717-S .667	.000 11.2	50 (20)	2.28***	+ 8.22	
738717-S .333	5.31 16.6 8.85 31.7	43 (20) 36 (20)	1.73*** 1.47***	+ 4.66 + 5.10	
738717-S .167 NC-1A+1B Control	100. 100.	43 (79)	.416	Control	
				an t= 5.41	
Trial 4 [103]	8.60 76.9	95 (20)	4.59***	+ 13.7	
B(a)P .000791 B(a)P .000250	23.6 91.5	75 (20)	2.86***	+ 5.37	
738717-S 1.67		90 (20)	4.24*** 4.97***	+ 11.3 + 9.09	
738717-S .833	6.45 38.3 24.5 32.7	115 (20) 140 (20)	4.9/*** 6.79***	+ 18.4	
738717-S .417 738717-S .208	38.3 41.5	122 (20)	5.02***	+ 8.57	
NC-1A+1B Control	100. 100.	89 (79)	.874	<u>Control</u>	
			Mean	t = 11.8	
5-Azacytidine [5/	AZA, M.W. = 244.2]				
Inial 1 [6]					
Trial 1 [6] B(a)P .000791	1.71 26.9	141 (20)	6.80***	+ 21.9	
B(a)P .000250	13.7 74.0	69 (20)	3.14***	+ 18.5	

408

	reatment ndition ^a		otoxic ivity ^b		orming vity ^c	Transformation Response ^d	
			ivity E (%)			·	Significance
			- ()		;Data essels	Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	II		III	<i>t</i> -statistic
			· · · · · · · · · · · · · · · · · · ·			•	
	014/	.000	11 1	()	(20)	2.59***	. 0.7/
AZA	.0164 .0123	.000	11.1 18.2	62 70	(20) (20)	2.92***	+ 8.36 + 9.11
AZA	.00615	4.79	41.0	134	(20)	6.16***	+ 15.3
AZA	.00308	15.4	ND:	316	(20)	15.3***	+ 33.9
IC-1	Control	100.	100.	24	(74)	.431	Control
mini 0	F117					Mea	n t = 14.5
rial 2 (a)P	.000791	1.37	34.4	128	(20)	4.94***	+ 10.5
(a)P	.000250	7.22	36.0	37	(20)	1.62***	+ 5.38
AZA	.0061	.000	25.8	182	(20)	8.10***	+ 14.7
AZA	.0031	4.12	73.1	248	(20)	12.0***	+ 16.5
AZA	.0015	20.9	71.0	52	(20)	1.77***	+ 4.21
AZA	.0008	27.8	77.4	11	(20)	.423	+ .70
IC-1	Control	100.	100.	21	(40)	.301	Control
					• • • •		an t = 9.03
Benzid	ine-2HC1 [B	ENZD. M.W	= 257.181				
	-						
rial 1 (a)P	[43] .000791	1.00	53.0	382	(20)	18.9***	+ 26.3
(a)P	.000250	4.80	77.5	270	(20)	13.0***	+ 19.0
ENZD	. 194	.000	3.94	42	(18)	2.00**	+ 2.71
ENZD	.146	.000	26.3	64	(17)	3.57***	+ 6.41
ENZD	.0972	2.38	62.1	82	(20)	3.74***	+ 6.79
ENZD	.0486	42.9	70.9	40	(18)	1.85*	+ 2.26
C-1	Control	100.	100.	44	(35)	1.05 Me	<u>Control</u> an t = 4.54
rial 2		(05	70.4	450	(20)	/ /7+++	
(a)P	.000791	4.05	39.1	150	(20)	6.63***	+ 9.35
(a)P	.000250	11.1	73.8	126	(20)	5.61***	+ 8.18
ENZD*	. 1944	96.3	94.0	37	(20)	1.66	+ 1.73
ENZD*	.1458	98.3	96.3	49	(20)	2.20**	+ 3.04
ENZD*	.0972	98.7	103.	46	(20)	1.95*	+ 2.43
ENZD*	.0486	99.7	110.	36	(20)	1.63	+ 1.66
C-1	Control	100.	100.	55	(38)	1.09	<u>Control</u>
Dink	onvlamine r		-160 227			Mea	nt = 2.22
-ырп	enylamine [2088, M.W.	-109.22]				
rial 1		- , ,,	2 / 0	247	(20)	10 0+++	± 17 4
(a)P	.000791	3.44	2.40	214 130	(20) (20)	10.0*** 5.86***	+ 13.6 + 7.74
(a)P	.000250	5.73	51.4	120	(20)	J.00"""	T 1.14
-BPA	.591	.000	7.46	12	(18)	.562	.00 (- 1.97
-BPA	.433	3.05	28.5	49	(20)	2.26***	+ 3.66
-BPA	.296	4.58	53.8	77	(20)	3.33***	+ 4.74
-BPA	.148	40.1	106.	44	(19)	1.91*	+ 2.10
C-1	Control	100.	100.	54	(37)	1.04 Me	<u>Control</u> an t = 2.63
rial 2	[52]						
(a)P	.000791	4.04	39.8	150	(20)	6.63***	+ 9.35
(a)P	.000250	11.1	75.4	126	(20)	5.61***	+ 8.18
BPA	.296	8.08	59.0	33	(20)	1.43	+ 1.03
BPA	.222	36.0	80.3	63	(20)	2.85***	+ 4.40
BPA	.148	59.6	84.9	66	(20)	3.06***	+ 5.54
				93	(20)	3.21***	+ 4.20
BPA	.074	83.8	95.9	,,,	(20)	3.21	
	.074 Control	83.8 100.	100.	55	(38)	1.09	$\frac{Control}{an t = 3.79}$

	eatment dition ^a	Cyto Activ		Transfo Activi		Transformation Response ^d	Significance
		RCE	-	Focus	Data	Foci/Vessel	
_	•			Type Ve		Focus Type	
Drug	Conc., mM	S.A	<u>, cc.a.</u>	III	(N)	III	<i>t</i> -statistic
-Biph	enylamine	[4BPA, M.W.	=169.22]				
[ria] 1							
3(a)P 3(a)P	.000791 .000250	4.51 12.3	66.1 87.5	103 133	(20) (20)	4.91*** 6.01***	+ 6.41 + 6.34
	.000230	12.5	07.5	1.1.5	(20)	0.01	+ 0.34
BPA	.591	.000	23.7	15	(18)	.671	.00 (- 4.00
BPA	.443	7.79	70.3	54	(20)	2.51	+ 1.47
BPA	.295	18.9	86.7	92	(20)	4.05***	+ 3.81
BPA	.148	40.6	111.	61	(20)	2.63	+ 1.36
C-1	Control	100.	100.	94	(40)	1.97 Mo	<u>Control</u> an t = 2.21
rial 2	[53]					ne	an 1 - 2.21
(a)P	.000791	4.78	58.9	182	(20)	8.30***	+ 7.68
(a)P	.000250	7.97	76.8	195	(20)	8.74***	+ 7.74
	· 		/7 4			/ 05±+	
BPA	.473	3.59	67.1	96	(20)	4.25**	+ 2.70
BPA	.355	14.7 42.2	72.3	99	(20)	4.59**	+ 3.39
BPA BPA	.236 .118	42.2	80.0 91.0	100 68	(20) (20)	4.53** 3.10	+ 3.25 + .70
C-1	Control	100.	100.	128	(20)	2.78	Control
•	Control	100.	1001		(20)		an t = 2.51
3- (Ch1	oromethy])	pyridine	[3CMP, M.W	1. = 164.04]			
rial 1	[14]						
B(a)P	.000791	1.75	36.1	177	(20)	6.73***	+ 13.3
l(a)P	.000250	5.26	74.7	61	(20)	2.45***	+ 7.12
CMP	.0732	.000	52.9	10	(20)	.374	+ 1.22
SCMP	.0488	8.33	89.5	3	(20)	.110	.00 (- 1.02
CMP	.0244	55.7	101.	15	(20)	.611**	+ 2.76
CMP	.0122	74.1	102.	25	(20)	.542	+ 1.42
C-1	Control	100.	100.	12	(20)	.213	<u>Control</u>
	5007					Me	an t = 1.35
rial 2			F7 /	407	(20)	0 0/+++	
(a)P (a)P	.000791 .000250	1.86 6.52	53.4 81.4	187 116	(20) (20)	8.86*** 5.25***	+ 16.0 + 9.33
	.000230	0.52	01.4	110	(20)	5.25	+ 7.55
CMP	.0488	12.4	99.7	52	(20)	2.07**	+ 3.43
CMP	.0244	59.6	94.3	68	(20)	2.59***	+ 4.41
CMP	.0122	68.6	84.7	37	(20)	1.65*	+ 2.65
CMP	.00610	89.8	88.9	31	(20)	1.07	+ .60
C-1	Control	100.	100.	45	(40)	.893	Control
Chlo	ro- <i>o</i> -Pheny	lonodiami		NM 14 - 142	507	Me	an t = 2.77
r-01110	o o o rneny		ne (40°D,	an.w 142			
rial 1							
B(a)P	.000791	.823		95	(20)	4.38***	+ 14.2
B(a)P	.000250	2.06	75.4	66	(20)	3.14***	+ 15.7
000	02/5	/ 10	95 1	77	(20)	074++	+ 7 77
	.0245 .0123	4.12 25.6	85.1 97.9	23 6	(20) (20)	.871** .214	+ 3.37 + .11
CPD	.00614	63.3	100.	0 1	(20)	.035	.00 (- 2.39)
CPD	.00307	88.5	99.4	2	(20)	.056	.00 (- 1.55)
IC-1	Control	100.	100.	11	(40)	.201	Control
					• • •		an t = .870
	5007						
rial 2		000	70 /	2/0	(20)	47 0444	7
(a)P	.000791	.000		268	(20)	13.0***	+ 26.3
(a)P	.000250	2.34	77.3	69	(20)	4.00***	+ 9.22

	reatment ondition ^a	Act	otoxic ivity ^b	Transf Activ		Transformati Response ^d	on Significance ^e
		RC	E (%)	Focus		Foci/Vessel	l
N	0		<u></u>	Type V		Focus Type	
Drug	Conc., mM	S.A	CC.A.	II	[(N)	III	<i>t</i> -statistic
CPD	.0351	3.91	58.2	59	(20)	2.61***	+ 8.16
CPD CPD	.0245 .0140	5.47 4.69	82.4 96.6	28	(20)	1.03**	+ 2.89
CPD	.00701	21.1	112.	9 4	(20) (20)	.308 .132	.00 (37)
2-1	Control	100.	100.	21	(40)	.368	.00 (- 1.71) <u>Control</u>
					(10)		Mean t = 2.76
rial 3	[101]						
a)P	.000791	ND	64.8	108		4.63***	+ 12.7
a)P	.000250	ND	83.6	48		2.11***	+ 9.73
		/					
CPD	.0526	25.6	35.7	107		5.19***	+ 19.4
CPD	.0394	27.0	47.1	55		2.37***	+ 8.26
:PD :PD	.0263 .0131	43.3 76.8	76.4 00 0	38		1.59***	+ 5.83
.eu :-1	Control	100.	90.9 100.	18 27		.652*	+ 2.19
, ,	Control	100.	100.	21		.260	<u>Control</u> Mean t = 8.92
-Chlo	ro- <i>o</i> -Tolui	dine-HCl (M.W. = 178	071		·	1. U. JL
ial 1		10.3	63 0	770	(18)	20 9***	± 15 5
a)P	.000791 .000250	10.2 28.0	63.9 67.8	378 280	(18) (18)	20.8*** 15.3***	+ 15.5 + 10.5
a)P	.000250	20.0	07.0	200	(10)	13.3	+ 10.5
т	.842	.000	.516	88	(16,18)	4.05	.00 (- 2.44)
т	.632	7.34	92.3	349	(18)	19.2***	+ 14.6
T	.421	28.3	102.	209	(18)	11.4***	+ 5.93
т	.211	55.9	106.	150	(18)	8.04	+ 1.00
:-1	Control	100.	100.	583	(72)	7.36	<u>Control</u>
						1	Mean $t = 7.18$
rial 2		701	/5 7	<i></i>	(10)	7	
(a)P	.00250	.394		69	(18)	3.54***	+ 8.31
(a)P	.000791	18.2 19.4	72.2 78.2	44	(18)	2.14***	+ 5.20
(a)P	.000250	17.4	10.2	32	(17)	1.52**	+ 3.32
T	.786	6.73	33.3	35	(17,18)	1.59**	+ 3.39
T.	.590	11.9	81.0	47	(18)	2.28***	+ 5.54
T.	.393	61.4	95.8	31	(18)	1.52***	+ 3.56
T	.197	108.	95.5	30	(18)	1.56***	+ 5.28
2-1	Control	100.	100.	62	(71)	.597	Control
Chlo	ro- <i>o</i> -Tolui	dino ru u .	- 141 617				Mean $t = 4.44$
Cino			- 141.01]				
ial 1		40.0	47.0	770	(10)	20 0+++	
a)P	.000791	10.2	63.9	378	(18)	20.8***	+ 15.5
a)P	.000250	28.0	67.8	280	(18)	15.3***	+ 10.5
та	2.26	.000	.344	12	(9,18)	1.03	.00 (- 7.06)
	1.69	14.3	.344 62.8	221	(18)	11.4***	+ 3.71
	1.13	38.5	93.3	288	(18)	15.4***	+ 6.51
T	.565	72.7	106.	158	(18)	7.88	+ .54
	Control	100.	100.	583	(72)	7.36	Control
	-	-					1 = 3.57
ial 2		701	/ 5 7	10	(10)	7	74
a)P	.00250	.394		69	(18)	3.54***	+ 8.31
a)P	.000791	18.2	72.2	44	(18)	2.14***	+ 5.20
a)P	.000250	19.4	78.2	32	(17)	1.52**	+ 3.32
т	2.26	1.19	19.9	19	(17,18)	.682	+ .58
	1.69	7.92	49.5	48	(17)	2.36***	+ 5.43
	1.13	22.2	92.8	78	(17)	3.75***	+ 7.67
т	.565	49.9	87.2	53	(18)	1.80**	+ 3.03
:-1 (Control	100.	100.	62	(71)	.597	<u>Control</u>
							Mean $t = 5.38$

Con	atment dition ^a	Cytot Activ	ity⁵	Transfor Activit		Transformation Response ^d	Significance®
D	A	RCE	• •	Focus Da Type Ves	sels	Foci/Vessel Focus Type	
Drug	Conc., mM	<u>S.A</u>	CC.A.	III	(N)	III	<i>t</i> -statistic
). I.	Acid Orange	e 3 [038399	9-S, M.W. =	453.51]			
rial 1		4.04			<i>(</i> 7)	7 70+++	. / 27
B(a)P	.000791 .000250	1.24 11.8	48.9 81.0	11 19	(3) (5)	3.38*** 3.62***	+ 4.23 + 5.73
(a)P	.000250	11.0	81.0	19	())	5.02	
38399-	s .222	.000	.000	0	(0,20)	.000	ND
38399-		.000	38.9	34	(16)	1.69***	+ 4.44
38399-		1.86	90.7	13	(18)	.562	+ .20
38399-		61.5	97.4	5	(15)	.260	.00 (-1.62
IC-1A+1	B Control	100.	100.	36	(54)	.526 Me	<u>Control</u> an t = 1.55
rial 2	[87]						
B(a)P	.000791	25.1	77.0	59	(20)	2.26***	+ 5.84
l(a)P	.000250	42.2	80.2	34	(20)	1.45***	+ 5.24
38399-	s .178	.000	.000	0	(0,20)	.000	ND
)38399-		.000	35.9	44	(20)	1.81***	+ 6.11
)38399-		.000	67.0	37	(20)	1.54***	+ 5.45
38399-		13.8	109.	14	(20)	.534	+ 1.13
NC-1	Control	100.	100.	43	(80)	.346	Control
						Me	an t = 4.23
	Basic Red						
5. 1. Frial 1 3(a)P		2.28	47.9	148	(20)	7.06***	+ 16.5
[ria] 1	[48]				(20) (20)	7.06*** 2.68***	+ 16.5 + 6.53
[ria]] 3(a)P 3(a)P	[48] .000791 .000250	2.28 10.1	47.9 90.8	148 63	(20)	2.68***	+ 6.53
Trial 1 3(a)P 3(a)P CIBR9	. [48] .000791 .000250 .00679	2.28 10.1 .000	47.9	148			+ 6.53 .00 (- 2.9
[ria]] 3(a)P 3(a)P	[48] .000791 .000250	2.28 10.1	47.9 90.8 .000	148 63 4	(20)	2.68*** .149	+ 6.53 .00 (- 2.9 .00 (- 2.9
Trial 1 3(a)P 3(a)P CIBR9 CIBR9	.000791 .000250 .00679 .00509	2.28 10.1 .000 .000	47.9 90.8 .000 .252	148 63 4 5 5 23	(20) (20) (20) (20) (20) (20)	2.68*** .149 .189 .189 .861	+ 6.53 .00 (- 2.9 .00 (- 2.9 .00 (- 2.9 + 1.41
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9	.000791 .000250 .00679 .00509 .00340	2.28 10.1 .000 .000 2.61	47.9 90.8 .000 .252 29.0	148 63 4 5 5	(20) (20) (20) (20) (20)	2.68*** .149 .189 .189 .861 .537	+ 6.53 .00 (- 2.9 .00 (- 2.9 .00 (- 2.9 + 1.41 <u>Control</u>
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 CIBR9 NC-1	[48] .000791 .000250 .00679 .00509 .00340 .00170 Control	2.28 10.1 .000 .000 2.61 32.6	47.9 90.8 .000 .252 29.0 67.3	148 63 4 5 5 23	(20) (20) (20) (20) (20) (20)	2.68*** .149 .189 .189 .861 .537	+ 6.53 .00 (- 2.9 .00 (- 2.9 .00 (- 2.9 + 1.41
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 CIBR9	[48] .000791 .000250 .00679 .00509 .00340 .00170 Control	2.28 10.1 .000 .000 2.61 32.6	47.9 90.8 .000 .252 29.0 67.3	148 63 4 5 5 23	(20) (20) (20) (20) (20) (20)	2.68*** .149 .189 .189 .861 .537	+ 6.53 .00 (- 2.9 .00 (- 2.9 .00 (- 2.9 + 1.41 <u>Control</u>
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 CIBR9 NC-1 Trial 2	<pre>[[48] .000791 .000250 .00679 .00509 .00340 .00170 Control 2 [66]</pre>	2.28 10.1 .000 2.61 32.6 100.	47.9 90.8 .000 .252 29.0 67.3 100.	148 63 4 5 5 23 29	(20) (20) (20) (20) (20) (20) (40)	2.68*** .149 .189 .189 .861 .537 Me	+ 6.53 .00 (- 2.9 .00 (- 2.9 .00 (- 2.9 + 1.41 <u>Control</u> an t = .353
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 2 B(a)P B(a)P	<pre>[48] .000791 .000250 .00679 .00509 .00340 .00170 Control 2 [66] .000791 .000250</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4	148 63 4 5 5 23 29 90 24	(20) (20) (20) (20) (20) (20) (40) (20) (20)	2.68*** .149 .189 .189 .861 .537 Me 3.92*** .795**	+ 6.53 .00 (- 2.9 .00 (- 2.9 .00 (- 2.9 + 1.41 <u>Control</u> an t = .353 + 14.1
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 2 B(a)P B(a)P CIBR9	<pre>[[48] .000791 .000250 .00679 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000	47.9 90.8 .000 .252 29.0 67.3 100. 52.0	148 63 4 5 5 23 29 90	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (18,20)	2.68*** .149 .189 .189 .861 .537 Me 3.92***	+ 6.53 .00 (- 2.9 .00 (- 2.9 + 1.41 <u>Control</u> an t = .353 + 14.1 + 3.69
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 2 B(a)P B(a)P	<pre>[48] .000791 .000250 .00679 .00509 .00340 .00170 Control 2 [66] .000791 .000250</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188	148 63 4 5 5 23 29 90 24 2 4 1	(20) (20) (20) (20) (20) (20) (40) (20) (20)	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035	+ 6.53 .00 (- 2.5 .00 (- 2.5 .00 (- 2.5 + 1.41 <u>Control</u> an t = .353 + 14.1 + 3.69 + .39 + 1.19 .00 (4
Trial 1 S(a)P S(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 2 S(a)P CIBR9 CIBR9 CIBR9 CIBR9	<pre>[[48] .000791 .000250 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617 .00309 .00154 .00077</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000 44.9 62.8 74.3	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188 29.7 97.8 109.	148 63 4 5 5 23 29 90 24 2 4 1 3	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035 .116	+ 6.53 .00 (- 2.0 .00 (- 2.1 .00 (- 2.1) + 1.41 <u>Control</u> an t = .353 + 14.1 + 3.69 + .39 + 1.19 .00 (4)
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 2 3(a)P CIBR9 CIBR9 CIBR9 CIBR9 CIBR9	<pre>[[48] .000791 .000250 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617 .00309 .00154</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000 44.9 62.8	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188 29.7 97.8	148 63 4 5 5 23 29 90 24 2 4 1	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20)	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035 .116 .056	+ 6.53 .00 (- 2.5 .00 (- 2.5 .00 (- 2.5 + 1.41 <u>Control</u> an t = .353 + 14.1 + 3.69 + .39 + 1.19 .00 (4 + .91 <u>Control</u>
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 2 B(a)P B(a)P CIBR9 CIBR9 CIBR9 CIBR9 NC-1	<pre>[[48] .000791 .000250 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617 .00309 .00154 .00077</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000 44.9 62.8 74.3	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188 29.7 97.8 109.	148 63 4 5 5 23 29 90 24 2 4 1 3	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035 .116 .056	+ 6.53 .00 (- 2.5 .00 (- 2.5 .00 (- 2.5 + 1.41 <u>control</u> an t = .353 + 14.1 + 3.69 + 1.19 .00 (4 + .91
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 2 3(a)P CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 Trial 3	<pre>[[48] .000791 .000250 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617 .00309 .00154 .00077 Control</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000 44.9 62.8 74.3	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188 29.7 97.8 109.	148 63 4 5 5 23 29 90 24 2 4 1 3	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035 .116 .056 Me ND	+ 6.53 .00 (- 2.5 .00 (- 2.5 .00 (- 2.5 + 1.41 <u>Control</u> an t = .353 + 14.1 + 3.69 + .39 + 1.19 .00 (4 + .91 <u>Control</u>
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 2 3(a)P CIBR9 CIBR9 CIBR9 CIBR9 NC-1 Trial 2 B(a)P	<pre>[48] .000791 .000250 .00679 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617 .00309 .00154 .00077 Control 3 [DRI4]</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000 44.9 62.8 74.3 100.	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188 29.7 97.8 109. 100.	148 63 4 5 5 23 29 90 24 2 4 1 3 3	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035 .116 .056 Me	+ 6.53 .00 (- 2.5 .00 (- 2.5 .00 (- 2.5 + 1.41 <u>Control</u> an t = .353 + 14.1 + 3.69 + 1.19 .00 (4 + .91 <u>Control</u>
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 CIBR9 NC-1 Trial 2 B(a)P CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 TIBR9 NC-1 Trial 2 B(a)P	<pre>[[48] .000791 .000250 .00679 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617 .00309 .00154 .00077 Control 3 [DRI4] .000791</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000 44.9 62.8 74.3 100. ND	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188 29.7 97.8 109. 100. ND	148 63 4 5 5 23 29 90 24 2 4 1 3 3	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035 .116 .056 Me ND	+ 6.53 .00 (- 2.5 .00 (- 2.5 .00 (- 2.5 + 1.41 <u>control</u> an t = .353 + 14.1 + 3.69 + .39 + 1.19 .00 (4 + .91 <u>control</u> an t = .700
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 CIBR9 NC-1 Trial 2 B(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 3 B(a)P	<pre>[48] .000791 .000250 .00679 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617 .00309 .00154 .00077 Control 3 [DRI4] .000250</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000 44.9 62.8 74.3 100. ND	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188 29.7 97.8 109. 100. ND	148 63 4 5 5 23 29 90 24 2 4 1 3 3 3 ND	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035 .116 .056 Me ND ND	+ 6.53 .00 (- 2.5 .00 (- 2.5 .00 (- 2.5 + 1.41 <u>Control</u> an t = .353 + 14.1 + 3.69 + 1.19 .00 (4 + .91 <u>Control</u> an t = .700
Trial 1 S(a)P S(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 2 S(a)P CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 CC-1 Trial 2 S(a)P S(a)P S(a)P CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 CIBR9	 [48] .000791 .000250 .00679 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617 .00079 .00154 .00077 Control 3 [DRI4] .000791 .000250 .00463 	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000 44.9 62.8 74.3 100. ND ND	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188 29.7 97.8 109. 100. ND ND ND ND	148 63 4 5 5 23 29 90 24 2 4 1 3 3 8	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035 .116 .056 Me ND ND .189 .443 .301	+ 6.53 .00 (- 2.5 .00 (- 2.5 .00 (- 2.5 + 1.41 <u>control</u> an t = .353 + 14.1 + 3.69 + .39 + 1.19 .00 (4 + .91 <u>control</u> man t = .700
Trial 1 S(a)P S(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 2 S(a)P CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 CC-1 Trial 3 S(a)P CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 CIBR9	<pre>[[48] .000791 .000250 .00679 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617 .00309 .00154 .00077 Control 3 [DRI4] .000791 .000250 .00463 .00309</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000 44.9 62.8 74.3 100. ND ND	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188 29.7 97.8 109. 100. ND ND	148 63 4 5 5 23 29 90 24 2 4 1 3 3 8 ND ND 5 12	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (19) (38) (20) (20) (20)	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035 .116 .056 Me ND ND .189 .443 .301 .668	+ 6.53 .00 (- 2.5 .00 (- 2.5 .00 (- 2.5 + 1.41 control an t = .353 + 14.1 + 3.69 + .39 + 1.19 .00 (4 + .91 <u>Control</u> control control .00 (- 2.5 .00 (4 .00 (4) .00 (4) .00 (4) .00 (5) .00 (4) .00 (4)
Trial 1 S(a)P S(a)P CIBR9	<pre>[[48] .000791 .000250 .00679 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617 .00309 .00154 .00077 Control 3 [DRI4] .000791 .000250 .00463 .00309 .00154</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000 44.9 62.8 74.3 100. ND ND ND ND ND ND	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188 29.7 97.8 109. 100. ND ND 10.6 79.5 103. 100.	148 63 4 5 5 23 29 90 24 2 4 1 3 3 8 ND ND 5 12 8 18	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (19) (38) (20) (20) (20) (20) (20) (20) (20) (20	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035 .116 .056 Me ND ND .189 .443 .301 .668	+ 6.53 .00 (- 2.5 .00 (- 2.5 .00 (- 2.5 + 1.41 <u>Control</u> an t = .353 + 14.1 + 3.69 + .39 + 1.19 .00 (4 + .91 <u>Control</u> an t = .700
Trial 1 S(a)P S(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 2 S(a)P CIBR9	<pre>[[48] .000791 .000250 .00679 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617 .00309 .00154 .00077 Control 3 [DRI4] .000791 .000250 .00463 .00309 .00154 Control Basic Red</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000 44.9 62.8 74.3 100. ND ND ND ND ND ND	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188 29.7 97.8 109. 100. ND ND 10.6 79.5 103. 100.	148 63 4 5 5 23 29 90 24 2 4 1 3 3 8 ND ND 5 12 8 18	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (19) (38) (20) (20) (20) (20) (20) (20) (20) (20	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035 .116 .056 Me ND ND .189 .443 .301 .668	+ 6.53 .00 (- 2.5 .00 (- 2.5 .00 (- 2.5 + 1.41 <u>Control</u> an t = .353 + 14.1 + 3.69 + .39 + 1.19 .00 (4 + .91 <u>Control</u> control control .00 (- 2.5 .00 (4) .00 (4) .00 (4)
Trial 1 3(a)P 3(a)P CIBR9 CIBR9 CIBR9 NC-1 Trial 2 B(a)P CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 B(a)P CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 CIBR9 NC-1	<pre>[[48] .000791 .000250 .00679 .00509 .00340 .00170 Control 2 [66] .000791 .000250 .00617 .00309 .00154 .00077 Control 3 [DRI4] .000791 .000250 .00463 .00309 .00154 Control Basic Red</pre>	2.28 10.1 .000 2.61 32.6 100. 2.33 6.08 .000 44.9 62.8 74.3 100. ND ND ND ND ND ND	47.9 90.8 .000 .252 29.0 67.3 100. 52.0 98.4 .188 29.7 97.8 109. 100. ND ND 10.6 79.5 103. 100.	148 63 4 5 5 23 29 90 24 2 4 1 3 3 8 ND ND 5 12 8 18	(20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (19) (38) (20) (20) (20) (20) (20) (20) (20) (20	2.68*** .149 .189 .861 .537 Me 3.92*** .795** .080 .149 .035 .116 .056 Me ND ND .189 .443 .301 .668	+ 6.53 .00 (- 2.5 .00 (- 2.5 .00 (- 2.5 + 1.41 control an t = .353 + 14.1 + 3.69 + .39 + 1.19 .00 (4 + .91 <u>Control</u> control control .00 (- 2.5 .00 (4 .00 (4) .00 (4) .00 (4) .00 (5) .00 (4) .00 (4)

Appendix B. Continued.

Treatment Condition*	Cytotox Activii	ty⁵	Transfo <u>Activ</u>	-	Transformati Response ^d	
	RCE (%	;)	Focus		Foci/Vesse	
Drug Conc., mM	S.A C	C.A.	Type Ve III		Focus Type III	<i>t</i> —statistic
47733-s .00375	.000	3.3	12	(20)	.338	+ .39
47733-S .00250		3.6	7	(20)	.238	.00 (25
47733-s .00125		8.6	3	(20)	.110	.00 (- 1.24
47733-s .000625		6.9	· 7	(20)	.203	.00 (50
C-1A+1B Control	100. 100	0.	45	(79)	.274	$\frac{Control}{Mean t = .098}$
rial 2 [95]		ND	450	(20)	7.35***	+ 0 / 9
(a)P .000791 (a)P .000250		ND ND	152 115	(20) (20)	7.35*** 5.27***	+ 9.48 + 3.82
47733-S .00281		ND ND	18 38	(20) (19)	.620 1.82	.00 (- 6.44 .00 (- 2.39
47733-S .00211 47733-S .00140		ND	26	(20)	1.07	.00 (- 2.39
047733-S .000700		ND	37	(19)	1.69	.00 (- 2.68
C-1A+1B Control		ND	263	(77)	2.84	Control
						Mean $t = .000$
. I. Disperse Bl	ue 1 [933178	8-S, M.W.	= 268.3]			
ria] 1 [73]		1 0		(10)	7 20444	+ 9.00
(a)P .000791		1.9 8.8	61 48	(19) (20)	2.60*** 1.58***	+ 8.09 + 4.37
(a)P .000250	1.10 8	0.0	40	(20)	1.30	· +.J/
33178-s 3.70	.000 1	7.1	20	(20)	.572	+ 1.66
33178-S 1.17		9.3	18	(20)	.787**	+ 2.93
33178-S .370	33.1 7	2.3	36	(20)	1.56***	+ 5.85
33178-S .117	68.0 10		22	(20)	.955***	+ 3.67
C-1A+1B Control	100. 10	υ.	45	(79)	.274	$\frac{Control}{Mean t = 3.53}$
rial 2 [97]	, _, _	• •		(20)		
(a)P .000791		8.0 /	118 52	(20) (20)	5.02*** 2.26***	+ 12.5 + 7.26
(a)P .000250	17.4 10	4.	72	(20)	2.20	
33178-S 1.48	3.16 2	7.9	6	(18)	.260	.00 (- 1.01
33178-S .741		2.6	9	(20)	.282	.00 (86
33178-S .370		5.2	13	(18)	.513	+ .55
33178-S .185		1.9	14	(18)	.608	+ 1.07
C-1A+1B Control	100. 10	υ.	47	(80)	-414	<u>Control</u> Mean t = .405
rial 3 [107]						
B(a)P .000791		7.3	131	(20)	6.09***	+ 5.74
(a)P .000250	21.2 7	5.8	122	(20)	5.53***	+ 4.05
33178-s 1.85	19.1	6.98	11	(20)	.443	.00 (- 7.86
33178-S .926	22.2 1	6.5	22	(20)	.792	.00 (- 6.00
033178-S .463		3.8	5	(20)	. 189	.00 (-12.9)
233178-S .231		8.2	6	(19)	.226	.00 (- 9.38 Control
C-1A+1B Control	100. 10	υ.	274	(80)	2.95	<u>Control</u> Mean t = .000
C. I. Disperse B	lue 1 [9331	78-S, M.W.	. = 268.3]			
•	-					
[ria] 1 [73] 3(a)P .000791	2.21 7	1.9	132	(19)	6.38***	+ 13.1
3(a)P .000250		88.8	90	(20)	3.20***	+ 5.92
77179-0 7 70	000 4	7 1	10/	(20)	3.91 ***	+ 7.00
933178-S 3.70 933178-S 1 17		17.1 59.3	104 86	(20) (20)	3.97 ***	+ 7.00 + 10.4
233178-S 1.17 233178-S .370		2.3	122	(20)	5.49 ***	+ 11.8
33178-S .117		0.	77	(20)	3.25 ***	+ 6.22
C-1A+1B Control		0.	99	(79)	.608	Control
						Mean $t = 8.86$
						(Continued

Appendix B. Continued.

	eatment dition ^a	Cyto Activ	∕ity ^b	Transfo Activi		Transformation Response ^d	Significance ^e
David	ConcN	RCE	. ,	Focus D Type Ves		Foci/Vessel Focus Type III	
Drug	Conc., mM	S.A	CC.A.	III	(11)	111	<i>t</i> -statistic
Trial 2 B(a)P B(a)P	[97] .000791 .000250	4.74 17.4	78.0 104.	248 126	(20) (20)	9.95*** 5.14***	+ 11.3 + 7.49
933178- 933178- 933178- 933178- 933178- NC-1A+1	s .741 s .370 s .185	3.16 9.49 13.4 20.2 100.	27.9 32.6 45.2 41.9 100.	46 51 67 78 118	(18) (20) (18) (18) (80)	2.05 * 2.05 * 3.51 *** 3.45 *** 1.07	+ 2.51 + 2.64 + 7.80 + 5.03 <u>Control</u> ean t = 4.50
Trial 3 B(a)P B(a)P	[107] .000791 .000250	5.81 21.2	47.3 75.8	402 330	(20) (20)	19.5 *** 16.0 ***	+ 8.11 + 6.00
933178- 933178- 933178- 933178- 933178- NC-1A+1	s .926 s .463 s .231	19.1 22.2 36.6 44.1 100.	6.98 16.5 23.8 28.2 100.	594 650 160 143 929	(20) (20) (20) (19) (80)	27.8 *** 32.0 *** 7.07 7.31 9.56	+ 15.3 + 16.2 .00 (- 1.63) .00 (- 3.00) <u>Control</u> ean t = 7.88
C. I.	Disperse Ye	110w 3 [[)Y3, M.W.	= 269.31]			
Trial 1 B(a)P B(a)P	[71] .000791 .000250	4.48 18.1	50.7 68.7	251 77	(20) (20)	11.0*** 3.50***	+ 12.1 + 7.12
DY3 DY3 DY3 NC-1	1.423 .450 .142 .045 Control	.000 .000 .000 14.3 100.	41.8 92.4 89.3 104. 100.	19 12 15 3 110	(20) (20) (17) (20) (75)	.772 .423 .340 .094 1.06	.00 (- 1.030 .00 (- 2.53) .00 (- 2.60) .00 (- 6.70) <u>Control</u> ean t = .000
Trial 2 B(a)P B(a)P	[91] .000791 .000250	28.9 58.1	73.6 89.9	60 14		2.00*** .503	+ 5.11 + 1.31
DY3 DY3 DY3	1.577 .788 .394 .197 Control	21.7 29.2 41.4 66.7 100.	79.3 87.4 89.1 93.4 100.	8 11 1 2 31		.301 .402 .035 .072 .322	.00 (17) + .62 .00 (- 4.52) .00 (- 3.31) <u>Control</u>
Cytemb	епа [СҮТВ, М	.W. = 307.	09]			Me	eant= .155
Trial 1 B(a)P B(a)P	[70] .0007 9 .00025	1.24 11.8	48.9 81.0	11 19	(3) (5)	3.38*** 3.62***	+ 4.23 + 5.73
CYTB CYTB CYTB CYTB NC-1	.325 .243 .162 .081 Control	.000 .000 4.97 19.9 100.	2.25	0 7 88 42 36	(9,16) (15) (18) (20) (54)	.000 .356 4.48*** 1.11 .526	.00 (- 7.39) .00 (98) + 11.2 + 1.83 <u>Control</u>
Trial 2 B(a)P B(a)P	2 [83] .00079 .00025	2.86 13.8	73.0 78.9	141 64	(20) (20)	M6 6.14*** 2.93***	ean t = 4.34 + 13.5 + 9.12
CYTB CYTB CYTB CYTB NC-1	.243 .183 .122 .061 Control	000. 000 5.71 20.5 100.	8.74 39.1 73.3 94.1 100.	21 92 119 20 48	(16) (19) (20) (20) (80)	.979** 4.35*** 5.18*** .808* .351 Me	+ 2.76 + 11.2 + 12.1 + 2.41 <u>Control</u> ean t = 7.12

	eatment dition [®]	Act	otoxic ivity⁵ E (%)	Transfo Activ Focus	'ity ^c	Transformatic Response ^d Foci/Vessel	Significance®
Drug	Conc., mM	S.A	CC.A.	Type Ve III		Focus Type III	<i>t</i> —statistic
I. S	olvent Yel	low 14 [0	ISY14, M.W.	= 248.30]			
ial 1	[7]						
	.000791	1.52	48.4	212	(20)	10.0***	+ 26.6
a)P	.000250	3.41	56.9	41	(19)	1.80***	+ 7.07
~	2/2	4 04	70.4	13	(19)	.535*	+ 2.69
	.242 .121	6.06 13.6	66.5	16	(19)	.739***	+ 4.72
	.0605	19.7	66.2	16	(19)	.713***	+ 4.33
	.0303	20.1	75.8	12	(19)	.480*	+ 2.34
	Control	100.	100.	7	(36)	.135	Control
•	ooner ot			•	(00)		lean t = 3.52
ial 2	[67]						
a)P	.000791	5.87	34.4	48	(20)	2.07***	+ 8.71
a)P	.000250	20.8	63.9	39	(20)	.969**	+ 3.32
		_ ·					
	.242	34.9	73.9	16	(20)	.634***	+ 3.79
	.161	52.5	80.7	26	(20)	.927***	+ 4.18
	.0805	52.8	79.5	28	(20)	1.09***	+ 5.23
	.0403	56.5	83.4	21	(20)	.888***	+ 5.34
-1*	Control	100.	100.	5	(39)	.085	<u>Control</u> lean t = 4.64
ial 3	F T D 1 7 1					r	iean 1 - 4.04
	.000791	.000	ND	100	(15)	5.28***	+ 8.30
	.000250	3.1	ND	84	(15)	5.27***	+ 11.4
				•	··-/		
SY14	.201	.000	ND	15	(15)	.838	+ 1.63
SY14	.101	.5	ND	21	(15)	1.12*	+ 2.36
SY14	.0503	.5	ND	19	(14)	1.16*	+ 2.50
-1	Control	100.	ND	20	(29)	.411	Control
						۲	lean t = 2.16
ial 4						0 0/+++	
	.000791	1.33	3.77	110	(12)	8.86***	+ 20.5
a)P	.000250	2.67	22.1	82	(12)	6.31***	+ 10.7
SY14	.242	1.71	10.6	6	(12)	.348	+ .98
	. 161		14.7	12	(12)	.861***	+ 3.68
	.0805	11.2	35.7	25	(12)	1.73***	+ 4.82
	.0403	22.3	58.1	19	(12)	1.32***	+ 4.23
	Control		00.	6	(24)	.189	Control
	as conducted			hes.	•		n t = 3.43
3-Dib	romo-3-Ch	oropropa	ne [DBCP, M	.W. = 236.3	35, Density	y = 2.093 g/ml]	
ial 1	[23]						
a)P	.000791		61.0	157	(18)	6.71***	+ 9.25
a)P	.000250	4.84	100.	57	(18)	3.04***	+ 8.07
			~ ~		(40)	F 70	00 / 7 -
	.213	.000	98.2	14	(18)	.572	.00 (37
	.159	2.42	85.6	19	(18)	.937	+ 1.17 + .16
	.106	6.06	93.1	16	(18)	.698 .590	
	.0531	39.4 100.	95.4 100.	20 23	(18) (27)	.661	00 (26. Control
-1	Control	100.		23	(21)		lean t = $.333$
ial 2	[27]					r	
	.000791	4.04	33.7	170	(18)	8.90***	+ 14.8
	.000250	13.0	47.4	73	(18)	3.18***	+ 5.71
СР	.531	.000	36.9	163	(18)	8.21***	+ 12.0
	.398	1.24	67.0	111	(18)	5.51***	+ 9.35
	.266	9.94	81.1	36	(18)	1.64***	+ 3.26
СР			70 0	47	/10\	7/5	+ .83
	.133	35.7 100.	70.2 100.	17 31	(18) (36)	.765 .555	Control

Co	reatment ndition ^a	Cytoto Activ	ity [⊳]	Transfor Activit		Transformation Response ^d	Significance ^e
		RCE	(*)	Focus Da		Foci/Vessel	
				Type Ves		Focus Type	
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic
	2 51023						
riai B(a)P	3 [102] .000791	9.64	69.9	99	(18)	4.65***	+ 9.48
B(a)P	.000250	19.3	93.1	45	(18)	2.22***	+ 5.22
nco	.708	.000	1.33	9	(18)	.392	.00 (- 1.65
BCP	.531	.000	7.73	51	(18)	2.27***	+ 4.97
BCP	.354	1.68	34.7	109	(18)	5.09***	+ 9.56
BCP	.177	13.4	70.1	47	(18)	2.14***	+ 4.77
IC-1	Control	100.	100.	64	(72)	.697	$\frac{\text{Control}}{1}$
						mea	111 L = 4.03
2,6-D)ichloro- <i>p</i> -P	henylened	iamine [26	DCPD, M.W.	= 177.]		
	1 [32]	10 1	51.7	197	(19)	10.1***	+ 12.6
3(a)P 3(a)P	.000791 .000250	10.1 6.37	77.4	197	(20)	5.46***	+ 6.94
S(a)P	.000250	0.57					
26DCPC		.000	39.5	68	(20)	2.96	+ 1.91
26DCPD		1.87	62.7	86	(20)	4.07***	+ 4.63
26DCPC		4.12	76.0	101	(20)	4.05**	+ 3.41 + .00 (- 1.08
26DCPC		41.6	86.3	38	(20)	1.55	
IC-1	Control	100.	100.	91	(38)	1.99 Mea	$\frac{\text{Control}}{1}$
	2 [54]	7	47 (105	(20)	4.75***	+ 13.8
B(a)P	.000791	1.47	17.6	105 100	(20) (20)	4.52***	+ 13.5
3(a)P	.000250	.490	61.1	100	(20)	4.52***	+ 13.3
26DCPC	0 1.13	.000	35.8	17	(20)	.677*	+ 2.51
26DCPC	.847	2.94	55.7	21	(20)	.845**	+ 3.27
26DCPC	.565	4.41	90.5	11	(20)	.443	+ 1.25
26DCPC	.282	34.9	89.5	11	(20)	.423	+ 1.08
NC-1	Control	100.	100.	15	(40)	.265 Me	<u>Control</u> an t = 2.03
	Dichloroprop	ene [13DCP	, M.W. = 11	10.98, Dens	ity = 1.217	'g/ml]	
Trial	1 [79] .000 79 1	22.7	79.6	279	(13)	20.8***	+ 13.9
Trial B(a)P	1 [79] .000791						+ 13.9 + 9.34
Trial B(a)P B(a)P	1 [79] .000791 .000250	22.7 39.3	79.6	279	(13)	20.8*** 12.9*** 13.9***	+ 9.34 + 8.91
Trial B(a)P B(a)P 13DCP	1 [79] .000791 .000250 .308	22.7 39.3 .000	79.6 94.2	279 241	(13) (18)	20.8*** 12.9*** 13.9*** 9.08***	+ 9.34 + 8.91 + 3.53
Trial B(a)P B(a)P 13DCP 13DCP	1 [79] .000791 .000250 .308 .231	22.7 39.3 .000 .000	79.6 94.2 59.0	279 241 263	(13) (18) (18)	20.8*** 12.9*** 13.9*** 9.08*** 4.74	+ 9.34 + 8.91 + 3.53 .00 (48
Trial B(a)P B(a)P 13DCP 13DCP 13DCP	1 [79] .000791 .000250 .308 .231 .154	22.7 39.3 .000 .000	79.6 94.2 59.0 91.8	279 241 263 194	(13) (18) (18) (18)	20.8*** 12.9*** 9.08*** 4.74 4.01	+ 9.34 + 8.91 + 3.53 .00 (44 .00 (- 1.49
Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP	1 [79] .000791 .000250 .308 .231 .154	22.7 39.3 .000 .000 .413	79.6 94.2 59.0 91.8 96.6	279 241 263 194 93	(13) (18) (18) (18) (18)	20.8*** 12.9*** 9.08*** 4.74 4.01 5.12	+ 9.34 + 8.91 + 3.53 .00 (48 .00 (- 1.49 <u>Control</u>
Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP NC-1	1 [79] .000791 .000250 .308 .231 .154 .0770 Control 2 [94]	22.7 39.3 .000 .413 40.1 100.	79.6 94.2 59.0 91.8 96.6 108. 100.	279 241 263 194 93 80 430	(13) (18) (18) (18) (18) (18) (18) (72)	20.8*** 12.9*** 13.9*** 9.08*** 4.74 4.01 5.12 Me	+ 9.34 + 8.91 + 3.53 .00 (48 .00 (- 1.49 <u>Control</u> an t = 3.11
Trial B(a)P B(a)P 13DCP 13DCP 13DCP NC-1 Trial	1 [79] .000791 .000250 .308 .231 .154 .0770 Control 2 [94] .000791	22.7 39.3 .000 .413 40.1 100.	79.6 94.2 59.0 91.8 96.6 108. 100. 75.7	279 241 263 194 93 80 430	 (13) (18) (18) (18) (18) (18) (72) 	20.8*** 12.9*** 13.9*** 9.08*** 4.74 4.01 5.12 Me 5.92***	+ 9.34 + 8.91 + 3.53 .00 (48 .00 (- 1.45 <u>Control</u> an t = 3.11 + 6.26
Trial B(a)P B(a)P 13DCP 13DCP 13DCP NC-1 Trial B(a)P	1 [79] .000791 .000250 .308 .231 .154 .0770 Control 2 [94] .000791	22.7 39.3 .000 .413 40.1 100.	79.6 94.2 59.0 91.8 96.6 108. 100.	279 241 263 194 93 80 430	(13) (18) (18) (18) (18) (18) (18) (72)	20.8*** 12.9*** 13.9*** 9.08*** 4.74 4.01 5.12 Me	+ 9.34 + 8.91 + 3.53 .00 (48 .00 (- 1.49 <u>Control</u> an t = 3.11
Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP NC-1 Trial B(a)P B(a)P 13DCP	1 [79] .000791 .000250 .308 .231 .154 .0770 Control 2 [94] .000791 .000250 .330	22.7 39.3 .000 .000 .413 40.1 100. .000 17.4 .000	79.6 94.2 59.0 91.8 96.6 108. 100. 75.7 114. .000	279 241 263 194 93 80 430 122 81 11	(13) (18) (18) (18) (18) (18) (72) (18) (18) (11,18)	20.8*** 12.9*** 9.08*** 4.74 4.01 5.12 Me 5.92*** 3.88*** .753	+ 9.34 + 8.91 + 3.53 .00 (44 .00 (- 1.49 an t = 3.11 + 6.26 + 4.08 .00 (- 1.80
Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP NC-1 Trial B(a)P B(a)P 13DCP 13DCP 13DCP	1 [79] .000791 .000250 .308 .231 .154 .0770 Control 2 [94] .000791 .000250 .330 .247	22.7 39.3 .000 .413 40.1 100. .000 17.4 .000 .000	79.6 94.2 59.0 91.8 96.6 108. 100. 75.7 114. .000 63.2	279 241 263 194 93 80 430 122 81 11 33	(13) (18) (18) (18) (18) (18) (72) (18) (18) (11,18) (18)	20.8*** 12.9*** 9.08*** 4.74 4.01 5.12 Me 5.92*** 3.88*** .753 1.41	+ 9.34 + 8.91 + 3.53 .00 (48 .00 (- 1.49 an t = 3.11 + 6.26 + 4.08 .00 (- 1.80 .00 (- 20
Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP NC-1 Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP	1 [79] .000791 .000250 .308 .231 .154 .0770 Control 2 [94] .000791 .000250 .330 .247 .165	22.7 39.3 .000 .413 40.1 100. .000 17.4 .000 .000 .000	79.6 94.2 59.0 91.8 96.6 108. 100. 75.7 114. .000 63.2 132.	279 241 263 194 93 80 430 122 81 11 33 37	(13) (18) (18) (18) (18) (18) (72) (18) (18) (11,18) (18) (18)	20.8*** 12.9*** 9.08*** 4.74 4.01 5.12 Me 5.92*** 3.88*** .753 1.41 1.47	+ 9.34 + 8.91 + 3.53 .00 (48 .00 (- 1.49 an t = 3.11 + 6.26 + 4.08 .00 (- 1.88 .00 (- 1.86 .00 (26 .00 (126)
Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP NC-1 Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP	1 [79] .000791 .000250 .308 .231 .154 .0770 Control 2 [94] .000791 .000250 .330 .247 .165 .0824	22.7 39.3 .000 .413 40.1 100. .000 17.4 .000 .000 .000 .000	79.6 94.2 59.0 91.8 96.6 108. 100. 75.7 114. .000 63.2 132. 155.	279 241 263 194 93 80 430 122 81 11 33 37 21	(13) (18) (18) (18) (18) (18) (72) (18) (18) (11,18) (18) (18) (18) (18)	20.8*** 12.9*** 9.08*** 4.74 4.01 5.12 Me 5.92*** 3.88*** .753 1.41 1.47 .634	+ 9.34 + 8.91 + 3.53 .00 (48 .00 (- 1.49 an t = 3.11 + 6.26 + 4.08 .00 (- 1.80 .00 (20 .00 (12 .00 (- 2.58
Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP NC-1 Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP	1 [79] .000791 .000250 .308 .231 .154 .0770 Control 2 [94] .000791 .000250 .330 .247 .165	22.7 39.3 .000 .413 40.1 100. .000 17.4 .000 .000 .000	79.6 94.2 59.0 91.8 96.6 108. 100. 75.7 114. .000 63.2 132.	279 241 263 194 93 80 430 122 81 11 33 37	(13) (18) (18) (18) (18) (18) (72) (18) (18) (11,18) (18) (18)	20.8*** 12.9*** 9.08*** 4.74 4.01 5.12 Me 5.92*** 3.88*** .753 1.41 1.47 .634 1.52	+ 9.34 + 8.91 + 3.53 .00 (48 .00 (- 1.49 an t = 3.11 + 6.26 + 4.08 .00 (- 1.88 .00 (- 1.86 .00 (26 .00 (126)
Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP NC-1 Trial B(a)P 13DCP 13DCP 13DCP 13DCP 13DCP 13DCP 13DCP 13DCP	1 [79] .000791 .000250 .308 .231 .154 .0770 Control 2 [94] .000791 .000250 .330 .247 .165 .0824 Control 3 [104]	22.7 39.3 .000 .000 .413 40.1 100. .000 17.4 .000 .000 .000 .000 100.	79.6 94.2 59.0 91.8 96.6 108. 100. 75.7 114. .000 63.2 132. 135. 100.	279 241 263 194 93 80 430 122 81 11 33 37 21 150	(13) (18) (18) (18) (18) (18) (72) (18) (18) (18) (18) (18) (18) (18) (18	20.8*** 12.9*** 9.08*** 4.74 4.01 5.12 Me 5.92*** 3.88*** .753 1.41 1.47 .634 1.52 Me	+ 9.34 + 8.91 + 3.53 .00 (48 .00 (- 1.49 <u>Control</u> an t = 3.11 + 6.26 + 4.08 .00 (- 1.80 .00 (26 .00 (12 .00 (- 2.58 <u>Control</u> an t = .000
Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP NC-1 Trial B(a)P B(a)P 13DCP 13DCP 13DCP 13DCP NC-1	1 [79] .000791 .000250 .308 .231 .154 .0770 Control 2 [94] .000791 .000250 .330 .247 .165 .0824 Control .0824 Control	22.7 39.3 .000 .413 40.1 100. .000 17.4 .000 .000 .000 .000	79.6 94.2 59.0 91.8 96.6 108. 100. 75.7 114. .000 63.2 132. 155.	279 241 263 194 93 80 430 122 81 11 33 37 21	(13) (18) (18) (18) (18) (18) (72) (18) (18) (11,18) (18) (18) (18) (18)	20.8*** 12.9*** 9.08*** 4.74 4.01 5.12 Me 5.92*** 3.88*** .753 1.41 1.47 .634 1.52	+ 9.34 + 8.91 + 3.53 .00 (48 .00 (- 1.49 <u>Control</u> an t = 3.11 + 6.26 + 4.08 .00 (- 1.80 .00 (22 .00 (12 .00 (258 <u>Control</u>

416

C.,	reatment ondition ^a		otoxic ivity ^b	Transf Activ		Transformat Response	
			E (%)	Focus		Foci/Vess	
				Type V		Focus Typ	
Drug	Conc., mM	S.A	CC.A.	II		111	<i>t</i> -statistic
3DCP	.384	.000	23.1	16	(14,18)	.669	.00 (73
3DCP	.288	.000	98.2	51	(17)	2.36***	+ 3.84
3DCP	. 192	.000	96.4	26	(18)	1.27	+ 1.41
3DCP	.0960	20.6	86.4 100.	17 83	(18) (71)	.655 .878	.00 (88 Control
IC-1	Control	100.	100.	65	(11)	.070	Mean t = 1.75
)iglyc	idyl Resord	cinol Ethe	er [DIG, M.	W. = 222.2	6, Density =	= 1.21 g/m]]	
rial 1	[6]	1.71	30.6	175	(18)	9.16***	+ 21.9
8(a)P 8(a)P	.000250	13.7	85.9	101	(18)	5.42***	+ 18.5
IG	.00953	2.02	.000	0	(2,18)	.000	.00 (- 7.42
DIG	.00626	3.63	.588	31	(7,18)	1.51	+ 1.25
IG	.00408	5.24	19.4	230	(18)	11.8***	+ 20.1
IG	.00218	17.7	80.0	71	(18)	3.49***	+ 10.3
C-1	Control	100.	100.	18	(74)	.348	<u>Control</u> Mean t = 15.2
rial _e 2		oc 7	<u></u>		(10)	2 00+++	. 17 4
l(a)P [®] l(a)P	.000791 .000250	90.7 77.6	99.0 114.	61 81	(19) (17)	2.90*** 3.94***	+ 13.1 + 10.5
IG	.00544	.000	2.20	63	(17)	3.45***	+ 15.0
IG	.00408	.000	18.9	46	(11)	3.45***	+ 6.71
IG	.00272	.000	70.4	17	(14)	.842*	+ 2.79
DIG	.00136	41.1	104.	9	(18)	.392*	+ 2.14
IC-1	Control	100.	100.	8	(40)	.160	<u>Control</u> Mean t = 6.66
							incluit of office
Dichlo	orvos [DCV, I	M.W. = 220.	98, Density	/ = 1.415 g	ı/m]]		
[ria] 1	[68]					/ /7+++	
[ria] 1 3(a)P	[68] .000791	3.60	51.9	91	(18)	4.63*** 1.73***	+ 3.24
[ria] 1 3(a)P	[68]			91 37		1.73***	+ 3.24 + 15.0
Trial 1 B(a)P B(a)P DCV	[68] .000791 .000250 .181	3.60 4.50 .000	51.9 77.2 .000	91 37 4	(18) (18) (13,18)	1.73*** .211	+ 3.24 + 15.0 .00 (11
Trial 1 3(a)P 3(a)P 9(a)P 9CV 9CV	[68] .000791 .000250 .181 .0905	3.60 4.50 .000 16.7	51.9 77.2 .000 83.2	91 37 4 11	(18) (18) (13,18) (18)	1.73*** .211 .433	+ 3.24 + 15.0 .00 (11 + 1.38
rial 1 S(a)P S(a)P OCV OCV OCV	[68] .000791 .000250 .181 .0905 .0452	3.60 4.50 .000 16.7 50.0	51.9 77.2 .000 83.2 101.	91 37 4 11 2	(18) (18) (13,18) (18) (18)	1.73*** .211 .433 .080	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43
rial 1 (a)P (a)P (a)P CV CV CV CV	[68] .000791 .000250 .181 .0905 .0452 .0226	3.60 4.50 .000 16.7 50.0 73.9	51.9 77.2 .000 83.2 101. 101.	91 37 4 11 2 4	(18) (18) (13,18) (18) (18) (18)	1.73*** .211 .433 .080 .167	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (53
Trial 1 3(a)P 3(a)P OCV OCV OCV OCV OCV OCV NC-1	[68] .000791 .000250 .181 .0905 .0452 .0226 Control	3.60 4.50 .000 16.7 50.0	51.9 77.2 .000 83.2 101.	91 37 4 11 2	(18) (18) (13,18) (18) (18)	1.73*** .211 .433 .080	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43
frial 1 8(a)P 8(a)P 0CV 0CV 0CV 0CV 9CV 9CV 9CCV 9CCV 9CCV	[68] .000791 .000250 .181 .0905 .0452 .0226 Control 2 [98]	3.60 4.50 16.7 50.0 73.9 100.	51.9 77.2 .000 83.2 101. 101. 100.	91 37 4 11 2 4 11	(18) (18) (13,18) (18) (18) (18) (36)	1.73*** .211 .433 .080 .167 .226	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (53 <u>Control</u> Mean t = .460
[ria] 1 3(a)P 3(a)P 0CV 0CV 0CV 0CV 0CV 1C-1 [ria] 2 3(a)P	[68] .000791 .000250 .181 .0905 .0452 .0226 Control	3.60 4.50 .000 16.7 50.0 73.9	51.9 77.2 .000 83.2 101. 101.	91 37 4 11 2 4	(18) (18) (13,18) (18) (18) (18)	1.73*** .211 .433 .080 .167	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (53 <u>Control</u>
[ria] 1 8(a)P 9(a)P 9000 9000 9000 9000 9000 9000 9000 90	[68] .000791 .000250 .181 .0905 .0452 .0226 Control 2 [98] .000791 .000250 .181	3.60 4.50 .000 16.7 50.0 73.9 100. 8.38 29.3 .000	51.9 77.2 .000 83.2 101. 101. 100. 79.6 91.3 .000	91 37 4 11 2 4 11 132 75 0	(18) (18) (13,18) (18) (18) (18) (36) (18) (18) (18) (1,18)	1.73*** .211 .433 .080 .167 .226 6.82*** 3.38***	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (- 1.53 Mean t = .460 + 11.8 + 6.81 .00 (92
Trial 1 S(a)P S(a)P SCV SCV SCV SCV SCCV SCCV S(a)P S(a)P S(a)P S(a)P SCV SCV	[68] .000791 .000250 .181 .0905 .0452 .0226 Control 2 [98] .000791 .000250 .181 .136	3.60 4.50 16.7 50.0 73.9 100. 8.38 29.3 .000 .000	51.9 77.2 .000 83.2 101. 101. 100. 79.6 91.3 .000 .186	91 37 4 11 2 4 11 132 75 0 7	(18) (18) (18) (18) (18) (18) (36) (18) (18) (18) (1,18) (16,18)	1.73*** .211 .433 .080 .167 .226 6.82*** 3.38*** .000 .330	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (53 <u>Control</u> Mean t = .460 + 11.8 + 6.81 .00 (92 .00 (- 1.38
rial 1 (a)P (a)P (cV (cV (cV (cV (cV (c) (a)P (a)P (a)P (cV (cV (cV	[68] .000791 .000250 .181 .0905 .0452 .0226 Control 2 [98] .000791 .000250 .181 .136 .0905	3.60 4.50 16.7 50.0 73.9 100. 8.38 29.3 .000 .000 9.42	51.9 77.2 .000 83.2 101. 101. 100. 79.6 91.3 .000 .186 52.1	91 37 4 11 2 4 11 132 75 0 7 9	(18) (18) (18) (18) (18) (18) (36) (18) (18) (18) (1,18) (16,18) (18)	1.73*** .211 .433 .080 .167 .226 6.82*** 3.38*** .000 .330 .370	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (53 <u>Control</u> Mean t = .460 + 11.8 + 6.81 .00 (92 .00 (- 1.38 .00 (- 1.21
rial 1 (a)P (a)P (cV (cV (cV (cV (cV (c) (a)P (a)P (a)P (cV (cV (cV (cV (cV) (cV)	[68] .000791 .000250 .181 .0905 .0452 .0226 Control 2 [98] .000791 .000250 .181 .136 .0905 .0452	3.60 4.50 .000 16.7 50.0 73.9 100. 8.38 29.3 .000 .000 9.42 67.0	51.9 77.2 .000 83.2 101. 101. 100. 79.6 91.3 .000 .186 52.1 83.5	91 37 4 11 2 4 11 132 75 0 7 9 9	(18) (13,18) (18) (18) (18) (36) (18) (18) (18) (16,18) (16,18) (18) (18)	1.73*** .211 .433 .080 .167 .226 6.82*** 3.38*** .000 .330 .370 .326	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (- 1.43 .00 (53 <u>Control</u> Mean t = .460 + 11.8 + 6.81 .00 (92 .00 (- 1.38 .00 (- 1.21 .00 (- 1.43
(a)P (a)P (a)P (cV (cV (cV (cV (cV (cV (c)) (c) (c) (c) (c) (c) (c) (c) (c) (c	[68] .000791 .000250 .181 .0905 .0452 .0226 Control 2 [98] .000791 .000250 .181 .136 .0905 .0452 Control	3.60 4.50 16.7 50.0 73.9 100. 8.38 29.3 .000 .000 9.42	51.9 77.2 .000 83.2 101. 101. 100. 79.6 91.3 .000 .186 52.1	91 37 4 11 2 4 11 132 75 0 7 9	(18) (18) (18) (18) (18) (18) (36) (18) (18) (18) (1,18) (16,18) (18)	1.73*** .211 .433 .080 .167 .226 6.82*** 3.38*** .000 .330 .370	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (53 <u>Control</u> Mean t = .460 + 11.8 + 6.81 .00 (92 .00 (- 1.38 .00 (- 1.21
[ria] 1 3(a)P 3(a)P 9(x) 9(x) 9(x) 9(x) 9(x) 9(a)P 3(a)P 3(a)P 3(a)P 9(x) 9(x) 9(x) 9(x) 9(x) 9(x) 9(x) 9(x)	[68] .000791 .000250 .181 .0905 .0452 .0226 Control 2 [98] .000791 .000250 .181 .136 .0905 .0452 Control 3 [DRI5]	3.60 4.50 .000 16.7 50.0 73.9 100. 8.38 29.3 .000 .000 9.42 67.0 100.	51.9 77.2 .000 83.2 101. 101. 100. 79.6 91.3 .000 .186 52.1 83.5 100.	91 37 4 11 2 4 11 132 75 0 7 9 9	(18) (13,18) (18) (18) (18) (36) (18) (18) (18) (16,18) (16,18) (18) (18)	1.73*** .211 .433 .080 .167 .226 6.82*** 3.38*** .000 .330 .370 .326	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (- 1.43 .00 (53 <u>Control</u> Mean t = .460 + 11.8 + 6.81 .00 (92 .00 (- 1.38 .00 (- 1.21 .00 (- 1.43 <u>Control</u>
(a)P (a)P (a)P (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	[68] .000791 .000250 .181 .0905 .0452 .0226 Control 2 [98] .000791 .000250 .181 .136 .0905 .0452 Control	3.60 4.50 .000 16.7 50.0 73.9 100. 8.38 29.3 .000 .000 9.42 67.0	51.9 77.2 .000 83.2 101. 101. 100. 79.6 91.3 .000 .186 52.1 83.5	91 37 4 11 2 4 11 132 75 0 7 9 9	(18) (13,18) (18) (18) (18) (36) (18) (18) (18) (16,18) (16,18) (18) (18)	1.73*** .211 .433 .080 .167 .226 6.82*** 3.38*** .000 .330 .370 .326	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (- 1.43 .00 (53 <u>Control</u> Mean t = .460 + 11.8 + 6.81 .00 (92 .00 (- 1.38 .00 (- 1.21 .00 (- 1.43 <u>Control</u>
Frial 1 (a)P (a)P (c)P (c)V (c)V (c)CV	[68] .000791 .000250 .181 .0905 .0452 .0226 Control 2 [98] .000791 .000250 .181 .136 .0905 .0452 Control 3 [DRI5] .000791	3.60 4.50 .000 16.7 50.0 73.9 100. 8.38 29.3 .000 .000 9.42 67.0 100. NA	51.9 77.2 .000 83.2 101. 101. 100. 79.6 91.3 .000 .186 52.1 83.5 100.	91 37 4 11 2 4 11 132 75 0 7 9 9	(18) (13,18) (18) (18) (18) (36) (18) (18) (18) (16,18) (16,18) (18) (18)	1.73*** .211 .433 .080 .167 .226 6.82*** 3.38*** .000 .330 .370 .326 .618	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (- 1.43 .00 (53 <u>Control</u> Mean t = .460 + 11.8 + 6.81 .00 (92 .00 (- 1.21 .00 (- 1.21 .00 (- 1.43 Mean t = .000 + 8.82
Trial 1 ((a)P ((a)P (CV (CV (CV (CV (CV (CV (CV (CV (CV (CV)	[68] .000791 .000250 .181 .0905 .0452 .0226 Control 2 [98] .000791 .000250 .181 .136 .0905 .0452 Control 8 [DRI5] .000791 .000250	3.60 4.50 .000 16.7 50.0 73.9 100. 8.38 29.3 .000 .000 9.42 67.0 100. NA NA NA	51.9 77.2 .000 83.2 101. 101. 100. 79.6 91.3 .000 .186 52.1 83.5 100. NA NA NA	91 37 4 11 2 4 11 132 75 0 7 9 9 39 39	(18) (13,18) (18) (18) (18) (18) (36) (18) (18) (18) (16,18) (18) (18) (18) (18) (18) (18) (18) (1.73*** .211 .433 .080 .167 .226 6.82*** 3.38*** .000 .330 .370 .326 .618 9.84** 2.20	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (- 1.43 .00 (53 Mean t = .460 + 11.8 + 6.81 .00 (92 .00 (- 1.38 .00 (- 1.21 .00 (- 1.43 Mean t = .000 + 8.82 + 1.71
Frial 1 ((a)P ((a)P (cV) (cV) (cV) (cV) (cV) (cV) (cV) (cV)	[68] .000791 .000250 .181 .0905 .0452 .0226 Control 2 [98] .000791 .000250 .181 .136 .0905 .0452 Control 3 [DRI5] .000791 .000250 .136	3.60 4.50 .000 16.7 50.0 73.9 100. 8.38 29.3 .000 .000 9.42 67.0 100. NA NA	51.9 77.2 .000 83.2 101. 101. 100. 79.6 91.3 .000 .186 52.1 83.5 100. NA NA	91 37 4 11 2 4 11 132 75 0 7 9 9 39 39	(18) (13,18) (18) (18) (18) (18) (36) (18) (18) (18) (16,18) (18) (18) (18) (18) (18) (18)	1.73*** .211 .433 .080 .167 .226 6.82*** 3.38*** .000 .330 .370 .326 .618	+ 3.24 + 15.0 .00 (11 + 1.38 .00 (- 1.43 .00 (- 1.43 .00 (53 <u>Control</u> Mean t = .460 + 11.8 + 6.81 .00 (92 .00 (- 1.21 .00 (- 1.21 .00 (- 1.43 Mean t = .000 + 8.82

	atment	• • •					
	dition	Cytoto Activi	ty⁵	Transfor Activi		Transformation Response ^d	Significance ^e
		RCE (k)	Focus D		Foci/Vessel	
Drug	Conc. mH	S.A	CC.A.	Type Ves III	seis (N)	Focus Type III	
Drug	Conc., mM	3.A	LL.A.	111	(M)	111	<i>t</i> -statistic
ichlo	rvos [676384	-L, M.W. =	220.98, De	ensity = 1.4	415 g/ml]		
rial 1	[78]						
(a)P	.000791	8.09	60.6	116	(18)	6.11***	+ 4.93
(a)P	.000250	14.9	84.2	184	(18)	9.84***	+ 9.74
7470/-	L .182	.000	2.49	17	(6,18)	1.98	.00 (- 1.40
76384- 76384-		.426	26.6	96	(18)	4.47	.00 (- 1.57
76384-		8.94	72.2	97	(18)	4.83*	+ 2.09
76384-		37.4	88.4	41	(18)	2.01	.00 (- 2.36
2-1	Control		100.	296	(72)	3.28	Control
						Me	an t = .697
rial 2 (a)P	[90] .000791	28.5	76.0	157	(18)	7.60***	+ 5.89
(a)P (a)P	.000250	51.8	95.8	110	(18)	4.91***	+ 3.71
76384-	L .159	.000	1.95	27	(14,17)	1.51	.00 (78
76384- 76384-			24.7	103	(18)	4.85***	+ 3.76
76384- 76384-		52.5	83.6	104	(18)	4.10**	+ 2.82
76384-			114.	85	(18)	2.91	+ 1.41
C-1	Control		100.	219	(71)	1.95	Control
	controt	1001			•	Me	an t = 2.66
[ria]	initrotolue	ne [24DNT, 5.52	M.W. = 182 35.7	2.14]	(20)	6.14***	+ 12.4
8(a)P 8(a)P	.00791			121	(20)		
)(u))	.00250	22.4	81.1	75	(20)	3.32***	+ 8.63
24DNT	2.333	.000	.000	0	(5,20)	3.32*** .000	.00 (- 4.15
			.000 55.1	0 38	(5,20) (20)	3.32*** .000 1.61***	.00 (- 4.15 + 4.70
24DNT 24DNT	2.333	.000 11.0 56.6	.000 55.1 85.8	0 38 20	(5,20) (20) (20)	3.32*** .000 1.61*** .527	.00 (- 4.15 + 4.70 + .66
24DNT 24DNT 24DNT	2.333 1.167	.000 11.0 56.6 79.7	.000 55.1 85.8 93.3	0 38 20 7	(5,20) (20) (20) (20)	3.32*** .000 1.61*** .527 .275	.00 (- 4.15 + 4.70 + .66 .00 (67
24DNT 24DNT 24DNT 24DNT	2.333 1.167 .583	.000 11.0 56.6	.000 55.1 85.8	0 38 20	(5,20) (20) (20)	3.32*** .000 1.61*** .527 .275 .384	.00 (- 4.15 + 4.70 + .66 .00 (67 <u>Control</u>
24DNT 24DNT 24DNT 24DNT 24DNT NC - 1	2.333 1.167 .583 .292	.000 11.0 56.6 79.7	.000 55.1 85.8 93.3 100.	0 38 20 7 24	(5,20) (20) (20) (20) (20) (40)	3.32*** .000 1.61*** .527 .275 .384 M	.00 (- 4.15 + 4.70 + .66 .00 (67 <u>Control</u> ean t = 1.57
24DNT 24DNT 24DNT 24DNT 24DNT IC-1 171al	2.333 1.167 .583 .292 Control 2 [55] .000791	.000 11.0 56.6 79.7 100. 2.26	.000 55.1 85.8 93.3 100. 23.9	0 38 20 7 24 133	(5,20) (20) (20) (20) (20) (40)	3.32*** .000 1.61*** .527 .275 .384 M 5.49***	.00 (- 4.19 + 4.70 + .66 .00 (67 ean t = 1.57 + 15.2
24DNT 24DNT 24DNT 24DNT IC-1 Trial 3(a)P	2.333 1.167 .583 .292 Control 2 [55]	.000 11.0 56.6 79.7 100.	.000 55.1 85.8 93.3 100.	0 38 20 7 24	(5,20) (20) (20) (20) (20) (40)	3.32*** .000 1.61*** .527 .275 .384 M	.00 (- 4.15 + 4.70 + .66 .00 (67 <u>Control</u> ean t = 1.57
24DNT 24DNT 24DNT 24DNT 1C-1 1C-1 5(a)P 3(a)P	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250	.000 11.0 56.6 79.7 100. 2.26 4.07	.000 55.1 85.8 93.3 100. 23.9 62.4	0 38 20 7 24 133	(5,20) (20) (20) (20) (20) (40)	3.32*** .000 1.61*** .527 .275 .384 M 5.49***	.00 (- 4.19 + 4.70 + .66 .00 (67 ean t = 1.57 + 15.2 + 7.12 + 1.68
24DNT 24DNT 24DNT 24DNT IC-1 IC-1 IC-1 IC-3 IC-1 24DNT 24DNT	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250 1.333	.000 11.0 56.6 79.7 100. 2.26 4.07 .452	.000 55.1 85.8 93.3 100. 23.9 62.4 13.3	0 38 20 7 24 133 48	(5,20) (20) (20) (20) (40) (20) (20) (20)	3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88***	.00 (- 4.15 + 4.70 + .66 .00 (67 ean t = 1.57 + 15.2 + 7.12
24DNT 24DNT 24DNT 24DNT IC-1 57ial 3(a)P 3(a)P 24DNT 24DNT	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250	.000 11.0 56.6 79.7 100. 2.26 4.07	.000 55.1 85.8 93.3 100. 23.9 62.4	0 38 20 7 24 133 48 8	(5,20) (20) (20) (20) (40) (20) (20) (20)	3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88*** .301 .035 .149	.00 (- 4.15 + 4.70 + .66 .00 (67 ean t = 1.57 + 15.2 + 7.12 + 1.68 .00 (- 1.59 + .23
4DNT 4DNT 4DNT 4DNT (C-1 (C-1 (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250 1.333 1.000	.000 11.0 56.6 79.7 100. 2.26 4.07 .452 3.17 22.7 57.0	.000 55.1 85.8 93.3 100. 23.9 62.4 13.3 39.6	0 38 20 7 24 133 48 8 1 4 0	(5,20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88*** 1.88*** .301 .035 .149 .000	.00 (- 4.19 + 4.70 + .66 .00 (67 ean t = 1.57 + 15.2 + 7.12 + 1.68 .00 (- 1.57 + .23 .00 (- 1.8
24DNT 24DNT 24DNT 24DNT 1C-1 1C-1 3(a)P 3(a)P 24DNT 24DNT 24DNT 24DNT	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250 1.333 1.000 .667	.000 11.0 56.6 79.7 100. 2.26 4.07 .452 3.17 22.7	.000 55.1 85.8 93.3 100. 23.9 62.4 13.3 39.6 69.8	0 38 20 7 24 133 48 8 1 4	(5,20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20)	3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88*** 1.88*** .301 .035 .149 .000 .129	.00 (- 4.19 + 4.70 + .66 .00 (61 ean t = 1.57 + 15.2 + 7.12 + 1.68 .00 (- 1.59 + .23 .00 (- 1.8 Control
24DNT 24DNT 24DNT 24DNT 1C-1 5(a)P 24DNT 24DNT 24DNT 24DNT 24DNT 1NC-1 5(a) 100 100 100 100 100 100 100 100 100 10	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250 1.333 1.000 .667 .333 Control 3 [DRI2]	.000 11.0 56.6 79.7 100. 2.26 4.07 .452 3.17 22.7 57.0 100.	.000 55.1 85.8 93.3 100. 23.9 62.4 13.3 39.6 69.8 84.7 100.	0 38 20 7 24 133 48 1 48 1 48 7	(5,20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88*** 1.88*** .301 .035 .149 .000 .129 M	.00 (- 4.19 + 4.70 + .66 .00 (6 <u>Control</u> ean t = 1.57 + 15.2 + 7.12 + 1.68 .00 (- 1.5 + .23 .00 (- 1.8
24DNT 24DNT 24DNT 24DNT 1C-1 5(a)P 24DNT 24DNT 24DNT 24DNT 24DNT 1NC-1 5(a) 100 100 100 100 100 100 100 100 100 10	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250 1.333 1.000 .667 .333 Control	.000 11.0 56.6 79.7 100. 2.26 4.07 .452 3.17 22.7 57.0	.000 55.1 85.8 93.3 100. 23.9 62.4 13.3 39.6 69.8 84.7	0 38 20 7 24 133 48 8 1 4 0 7 242	(5,20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88*** 1.88*** .301 .035 .149 .000 .129 M 11.7 ***	.00 (- 4.19 + 4.70 + .66 .00 (6 <u>Control</u> ean t = 1.57 + 15.2 + 7.12 + 1.68 .00 (- 1.5 + .23 .00 (- 1.8 <u>Control</u> ean t = .478 + 19.0
24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 3(a)P 3(a)P 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 7rail MNNG 24DNT	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250 1.333 1.000 .667 .333 Control 3 [DRI2] .00850 1.373	.000 11.0 56.6 79.7 100. 2.26 4.07 .452 3.17 22.7 57.0 100. 60.8 23.0	.000 55.1 85.8 93.3 100. 23.9 62.4 13.3 39.6 69.8 84.7 100. NA NA	0 38 20 7 24 133 48 8 1 4 0 7 242 2	(5,20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88*** 1.88*** .301 .035 .149 .000 .129 M 11.7 ***	.00 (- 4.19 + 4.70 + .66 .00 (6) ean t = 1.57 + 15.2 + 7.12 + 1.68 .00 (- 1.5) + .23 .00 (- 1.8) <u>Control</u> ean t = .478 + 19.0 .00 (-3.10
24DNT 24DNT 24DNT 24DNT 1C-1 1rial 3(a)P 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250 1.333 1.000 .667 .333 Control 3 [DRI2] .00850 1.373 .686	.000 11.0 56.6 79.7 100. 2.26 4.07 .452 3.17 22.7 57.0 100. 60.8 23.0 41.6	.000 55.1 85.8 93.3 100. 23.9 62.4 13.3 39.6 69.8 84.7 100. NA NA	0 38 20 7 24 133 48 8 1 4 0 7 242 2 6	(5,20) (20) (20) (20) (20) (20) (20) (20) (3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88*** 1.88*** .301 .035 .149 .000 .129 M 11.7 *** .072 .196	$\begin{array}{r} .00 \ (- \ 4.15 \\ + \ 4.70 \\ + \ .66 \\ .00 \ (- \ .67 \\ ean \ t = 1.57 \\ + \ 15.2 \\ + \ 7.12 \\ + \ 1.68 \\ .00 \ (- \ 1.57 \\ - \ .23 \\ .00 \ (- \ 1.87 \\ ean \ t = \ .478 \\ + \ 19.0 \\ .00 \ (-3.10 \\ .00 \ (-1.76 \\ \end{array}$
24DNT 24DNT 24DNT 24DNT 1C-1 5rial 3(a)P 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250 1.333 1.000 .667 .333 Control 3 [DRI2] .00850 1.373 .686 .343	.000 11.0 56.6 79.7 100. 2.26 4.07 .452 3.17 22.7 57.0 100. 60.8 23.0 41.6 79.0	.000 55.1 85.8 93.3 100. 23.9 62.4 13.3 39.6 69.8 84.7 100. NA NA NA	0 38 20 7 24 133 48 1 4 0 7 242 2 2 2 2 2 2 2 12	(5,20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88*** .301 .035 .149 .000 .129 M 11.7 *** .072 .196 .357	.00 (- 4.15 + 4.70 + .66 .00 (67 ean t = 1.57 + 15.2 + 7.12 + 1.68 .00 (- 1.57 + .23 .00 (- 1.8 <u>Control</u> ean t = .478 + 19.0 .00 (-3.10 .00 (-1.76 .00 (68
24DNT 24DNT 24DNT 24DNT 24DNT 10-1 17111 3(a)P 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 100-1 17111 MNNG	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250 1.333 1.000 .667 .333 Control 3 [DRI2] .00850 1.373 .686	.000 11.0 56.6 79.7 100. 2.26 4.07 .452 3.17 22.7 57.0 100. 60.8 23.0 41.6	.000 55.1 85.8 93.3 100. 23.9 62.4 13.3 39.6 69.8 84.7 100. NA NA	0 38 20 7 24 133 48 8 1 4 0 7 242 2 6	(5,20) (20) (20) (20) (20) (20) (20) (20) (3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88*** 1.88*** .301 .035 .149 .000 .129 M 11.7 *** .072 .196 .357 .503	$\begin{array}{r} .00 \ (- \ 4.15 \\ + \ 4.70 \\ + \ .66 \\ .00 \ (- \ .67 \\ ean \ t = 1.57 \\ + \ 15.2 \\ + \ 7.12 \\ + \ 1.68 \\ .00 \ (- \ 1.57 \\ - \ .23 \\ .00 \ (- \ 1.87 \\ ean \ t = \ .478 \\ + \ 19.0 \\ .00 \ (-3.10 \\ .00 \ (-1.76 \\ \end{array}$
4DNT 4DNT 4DNT 4DNT 4DNT 4C-1 771a1 (Ca)P 4CANT 420NT 420NT 420NT 420NT 420NT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250 1.333 1.000 .667 .333 Control 3 [DRI2] .00850 1.373 .686 .343	.000 11.0 56.6 79.7 100. 2.26 4.07 .452 3.17 22.7 57.0 100. 60.8 23.0 41.6 79.0 100.	.000 55.1 85.8 93.3 100. 23.9 62.4 13.3 39.6 69.8 84.7 100. NA NA NA NA NA NA NA	0 38 20 7 24 133 48 1 4 8 1 4 0 7 242 2 6 12 13	(5,20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88*** 1.88*** .301 .035 .149 .000 .129 M 11.7 *** .072 .196 .357 .503	.00 (- 4.1) + 4.70 + .66 .00 (6 <u>Control</u> ean t = 1.57 + 15.2 + 7.12 + 1.68 .00 (- 1.5) + .23 .00 (- 1.8 <u>Control</u> ean t = .478 + 19.0 .00 (-3.10 .00 (68 <u>Control</u>
24DNT 24DNT	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250 1.333 1.000 .667 .333 Control 3 [DR12] .00850 1.373 .686 .343 Control 1.373	.000 11.0 56.6 79.7 100. 2.26 4.07 .452 3.17 22.7 57.0 100. 60.8 23.0 41.6 79.0 100.	.000 55.1 85.8 93.3 100. 23.9 62.4 13.3 39.6 69.8 84.7 100. NA NA NA NA NA NA NA	0 38 20 7 24 133 48 1 4 8 1 4 0 7 242 2 6 12 13	(5,20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88*** 1.88*** .301 .035 .149 .000 .129 M 11.7 *** .072 .196 .357 .503	$\begin{array}{r} .00 \ (- \ 4.1) \\ + \ 4.70 \\ + \ .66 \\ .00 \ (- \ .6] \\ \hline \underbrace{Control} \\ ean \ t = 1.57 \\ + \ 15.2 \\ + \ 7.12 \\ + \ 1.68 \\ .00 \ (- \ 1.5] \\ + \ .23 \\ .00 \ (- \ 1.5] \\ + \ .23 \\ .00 \ (- \ 1.8] \\ \hline \underbrace{Control} \\ ean \ t = \ .478 \\ + \ 19.0 \\ .00 \ (-3.10 \\ .00 \ (- \ .68] \\ \underbrace{Control} \\ ean \ t = 0.00 \end{array}$
24DNT 24DNT	2.333 1.167 .583 .292 Control 2 [55] .000791 .000250 1.333 1.000 .667 .333 Control 3 [DRI2] .00850 1.373 .686 .343 Control	.000 11.0 56.6 79.7 100. 2.26 4.07 .452 3.17 22.7 57.0 100. 60.8 23.0 41.6 79.0 100.	.000 55.1 85.8 93.3 100. 23.9 62.4 13.3 39.6 69.8 84.7 100. NA NA NA NA NA NA NA	0 38 20 7 24 133 48 1 4 8 1 4 0 7 242 2 6 12 13	(5,20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	3.32*** .000 1.61*** .527 .275 .384 M 5.49*** 1.88*** 1.88*** .301 .035 .149 .000 .129 M 11.7 *** .072 .196 .357 .503	.00 (- 4.15 + 4.70 + .66 .00 (67 ean t = 1.57 + 15.2 + 7.12 + 1.68 .00 (- 1.57 + .23 .00 (- 1.87 <u>Control</u> ean t = .478 + 19.0 .00 (-3.10 .00 (68 <u>Control</u>

Appendix B. Continued.

418

Treat Condi		Act	otoxic ivity ^b	Acti	forming vity ^c	Transformat Response	Significance ^e
		RCE (%)			s Data	Foci/Vesse	
Drug Co	onc., mM	S.A CC.A.		iype v II	essels I (N)	Focus Type III	e <i>t</i> -statistic
		••••			- (,		
PCH .6	70	.000	.000	0	(0,17)	.000	ND
PCH .4	47	.000		0	(3,18)	.000	+ .00 (- 3.60
PCH .2		.450		39	(18)	1.57***	+ 4.51
PCH .1		33.8	105.	8	(18)	.260	+ .24
C-1 Con	trol	100.	100.	11	(36)	.226	<u>Control</u> Mean t = 2.38
rial 2 [D							
	00791	ND	ND				
(a)P .0	00250	ND	ND				
PCH .3	83	ND	ND	98	(18)	4.58**	+ 4.20
PCH .2		ND	ND	115	(18)	6.02**	+ 6.22
PCH .12		ND	ND	27	(18)	1.27	.00 (01)
C-1 Con	trol	ND	100.	46	(18)	1.27	Control
							Mean $t = 3.47$
,2-Ероху	butane [83	85701-L,	M.W. = 72.11	I. Density	r = 0.8297 g	/m]]	
rial 1 [79)]						
• • • • • •	00791	22.7	79.6	279	(18)	20.8***	+ 13.9
(a)P .00	00250	39.3	94.2	241	(18)	12.9***	+ 9.34
35701-L 2	22.9	.000	.000	0	(0,18)	.000	NA
	17.1	.000	.000	0 0	(0,18)	.000	NA
	1.4	.000	.000	Ő	(0,18)	.000	NA
35701-L	5.71	.000	.000	0	(0,18)	.000	NA
C-1A+1B	Control	100.	100.	430	(62)	5.12	Control
ria] 2 [10)41						Mean $t = ND$
)0791	25.0	64.5	62	(18)	2.79***	+ 4.87
	0250	50.6	89.6	63	(18)	2.47***	+ 4.10
35701-L 4	.29	.000	.000	0	(0,18)	.000	NA
	2.14	.000	28.1	57	(18)	2.48***	+ 4.16
	.07	5.06	92.3	66	(18)	3.31***	+ 6.07
35701-L	.536	37.3	108.	15	(5)	1.61	+ .69
	Control	100.	100.	83	(71)	.878	Control
							Mean $t = 3.64$
ria] 3 [10	181						
)0791	15.5	31.3	139	(18)	7.38***	+ 13.9
	00250	30.0	65.7	72	(13)	4.77***	+ 5.96
25701 . 7	0 04	000	2 52	10	(11)	(07	00 / A 74
	2.86 2.14	.000 .000	2.52 30.8	10 60	(11) (16)	.603 3.55***	.00 (- 1.71
	. 14	7.42	92.0	18	(10)	3.82**	+ 7.18 + 2.83
35701-L	.714	82.5	98.7	20	(18)	.777	.00 (- 1.38)
C-1A+1B C		100.	100.	108	(70)	1.17	<u>Control</u>
							Mean $t = 2.50$
,2-Epoxy	propane [12EP, M.	W. = 58.08,	Density =	NA g/ml]		
rial 1 [72	Г						
	.j 10791	2.75	56.8	85	(18)	4.11***	+ 12.7
	0250	6.61	82.1	84	(18)	3.04***	+ 6.20
2EP 1.38		.000	90.9	34	(18)	1.62***	+ 6.64
2EP 1.03		000. 21.5	78.5 63.1	37 23	(18)	1.61***	+ 4.81
			0.0.1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	(18)	.994**	+ 3.17
2EP .68		51.9					
	.4	51.8 100.	97.4 100.	16 29	(18) (72)	.603	+ 1.53 Control

Treatment		Cyto	toxic	Transfo		Transformation	1
Condit	tion ^a	Activity ^b RCE (%)		Activ	ity ^c	Responsed	Significance ^e
				Focus		Foci/Vessel	
D		. .	<u></u>	Type Ve		Focus Type	* ********
Drug Co	nc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic
Trial 2 [8 B(a)P .0	00791	15.8	73.9	54	(15)	3.36***	+ 9.58
	00250	35.4	82.6	24	(15)	1.50***	+ 4.90
12EP 1.3		.000	74.0	39	(18)	1.90***	+ 6.22
12EP 1.0		5.92	82.2	60	(17)	2.73***	+ 6.05
	89	28.4	87.4	29	(14)	1.81***	+ 5.41
	44 Itrol	83.6 100.	93.8 100.	7 37	(6) (67)	1.04* .406	+ 2.04 <u>Control</u>
		100.	100.	51	(07)		ean t = 4.93
thylene	Dibromide	[EDB, M.	W. = 187.88	. Density	= 2.177 g/m		
ria] 1 [74	41						
	4J 00791	3.00	69.2	43	(18)	2.02***	+ 4.51
• • • •	00250	9.58	78.4	27	(18)	1.29*	+ 2.49
	50		/0 F	477	(10)	7 77444	
DB .8		.000	48.5	137	(18)	7.33***	+ 18.7
	39 24	35.9 62.3	97.2 104.	89 50	(18) (18)	3.86*** 2.46***	+ 7.81
DB .42		105.	93.8	59	(18)	1.51	+ 5.66 + 1.93
	trol	100.	100.	65	(71)	.657	Control
					(,		an t = 8.53
[ria] 2 [92		70/		<i>(</i> 0		7 5 (+ + +	
	0250	.394	45.3	69	(18)	3.54***	+ 8.31
	00791 00250	18.2 19.4	72.2 78.2	44 32	(18) (17)	2.14*** 1.52**	+ 5.20 + 3.32
	00250	17.4	10.2	52	()	1.52	· 5.52
DB .9		.396	54.1	33	(16)	1.68***	+ 3.68
DB .7		2.77	80.5	38	(18)	1.90***	+ 4.71
DB .4		28.1	94.6	26	(18)	1.20*	+ 2.45
DB .24		72.8	89.5	16	(18)	.698	+ .47
	trol	100.	100.	62	(71)	.597 M	<u>Control</u>
HC Blue 1	. [HCB1, M.W	. = 256.	31]				
[ria] 1 [19	-						
	00701	054	12.4		(20)		
	00791	.851		209		8.95***	+ 15.8
	00250	3.83	56.7	209 72	(20)	8.95*** 3.40***	+ 15.8 + 14.9
	00250						
I(a)P .00	00250 5	3.83	56.7	72	(20)	3.40***	+ 14.9
3(a)P .00 1CB1 2.35 1CB1 1.70 1CB1 1.15	00250 5 6 8	3.83 1.28 2.55 16.2	56.7 32.5 83.7 101.	72 11 11 9	(20) (17) (20) (19)	3.40*** .488 .423 .291	+ 14.9 + 2.13 + 1.86 + .71
3(a)P .00 1CB1 2.35 1CB1 1.76 1CB1 1.18 1CB1 .58	00250 5 6 8 88	3.83 1.28 2.55 16.2 87.7	56.7 32.5 83.7 101. 121.	72 11 11 9 11	(20) (17) (20) (19) (19)	3.40*** .488 .423 .291 .397	+ 14.9 + 2.13 + 1.86 + .71 + 1.35
3(a)P .00 1CB1 2.35 1CB1 1.76 1CB1 1.18 1CB1 .58	00250 5 6 8	3.83 1.28 2.55 16.2	56.7 32.5 83.7 101.	72 11 11 9	(20) (17) (20) (19)	3.40*** .488 .423 .291 .397 .186	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u>
3(a)P .0(ICB1 2.3! ICB1 1.76 ICB1 1.18 ICB1 .58 IC-1 Con	00250 5 6 8 88 trol	3.83 1.28 2.55 16.2 87.7	56.7 32.5 83.7 101. 121.	72 11 11 9 11	(20) (17) (20) (19) (19)	3.40*** .488 .423 .291 .397 .186	+ 14.9 + 2.13 + 1.86 + .71 + 1.35
3(a)P .0(1CB1 2.3! 1CB1 1.76 1CB1 1.18 1CB1 .58 1C-1 Con 1C-1 Con	00250 5 6 8 88 trol	3.83 1.28 2.55 16.2 87.7 100.	56.7 32.5 83.7 101. 121.	72 11 11 9 11	(20) (17) (20) (19) (19)	3.40*** .488 .423 .291 .397 .186 M 6.92***	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u>
3(a)P .00 1CB1 2.35 1CB1 1.70 1CB1 1.10 1CB1 .51 1CC1 Con 1C-1 Con 1C-1 2 [2] 3(a)P .00	00250 5 6 8 88 trol 1]	3.83 1.28 2.55 16.2 87.7 100.	56.7 32.5 83.7 101. 121. 100.	72 11 11 9 11 10	(20) (17) (20) (19) (19) (39)	3.40*** .488 .423 .291 .397 .186 M	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u> ean t = 1.51
3(a)P .00 1CB1 2.3 1CB1 1.7 1CB1 1.1 1CB1 5 1CC1 Con 1CC1 Con 1CC1 Con 1CC1 2 [2] 3(a)P .00 3(a)P .00	00250 5 6 8 8 8 trol 1] 00791 00250	3.83 1.28 2.55 16.2 87.7 100. .441 1.32	56.7 32.5 83.7 101. 121. 100. 46.1 75.8	72 11 11 9 11 10 133 63	(20) (17) (20) (19) (19) (39) (18) (19)	3.40*** .488 .423 .291 .397 .186 M 6.92*** 3.11***	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u> ean t = 1.51 + 15.8 + 10.5
3(a)P .00 1CB1 2.39 1CB1 1.70 1CB1 1.18 1CB1 58 1C-1 Con 1CC1 Con 1CC1 2.29 3(a)P .00 3(a)P .00 1CB1 2.49	00250 5 6 8 8 8 trol 1] 00791 00250 5	3.83 1.28 2.55 16.2 87.7 100.	56.7 32.5 83.7 101. 121. 100. 46.1 75.8	72 11 11 9 11 10 133 63 6	(20) (17) (20) (19) (19) (39) (18) (19) (7,19)	3.40*** .488 .423 .291 .397 .186 M 6.92*** 3.11*** .524	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u> ean t = 1.51 + 15.8 + 10.5 + .72
3(a)P .00 1CB1 2.39 1CB1 1.76 1CB1 1.18 1CB1 58 1C-1 Con 1CC-1 Con 1CC-1 2.29 3(a)P .00 1CB1 2.49	00250 5 6 8 8 8 trol 1] 00791 00250 5 5	3.83 1.28 2.55 16.2 87.7 100. .441 1.32	56.7 32.5 83.7 101. 121. 100. 46.1 75.8	72 11 11 9 11 10 133 63	(20) (17) (20) (19) (19) (39) (18) (19)	3.40*** .488 .423 .291 .397 .186 M 6.92*** 3.11***	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u> ean t = 1.51 + 15.8 + 10.5 + .72 + 1.65
3(a)P .00 4CB1 2.3! 4CB1 1.70 4CB1 1.71 4CB1 .54 4CC1 Cont Frial 2 3(a)P .00 4CB1 2.41 4CB1 1.71 4CB1 1.72	00250 5 6 8 8 8 8 1 1 00791 00250 5 5 5 5	3.83 1.28 2.55 16.2 87.7 100. .441 1.32 .000 .000 1.32 54.6	56.7 32.5 83.7 101. 121. 100. 46.1 75.8 .000 39.8 97.9 103.	72 11 11 9 11 10 133 63 6 17	(20) (17) (20) (19) (19) (39) (18) (19) (7,19) (18) (17) (18)	3.40*** .488 .423 .291 .397 .186 M 6.92*** 3.11*** .524 .671 .177 .576	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u> ean t = 1.51 + 15.8 + 10.5 + .72 + 1.65 00 (- 1.22 + 1.25
3(a)P .00 4CB1 2.35 4CB1 1.76 4CB1 1.76 4CB1 1.76 4CB1 .56 4CC1 Con Frial 2 3(a)P .00 3(a)P .00 4CB1 2.41 4CB1 1.77 4CB1 1.77 4CB1 2.41 4CB1 1.77 4CB1 1.72	00250 5 6 8 8 8 8 1 1 00791 00250 5 5 5 5	3.83 1.28 2.55 16.2 87.7 100. .441 1.32 .000 .000 1.32	56.7 32.5 83.7 101. 121. 100. 46.1 75.8 .000 39.8 97.9	72 11 11 10 133 63 6 17 4	(20) (17) (20) (19) (19) (39) (18) (19) (7,19) (18) (17)	3.40*** .488 .423 .291 .397 .186 M 6.92*** 3.11*** .524 .671 .177 .576 .347	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u> ean t = 1.51 + 15.8 + 10.5 + .72 + 1.65 .00 (- 1.22 + 1.25 <u>Control</u>
3(a)P .00 4CB1 2.3! 4CB1 1.70 4CB1 1.71 4CB1 1.11 4CB1 2.12 4CB1 2.12 3(a)P .00 4CB1 2.4! 4CB1 1.0! 4CB1 1.0! 4CB1 1.0! 4CB1 5! 4CB1 .5! 4CB1 .5! 4CC1 Con	00250 5 6 8 8 8 trol 1] 00791 00250 5 5 5 5 26 trol	3.83 1.28 2.55 16.2 87.7 100. .441 1.32 .000 .000 1.32 54.6	56.7 32.5 83.7 101. 121. 100. 46.1 75.8 .000 39.8 97.9 103.	72 11 11 10 133 63 6 17 4 15	(20) (17) (20) (19) (19) (39) (18) (19) (7,19) (18) (17) (18)	3.40*** .488 .423 .291 .397 .186 M 6.92*** 3.11*** .524 .671 .177 .576 .347	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u> ean t = 1.51 + 15.8 + 10.5 + .72 + 1.65 00 (- 1.22 + 1.25
(a)P .00 ICB1 2.3! ICB1 1.70 ICB1 1.71 ICB1 1.71 ICB1 2.12 ICB1 2.12 ICB1 2.12 ICB1 2.12 ICB1 2.12 ICB1 2.44 ICB1 1.01 ICB1 1.02 ICB1 5.51 ICC1 Con Irrial 3<[D]	00250 5 6 8 8 8 trol 1] 00791 00250 5 5 5 5 26 trol	3.83 1.28 2.55 16.2 87.7 100. .441 1.32 .000 .000 1.32 54.6	56.7 32.5 83.7 101. 121. 100. 46.1 75.8 .000 39.8 97.9 103.	72 11 11 10 133 63 6 17 4 15	(20) (17) (20) (19) (19) (39) (18) (19) (7,19) (18) (17) (18)	3.40*** .488 .423 .291 .397 .186 M 6.92*** 3.11*** .524 .671 .177 .576 .347	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u> ean t = 1.51 + 15.8 + 10.5 + .72 + 1.65 .00 (- 1.22 + 1.25 <u>Control</u>
3(a)P .00 4CB1 2.3! 4CB1 1.70 4CB1 1.11 4CB1 51 4CB1 2.12 3(a)P .00 4CB1 2.4! 4CB1 1.7! 4CB1 2.4! 4CB1 1.7! 4CB1 1.0! 4CB1 51 4CB1 .0! 4CB1 2.4! 4CB1 1.0! 4CB1 .0! 4CB1 .0!	00250 5 6 8 8 8 trol 1] 00791 00250 5 5 5 5 5 26 trol RI2] 0850	3.83 1.28 2.55 16.2 87.7 100. .441 1.32 .000 1.32 54.6 100.	56.7 32.5 83.7 101. 121. 100. 46.1 75.8 .000 39.8 97.9 103. 100.	72 11 11 10 133 63 6 17 4 15 19 242	(20) (17) (20) (19) (19) (39) (18) (19) (7,19) (18) (17) (18) (17) (18) (40) (20)	3.40*** .488 .423 .291 .397 .186 M 6.92*** 3.11*** .524 .671 .177 .576 .347	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u> ean t = 1.51 + 15.8 + 10.5 + .72 + 1.65 _00 (- 1.22 + 1.25 <u>Control</u> ean t = .725
3(a)P .00 4CB1 2.3! 4CB1 1.70 4CB1 1.71 4CB1 1.11 4CB1 2.12 4CB1 2.12 3(a)P .00 4CB1 2.4! 4CB1 1.0? 4CB1 1.7! 4CB1 1.7! 4CB1 2.4! 4CB1 1.0! 4CB1 .0! 4CB1 .0! 4CB1 .0! 4CB1 2.4! 4CB1 .0! 4CB1 .0! 4CB1 2.4!	00250 5 6 8 8 8 trol 1] 00791 00250 5 5 5 5 5 5 5 5 5 5 5 7 8 8 12] 0850 5 3	3.83 1.28 2.55 16.2 87.7 100. .441 1.32 .000 1.32 54.6 100. 60.8 49.8 51.9	56.7 32.5 83.7 101. 121. 100. 46.1 75.8 .000 39.8 97.9 103. 100. NA	72 11 11 9 11 10 133 63 6 17 4 15 19	(20) (17) (20) (19) (19) (39) (18) (17) (18) (17) (18) (40)	3.40*** .488 .423 .291 .397 .186 M 6.92*** 3.11*** .524 .671 .177 .576 .347 M 11.7***	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u> ean t = 1.51 + 15.8 + 10.5 + 1.65 .00 (- 1.22 + 1.25 <u>Control</u> ean t = .725 + 19.0
3(a)P .00 4CB1 2.3! 4CB1 1.70 4CB1 1.71 4CB1 1.71 4CB1 2.11 4CB1 2.12 3(a)P .00 4CB1 2.4! 4CB1 1.0! 4CB1 1.0! 4CB1 1.0! 4CB1 .0! 4CB1 .0! 4CB1 .0! 4CB1 2.4! 4CB1 .0! 4CB1 .0! 4CB1 2.4! 4CB1 .0! 4CB1 .0! 4CB1 2.4! 4CB1 .0!	00250 5 6 8 8 8 trol 1] 00791 00250 5 5 5 5 26 trol RI2] 0850 5	3.83 1.28 2.55 16.2 87.7 100. .441 1.32 .000 1.32 54.6 100. 60.8 49.8	56.7 32.5 83.7 101. 121. 100. 46.1 75.8 .000 39.8 97.9 103. 100. NA NA	72 11 11 9 11 10 133 63 6 17 4 15 19 242 26	(20) (17) (20) (19) (19) (39) (18) (19) (7, 19) (18) (17) (18) (17) (18) (40) (20) (20)	3.40*** .488 .423 .291 .397 .186 M 6.92*** 3.11*** .524 .671 .177 .576 .347 M 11.7*** 1.07*	+ 14.9 + 2.13 + 1.86 + .71 + 1.35 <u>Control</u> ean t = 1.51 + 15.8 + 10.5 + .72 + 1.65 _00 (- 1.22 <u>Control</u> ean t = .725 + 19.0 + 2.18

	reatment ndition ^a	Act	otoxic ivity ^b		forming vity ^c	Transformati Response ^d	
		RC	E (%)	Focu	s Data	Foci/Vesse	1
				Type \	/essels	Focus Type	
Drug	Conc., mM	S.A	CC.A.	11	I (N)	III	<i>t</i> -statistic
odinat	ed Glycero	1 [513502-	L, M.W. = 2	58.07, Der	nsity = 1.79	7 g/m]]	
rial 1	r7 4 1						
(a)P	.000791	3.00	69.2	43	(17)	2.02***	+ 4.51
(a)P	.000250	9.58	78.4	27	(17)	1.29*	+ 2.49
17502 1	2.69	.000	.000	9	/17 10)	.498	.00 (67)
13502-L			50.6	89	(13,18)	.490 4.22***	.00 (67) + 8.41
13502-L		.000	86.4		(18)	4.29***	
13502-L		.000		99 77	(17,18)		
13502-L		10.2	102.	37	(18)	1.68***	+ 3.61
C-1	Control	100.	100.	65	(71)	.657	<u>Control</u> Mean t = 6.04
rial 2	[106]						
(a)P	.000791	24.8	56.9	134	(18)	6.88***	+ 8.00
(a)P	.000250	40.7	77.9	91	(18)	4.53***	+ 5.56
13502-L	2.69	.000	1.31	6	(8,18)	.622	.00 (- 1.58)
13502-L		.000	24.7	24	(18)	.923	.00 (- 1.06)
13502-L		.000	68.5	42	(18)	2.13	+ 1.99
		16.8	95.4	42	(18)	2.13	+ 1.95
13502-L							
2-1	Control	100.	100.	74	(43)	1.30	<u>Control</u> Mean t = 1.31
elphal	an [MELP, M	.W. = 305.	23]				
rial 1			<i></i>	2/4	(00)	40.0444	
(a)P	.000791	16.9	65.2	261	(20)	12.9***	+ 13.0
(a)P	.000250	35.6	87.2	185	(20)	8.53***	+ 7.65
ELP	.00721	.890	3.40	0	(0,12)	.000	NA
LP	.00361	2.67	6.16	0	(0,20)	.000	NA
LP	.00180	8.01	30.3	48	(20)	1.72	.00 (- 2.44
ELP	.00090	46.3	75.9	113	(20)	5.10**	+ 2.73
	Control	100.	100.	317	(80)	3.02	Control
2-1	controt	100.	100.	517			Mean t = 1.37
rial 2						(A / A
(a)P	.000791	11.0	43.5	86	(20)	4.03***	+ 9.40
(a)P	.000250	38.9	75.4	62	(20)	2.88***	+ 7.12
ELP	.00262	5.11	6.66	13	(20)	.443	.00 (- 1.11)
ELP	.00197	14.9	26.2	37	(20)	1.70***	+ 5.21
ELP	.00131	32.6	47.0	62	(20)	2.92***	+ 9.30
ELP	.000655	76.6	104.	43	(20)	1.92***	+ 4.71
	Control	100.	100.	62	(70)	.660	Control
5-1 C	ontrot	100.	100.	02	(10)		Mean t = 4.81
-Mothy	/l-o-Acryla	mide rozz	516-S MW	= 101 111			
neury	n u nui yia		510 J, M.W.				
rial 1			(0.0		<i>(</i> 7)	7 70111	. / 07
	.000791	1.24	48.9	11	(3)	3.38***	+ 4.23
(a)P	.000250	11.8	81.0	19	(5)	3.62***	+ 5.73
27516-s	5.00	.000	.000	0	(0,19)	.000	NA
27516-S		.000	2.89	7	(12,14)	.381	.00 (72)
27516-S		.000	85.2	27	(16)	1.27**	+ 2.97
27516-S		15.5	107.	12	(16)	.542	+ .08
C-1A+1B		100.	107.	36	(54)	.526	Control
S INTID	Control	100.		50	()+)		Mean t = 1.53
rial 2	[85]						
						_	
(a)P (a)P	.000791 .000250	18.8 28.7	55.6 91.8	133	(20)	3.43*** 2.10***	+ 5.10 + 4.56

	reatment ndition ^a	-	toxic vity ^b	Transfo Activ		Transformation Response ^d	Significance	
		RCI	E (%)	Focus		Foci/Vessel		
Drug	Conc., mM	S.A	CC.A.	Type Ve III		Focus Type III	<i>t</i> -statistic	
					(10)	7 / 4 + + +		
27516-		.000	20.2	76	(19)	3.41*** 1.17***	+ 10.5 + 4.28	
27516-		.000	69.8 100.	32 9	(20) (20)	.327	+ 4.28	
27516- 27516-		10.4 34.7	100.	18	(20)	.445	+ .65	
		100.	100.	38	(80)	.313	Control	
:-1	Control	100.	100.	50	(80)		an $t = 3.88$	
,4-Me	thylenedia	niline [44	MD, M.W. =	271.21]				
ial 1								
a)P	.000791	1.06	39.7	182	(19)	8.71***	+ 14.9	
a)P	.000250	8.48	79.2	101	(18)	4.86***	+ 9.93	
	2.21	.000	.000	5	(11,20)	.287	.00 (- 1.	
	1.66	.000	30.9	18	(20)	.668	+ .65	
MD	1.11	.353	76.0	36	(20)	1.60***	+ 4.54	
MD	.554	16.3	96.5	25	(20)	1.08*	+ 2.51	
-1	Control	100.	100.	28	(40)	.533 Me	<u>Control</u> an t = 1.93	
ial 2					(20)			
a)P a)P	.000791 .000250	2.26 4.07	23.9 62.4	133 48	(20) (20)	5.49*** 1.88***	+ 15.2 + 7.12	
MD	1.85	.000	45.1	4	(20)	.132	+ .04	
	1.38	.000	73.3	26	(20)	1.11***	+ 5.74	
MD	.923	2.71	65.9	12	(20)	.330	+ 1.26	
+MD	.461	29.0	82.4	4	(20)	.149	+ .23	
	Control	100.	100.	7	(40)	.129	Control	
						Me	an t = 1.82	
-Meth	y]-N'-Nitr	o-N-Nitro	soguanidi	ne [MNNG, I	M.W. = 147.1	.]		
rial 1		2 45	14 7	170	(20)	4 / 9+++	. 14 0	
(a)P	.000791	2.65	46.7	138	(20)	6.48***	+ 16.8	
(a)P	.000250	7.96	79.9	115	(20)	4.80***	+ 12.0	
NNG	.0204	.000	1.58	19	(20)	.634	+ 1.02	
NNG	.0153	.000	14.2	102	(19)	4.54***	+ 9.02	
NNG	.0102	8.85	46.7	169	(20)	8.01***	+ 18.8	
NNG	.00510	21.2	90.2	80	(19)	3.83***	+ 11.7	
C-1	Control	100.	100.	43	(79)	.416	Control	
						Mea	n t = 10.1	
rial 2	2 [IP2]							
(a)P	.000791	ND	ND					
(a)P	.000250	ND	ND					
NNG	.0170	30.0	ND	228	(20)	10.9***	+ 13.2	
NNG	.00850	81.0	ND	219	(20)	6.51***	+ 5.64	
NNG	.00425	79.6	ND	101	(20)	3.47***	+ 3.72	
C-1	Control	100.	ND	71	(40)	1.13 Me	$\frac{\text{Control}}{1}$	
-Naph	thylamine ([2NAP, M.W.	= 143.18]					
			/					
rial 1	.000791	.823		95	(20)	4.38***	+ 14.2	
(a)P	.000250	2.06	75.4	66	(20)	3.14***	+ 15.7	
(a)P				9	(20)	.347	+ 1.20	
(a)P (a)P NAP	1.40	.000	34.8					
(a)P (a)P NAP NAP	1.40 .698	4.12	73.1	21	(20)	.850***	+ 4.14	
(a)P (a)P NAP NAP NAP	1.40 .698 .348	4.12 14.0	73.1 99.2	21 25	(20) (20)	.850*** 1.05***	+ 4.14 + 5.21	
(a)P (a)P NAP NAP NAP NAP	1.40 .698 .348 .175	4.12 14.0 51.9	73.1 99.2 95.7	21 25 14	(20) (20) (18)	-850*** 1-05*** -608**	+ 4.14 + 5.21 + 2.75	
(a)P (a)P NAP NAP NAP	1.40 .698 .348	4.12 14.0	73.1 99.2	21 25	(20) (20)	.850*** 1.05*** .608** .201	+ 4.14 + 5.21	

	eatment ndition ^a	Acti	toxic vity ^b	Transf Activ		Transformatio Response ^d	n Significance ^e
		RCE (%)		Focus Type Ve		Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	111		111	<i>t</i> -statistic
rial 2	[26]						
(a)P	.000791	.382	13.5	204	(20)	9.88***	+ 17.8
a)P	.000250	1.15	56.2	144	(20)	6.58***	+ 10.5
	1.05	747	5 101.	110	(20)	/ 57+++	. 7 / 4
IAP	.698	.765	93.4	112 49	(20) (20)	4.57*** 2.09***	+ 7.41 + 3.55
IAP	.348	46.6	94.5	42	(20)	1.86**	+ 3.08
IAP	.175	71.0	97.8	38	(20)	1.50	+ 1.92
	Control	100.	100.	46	(40)	.907	Control
					(10)		ean t = 3.99
itron	urantoin [2	91535-S, M	W. = 238.10	b]			
ial 1							
a)P	.000791	.377	32.6	94	(20)	4.28***	+ 14.3
a)P	.000250	9.81	69.9	43	(20)	1.92***	+ 8.76
1535-9	. 167	.000	7.90	9	(20)	.327	+ .83
1535-9		6.04	48.4	10	(15)	.557*	+ 2.28
1535-9		48.3	93.8	3	(20)	.110	.00 (- 1.13)
1535-9		100.	98.5	4	(20)	.149	.00 (71)
-1	Control	100.	100.	12	(40)	.222	Control
							ean t = .778
ial 2		2 /5		470	(20)	((0+++	
a)P	.000791	2.65	46.7	138	(20)	6.48***	+ 16.8
a)P	.000250	7.96	79.9	115	(20)	4.80***	+ 12.0
1535-9	.167	.000	.000	3	(20)	.110	.00 (- 3.34)
1535-9	.125	.000	3.17	31	(20)	1.17**	+ 2.99
1535-9	.0833	21.2	44.3	59	(20)	2.59**	+ 8.73
1535-9		97.3	105.	15	(20)	.578	+ 1.03
-1	Control	100.	100.	43	(79)	.416	<u>Control</u>
trofi	urazone [19	6993-S, M.W	1. = 198.14]	l		M	ean t = 4.25
÷-1 1	F717						
ial 1 a)P	.000791	4.48	50.7	251	(20)	11.0***	+ 12.1
a)P	.000250	18.1	68.7	77	(20)	3.50***	+ 7.12
u /1		1011	0011		(20)	5.50	
6993-8	5 1.00	.000	.000	0	(0,19)	.000	NA
6993-9	.750	.000	.000	0	(0,20)	.000	NA
6993-5		.000	.000	0	(0,19)	.000	NA
6993-9		.000	.000	6	(20)	. 196	.00 (- 4.94)
-1	Control	100.	100.	110	(75)	1.06 M	<u>Control</u> ean t = .000
ial 2			(0 F	470			
a)P	.000791	5.66	69.5	179	(20)	8.33***	+ 13.6
a)P	.000250	16.5	78.7	114	(19)	5.53***	+ 10.0
6993-9		.000	1.47	18	(20)	.737	.00 (- 1.07)
6993-9		.000	8.25	44	(20)	1.77**	+ 2.72
6993-9			39.8	77	(20)	3.13***	+ 5.85
6993-5			92.1	55	(20)	2.38***	+ 4.46
-1	Control	100. 1	00.	94	(78)	.972	Control
ial 3							ean t = 3.26
a)P	.000791	25.1	77.0	59	(20)	2.26***	+ 5.84
a)P	.000250	42.2	80.2	34	(20)	1.45***	+ 5.24
6993-9	.0750	.000	16.6	57	(20)	2.33***	+ 7.56
6993-9		1.09	35.0	64	(20)	2.69***	+ 8.33
6993-9		3.27	72.1	29	(20)	1.14***	+ 3.89
		45.1	90.0	10	(20)	.374	+ .18
6993-9	.0188	47.1					
	Control	100.	100.	43	(80)	.346	Control

Treatment Condition ^a		Cytot Activ		Transfo Activi		Transformation Response ^d	Significance ^e	
		RCE	(%)	Focus D Type Ves		Foci/Vessel Focus Type		
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic	
,4-()xydianiline	e [OXY, M.W	. = 200.24]					
	1 [1] .000 79 1	9.75	56.3	171	(20)	0 1/+++	. 12 1	
(a)P (a)P	.000250	15.5	91.0	114	(20)	8.16*** 5.18***	+ 12.1 + 6.68	
XY	.674 .549	.000 .000		17 36	(20)	.644 1.41	.00 (- 2.68)	
XY XY	.370	1.08	73.6	50	(20) (20)	2.34*	.00 (06) + 2.31	
κΥ	.165	26.0	117.	70	(20)	3.28***	+ 4.92	
:-1	Control	100.	100.	73	(40)	1.44	Control	
	0 503					Mea	an t = 1.81	
	2 [8]	1 /F	5.83	2//	(10)	10.7***	. 0 10	
(a)P (a)P	.000791 .000250	1.45 4.35	52.4	244 254	(19) (20)	10.7***	+ 8.19 + 11.2	
/ .		7100		224	~~~/		· · · · •	
(Y	- 499	.000	.000	32	(20)	1.25	.00 (- 2.24)	
Y	.375	.000		68	(20)	2.93	+ 1.38	
(Y	.250	2.90	25.2	134	(20)	5.88**	+ 5.12	
Y - 1	. 125	22.2	89.3	163	(20)	7.70***	+ 8.36	
- 1	Control	100.	100.	110	(40)	2.19 Mea	$\frac{\text{Control}}{1}$	
Nit	ro-p-Phenyl	enediamin	e [2NPD, M	.W. = 153.1	6]			
1	1 [15]							
		054	42 4	200	100	0.05+++		
a)P	.000791	.851	12.4	209	(20)	8.95***	+ 15.8	
(a)P (a)P		.851 3.83	12.4 56.7	209 72	(20) (20)	8.95*** 3.40***	+ 15.8 + 14.9	
a)P a)P	.000791 .000250	3.83			(20)		+ 14.9	
a)P a)P PD	.000791	3.83 .426 .851	56.7	72		3.40***		
a)P a)P PD PD PD PD	.000791 .000250 6.53 3.27 1.63	3.83 .426 .851 2.31	56.7 .000 9.64 11.6	72 0 22 27	(20) (8,20) (19) (20)	3.40*** .000 .965** .977**	+ 14.9 .00 (- 3.31) + 4.84 + 3.55	
a)P a)P PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816	3.83 .426 .851 2.31 4.26	56.7 .000 9.64 11.6 54.0	72 0 22 27 50	(20) (8,20) (19) (20) (20)	3.40*** .000 .965** .977** 2.16***	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23	
a)P a)P PD PD PD PD	.000791 .000250 6.53 3.27 1.63	3.83 .426 .851 2.31	56.7 .000 9.64 11.6	72 0 22 27	(20) (8,20) (19) (20)	3.40*** .000 .965** .977** 2.16*** .186	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 <u>Control</u>	
a)P a)P IPD IPD IPD IPD :-1	.000791 .000250 6.53 3.27 1.63 .816 Control	3.83 .426 .851 2.31 4.26	56.7 .000 9.64 11.6 54.0	72 0 22 27 50	(20) (8,20) (19) (20) (20)	3.40*** .000 .965** .977** 2.16*** .186	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23	
a)P a)P PD PD PD -1	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21]	3.83 .426 .851 2.31 4.26 100.	56.7 .000 9.64 11.6 54.0 100.	72 0 22 27 50 10	(20) (8,20) (19) (20) (20) (39)	3.40*** .000 .965** .977** 2.16*** .186 Mea	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 <u>Control</u> an t = 4.21	
a)P a)P PD PD PD -1 ial a)P	.000791 .000250 6.53 3.27 1.63 .816 Control	3.83 .426 .851 2.31 4.26	56.7 .000 9.64 11.6 54.0 100.	72 0 22 27 50	(20) (8,20) (19) (20) (20)	3.40*** .000 .965** .977** 2.16*** .186	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 <u>Control</u>	
a)P a)P PD PD PD -1 ial a)P	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250	3.83 .426 .851 2.31 4.26 100. .441 1.32	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8	72 0 22 27 50 10 133 63	(20) (8,20) (19) (20) (20) (39) (18) (19)	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11***	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 <u>Control</u> an t = 4.21 + 15.8	
a)P a)P PD PD -1 ial a)P a)P	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4	72 0 22 27 50 10 133 63 21	(20) (8,20) (19) (20) (20) (39) (18) (19) (20)	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 <u>Control</u> an t = 4.21 + 15.8 + 10.5 + 1.92	
a)P a)P PD PD PD -1 ial a)P a)P PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9	72 0 22 27 50 10 133 63 21 16	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (19)	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 <u>Control</u> an t = 4.21 + 15.8 + 10.5 + 1.92 + 1.69	
a)P PD PD PD PD -1 ial a)P PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8	72 0 22 27 50 10 133 63 21 16 17	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (19) (20)	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 <u>Control</u> an $t = 4.21$ + 15.8 + 10.5 + 1.92 + 1.69 + 1.09	
a)P PD PD PD -1 ial PD PD PD PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2 45.8	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4	72 0 22 27 50 10 133 63 21 16 17 12	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (20)	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 <u>Control</u> an $t = 4.21$ + 15.8 + 10.5 + 1.92 + 1.69 + 1.09 + .80	
a)P PD PD PD PD 1 ia]P PD PD PD PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8	72 0 22 27 50 10 133 63 21 16 17	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (19) (20)	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 <u>Control</u> an t = 4.21 + 15.8 + 10.5 + 1.92 + 1.69 + 1.09	
a)P a)P PD PD PD c-1 a)P ca)P PD PD PD PD PD c-1 rial	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204 Control 3 [96]	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2 45.8 100.	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4 100.	72 0 22 27 50 10 133 63 21 16 17 12 19	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (20) (20) (40)	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347 Mea	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 $\frac{Control}{1}$ an t = 4.21 + 15.8 + 10.5 + 1.92 + 1.69 + 1.09 + .80 $\frac{Control}{1}$ an t = 1.38	
a)P PD PD PD PD PD a)P PD a)P PD PD PD PD PD PD PD PD PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204 Control 3 [96] .000791	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2 45.8 100. 11.0	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4 100. 43.5	72 0 22 27 50 10 133 63 21 16 17 12 19 86	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (40) (20)	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347 Mea 4.03***	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 Control an t = 4.21 + 15.8 + 10.5 + 1.92 + 1.69 + 1.09 + .80 Control an t = 1.38 + 9.40	
a)P PD PD PD PD PD a)P PD a)P PD PD PD PD PD PD PD PD PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204 Control 3 [96]	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2 45.8 100.	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4 100.	72 0 22 27 50 10 133 63 21 16 17 12 19	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (20) (20) (40)	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347 Mea	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 $\frac{Control}{1}$ an t = 4.21 + 15.8 + 10.5 + 1.92 + 1.69 + 1.09 + .80 $\frac{Control}{1}$ an t = 1.38	
a)P a)P PD PD PD PD C-1 a)P PD PD PD PD PD PD PD PD PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204 Control 3 [96] .000791 .000250	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2 45.8 100. 11.0 38.9	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4 100. 43.5 75.4	72 0 22 27 50 10 133 63 21 16 17 12 19 86 62	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (20) (20) (20) (20) (20	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347 Mea 4.03*** 2.88***	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 <u>Control</u> an t = 4.21 + 15.8 + 10.5 + 1.92 + 1.69 + 1.09 + .80 <u>Control</u> an t = 1.38 + 9.40 + 7.12	
a)P a)P PD PD PD PD PD a)P PD PD PD PD PD PD PD PD PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204 Control 3 [96] .000791	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2 45.8 100. 11.0	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4 100. 43.5	72 0 22 27 50 10 133 63 21 16 17 12 19 86	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (40) (20)	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347 Mea 4.03***	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 Control an $t = 4.21$ + 15.8 + 10.5 + 1.92 + 1.69 + 1.09 + .80 <u>Control</u> an $t = 1.38$ + 9.40 + 7.12	
a)P PD PD PD PD -1 ia)P PD PD PD PD PD PD PD PD PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204 Control 3 [96] .000791 .000250 1.63	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 17.2 45.8 100. 11.0 38.9 3.54	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4 100. 43.5 75.4 61.7 62.1 60.4	72 0 22 27 50 10 133 63 21 16 17 12 19 86 62 35	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (20) (20) (20) (20) (20	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347 Mea 4.03*** 2.88*** 1.57**	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 Control an t = 4.21 + 15.8 + 10.5 + 1.92 + 1.69 + 1.09 + .80 Control an t = 1.38 + 9.40 + 7.12 + 3.39	
a)P PD PD PD PD PD PD PD PD PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204 Control 3 [96] .000791 .000250 1.63 1.22 .816 .408	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2 45.8 100. 11.0 38.9 3.54 7.47 19.3 64.8	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4 100. 43.5 75.4 61.7 62.1 60.4 82.5	72 0 22 27 50 10 133 63 21 16 17 12 19 86 62 35 29 46 43	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (20) (20) (20) (20) (20	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347 Mea 4.03*** 2.88*** 1.57** 1.17 2.28*** 1.98***	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 Control an $t = 4.21$ + 15.8 + 10.5 + 1.92 + 1.69 + 1.69 + 1.09 + .80 Control an $t = 1.38$ + 9.40 + 7.12 + 3.39 + 1.93 + 7.57 + 4.64	
a)P PD PD PD PD PD -1 a)P PD PD PD PD PD PD PD PD PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204 Control 3 [96] .000791 .000250 1.63 1.22 .816	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2 45.8 100. 11.0 38.9 3.54 7.47 19.3	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4 100. 43.5 75.4 61.7 62.1 60.4	72 0 22 27 50 10 133 63 21 16 17 12 19 86 62 35 29 46	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (20) (20) (20) (20) (20	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347 Mea 4.03*** 2.88*** 1.57** 1.17 2.28*** .660	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 Control an t = 4.21 + 15.8 + 10.5 + 1.92 + 1.69 + 1.09 + .80 Control an t = 1.38 + 9.40 + 7.12 + 3.39 + 1.93 + 7.57 + 4.64 Control	
a)P PD IPD IPD C-1 Ca)P IPD IPD IPD IPD IPD IPD IPD IPD C-1	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204 Control 3 [96] .000791 .000250 1.63 1.22 .816 .408	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2 45.8 100. 11.0 38.9 3.54 7.47 19.3 64.8	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4 100. 43.5 75.4 61.7 62.1 60.4 82.5	72 0 22 27 50 10 133 63 21 16 17 12 19 86 62 35 29 46 43	(20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (20) (20) (20) (20) (20	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347 Mea 4.03*** 2.88*** 1.57** 1.17 2.28*** .660	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 Control an $t = 4.21$ + 15.8 + 10.5 + 1.92 + 1.69 + 1.69 + 1.09 + .80 Control an $t = 1.38$ + 9.40 + 7.12 + 3.39 + 1.93 + 7.57 + 4.64	
a)P PD PD PD PD PD PD PD PD PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204 Control 3 [96] .000791 .000250 1.63 1.22 .816 .408	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2 45.8 100. 11.0 38.9 3.54 7.47 19.3 64.8 100.	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4 100. 43.5 75.4 61.7 62.1 60.4 82.5 100.	72 0 22 27 50 10 133 63 21 16 17 12 19 86 62 35 29 46 43 62	 (20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (20) (20) (20) (20) (20) (20) (19) (19) (19) (19) (19) (19) (19) (19) (70) 	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347 Mea 4.03*** 2.88*** 1.57** 1.17 2.28*** .660	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 Control an t = 4.21 + 15.8 + 10.5 + 1.92 + 1.69 + 1.09 + .80 Control an t = 1.38 + 9.40 + 7.12 + 3.39 + 1.93 + 7.57 + 4.64 Control	
a)P PD PD PD PD PD PD PD PD PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204 Control 3 [96] .000791 .000250 1.63 1.22 .816 .408 Control	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2 45.8 100. 11.0 38.9 3.54 7.47 19.3 64.8 100.	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4 100. 43.5 75.4 61.7 62.1 60.4 82.5 100.	72 0 22 27 50 10 133 63 21 16 17 12 19 86 62 35 29 46 43 62	 (20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (20) (20) (20) (20) (20) (20) (19) (19) (19) (19) (19) (19) (19) (19) (70) 	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347 Mea 4.03*** 2.88*** 1.57** 1.17 2.28*** .660	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 Control an t = 4.21 + 15.8 + 10.5 + 1.92 + 1.69 + 1.09 + .80 Control an t = 1.38 + 9.40 + 7.12 + 3.39 + 1.93 + 7.57 + 4.64 Control	
a)P PD PD PD PD PD PD PD PD PD PD PD PD PD	.000791 .000250 6.53 3.27 1.63 .816 Control 2 [21] .000791 .000250 1.63 .816 .408 .204 Control 3 [96] .000791 .000250 1.63 1.22 .816 .408 Control	3.83 .426 .851 2.31 4.26 100. .441 1.32 .000 .000 17.2 45.8 100. 11.0 38.9 3.54 7.47 19.3 64.8 100.	56.7 .000 9.64 11.6 54.0 100. 46.1 75.8 21.4 63.9 90.8 97.4 100. 43.5 75.4 61.7 62.1 60.4 82.5 100.	72 0 22 27 50 10 133 63 21 16 17 12 19 86 62 35 29 46 43 62	 (20) (8,20) (19) (20) (20) (39) (18) (19) (20) (20) (20) (20) (20) (20) (20) (20) (20) (19) (19) (19) (19) (19) (19) (19) (19) (70) 	3.40*** .000 .965** .977** 2.16*** .186 Mea 6.92*** 3.11*** .726 .652 .551 .473 .347 Mea 4.03*** 2.88*** 1.57** 1.17 2.28*** .660	+ 14.9 .00 (- 3.31) + 4.84 + 3.55 + 8.23 Control an t = 4.21 + 15.8 + 10.5 + 1.92 + 1.69 + 1.09 + .80 Control an t = 1.38 + 9.40 + 7.12 + 3.39 + 1.93 + 7.57 + 4.64 Control	

424

Treatment Condition ^a	Cytotoxic Activity ^b	Transforming Activity ^c	Transformation Response ^d	Significance ^e	
	RCE (%)	Focus Data	Foci/Vessel	•	
		Type Vessels	Focus Type		
Drug Conc., mM	S.A CC.A.	III (N)	III	<i>t</i> -statistic	
IN 1.70	8.81 94.3	6 (18)	.260	.00 (570	
IN 1.10	27.8 96.8	7 (18)	.289	.00 (36)	
IIN .551	53.3 94.6	2 (18)	.080	.00 (- 2.51)	
IN .276	99.1 109.	4 (18)	. 148	.00 (- 1.40)	
-1 Control	100. 100.	17 (36)	.344 Mean	<u>Control</u> t = .000	
ial 2 [27]		470 (40)			
a)P .000791	4.04 33.7	170 (18)	8.90***	+ 14.8	
a)P .000250	13.0 47.4	73 (18)	3.18***	+ 5.71	
IN 2.54	17.4 77.4	16 (18)	.737	+ .73	
IN 1.70	23.6 95.2	18 (18)	.765	+ .81	
IN .848	52.8 81.1	14 (18)	.537	.00 (07)	
IN .424	91.3 44.2	5 (18)	. 193	.00 (- 2.12)	
-1 Control	100. 100.	31 (36)	.555 Moon	<u>Control</u>	
ial 3 [31]			mean	t = .385	
a)P .000791	1.87 69.1	136 (15)	8.63***	+ 11.1	
a)P .000250	5.14 99.9	126 (18)	6.06***	+ 8.51	
IN 6.32	.000 .485	2 (4,18)	.316	.00 (- 1.330	
IN 4.24	.467 29.1	39 (17)	1.80*	+ 2.29	
IN 3.18	9.35 64.0	33 (18)	1.59*	+ 2.05	
IN 2.12	12.6 93.1	28 (18)	1.36	+ 1.44	
-1 Control	100. 100.	43 (36)	.930	Control	
		,		t = 1.93	
ia] 4 [104]					
a)P .000791	25.0 64.5	62 (18)	2.79***	+ 4.87	
a)P .000250	50.6 89.6	63 (18)	2.47***	+ 4.10	
IN	.000 22.5	21 /1/ 10	05.0		
IN	21.8 72.8	21 (14,18) 51 (18)	.950 2 37***	+ .22	
IN	46.5 101.		2.37*** 3.22***	+ 4.11	
IN	46.5 101. 65.8 96.2		1.47	+ 5.83	
-1 Control	100. 100.	32 (18) 83 (71)	.878	+ 1.94	
i controt	100. 100.	05 (71)		$\frac{\text{Control}}{t = 3.96}$	
elenium Sulfide	e [SESU, M.W. = 111.02]				
ial 1 [7]					
a)P .000791	1.52 48.4	212 (19)	10.0***	+ 26.6	
a)P .000250	3.41 56.9	41 (20)	1.80***	+ 7.07	
SU .180	.758 21.3	26 (19)	1.06***	+ 4.34	
SU .108	14.4 48.7	18 (18)	.793**	+ 4.34 + 3.69	
SU .0721	22.0 45.6	13 (20)	.503*	+ 2.56	
SU .0360	57.2 76.2	11 (19)	.471**	+ 2.78	
-1 Control	100. 100.	7 (36)	.135	Control	
	100. 100.	, (30)		t = 3.34	
ia] 2 [11] a)P .000791	1 77 7/ /	120 /201	/ 0/ * *	+ 10 5	
	1.37 34.4 7.22 36.0	128 (20) 37 (20)	4.94** 1.62**	+ 10.5 + 5.38	
	1.22 30.0	51 (20)	1.02.**	- J.JO	
a)P .000250		7 (18,20)	.309	+ .06	
a)P .000250 SU .180	6.19 49.5		.410	+ .56	
a)P .000250 SU .180 SU .108	14.4 103.	16 (20)			
a)P .000250 SU .180 SU .108 SU .0721	14.4 103. 25.1 125.	6 (20)	.214		
a)P .000250 SU .180 SU .108 SU .0721 SU .0360	14.4 103. 25.1 125. 32.6 151.	6 (20) 15 (20)	.214 .322	+ .11	
a)P .000250 SU .180 SU .108 SU .0721	14.4 103. 25.1 125.	6 (20)	.214 .322 .301	+ .11 <u>Control</u>	
a)P .000250 SU .180 SU .108 SU .0721 SU .0360	14.4 103. 25.1 125. 32.6 151.	6 (20) 15 (20)	.214 .322 .301	+ .11	
a)P .000250 SU .180 SU .108 SU .0721 SU .0360 -1 Control	14.4 103. 25.1 125. 32.6 151.	6 (20) 15 (20)	.214 .322 .301	+ .11 <u>Control</u>	

Appendix B. Continued.

Appendix B. Continued.

	andition [*]	Acti	toxic vity ^b	Activ	rming ity ^c	Transformation Response ^d	Significance [®]
			(*)	Focus		Foci/Vessel Focus Type	
Drug	Coac., mM	S.A	CC.A.	Type Ve III		III	<i>t</i> -statistic
SESU	.225	79.8	84.6	22	(16)	.956*	+ 2.45
SESU	. 169	92.5	85.4	22	(19)	1.03**	+ 3.17
SESU	.113	111.	84.6	18	(18)	.765	+ 1.81
SESU	.0563	113.	92.0	44	(19)	.916	+ 1.51
NC-1	Control	100.	100.	47	(80)	.414 Mea	n t = 2.24
<i>o-</i> To1	uidine [OTOL	, M.W. = 10)7.16, Dens	ity = 1.008	8 g/m1]		
	1 [16]					7 8/111	
B(a)P	.000791	.881		139	(17)	7.96***	+ 17.5
B(a)P	.000250	4.85	76.6	58	(17)	2.77***	+ 7.77
OTOL	4.70	1.32	88.3	22	(18)	. 950**	+ 2.81
OTOL	3.06	5.73	90.5	11	(18)	.409	+ .37
OTOL	1.41	26.4	100.	10	(18)	.414	+ .42
OTOL	.705 Control	44.1 100.	109. 100.	6 17	(18) (36)	.212 .344	.00 (87) Control
NC-1	Control	100.	100.	17	(30)		t = .900
Trial B(a)P	2 [25] .000791	NA	21.4	192	(18)	9.74***	+ 19.9
B(a)P	.000250	NA	73.4	59	(18)	2.55***	+ 7.52
OTOL	9.41	NA	6.77	25	(17,18)	1.25**	+ 5.90
OTOL	7.05	NA	12.5	30	(18)	1.47***	+ 7.50
OTOL	4.70	NA	26.6	39	(18)	2.01***	+ 12.6
OTOL	2.35	NA	25.0	57	(18)	2.80***	+ 11.1
NC-1	Control	NA	100.	5	(36)	.101 Mea	$\frac{\text{Control}}{1}$
Trial	3 [98]						
B(a)P	.000791	8.38	79.6	132	(18)	6.82***	+ 11.8
B(a)P	.000250	29.3	91.3	75	(18)	3.38***	+ 6.81
OTOL	4.70	6.28	80.4	33	(18)	1.62***	+ 3.48
OTOL	3.53	7.33	79.4	60	(18)	2.78***	+ 5.73
OTOL	2.35	12.6	81.1	60	(18)	2.38***	+ 4.87
OTOL	1.18	23.0	86.8	38	(18)	1.63**	+ 3.17
NC-1	Control	100.	100.	39	(45)	.618 Mea	$\frac{\text{Control}}{1} = 4.31$
Ziram	I [ZIRAM, M.W.	= 305.81]					
Trial	1 [77]						
B(a)P	.000791	5.66	69.5	179	(20)	8.33***	+ 13.6
B(a)P	.000250	16.5	78.7	114	(19)	5.53***	+ 10.0
ZIRAM	.000164	.000		22	(19)	.825	.00 (63)
ZIRAM	.0000818	.000		36	(19)	1.62*	+ 2.33
ZIRAM	.0000409	4.72	27.8 74.8	34 26	(18) (16)	1.58* 1.06	+ 2.12 + .24
ZIRAM NC-1	.0000204 Control	12.7 100.	100.	20 94	(78)	.972	<u>Control</u>
Trial	2 [99]					Mea	an t = 1.17
B(a)P	.000791	28.9	73.6	60	(20)	2.00***	+ 5.11
B(a)P	.000250	58.1	89.9	14	(20)	.503	+ 1.31
ZIRAM	.000114	.000		40	(20)	1.62***	+ 5.21
ZIRAM	.0000572	12.0	8.91	54	(20)	2.54***	+ 11.2
ZIRAM	.0000286	56.4	78.5	8	(20)	.301	.00 (17)
ZIRAM	.0000143	91.3 100.	101. 100.	27 31	(20) (75)	.303 .322	.00 (08) Control
NC-1	Control				~ ~ ~ / /		www.etwe

Appendix B. Continued.

Abbreviations: BaP, benzo(a)pyrene; CC.A., co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N. number of culture vessels, NC, negative control; ND; not determined; %RCE, percent relative cloning efficiency; S.A., standard clonal survival assay.

^aTreatment condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to $\mu g/ml$ using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

⁶Cytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as % RCE and was calculated as described in the Materials and Methods.

^cThe criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci > 2-mm in diameter per culture vessel scored are recorded in this table. ^dTransformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a \log_{10} mathematical

transformation procedure (refer to Materials and Methods). The arithmetic value or foci/vessel represents the antilog of the logio mean transformation response minus one.

Significance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22). and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (-) t-statistics were given a value of zero (0).

*Significant BaP or test chemical transformation response, 0.01 .**Significant BaP or test chemical transformation response, <math>0.001 .

***Significant or BaP or test chemical transformation response, $p \leq 0.001$.

Appendix C.

Treatment Condition		•	toxic vity ^b	Transfo Activi	-	Transformation Response ^d	Significance ^e	
		RCE (%)		Focus Type Ve		Foci/Vessel Focus Type		
Drug	Conc., mM	S.A	CC.A.	III		III	<i>t</i> -statistic	
	tylaminoflu	orene [4/	WAF, M.W. =	223.29]				
	1 [12]	00.7	00 0	41	(10)	2 00 +++	. 17 1	
8(a)P*		90.7	99.0	61	(19)	2.90 ***	+ 13.1	
B(a)P	.000250	77.6	114.	81	(17)	3.94 ***	+ 10.5	
AAF	1.79	47.3	123.	11	(18)	.432	+ 1.92	
AAF	1.31	63.5	129.	5	(19)	.200	+ .61	
AAF	.896	77.1	129.	5	(17)	.206	+ .61	
AAF	.448	71.9	128.	5	(18)	.212	+ .71	
C-1	Control	100.	100.	8	(40)	.160	Control	
	controt	100.	100.	0	(40)		an t = .963	
NOTE:	B(a)P was a	ccidentally	not dosed	in the sta	ndard and	the co-culture clone		
rial	2 [17]							
B(a)P	.000791	.000	52.9	94	(20)	4.43***	+ 13.5	
l(a)P	.000250	3.54	79.1	86	(20)	3.91***	+ 11.6	
					_			
AAF	1.79	55.8	93.0	29	(20)	.997*	+ 2.62	
AAF	.896	55.2	99.0	30	(20)	.724	+ 1.44	
AAF	.448	51.8	104.	5	(20)	. 189	.00 (-1.07)	
AAF	.224	65.9	106.	23	(20)	.821*	+ 2.50	
C-1	Control	100.	100.	18	(40)	.327	<u>Control</u>	
	hloroacetyl)acotani]	ido racan	MW = 21	1 667	Mea	an $t = 1.64$	
	•	σισταπη		., n.w. − 21				
	1 [37]	1.60	46.0	101	(20)	4.59***	+ 9.94	
B(a)P	.000791					5.38***	+ 9.94	
(a)P	.000250	6.80	77.2	113	(20)	J.JO	+ 1J.J	
CAA	.00378	.000	57.1	55	(20)	2.37***	+ 5.49	
	.00283	.000	74.9	21	(20)	.702	+ .31	
			90.9	21	(20)	.839	+ .92	
CAA	.00189	1.60	90.9 86.2	21	(20)	.787	+ .92 + .66	
	.00094	58.0				.631		
IC-1	Control	100.	100.	32	(39)		<u>Control</u> an t = 1.85	
rial	2 [95]							
3(a)P	.000791	16.0	ND	152	(20)	7.35***	+ 9.48	
B(a)P	.000250	33.3	ND	115	(20)	5.27***	+ 3.82	
			=			·		
CAA	.00472	.000	ND	127	(15)	6.71***	+ 4.54	
CAA	.00354	.000	ND	24	(8)	2.60	.00 (33	
CAA	.00236	.000	ND	27	(14)	1.82	.00 (-3.13	
4CAA	.00118	46.1	ND	70	(18)	3.56	+ 1.29	
IC-1	Control	100.	ND	263	(77)	2.84	<u>Control</u>	
						Ме	an t = 1.46	
2- (Ch	loromethyl)	pyridine-	HCI [2CMP	M.W. = 16	54.04]			
Trial	1 [14]							
B(a)P	.000791	1.75	36.1	177	(20)	6.73***	+ 13.3	
B(a)P	.000250	5.26	74.7	61	(20)	2.45***	+ 7.12	
								
2CMP	.152	.000	8.89	23	(20)	.938***	+ 4.28	
2CMP	.107	4.82	73.0	12	(19)	.526*	+ 2.21	
2CMP	.0533	36.4	103.	18	(20)	.550	+ 1.66	
2CMP	.0267	93.0	108.	15	(20)	.452	+ 1.29	
IC-1	Control	100.	100.	12	(40)	.213	Control	
						Me	an t = 2.36	
	0 0001							
[ria]			F7 /		1005	0 0/4++	. 1/ 0	
rial K(a)P K(a)P	2 [22] .000791 .000250	1.86 6.52	53.4 81.4	187 116	(20) (20)	8-86*** 5-25***	+ 16.0 + 9.33	

428

Treatment Condition ⁴		Act	totoxic tivity ^b		forming vity ^c	Transformati Response ^d	on Significance ^e
		R	CE (%)		s Data	Foci/Vesse	
Drug	Conc., mM	S.A	CC.A.	Type V II	/essels (I (N)	Focus Type III	<i>t</i> -statistic
					- (,		
:MP	.213	.000	99.7	63	(20)	2.94***	+ 6.03
MP	.152	39.1	105.	54	(20)	2.14***	+ 3.59
MP.	.0914	72.0	107.	35	(20)	1.33	+ 1.45
MP	.0457	84.5	94.0	23	(20)	.877	.00 (06)
:-1	Control	100.	100.	45	(40)	.893	$\frac{Control}{ean t = 2.77}$
·Ch1c	pro-p-Tolui	dine [3CT	. M.W. = 141	.60]			
ial 1	[81]						
a)P	.000791	10.2	63.9	378	(18)	20.8***	+ 15.5
a)P	.000250	28.0	67.8	280	(18)	15.3***	+ 10.5
т	1.41	.000	42.2	215	(18)	11.2***	+ 3.55
т	1.06	7.34	91.4	225	(18)	11.9***	+ 4.13
т	.706	13.6	94.3	211	(18)	10.3*	+ 2.70
т	.353	50.3	107.	105	(18)	5.45	.00 (-2.45)
:-1	Control	100.	100.	583	(72)	7.36	<u>Control</u> Mean t = 2.60
	2 [92]	.394	45.3	69	(18)	3.54***	+ 8.31
a)P a)P	.00250 .000791	.394 18.2	45.5 72.2	69 44	(18)	2.14***	+ 5.20
a)P a)P	.000250	18.2	78.2	44 32	(18)	1.52**	+ 3.32
T	1.55	11.9	92.3	37	(18)	1.78***	+ 4.29
т	1.17	44.8	87.4	49	(18)	2.44***	+ 5.95
T	.777	45.5	89.3	33	(18)	1.50**	+ 3.40
т	.388	75.2	94.8	22	(18)	1.07*	+ 2.05
:-1	Control	100.	100.	62	(71)	.597	$\frac{Control}{1}$
oumap	ohos [COU, 1	M.W. = 362.	78]				
ial 1	[30]						
a)P	.000791	1.32	60.3	158	(20)	7.23***	+ 12.3
a)P	.000250	2.63	101.	98	(19)	4.24***	+ 8.08
U	.276	.000	.510	2	(18,20)	.080	.00(-4.29)
	.138	5.70	4.08	8	(20)	.301	.00(-2.61)
U		· - ·	E/ 0		(20)		.00(17)
)U)U	.0689	18.4	54.0	17		.751	
9U 9U 9U	.0689 .0345	31.6	94.8	13	(20)	.459	.00(-1.56)
9U 9U 9U 1-1	.0689 .0345 Control					.459 .787	
DU DU DU :-1 rial 2	.0689 .0345 Control 2 [95]	31.6 100.	94.8 100.	13 40	(20) (40)	.459 .787 Ma	.00(-1.56) <u>Control</u> ean t = .000
9U 9U 9U 1-1	.0689 .0345 Control	31.6	94.8	13	(20)	.459 .787	.00(-1.56) <u>Control</u>
DU DU C-1 rial 2 a)P	.0689 .0345 Control ? [95] .000791	31.6 100. 16.0	94.8 100. ND	13 40 152	(20) (40) (20)	.459 .787 Ma 7.35***	.00(-1.56) ean t = .000 + 9.48
DU DU C-1 a)P a)P	.0689 .0345 Control 2 [95] .000791 .000250	31.6 100. 16.0 33.3	94.8 100. ND ND	13 40 152 115	(20) (40) (20) (20)	.459 .787 Mr 7.35*** 5.27***	.00(-1.56) ean t = .000 + 9.48 + 3.82
NU NU S-1 a)P a)P	.0689 .0345 Control 2 [95] .000791 .000250 .221 .110 .0551	31.6 100. 16.0 33.3 66.5	94.8 100. ND ND	13 40 152 115 125	(20) (40) (20) (20) (18)	.459 .787 Ma 7.35*** 5.27*** 6.11***	.00(-1.56) <u>Control</u> ean t = .000 + 9.48 + 3.82 + 4.54
9U 9U 1 a)P a)P 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U	.0689 .0345 Control 2 [95] .000791 .000250 .221 .110 .0551 .0276	31.6 100. 16.0 33.3 66.5 77.1 81.1 86.0	94.8 100. ND ND ND ND ND ND	13 40 152 115 125 93 71 88	(20) (40) (20) (20) (18) (18) (12) (17)	.459 .787 Ma 5.27*** 6.11*** 4.89*** 5.47** 4.68**	.00(-1.56) <u>Control</u> ean t = .000 + 9.48 + 3.82 + 4.54 + 4.37 + 3.25 + 2.83
9U 9U 1 a)P a)P 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U	.0689 .0345 Control 2 [95] .000791 .000250 .221 .110 .0551	31.6 100. 16.0 33.3 66.5 77.1 81.1	94.8 100. ND ND ND ND	13 40 152 115 125 93 71	(20) (40) (20) (20) (18) (18) (12)	.459 .787 Ma 7.35*** 5.27*** 6.11*** 4.89*** 5.47** 4.68** 2.84	.00(-1.56) <u>Control</u> ean t = .000 + 9.48 + 3.82 + 4.54 + 4.37 + 3.25
NU NU Hial 2 a)P a)P NU NU NU NU NU NU NU NU NU NU NU NU NU	.0689 .0345 Control 2 [95] .000791 .000250 .221 .110 .0551 .0276 Control 3 [99]	31.6 100. 16.0 33.3 66.5 77.1 81.1 86.0 100.	94.8 100. ND ND ND ND ND ND ND 100.	13 40 152 115 125 93 71 88 263	(20) (40) (20) (20) (18) (18) (12) (17) (77)	.459 .787 Ma 7.35*** 5.27*** 6.11*** 4.89*** 5.47** 4.68** 2.84	$\begin{array}{r} .00(-1.56)\\ \hline Control\\ \hline ean t = .000\\ + 9.48\\ + 3.82\\ + 4.54\\ + 4.37\\ + 3.25\\ + 2.83\\ \hline Control\\ \hline fean t = 3.75\end{array}$
9U 9U 1:-1 2:-1 2:-1 2:-1 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U	.0689 .0345 Control 2 [95] .000791 .000250 .221 .110 .0551 .0276 Control 3 [99] .000791	31.6 100. 16.0 33.3 66.5 77.1 81.1 86.0	94.8 100. ND ND ND ND ND ND	13 40 152 115 125 93 71 88	(20) (40) (20) (20) (18) (18) (12) (17) (77) (20)	.459 .787 Ma 7.35*** 5.27*** 6.11*** 4.89*** 5.47** 4.68** 2.84	.00(-1.56) <u>Control</u> ean t = .000 + 9.48 + 3.82 + 4.54 + 4.37 + 3.25 + 2.83 <u>Control</u>
DU DU -1 a)P a)P U U U U U U U U U U U U U U U U U U U	.0689 .0345 Control 2 [95] .000791 .000250 .221 .110 .0551 .0276 Control 3 [99] .000791 .000250	31.6 100. 16.0 33.3 66.5 77.1 81.1 86.0 100. 18.9 32.1	94.8 100. ND ND ND ND ND 100. 68.4 85.0	13 40 152 115 125 93 71 88 263 160 94	(20) (40) (20) (18) (18) (12) (17) (77) (20) (20)	.459 .787 Ma 7.35*** 5.27*** 6.11*** 4.89*** 5.47** 4.68** 2.84 1 6.67*** 3.59***	$\begin{array}{r} .00(-1.56) \\ \hline Control \\ ean t = .000 \\ + 9.48 \\ + 3.82 \\ + 4.54 \\ + 4.37 \\ + 3.25 \\ + 2.83 \\ \hline Control \\ 4ean t = 3.75 \\ + 12.4 \\ + 7.95 \end{array}$
DU DU H H H H H H H H H H H H H H H H H	.0689 .0345 Control 2 [95] .000791 .000250 .221 .110 .0551 .0276 Control 3 [99] .000791 .000250 .331	31.6 100. 16.0 33.3 66.5 77.1 81.1 86.0 100. 18.9 32.1 44.2	94.8 100. ND ND ND ND 100. 68.4 85.0 56.9	13 40 152 115 125 93 71 88 263 160 94 83	(20) (40) (20) (18) (18) (12) (17) (77) (20) (20) (20)	.459 .787 Ma 7.35*** 5.27*** 6.11*** 4.89*** 5.47** 4.68** 2.84 1 6.67*** 3.59*** 3.20***	$\begin{array}{r} .00(-1.56)\\ \hline Control\\ ean t = .000\\ + 9.48\\ + 3.82\\ + 4.54\\ + 4.37\\ + 3.25\\ + 2.83\\ \hline Control\\ 4ean t = 3.75\\ + 12.4\\ + 7.95\\ + 7.18\end{array}$
DU DU (-1) (-1) (-1) (-1) (-1) (-1) (-1) (-1)	.0689 .0345 Control 2 [95] .000791 .000250 .221 .110 .0551 .0276 Control 3 [99] .000791 .000250 .331 .165	31.6 100. 16.0 33.3 66.5 77.1 81.1 86.0 100. 18.9 32.1 44.2 50.2	94.8 100. ND ND ND ND 100. 68.4 85.0 56.9 62.0	13 40 152 115 125 93 71 88 263 160 94 83 100	(20) (40) (20) (18) (18) (12) (17) (77) (20) (20) (20) (20)	.459 .787 Ma 7.35*** 5.27*** 6.11*** 4.89*** 5.47** 4.68** 2.84 1 6.67*** 3.59*** 3.20*** 4.53***	$\begin{array}{r} .00(-1.56)\\ \hline Control\\ ean t = .000\\ + 9.48\\ + 3.82\\ + 4.54\\ + 4.37\\ + 3.25\\ + 2.83\\ \hline Control\\ 4ean t = 3.75\\ + 12.4\\ + 7.95\\ + 12.4\\ + 7.95\\ + 10.3\end{array}$
NU NU Handress Handre	.0689 .0345 Control 2 [95] .000791 .000250 .221 .110 .0551 .0276 Control 3 [99] .000791 .000250 .331 .165 .0827	31.6 100. 16.0 33.3 66.5 77.1 81.1 86.0 100. 18.9 32.1 44.2 50.2 52.5	94.8 100. ND ND ND ND 100. 68.4 85.0 56.9 62.0 91.0	13 40 152 115 125 93 71 88 263 160 94 83 100 89	(20) (40) (20) (18) (18) (12) (17) (77) (20) (20) (20) (20) (20) (20)	.459 .787 Ma 7.35*** 5.27*** 6.11*** 4.89*** 5.47** 4.68** 2.84 1 6.67*** 3.59*** 3.20*** 4.53*** 3.83***	$\begin{array}{r} .00(-1.56)\\ \hline Control\\ ean t = .000\\ + 9.48\\ + 3.82\\ + 4.54\\ + 4.37\\ + 3.25\\ + 2.83\\ \hline Control\\ 4ean t = 3.75\\ + 12.4\\ + 7.95\\ + 12.4\\ + 7.95\\ + 10.3\\ + 8.84\end{array}$
DU DU (-1) (-1) (-1) (-1) (-1) (-1) (-1) (-1)	.0689 .0345 Control 2 [95] .000791 .000250 .221 .110 .0551 .0276 Control 3 [99] .000791 .000250 .331 .165	31.6 100. 16.0 33.3 66.5 77.1 81.1 86.0 100. 18.9 32.1 44.2 50.2	94.8 100. ND ND ND ND 100. 68.4 85.0 56.9 62.0	13 40 152 115 125 93 71 88 263 160 94 83 100	(20) (40) (20) (18) (18) (12) (17) (77) (20) (20) (20) (20)	.459 .787 Ma 7.35*** 5.27*** 6.11*** 4.89*** 5.47** 4.68** 2.84 1 6.67*** 3.59*** 3.20*** 4.53***	$\begin{array}{r} .00(-1.56) \\ \hline Control \\ ean t = .000 \\ + 9.48 \\ + 3.82 \\ + 4.54 \\ + 4.37 \\ + 3.25 \\ + 2.83 \\ \hline Control \\ 4ean t = 3.75 \\ + 12.4 \\ + 7.95 \\ + 7.18 \\ + 10.3 \end{array}$

Treatment Condition [®]	Cytotoxic Activity ^b	Transfo Activi	-	Transformation Response ^d	Significance
	RCE (%)	Focus		Foci/Vessel	
Drug Conc.,mM	S.A CC.	Type Ves A. III	ssels (N)	Focus Type III	<i>t</i> -statistic
Dimethoate [CYG	ON, M.W. = 229.2	27, Density = 1.2	77 g/m]]		
Trial 1 [41]					
B(a)P .000791 B(a)P .000250	1.29 33		(18)	10.2***	+
B(a)P .000250	6.45 78	.2 123	(18)	6.37***	+
CYGON .668	1.29 50	.1 16	(18)	.655*	+
CYGON .334	14.8 78		(18)	.698*	+
CYGON .167	85.8 89		(18)	.309	+
CYGON .0835	91.3 103		(18)	.260	+
IC-1 Control	100. 100	. 13	(36)	.274	<u>Control</u>
[ria] 2 [94]				m	lean t =
B(a)P .000791	.000 75	.7 122	(18)	5.92***	+
B(a)P .000250	17.4 114		(18)	3.88***	+
YCON 975	2 05 55	0 447	(10)	,	
CYGON .835 CYGON .627	2.05 55 2.05 53		(18)	6.33***	+
CYGON .418	2.05 53 14.4 64		(18)	6.26***	+
CYGON .209	40.0 123		(18) (18)	3.39*** .935	+ +
IC-1 Control	100. 100		(71)	1.52	Control
					ean t =
2,4-Dimethoxyan [.]	iline-HCl [DM	AN, M.W. = 189.66]		
Tria] 1 [34]					
B(a)P .000791	6.91 58	.7 167	(20)	8.23***	+ 14.5
B(a)P .000250	19.3 84	.5 138	(20)	6.39***	+ 7.66
MAN 1 70	000 55	<i>·</i> • • •			
DMAN 1.32 DMAN .923	.000 55		(20)	4.20***	+ 4.09
MAN .925	.000 78 .000 86		(20) (20)	5.18***	+ 6.27
DMAN .264	9.09 69		(20)	5.76*** 5.85***	+ 6.81 + 6.63
IC-1 Control	100. 100		(40)	2.51	Control
			(40)		ean t = 5.95
[ria] 2 [87]					
B(a)P .000791	25.1 77.		(20)	2.26***	+ 5.84
3(a)P .000250	42.2 80.	.2 34	(20)	1.45***	+ 5.24
DMAN 1.58	.000 2.	.69 1	(18,20)	.039	00(-/ 02)
DMAN 1.19	.000 58		(20)	.662	.00(-4.02) + 1.79
MAN .791	.000 77		(20)	.601	+ 1.46
MAN .395	44.7 88.		(20)	.460	+ .70
IC-1 Control	100. 100.	43	(80)	.346	Control
[ni] 2 [07]				M	ean t = 1.32
[rial 3 [97] 3(a)P .000791	4.74 78.	0 110	(20)		. 13 5
(a)P .000250	4.74 78. 17.4 104.		(20) (20)	5.02*** 2.26***	+ 12.5 + 7.26
	11.4 104.	52	(20)	2.20	+ 1.20
MAN 1.48		000 3	(16,20)	.139	.00(-2.50)
MAN 1.11	.000 10.		(20)	.238	.00(-1.19)
MAN .738	.000 60.		(20)	.644	+ 1.32
MAN .369	9.48 93.		(17)	.711	+ 1.56
IC-1 Control	100. 100.	47	(80)	.414 M	Control
				M	ean t = .960
IC Blue 2 [HCB2,	M.W. = 285.34]				
rial 1 [5]					
(a)P .000791		41 84	(19)	3.97***	+ 15.5
(a)P .000250	12.5 12.	5 57	(20)	2.58***	+ 12.5

Treatment Condition®	Cytotoxic Activity ^b		Transfo Activi		Transformation Response ^d	Significance [*]
	RCE	E (%)	Focus I Type Ves	Data	Foci/Vessel Focus Type	
Drug Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic
			_			
HCB2 7.01	.000	.000	0	(0,20)	.000	ND
HCB2 5.84 HCB2 4.21	.000 .431	14.1	0	(0,20)	.000	ND
HCB2 3.50	.000	11.8 127.	2	(8,20)	.072	+ .65
NC-1 Control	100.	100.	11 2	(20) (40)	.423	+ 3.30
	100.	100.	2	(40)	.035 Mear	<u>Control</u> 1 t = 3.30
Trial 2 [10] B(a)P .000791	1.89	30.6	105	(20)	/ 70+++	
B(a)P .000250	8.49	91.7	34	(20) (20)	4.79*** 1.37***	+ 18.3 + 6.23
UCD2 / 21	000	o <i>i i</i>	40			
HCB2 4.21 HCB2 3.50	.000 .000	94.4 168.	12 3	(20) (20)	.264 .110	+ 1.42 + .90
HCB2 2.80	.000	135.	7	(20)	.256	+ 2.02
HCB2 2.10	.000	214.	5	(19)	.182	+ 1.38
NC-1 Control	100.	100.	3	(40)	.053	Control
			-	••		t = 1.43
IC Red 3 [HCR3, M.1	W. = 197.	22]				
[ria] 1 [40]						
3(a)P .000791	1.06	39.7	182	(19)	8.71***	+ 14.9
3(a)P .000250	8.48	79.2	101	(18)	4.86***	+ 9.93
ICR3 6.09	.000	34.3	25	(19)	1.16**	+ 2.86
ICR3 3.04	.353	35.1	27	(19)	1.07*	+ 2.19
ICR3 1.52	11.0	72.1	44	(20)	1.29*	+ 2.24
ICR3 .761	78.8	91.1	25	(20)	1.11**	+ 2.71
IC-1 Control	100.	100.	28	(40)	.533 Mea	$\frac{Control}{1}$ n t = 2.50
rial 2 [57]						
3(a)P .000791	3.55	30.1	162	(20)	7.55***	+ 18.7
3(a)P .000250	5.32	69.9	37	(20)	1.63***	+ 6.91
ICR3 6.09	.000	9.42	29	(20)	1.18***	+ 4.69
ICR3 3.04	28.0	88.0	31	(20)	1.22***	+ 3.99
ICR3 1.52	80.5	88.8	14	(20)	.534	+ 1.66
ICR3 .761	81.6	84.0	10	(17)	.395	+ .74
IC-1 Control	100.	100.	15	(40)	.278	Control
					Mea	nt = 2.77
IC Red 3 [HCR3, 26	0886-S, M	.W. = 197.22]				
[ria] 1 [61]		70 /		(20)	/ 00+++	
B(a)P .000791	.377	32.6	95	(20)	4.28***	+ 14.3
B(a)P .000250	9.81	69.9	43	(20)	1.92***	+ 8.76
260886-S 6.00	.000	46.1	11	(18)	.503*	+ 2.07
60886-S 3.00	2.26	67.1	12	(20)	.494*	+ 2.08
260886-S 1.50	13.6	86.4	17	(20)	.568	+ 1.89
260886-S .750	44.9	86.4	7	(19)	.272	+ .41
IC-1 Control	100.	100.	12	(40)	.222 Mea	<u>Control</u> n t = 1.61
rial 2 [99]	10.0	(9.)	4/0	(20)		
(a)P .000791	18.9	68.4	160	(20)	6.67***	+ 12.4
8(a)P .000250	32.1	85.0	94	(20)	3.59***	+ 7.95
260886-s 7.89	3.40	38.5	135	(20)	5.94***	+ 11.7
260886-S 3.95	9.43	38.7	81	(20)	3.38***	+ 7.92
	17.7	74.9	94	(20)	4.07***	+ 9.28
260886-S 1.97						
260886-S 1.97 260886-S .986 IC-1 Control	67.2 100.	81.8 100.	89 65	(20) (80)	4.01*** .586	+ 9.41 Control

Appendix C. Continued.

	eatment dition ^a	Acti	toxic vity ^b	Transfo Activ		Transformation Response ^d	Significance®
		RCE	(*)	Focus Type Ve		Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	111		III	<i>t</i> -statistic
Hydr	oxyquinol	ine [8HYQ,	M.W. = 145	.16]			
ial 1	[3] .000791	10.7	47.1	127	(20)	5.84***	. 1/ 0
a)P a)P	.000250	13.4	81.6	39	(20)	1.61***	+ 14.8 + 5.63
YD	.00379	.000	2.30	6	(19,20)	.245	.00(30)
YD	.00331	.000	13.8	21	(20)	.787*	+ 2.61
IYD IYD	.00276 .00186	.000 .000	19.5 46.0	20 14	(20) (20)	.850** .547	+ 3.19 + 1.59
	Control	100.	100.	17	(40)	.285	<u>Control</u>
ial 2							ean t = 2.46
a)P a)P	.000791	3.14	3.83	108 47	(20)	4.93*** 1.92***	+ 16.2
ajr	.000250	8.52	87.2		(20)	1.72	+ 7.04
YD	.00344	.000	1.03	4	(20)	. 149	.00
YD YD	.00276 .00207	.000 .000	3.08 41.0	3 4	(20) (20)	.110 .149	.00(46) .00
YD	.00207	2.24	89.2	17	(20)	.270	+ .68
	Control	100.	100.	8	(40)	. 149	<u>Control</u>
ial 3	[28]					M	an t = .170
a)P	.000791	2.84	28.6	189	(20)	9.02***	+ 16.9
a)P	.000250	6.74	68.0	62	(20)	2.78***	+ 5.73
YD	.00413	.000	48.9	22	(20)	.937	+ .51
YD	.00276	.000	66.0	21	(20)	.756	.00(25)
YD YD	.00207 .00138	5.32 84.8	70.0 75.2	25 19	(20) (20)	.341 .726	.00(-1.72) .00(39)
	Control	100.	100.	41	(40)	.818	Control
						Me	ean t = .128
laox	on [MALX,	M.W. = 314.	32; Density	= NA g/ml	ו		
ial 1 a)P	[16] .000791	.881	47.5	139	(17)	7.96***	+ 17.5
a)P	.000250	4.85	76.6	58	(17)	2.77***	+ 7.77
LX 3	2.36	.000	.000	0	(0,18)	.000	ND
	1.57	.000	.000		(0,18)	.000	ND
LX	.786	.000	.000	0	(0,18)	.000	ND
LX -1	.393	.000 100.	78.8 100.	44 17	(18) (36)	1.81*** .344	+ 4.17 Control
	Control	100.	100.	17	(30)		<u>Control</u> ean t = 4.17
ial 2 a)P	[25] .000791	ND	21.4	192	(18)	9.74***	+ 19.9
a)P	.000250	ND	73.4	59	(18)	2.55***	+ 7.52
LX	.589	ND	9.90	0	(0,18)	.000	ND
LX	.393	ND	61.9	87	(18)	4.64***	+ 22.7
LX	.255	ND	84.4	29	(18)	1.15***	+ 4.24
LX :-1	.118 Control	ND ND	85.9 100.	9 5	(18) (36)	.309 .101	+ 1.43 Control
		110		,			ean t = 9.46
Naph	thylamine	[1NAP, M.W	1. = 143.18]	l			
•	-						
	11.51						
rial 1 a)P	.000791	.823	30.6 75.4	95	(20) (20)	4.38***	+ 14.2 + 15.7

Treatment Condition ^a		Act	otoxic ivity ^b		forming vity ^c	Transformatio Response ^d	n Significance ^e
		RC	E (%)	Focus	s Data	Foci/Vessel	
				Туре V	essels	Focus Type	
Drug	Conc., mM	S.A	CC.A.	II	I (N)	III	<i>t</i> -statistic
AP	.210	.823	84.3	22	(20)	.775**	+ 2.85
IAP	.140	4.94	82.0	21	(20)	.899***	+ 4.65
IAP	.0698	14.4	96.3	16	(20)	.634**	+ 3.02
IAP	.0349	50.6	113.	6	(20)	.214	+ .11
C-1 C	Control	100.	100.	11	(40)	.201	Control
						Me	ean t = 2.66
rial 2							
(a)P	.000791	.000	62.5	9 9	(20)	4.61***	+ 13.4
(a)P	.000250	1.67	89.0	100	(20)	4.02***	+ 10.6
			<i></i>				
	.279	5.83	62.9	26	(19)	1.14***	+ 3.80
	.140	15.4	72.8	28	(20)	1.09***	+ 3.46
IAP	.0698	25.0	86.2	32	(20)	1.00*	+ 2.35
	.0349	52.5	97.6	24	(20)	-888*	+ 2.28
C-1 C	ontrol	100.	100.	18	(38)	.357	Control
						Me	an t = 2.97
(1-Na ial 1	phthyl)et	hylenedia	mine-2HC1	[NED, M.	W. = 259.18]	
(a)P	.000791	2.10	28.4	174	(20)	7.75***	+ 15.6
a)P	.000250	9.44	74.7	162	(20)	8.17***	+ 18.0
				IUE	(20)	0.17	
D	. 193	.000	.000	4	(12,19)	.230	.00(-1.33)
D	.145	.000	64.4	9	(19)	.368	.00(73)
D	.0965	33.9	78.5	16	(20)	.494	.00)01
D	.0482	71.7	75.5	31	(20)	1.21**	+ 2.87
		100.	100.	27			
i C	ontrol	100.	100.	21	(40)	.496 M	$\frac{Control}{57}$
ial 2	F871					me	ean t = .957
'iai 2 [a)P	.000791	25.1	77.0	59	(20)	2.26***	+ 5.84
a)P (a)P	.000250	42.2	80.2	59 34		2.20***	
u)r		46.6	00.2	34	(20)	1.40	+ 5.24
D	. 193	.000	.000	0	(1,20)	.000	.00(64)
D	.145	.000	39.9	19	(1,20)	.826*	+ 2.60
D	.0965	22.2	39.9 72.4	19		.8201	
	.0965	105.	72.4 71.6	23	(19)	.419 1.09***	+ .45
:D :-1 C		105.	100.	23 43	(19)		+ 3.89
,-ı L	ontrol	100.	100.	45	(80)	.346 Ma	$\frac{Control}{2}$
•						ME	5an t - 2.31
	•	ne [1NNAP,	M.W. = 173	8.17]			
ial 1		7 //	2 (0		(20)	10 0+++	
	.000791	3.44	2.40	214	(20)	10.0***	+ 13.6
a)P	.000250	5.73	51.4	130	(20)	5.86***	+ 7.74
	944	000	000		(7. 20)	2/2	AA 4 75
	.866	.000	.000	1	(3,20)	.260	.00(-1.32)
	.577	1.53	10.7	20	(19)	.727	.00(98)
	.289	29.4	93.2	10	(20)	.394	.00(-2.85)
	. 144	49.6	98.0	9	(20)	.327	.00(-2.79)
-1 Co	ontrol	100.	100.	54	(37)	1.04	<u>Control</u>
						Me	an t = .000
ial 2 [25.4	77 0		(20)		
	.000791	25.1	77.0	59	(20)	2.26***	+ 5.84
a)P .	.000250	42.2	80.2	34	(20)	1.45***	+ 5.24
	F 77		F/ F		(10)		
	.577	16.4	54.5	20	(19)	.826*	+ 2.54
		25.8	68.7	24	(16)	1.11**	+ 3.37
NAP .	.433						
NAP . NAP .	. 289	33.8	73.6	17	(14)	.950*	+ 2.72
NAP . NAP . NAP .			73.6 75.8 100.	17 11 43	(14) (14) (80)	.950* .641 .346	+ 2.72 + 1.50 Control

	eatment ndition [®]	Cyto Activ	toxic vity ^b	Transfo Activi		Transformation Response ^d	Significance
	<u> </u>	RCE	(*)	Focus D		Foci/Vessel	
Drug	Conc., mM	S.A	CC.A.	Type Ves III	(N)	Focus Type III	<i>t</i> -statistic
-Niti	ro- <i>o</i> -Phenyl	lenediamin	e [4NPD, I	M.W. = 153.3	14]		
[ria]		4 75	7/ 4	177	(20)	6.73***	+ 13.3
B(a)P B(a)P	.000791 .000250	1.75 5.26	36.1 74.7	177 61	(20) (20)	2.45***	+ 7.12
		5120					
NPD	.490	1.32	46.8	23	(20)	.955***	+ 4.48
NPD	.245	3.95	52.2	22	(20) (20)	-860*** 1-58***	+ 3.85 + 5.14
NPD	.123 .0306	7.46 22.8	70.9 102.	41 13	(20)	.481	+ 1.86
NPD	Control	100.	102.	12	(40)	.213	Control
	50/10/ 01						an $t = 3.83$
	2 [18]		/	405	(20)	E 04444	+ 17 0
B(a)P	.000791	2.24	45.8	125	(20)	5.91*** 3.36***	+ 13.0 + 7.28
(a)P	.000250	8.52	78.5	86	(20)	2.30"""	+ 1.20
NPD	.261	.000	81.1	25	(20)	1.10*	+ 1.99
NPD	.131	.448	88.6	34	(20)	1.32*	+ 2.46
NPD	.0653	8.97	86.1	14	(17)	.671	+ .04
NPD	.0326	23.8	90.2	17	(19)	.777	+ .57
C-1	Control	100.	100.	33	(40)	.663 Mea	<u>Control</u> an t = 1.27
3-Nit	ropropioni	c Acid [3	NPA, M.W. =	119.08]			
	1 [39]						<i></i>
3(a)P	.000791	1.07	23.6	172	(20)	8.04*** 6.84***	+ 14.5 + 15.8
8(a)P	.000250	3.56	64.5	145	(20)	0.04	+ 15.0
3NPA	3.36	.000	1.24	21	(20)	.699	+ 1.20
3NPA	1.68	.000	15.7	52	(20)	2.41***	+ 6.95
SNPA	.840	8.19	52.9	60	(20)	2.43***	+ 6.01
3NPA	.420	30.6	78.5	19	(20)	.737	+ 1.43
NC-1	Control	100.	100.	27	(40)	.427 Me	<u>Control</u> an t = 3.90
[ria]	2 [85]					i i c	
B(a)P	.000791	18.8	55.6	133	(20)	3.43***	+ 5.10
B(a)P	.000250	28.7	91.8	66	(19)	2.10***	+ 4.56
	2 52	2 00	21.7	74	(20)	2.82***	+ 6.63
3NPA 3NPA	2.52	2.00 4.00	21.7 47.6	74 77	(20)	3.16***	+ 9.87
SNPA SNPA	.840	14.00	86.6	50	(20)	1.65***	+ 4.15
3NPA	.420	43.5	105.	13	(20)	.503	+ 1.24
NC-1	Control	100.	100.	38	(80)	.313	Control
						Me	an t = 5.47
o-Phe	nylenediam	ine-2HC1	[PD, M.W. •	= 181.07]			
Trial	1 [37]						
B(a)P	.000791	1.60	47.6	101	(20)	4.59***	+ 9.94
B(a)P	.000250	6.80	79.7	113	(20)	5.38***	+ 13.5
PD	.110	.000	4.51	18	(20)	.702	+ .33
PD	.0552	.000	56.9	72	(20)	3.31*** 1.96***	+ 8.06 + 4.84
PD PD	.0276 .0138	35.6 98.4	86.0 100.	44 35	(20) (19)	1.21*	+ 4.64 + 2.01
NC-1	Control	100.	100.	32	(39)	.631	Control
					•-· •		an t = 3.81
	2 [89]						
B(a)P	.000791	8.13	69.0	119	(20)	4.77***	+ 10.3
(a)P	.000250	31.9	89.1	63	(20)	2.33***	+ 5.84

Treatment Condition ^a		Cytotoxic Activity ^b		orming vity ^c	Transformatio Response ^d	Significance ^e
	RC	E (%)		Data	Foci/Vessel	
			••			
Conc., mM	5.A	CC.A.	11	I (N)	111	<i>t</i> -statistic
0929	000	45 A	45	(20)	1 80***	+ 4.88
						+ 3.29
						+ .91
						.00(82)
						Control
						ean t = 2.27
1-2-Napht	hylamide	[130668-S,	M.W. = 219	9.30]		
			•			<i></i> -
						+ 14.3
.000250	9.81	69.9	43	(20)	1.92***	+ 8.76
.227	.000	49.4	28	(20)	1.31***	+ 7.14
	.000	47.9	29	(20)	1.14***	+ 4.27
	6.42	65.0	26	(20)	1.08***	+ 4.95
	50.9	87.7	16	(20)	.634**	+ 2.81
Control	100.	100.	12	(40)	.222	Control
					M	ean t = 4.79
	25.1	77.2	59	(20)	2.26***	+ 5.84
	42.2	80.2	34	(20)	1.45***	+ 5.24
227	1 64	75 4	76	(20)	1 50***	+ 5.28
						+ 2.89
						+ 4.24
						+ 2.43
						Control
CONTIOL	100.	100.	43	(00)		ean t = 3.71
,-Tetrach	loro-4-Ni	troanisole	[TC4NA,	M.W. = 290.9		
						. .
	1.15	57.0	122			+ 13.1
.000250	2.29	78.5	142	(20)	6.19***	+ 10.3
. 155	.000	.000	0	(3,20)	.000	.00(-5.58)
			1		.047	.00(-4.42)
		34.3			1.50**	+ 3.32
			26		1.03	+ 1.61
	100.	100.	36	(40)	.606	Control
				••••	M	ean t = 2.47
	2.65	46.7	138	(20)	6-48***	+ 16.8
.000250	7.96	79.9	115	(20)	4.80***	+ 12.0
0850	000	000	n	(0.10)	000	NA
						.00(-7.56)
						+ 3.40
						.00(16)
						Control
UNLIUL	100.	100.	43	(17)		ean t = 1.70
hylthiura	m Disulfi	de [tetd, N	1.W. = 296	.54]		
[80]	· · -		.	· • • •		
						+ 13.0
.000250	35.6	87.2	185	(20)	8.53***	+ 7.65
.000202	.000	1.62	141	(20)	6.79***	+ 6.86
	.000	6.00	159	(20)	7.77***	+ 9.12
	11.6	77.5	107	(20)	4.82*	+ 2.43
	87.5	104.	67	(20)	2.62	.00(67)
ontrol	100.	100.	317	(80)	3.02	Control
	[61] .000791 .000250 .227 .170 .114 .0568 Control [87] .000791 .000250 .227 .170 .114 .0568 Control .103 .0568 Control .155 .103 .00250 .155 .103 .00250 .155 .103 .00250 .00250 .0859 .0645 .0430 .0215 ontrol [93] .000791 .000250 .0859 .0645 .0430 .0215 ontrol hylthiura [80] .000791 .000250	.0828 .000 .0552 2.61 .0276 64.2 .0138 99.6 ontrol 100. 1-2-Naphthylamide [61] .000791 .377 .000250 9.81 .227 .000 .170 .000 .114 6.42 .0568 50.9 Control 100. [87] .000791 25.1 .000250 42.2 .227 1.64 .170 8.18 .114 54.5 .0568 74.9 Control 100. ,-Tetrachloro-4-Ni [29] .000791 1.15 .000250 2.29 .155 .000 .052 .000 .025 12.6 ontrol 100. [93] .000791 2.65 .000250 7.96 .0859 .000 .0430 .845 .0015 8.85 ontrol 100. [93] .000791 2.65 .000250 7.96 .0859 .000 .0430 .845 .0215 8.85 ontrol 100. hylthiuram Disulfi [80] .000791 16.9 .000250 35.6 .000202 .000 .000101 .000	.0828 .000 65.6 .0552 2.61 75.4 .0276 64.2 84.4 .0138 99.6 96.6 ontrol 100. 100. 1-2-Naphthylamide [130668-S. [61] .000791 .377 32.6 .000250 9.81 69.9 .227 .000 49.4 .170 .000 47.9 .114 6.42 65.0 .0568 50.9 87.7 Control 100. 100. [87] .000791 25.1 77.2 .000250 42.2 80.2 .227 1.64 75.6 .170 8.18 86.3 .114 54.5 97.6 .0568 74.9 100. Control 100. 100. ,-Tetrachloro-4-Nitroanisole [29] .000791 1.15 57.0 .000250 2.29 78.5 .155 .000 .000 .103 .000 .000 .103 .000 .000 .103 .000 .000 .103 .000 .000 .103 .000 .000 .052 .000 34.3 .025 12.6 76.2 ontrol 100. 100. [93] .000791 2.65 46.7 .000250 7.96 79.9 .0859 .000 .000 .0430 .845 7.12 .0215 8.85 82.3 ontrol 100. 100. hylthiuram Disulfide [TETD. N [80] .000791 16.9 65.2 .000250 35.6 87.2	Type V Conc., mM S.A CC.A. II .0828 .000 65.6 45 .0552 2.61 75.4 49 .0276 64.2 84.4 10 .0138 99.6 96.6 10 ontrol 100. 100. 57 1-2-Naphthylamide [130668-S, M.W. = 219 [61] .377 32.6 94 .000250 9.81 69.9 43 .227 .000 49.4 28 .170 .000 47.9 29 .114 6.42 65.0 26 .0568 50.9 87.7 16 Control 100. 100. 12 [87] .000250 42.2 80.2 34 .227 1.64 75.6 36 .170 8.18 86.3 24 .14 54.5 97.6 29 .0558 74.9 100.	Conc., mM S.A CC.A. III (N) .0828 .000 65.6 45 (20) .0552 2.61 75.4 49 (18) .0276 64.2 84.4 16 (20) .0138 99.6 96.6 10 (20) .01701 100. 100. 57 (79) 1-2-Naphthylamide [130668-S, M.W. = 219.30] [61] .000791 .377 32.6 94 (20) .000250 9.81 69.9 43 (20) .170 .000 47.9 29 (20) .000250 9.81 69.9 87.7 16 (20) .0568 50.9 87.7 16 (20) .000791 25.1 77.2 59 (20) .114 54.5 97.6 29 (20) .000791 25.1 77.6 36 (20) .114 54.5 97.6 29 (20) .000791 1.55 <t< td=""><td>Type Vessels Focus Type Conc., mM S.A CC.A. III (N) III .0828 .000 65.6 45 (20) 1.80*** .0552 2.61 75.4 49 (18) 1.71** .0276 64.2 84.4 16 (20) .347 ontrol 100. 100. 57 (79) .492 .0138 99.6 96.6 10 (20) 4.28*** .000250 9.81 69.9 43 (20) 1.22**** .000250 9.81 69.9 20 1.14**** .170 .000 47.9 29 (20) 1.4**** .000791 25.1 77.2 59 (20) 2.26*** .000250 42.2 80.2 34 (20) 1.45**** .227 1.64 75.6 36 (20) 1.50*** .000791 25.1 77.2 59 (20)</td></t<>	Type Vessels Focus Type Conc., mM S.A CC.A. III (N) III .0828 .000 65.6 45 (20) 1.80*** .0552 2.61 75.4 49 (18) 1.71** .0276 64.2 84.4 16 (20) .347 ontrol 100. 100. 57 (79) .492 .0138 99.6 96.6 10 (20) 4.28*** .000250 9.81 69.9 43 (20) 1.22**** .000250 9.81 69.9 20 1.14**** .170 .000 47.9 29 (20) 1.4**** .000791 25.1 77.2 59 (20) 2.26*** .000250 42.2 80.2 34 (20) 1.45**** .227 1.64 75.6 36 (20) 1.50*** .000791 25.1 77.2 59 (20)

Treatment Condition ^a		Acti	toxic vity ^b	Transfor Activi	-	Transformation Response ^d	Significance
Drug Conc., mM		RCE(%) S.A CC.A.		Focus Data Type Vessels III (N)		Foci/Vessel Focus Type III	<i>t</i> -statistic
Drug	conc., mm	S.A	LL.A.	111	(N)	111	
「rial	2 [93]						
3(a)P	.000791	2.65	46.7	138	(20)	6.48***	+ 16.8
B(a)P	.000250	7.96	79.9	115	(20)	4.80***	+ 12.0
ETD	.000169	.000	.000	0	(0,20)	.000	ND
ETD	.0000843	1.77	.792	26	(20)	.999**	+ 3.13
ETD	.0000422	31.0	79.2	34	(20)	1.44***	+ 5.12
ETD	.0000211	46.0	108.	13	(20)	.494	+ .51
C-1	Control	100.	100.	43	(79)	.416	Control
						Mea	an t = 2.92
2,6-T	oluenediami	ne-2HC1	[26TD, M.W.	= 195.11]			
rial	1 [29]						
l(a)P	.000791	1.15	57.0	122	(20)	5.79***	+ 13.1
l(a)P	.000250	2.29	78.5	142	(20)	6.19***	+ 10.3
				•••=	()	0117	1015
26D	8.20	.000	3.29	24	(19)	.825	+ .82
26D	6.15	.000	14.2	31	(20)	1.31*	+ 2.63
26D	4.10	1.53	43.5	40	(20)	1.54**	+ 3.06
	2.05	31.7	92.7	94	(20)	4.35***	+ 9.05
26D			100.		// 0 \	.606	0 + I
	Control	100.	100.	36	(40)		<u>Control</u>
26D IC-1		100.	100.	36	(40)		t = 3.89
26D IC-1 Trial	2 [44]					Mea	t = 3.89
26D IC-1 Tial (a)P	2 [44] .000791	5.07	25.9	335	(20)	Mea 15.8***	t = 3.89 + 16.3
26D IC-1 Trial	2 [44]					Mea	t = 3.89
26D IC-1 Trial (a)P (a)P (a)P	2 [44] .000791 .000250 4.00	5.07 14.2 5.41	25.9 67.2 30.4	335 137 91	(20) (20) (20)	Mea 15.8*** 6.15*** 4.23***	n t = 3.89 + 16.3 + 7.33 + 5.29
26D IC-1 Trial (a)P (a)P (a)P 26D 26D	2 [44] .000791 .000250 4.00 2.00	5.07 14.2 5.41 45.6	25.9 67.2 30.4 55.6	335 137 91 172	(20) (20) (20) (20)	Mea 15.8*** 6.15*** 4.23*** 7.76***	an t = 3.89 + 16.3 + 7.33
26D IC-1 (a)P (a)P 26D 26D 26D	2 [44] .000791 .000250 4.00 2.00 1.00	5.07 14.2 5.41 45.6 79.1	25.9 67.2 30.4 55.6 64.0	335 137 91 172 180	(20) (20) (20) (20) (20) (20)	Mea 15.8*** 6.15*** 4.23*** 7.76*** 8.42***	t = 3.89 + 16.3 + 7.33 + 5.29 + 8.77 + 11.3
26D (C-1 (a)P (a)P 26D 26D 26D 26D 26D	2 [44] .000791 .000250 4.00 2.00 1.00 .500	5.07 14.2 5.41 45.6 79.1 91.2	25.9 67.2 30.4 55.6 64.0 88.4	335 137 91 172 180 218	(20) (20) (20) (20) (20) (20) (19)	Mea 15.8*** 6.15*** 4.23*** 7.76*** 8.42*** 11.1***	t = 3.89 + 16.3 + 7.33 + 5.29 + 8.77 + 11.3 + 14.7
26D IC-1 (a)P (a)P 26D 26D 26D	2 [44] .000791 .000250 4.00 2.00 1.00	5.07 14.2 5.41 45.6 79.1	25.9 67.2 30.4 55.6 64.0	335 137 91 172 180	(20) (20) (20) (20) (20) (20)	Mea 15.8*** 6.15*** 4.23*** 7.76*** 8.42*** 11.1*** 1.52	t = 3.89 + 16.3 + 7.33 + 5.29 + 8.77 + 11.3

Abbreviations: BaP, benzo(a)pyrene; CC.A., co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels, NC, negative control; ND; not determined; %RCE, percent relative cloning efficiency; S.A., standard clonal survival assay.

^aTreatment condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to μ g/ml using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

^bCytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as % RCE and was calculated as described in the Materials and Methods.

^cThe criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci > 2-mm in diameter per culture vessel scored are recorded in this table.

 d Transformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a \log_{10} mathematical transformation procedure (refer to Materials and Methods). The arithmetic value or foci/vessel represents the antilog of the \log_{10} mean transformation response minus one.

^eSignificance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22), and the method is described in detail in Materials and Methods. The correct *t*-statistic according to the F-test is presented in this table. The *t*-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean *t*-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean *t*-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank *t*-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (-) *t*-statistics were given a value of zero (0).

*Significant BaP or test chemical transformation response, 0.01 .

**Significant BaP or test chemical transformation response, 0.001 .

***Significant or BaP or test chemical transformation response, $p \leq 0.001$.

Appendix D. Summary of the transformation responses of 20 cytotoxic, nonmutagenic carcinogens. Cytotoxic Transforming Treatment Transformation Condition^a Activity^b Responsed Activity^c Significance® RCE (%) Focus Data Foci/Vessel Type Vessels Focus Type Drug Conc., mM S.A CC.A. III (N) III *t*-statistic Allyl Isothiocyanate [ALITC, M.W. = 99.16, Density = 1.0165 g/ml] Trial 1 [41] .000791 (18) 10.2*** + 23.1 B(a)P 1.29 33.6 189 B(a)P .000250 6.45 78.2 6.37*** 123 (18) + 17.1 ALITC .0133 .000 47.5 9 (18) .339 .44 ALITC .00666 12.9 69.1 11 (18) .503 1.57 .00333 (18) 1.30*** ALITC 22.6 76.4 29 + 4.21 ALITC .00166 63.9 91.0 7 (18) .309 + .27 NC-1 100. 100. Control 13 (36) .274 <u>Control</u> Mean t = 1.62Trial 2 [98] .000791 4.63*** B(a)P 3.60 51.9 91 (18)+ 3.24 1.73*** .000250 B(a)P 4.50 77.2 37 (18) + 15.0 .901 ALITC .0133 8 .177 (16) .414 + 1.38 2.70 3.89 ALITC .00666 22 (17) 1.09*** 4.71 + 2.25*** ALITC .00333 18.5 43.5 (18) + 8.86 46 94.0 ALITC .00166 73.9 .424 10 (18) 1.40 + NC-1 Control 100. 100. 11 (36) .226 <u>Control</u> Mean t = 4.09Chlorendic Acid [954870-S, M.W. = 388.83] Trial 1 [63] 6.13*** .000791 4.00 B(a)P 80.5 141 (20) 6.87 + .000250 B(a)P 93.1 24.8 93 (20) 3.20* 2.02 ÷ 954870-s 4.00 32.7 30.5 45 (18) 1.78 .00 (-.29) 954870-S 2.00 37.8 38.0 55 (20) 2.34 1.08 + 4.68*** 954870-S 107 1.00 46.1 71.3 (18) + 4.70 .500 94.9 96.6 954870-s 63 (20) 2.76* + 2.05 NC-1 Control 100. 100. (39) 84 1.92 Control Mean t = 1.96Trial 2 [83] B(a)P .000791 2.86 73.0 141 (20) 6.14*** + 13.52.93*** .000250 B(a)P 13.8 78.9 64 (20) + 9.12 954870-s 3.85 27.6 37.5 12 (20) .73 .473 + 954870-s 1.92 52.4 56.3 54 (20) 2.27*** 7.30 + 954870-s .962 70.5 89.2 9 .347 (20) .00 (-.02) 954870-S 98.1 94.3 .481 6 (20) .214 .00 (-.93) NC-1A+1B Control 100. 100. (80) 48 .351 Control Mean t = 2.01

Allyl Isovalerate [ALIV, M.W. = 142.22, Density = 0.882 g/ml]

Trial B(a)P B(a)P	1 [23] .000791 .000250	.000 4.84	61.0 100.	157 57	(18) (18)	6.71*** 3.04***	+ 9.25 + 8.07
ALIV ALIV ALIV	.744 .372 .186	6.67 58.8 89.1	98.5 108. 105.	8 9 13	(18) (18) (18)	.361 .370 .562	.00(-1.52) .00(-1.40) .00(43)
ALIV	.0930	90.9	87.7	16	(18)	.737	+ .32
NC-1	Control	100.	100.	23	(27)	.661	$\frac{Control}{Mean t = .080}$

	Cytotox ic		Transforming		Transformation	
Condition*	Activity ^b		Activ	ity ^c	Responsed	Significance ^e
	RCE	: (*)	Focus	Data	Foci/Vessel	
			Type Ve		Focus Type	
Drug Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic
[ria] 2 [27]			470			
B(a)P .000791	4.04	33.7	170	(18)	8.90***	+ 14.8
3(a)P .000250	13.0	47.4	73	(18)	3.18***	+ 5.71
ALIV 1.40	17.7	61.5	7	(18)	.260	.00(-1.41)
ALIV .930	35.1	45.6	12	(18)	.513	.00(18)
ALIV .465	62.7	75.6	11	(18)	.456	.00(43)
ALIV .233	88.2	52.4	14	(18)	.608	+ .22
IC-1 Control	100.	100.	31	(36)	.555	Control
[ria] 3 [31]					Mea	an t = .055
B(a)P .000791	1.87	69.1	136	(15)	8.63***	+ 11.1
3(a)P .000791 3(a)P .000250	5.14	99.9	126	(18)	6.06***	+ 8.51
ALIV 5.58	.000	.000	0	(0,18)	.000	ND
ALIV 4.34	.000	53.3	1	(4,18)	.189	.00(-2.50)
LIV 3.10	.000	94.3	28	(17)	1.30	+ 1.18
LIV 1.86	.000	109.	19	(18)	.834	.00(35)
IC-1 Control	100.	100.	43	(36)	.930	$\frac{Control}{1}$
[ria] 4 [102]					nec	111 L591
B(a)P .000791	9.64	69.9	99	(18)	4.65***	+ 9.48
B(a)P .000250	19.3	93.1	45	(18)	2.22***	+ 5.22
LIV 5.89	.000	13.6	3	(4,18)	.565	.00(33)
LIV 4.42	.000	83.2	41	(18)	2.05***	+ 4.83 + 1.64
LIV 2.95	.419	79.2 91.5	26 19	(18) (18)	1.10 .828	+ .59
ALIV 1.47	7.55	100.	64	(72)	.697	Control
IC-1 Control	100.	100.	04	(12)		t = 2.35
					inec	
bloninatod Dana	ffine (22	139 Chlor	ino (chio	noway 40 4		
Chlorinated Para	ffins C23	43% Chlor	ine [Chlo	rowax 40, 4	99546-L, M.W.avg. =	
Chlorinated Para Trial 1 [76]	ffins C23		ine [Chlo	rowax 40, 4	99546-L, M.W.avg. =	= 560, Density = N
[ria] 1 [76] 8(a)P .000791	ffins C23 5.91	43% Chlor 63.1	87	rowax 40, 4 (18)	999546-L, M.W.avg. = 4.41***	= 560, Density = N + 5.23
[ria] 1 [76]					99546-L, M.W.avg. =	= 560, Density = N
[ria] 1 [76] 8(a)P .000791 8(a)P .000250	5.91 23.3	63.1 97.0	87 54	(18) (18)	199546-L, M.W.avg. = 4.41*** 2.72*	= 560, Density = N + 5.23 + 2.26
Frial 1 [76] 3(a)P .000791 3(a)P .000250 399546-L ND	5.91 23.3 74.9	63.1 97.0 78.9	87 54 43	(18) (18) (18)	199546-L, M.W.avg. = 4.41*** 2.72* 2.06	= 560, Density = N + 5.23 + 2.26 + .72
rial 1 [76] 3(a)P .000791 3(a)P .000250 499546-L ND 495546-L ND	5.91 23.3 74.9 90.0	63.1 97.0 78.9 75.9	87 54 43 35	(18) (18) (18) (18)	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67	= 560, Density = N + 5.23 + 2.26 + .72 .00(33)
rial 1 [76] (a)P .000791 (a)P .000250 99546-L ND 95546-L ND 95546-L ND	5.91 23.3 74.9 90.0 82.4	63.1 97.0 78.9 75.9 83.6	87 54 43 35 67	(18) (18) (18) (18) (18)	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02**	= 560, Density = N + 5.23 + 2.26 + .72 .00(33) + 2.68
rial 1 [76] (a)P .000791 (a)P .000250 99546-L ND 95546-L ND 95546-L ND 99546-L ND	5.91 23.3 74.9 90.0 82.4 87.7	63.1 97.0 78.9 75.9 83.6 84.8	87 54 43 35 67 18	(18) (18) (18) (18) (18) (12)	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26	= 560, Density = N + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36)
rial 1 [76] (a)P .000791 (a)P .000250 99546-L ND 95546-L ND 95546-L ND	5.91 23.3 74.9 90.0 82.4	63.1 97.0 78.9 75.9 83.6	87 54 43 35 67	(18) (18) (18) (18) (18)	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79	= 560, Density = NH + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u>
Frial 1 [76] 8(a)P .000791 8(a)P .000250 995546-L ND 955546-L ND 955546-L ND 95546-L ND 95546-L ND 10-1 Control Frial 2 [104]	5.91 23.3 74.9 90.0 82.4 87.7 100.	63.1 97.0 78.9 75.9 83.6 84.8 100.	87 54 43 35 67 18 152	(18) (18) (18) (18) (18) (12) (71)	99546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea	= 560, Density = NH + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850
rial 1 [76] (a)P .000791 (a)P .000250 99546-L ND 99546-L ND 99546-L ND 99546-L ND IC-1 Control rial 2 [104] 8(a)P .000791	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0	63.1 97.0 78.9 75.9 83.6 84.8 100.	87 54 43 35 67 18 152 62	 (18) (18) (18) (18) (12) (71) (18) 	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79***	= 560, Density = NH + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87
rial 1 [76] (a)P .000791 (a)P .000250 99546-L ND 97546-L ND IC-1 Control Frial 2 [104] 8(a)P .000791	5.91 23.3 74.9 90.0 82.4 87.7 100.	63.1 97.0 78.9 75.9 83.6 84.8 100.	87 54 43 35 67 18 152	(18) (18) (18) (18) (18) (12) (71)	99546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea	= 560, Density = NH + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850
Trial 1 [76] 3(a)P .000791 3(a)P .000250 499546-L ND 495546-L ND 495546-L ND 495546-L ND 495546-L ND 495546-L ND 495546-L ND 407546-L ND 407546-L ND 407-1 Control 5713 2 [104] 3(a)P .000791 3(a)P .000250	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0	63.1 97.0 78.9 75.9 83.6 84.8 100.	87 54 43 35 67 18 152 62	 (18) (18) (18) (18) (12) (71) (18) 	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79***	= 560, Density = NH + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87
Trial 1 [76] 3(a)P .000791 3(a)P .000250 499546-L ND 495546-L ND 495546-L ND 495546-L ND 495546-L ND 495546-L ND 495546-L ND 407546-L ND 407546-L ND 407-1 Control 571al 2 [104] 3(a)P 3(a)P .000250	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6	87 54 43 35 67 18 152 62 63	(18) (18) (18) (18) (18) (12) (71) (18) (18)	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47***	= 560, Density = NH + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10
Trial 1 [76] (a)P .000791 (a)P .000250 (99546-L ND (95546-L ND (99546-L ND (99546-L ND (97546-L ND (97546-L ND (1) C-1 Control (1) G(a)P .000791 (3(a)P .000250 (499546-L ND (499546-L ND	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111.	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2	87 54 43 35 67 18 152 62 63 17	<pre>(18) (18) (18) (18) (18) (12) (71) (18) (18) (18) (18)</pre>	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650	= 560, Density = NH + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10 .00(90)
irial 1 [76] (a)P .000791 (a)P .000250 :99546-L ND :95546-L ND :99546-L ND :99546-L ND :99546-L ND :99546-L ND :90546-L ND :000791 .000791 :0(a)P .000250 :99546-L ND :0(a)P .000250 :99546-L ND	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111. 113.	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2 99.7	87 54 43 35 67 18 152 62 63 17 10	(18) (18) (18) (18) (18) (12) (71) (18) (18) (17)	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650 .386	= 560, Density = NH + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10 .00(90) .00(-2.12)
rial 1 [76] (a)P .000791 (a)P .000250 99546-L ND 95546-L ND 99546-L ND 99546-L ND 1C-1 Control rial 2 [104] 8(a)P .000791 8(a)P .000250 99546-L ND 99546-L ND 99546-L ND 99546-L ND 99546-L ND	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111. 113. 111.	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2 99.7 100.	87 54 43 35 67 18 152 62 63 17 10 21	<pre>(18) (18) (18) (18) (12) (71) (18) (18) (18) (17) (18)</pre>	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650 .386 .961 .562 .878	= 560, Density = N + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10 .00(90) .00(-2.12) + .31 .00(-1.31) <u>Control</u>
rial 1 [76] (a)P .000791 (a)P .000250 .99546-L ND .95546-L ND .95546-L ND C-1 Control rial 2 [104] (a)P .000791 (a)P .000250 .99546-L ND .99546-L ND .99546-L ND .99546-L ND .99546-L ND .99546-L ND	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111. 113. 111. 110. 100.	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2 99.7 100. 101. 100.	87 54 43 35 67 18 152 62 63 17 10 21 14 83	<pre>(18) (18) (18) (18) (12) (71) (18) (18) (18) (18) (17) (18) (18) (18) (17)</pre>	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650 .386 .961 .562 .878 Mea	= 560, Density = N + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10 .00(90) .00(-2.12) + .31 .00(-1.31) <u>Control</u> an t = .078
Trial 1 [76] 3(a)P .000791 3(a)P .000250 499546-L ND 495546-L ND 49546-L ND 4001 Control 11 Control 13(a)P .000791 3(a)P .000250 499546-L ND	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111. 113. 111. 110. 100.	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2 99.7 100. 101. 100.	87 54 43 35 67 18 152 62 63 17 10 21 14 83	<pre>(18) (18) (18) (18) (12) (71) (18) (18) (18) (18) (17) (18) (18) (18) (17)</pre>	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650 .386 .961 .562 .878	= 560, Density = N + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10 .00(90) .00(-2.12) + .31 .00(-1.31) <u>Control</u> an t = .078
rial 1 [76] (a)P .000791 (a)P .000250 99546-L ND 95546-L ND 99546-L ND 10-1 Control rial 2 [104] (a)P .000791 9(a)P .000250 99546-L ND 99546-L ND	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111. 113. 111. 110. 100.	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2 99.7 100. 101. 100.	87 54 43 35 67 18 152 62 63 17 10 21 14 83	<pre>(18) (18) (18) (18) (12) (71) (18) (18) (18) (18) (17) (18) (18) (18) (17)</pre>	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650 .386 .961 .562 .878 Mea	= 560, Density = N + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10 .00(90) .00(-2.12) + .31 .00(-1.31) <u>Control</u> an t = .078
Trial 1 [76] 3(a)P .000791 3(a)P .000250 499546-L ND 495546-L ND 49546-L ND 49546-L ND 49546-L ND 49546-L ND 49546-L ND 3(a)P .000791 3(a)P .000250 499546-L ND NC-1 Control Chlorinated Para Trial 1 [74]	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111. 113. 111. 110. 100. ffins C12	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2 99.7 100. 101. 100. 101. 100.	87 54 43 35 67 18 152 62 63 17 10 21 14 83 *ine [Chlor	(18) (18) (18) (18) (12) (71) (18) (18) (18) (17) (18) (18) (17) (18) (17) (18) (17) (18) (17) (18) (17) (18) (17) (18)	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650 .386 .961 .562 .878 Mea 164848-L, M.W.avg.	= 560, Density = NH + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10 .00(-2.12) + .31 .00(-1.31) <u>Control</u> an t = .078 = 415, Density= NH
Trial 1 [76] 3(a)P .000791 3(a)P .000250 499546-L ND 495546-L ND 49546-L ND 49546-L ND 49546-L ND 49546-L ND 49546-L ND 3(a)P .000791 3(a)P .000250 499546-L ND NC-1 Control Chlorinated Para Trial 1 [74] (a)P .000791	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111. 113. 111. 110. 100. ffins C12 3.00	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2 99.7 100. 101. 100. 60% Chlor 69.2	87 54 43 35 67 18 152 62 63 17 10 21 14 83 *ine [Chlor 43	(18) (18) (18) (18) (12) (71) (18) (18) (18) (17) (18) (17) (18) (17) (18) (71) rowax 500c,	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650 .386 .961 .562 .878 Mea	= 560, Density = N + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10 .00(90) .00(-2.12) + .31 .00(-1.31) <u>Control</u> an t = .078 = 415, Density= N
Trial 1 [76] 3(a)P .000791 3(a)P .000250 499546-L ND 495546-L ND 49546-L ND 49546-L ND 49546-L ND 49546-L ND 49546-L ND 3(a)P .000791 3(a)P .000250 499546-L ND NC-1 Control Chlorinated Para Trial 1 [74] (a)P .000791	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111. 113. 111. 110. 100. ffins C12	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2 99.7 100. 101. 100. 101. 100.	87 54 43 35 67 18 152 62 63 17 10 21 14 83 *ine [Chlor	(18) (18) (18) (18) (12) (71) (18) (18) (18) (17) (18) (18) (17) (18) (17) (18) (17) (18) (17) (18) (17) (18) (17) (18)	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650 .386 .961 .562 .878 Mea 164848-L, M.W.avg. 2.02***	= 560, Density = NM + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10 .00(-2.12) + .31 .00(-1.31) <u>Control</u> an t = .078 = 415, Density= NM + 4.51
Trial 1 [76] 3(a)P .000791 3(a)P .000250 499546-L ND 495546-L ND 495546-L ND 49546-L ND 49546-L ND 49546-L ND 49546-L ND 3(a)P .000791 3(a)P .000250 499546-L ND A000791 Control Chlorinated Para Trial 1 [74] (a)P .000791	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111. 113. 111. 110. 100. ffins C12 3.00	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2 99.7 100. 101. 100. 60% Chlor 69.2 78.4 .000	87 54 43 35 67 18 152 62 63 17 10 21 14 83 *ine [Chlor 43	(18) (18) (18) (18) (12) (71) (18) (18) (17) (18) (17) (18) (17) (18) (71) rowax 500c, (18) (18) (18) (71)	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650 .386 .961 .562 .878 Mea 164848-L, M.W.avg. 2.02*** 1.29* .000	= 560, Density = NM + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10 .00(-2.12) + .31 .00(-1.31) <u>Control</u> an t = .078 = 415, Density= NM + 4.51
Trial 1 [76] (a)P .000791 (a)P .000250 (99546-L ND (95546-L ND (95546-L ND (95546-L ND (95546-L ND (97546-L ND (1) Control Control (1) Cial 2 [104] .000791 (3(a)P .000250 (499546-L ND (499546-L ND (499546-L ND (499546-L ND (5) Control (1) Control Chlorinated Para (1) [74] .000791 (2) P .000250	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111. 113. 111. 110. 100. ffins C12 3.00 9.58	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2 99.7 100. 101. 100. 60% Chlor 69.2 78.4 .000 .000	87 54 43 35 67 18 152 62 63 17 10 21 14 83 *ine [Chlon 43 27	(18) (18) (18) (18) (12) (71) (18) (18) (18) (17) (18) (18) (71) rowax 500c, (18) (18)	199546-L, M.W.avg. * 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650 .386 .961 .562 .878 Mea 164848-L, M.W.avg. 2.02*** 1.29* .000 .000	= 560, Density = NN + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10 .00(90) .00(-2.12) + .31 .00(-1.31) <u>Control</u> an t = .078 = 415, Density= NN + 4.51 + 2.49 ND ND
Trial 1 [76] (a)P .000791 (a)P .000250 (99546-L ND (95546-L ND (95546-L ND (95546-L ND (95546-L ND (97546-L ND (97546-L ND (1) C - 1 Control (1) G(a)P .000791 (3(a)P .000250 (499546-L ND (499546-L ND (499546-L ND (499546-L ND (5) (1) C - 1 Control (1) C - 1 Control (2) C - 1 Control (2) C - 1 Control (3) C - 1 Control (4) C - 1 Control (1) C - 1 Control (2) C - 1 Control (3) C - 1 Control (4) O - 000791 ((a) P (2) O - 000250 64848-L	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111. 113. 111. 110. 100. ffins C12 3.00 9.58 .000	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2 99.7 100. 101. 100. 60% Chlor 69.2 78.4 .000	87 54 43 35 67 18 152 62 63 17 10 21 14 83 *ine [Chlor 43 27 0 0 16	(18) (18) (18) (18) (12) (71) (18) (18) (17) (18) (17) (18) (17) (18) (71) rowax 500c, (18) (18) (18) (71)	199546-L, M.W.avg. = 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650 .386 .961 .562 .878 Mea 164848-L, M.W.avg. 2.02*** 1.29* .000 .000 .737	= 560, Density = NH + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) Control an t = .850 + 4.87 + 4.10 .00(90) .00(-2.12) + .31 .00(-1.31) Control an t = .078 = 415, Density= NH + 4.51 + 2.49 ND ND + .37
rial 1 [76] (a)P .000791 (a)P .000250 99546-L ND 95546-L ND 99546-L ND 99546-L ND 10-1 Control Trial 2 [104] 9(a)P .000791 9(a)P .000250 99546-L ND 99546-L ND 99546-L ND 99546-L ND 99546-L ND 100791 1000791 100000791 100070 100070 100070 100070 1000070 100070 100070 100070 100070 1000070 100070 10	5.91 23.3 74.9 90.0 82.4 87.7 100. 25.0 50.6 111. 113. 111. 110. 100. ffins C12 3.00 9.58 .000 .000	63.1 97.0 78.9 75.9 83.6 84.8 100. 64.5 89.6 98.2 99.7 100. 101. 100. 60% Chlor 69.2 78.4 .000 .000	87 54 43 35 67 18 152 62 63 17 10 21 14 83 *ine [Chlor 43 27 0 0	(18) (18) (18) (18) (12) (71) (18) (18) (17) (18) (17) (18) (17) (18) (71) rowax 500c, (18) (18) (18) (0,18) (0,18)	199546-L, M.W.avg. * 4.41*** 2.72* 2.06 1.67 3.02** 1.26 1.79 Mea 2.79*** 2.47*** .650 .386 .961 .562 .878 Mea 164848-L, M.W.avg. 2.02*** 1.29* .000 .000	= 560, Density = NN + 5.23 + 2.26 + .72 .00(33) + 2.68 .00(-1.36) <u>Control</u> an t = .850 + 4.87 + 4.10 .00(90) .00(-2.12) + .31 .00(-1.31) <u>Control</u> an t = .078 = 415, Density= NN + 4.51 + 2.49 ND ND

	eatment ndition*	Act	otoxic ivity ^b		forming vity ^c	Transformati Response ^d	ion
		RCE (*)		Focus Data Type Vessels		Foci/Vesse Focus Type	
Drug	Conc., mH	S.A	CC.A.	11	I (N)	III	t-statistic
rial 2	F901						
(a)P (a)P	.000791	28.5 51.8	76.0 95.8	157 111	(18) (18)	7.60*** 4.91***	+ 5 .89 + 3.71
64848-L		6.61	58.4	15	(18)	-618	.00(-3.32)
64848-L 64848-L		41.4 29.2	64.5 78.7	20 27	(18) (18)	.62 8 1.07	.00(-3.17) .00(-1.89)
64848-L		94.6	107.	15	(18)	.661	.00(-4.16)
C-1	Control	100.	100.	219	(71)	1.95	$\frac{Control}{Mean t = .000}$
8-Chlor	ro-2-Methy	lpropene (3C2MP, M.W.	= 99.55,	Density = 0		rean 1000
rial 1			<i></i>				
l(a)P l(a)P	.000791 .000250	8.09 14.9	60.6 84.2	116 184	(18) (18)	6.11*** 9.84***	+ 4.93 + 9.74
C2MP	.883	.000	60.3	162	(18)	8.23***	+ 5.22
C2MP	.442	12.8	97.0	102	(18)	4.21	+ 1.25
C2MP	.221	56.2	97.6	60	(18)	2.53	.00 (- 1.23)
C2MP	.110	57.4	95.1	54	(18)	2.72	.00 (95)
IC-1	Control	100.	100.	296	(72)	3.28	<u>Control</u> Mean t = 1.62
rial 2							
l(a)P l(a)P	.000791 .000250	15.8 35.5	73.9 82.6	54 24	(15) (15)	3.36*** 1.50***	+ 9.58 + 4.90
C2MP 1	.104	.000	42.3	24	(17,18)	.928*	+ 2.23
	.828	.000	57.5	36	(18)	1.75***	+ 5.87
C2MP	.552	1.18	81.2	23	(18)	.805	+ 1.58
C2MP	.276	55.8	102.	16	(18)	.582	+ .95
IC-1 C	Control	100.	100.	37	(67)	.406	<u>Control</u> Mean t = 2.66
innamy	1 Anthran	ilate [CII	N, M.W. = 25	3.32]			
rial 1	[2] .000791	1.02	36.4	187	(20)	8.89***	+ 15.5
	.000250	3.41	68.7	110	(20)	4.52***	+ 8.43
IN	.115	.000	17.2	5	(20)	. 172	.00(-2.97)
	.105	3.07	17.9	37	(20)	.656	.00(01)
	.0829	58.0	83.8	16	(20)	.668	+ .04
	.0651	61.1	99.0	5 34	(20)	.189	.00(-2.90)
	ontrol	100.	100.	54	(20)	.660 N	<u>Control</u> Mean = .010
rial 2	[9] .000791	3.14	38.3	108	(20)	4.93***	+ 16.2
	.000791	8.52	38.3 87.2	47	(20)	4.93***	+ 7.04
IN	.118	2.69	22.5	2	(16,20)	.091	.00(65)
IN	.0987	20.6	51.3	2	(20)	.076	.00(90)
	.0790	48.0	107.	2	(20)	.056	.00(-1.13)
	.0592 ontrol	53.4 100.	93.3 100.	1 8	(20) (40)	.035 .149	.00(-1.85) Control
u-i U	ontrot	100.		o	(40)		4ean t = .000
rial 3							
	.000791 .000250						
	.142	ND	.000	0	(17)	.000	ND
IN IN	. 142	ND	37.3	8	(17)	.318	.00(45)
IN	.0475	ND	109.	8	(20)	.275	.00(66)
	ontrol	ND	100.	5	(9)	.424	Control
						1	Mean $t = .000$

Append	lix D. Continu	ed.		-			
	eatment ndition ^a	Acti	toxic vity ^b	Transfo Activi		Transformatic Response ^d	on Significance ^e
		RCE	(*)	Focus [Foci/Vessel	
Drug	Conc., mM	S.A	CC.A.	Type Ves III	ssels (N)	Focus Type III	t-statistic
Diethy	ylstilbest	rol [DES,	M.W. = 26	8.]			
Trial :	1 [42]						
B(a)P	.000791	2.41	35.7 65.4	280	(20)	13.7***	+ 20.2
8(a)P	.000250	5.72	07.4	161	(19)	7.44***	+ 9.55
ES	.0894	1.81	13.5	31	(19,20)	1.19	+ .97
ES	.0671	62.0 54.5	65.1	15 11	(20)	.578	.00 (- 1.10)
ES ES	.0447 .0112	75.6	64.4 77.5	154	(20) (19)	.443 6.79***	.00 (- 1.76) + 8.84
C-1	Control	100.	100.	52	(40)	.861	<u>Control</u>
					-		Mean $t = 2.22$
rial 2 K(a)P	.000791	11.0	43.5	86	(20)	4.03***	+ 9.40
(a)P	.000250	38.9	75.4	62	(20)	2.88***	+ 7.12
	110	74 /	7/ 4	77	(20)	1 / 7+++	+ 7 /0
ES	.112 .0838	31.4 51.5	74.6 86.5	37 44	(20) (20)	1.62*** 1.89***	+ 3.69 + 4.44
ES	.0559	54.2	83.4	37	(20)	1.52**	+ 3.30
ES	.0279	59.3	79.0	32	(20)	1.19*	+ 2.07
C-1	Control	100.	100.	62	(70)	.660	$\frac{Control}{Mean t = 3.38}$
imoth	ıylvinyl Cl	nloride [3	10712.I M	W = 90 55	Donsity =	ND a/mll	fiedi (= 5.50
/ 11110 01	iyi viliyi ol		<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	N. 50.55	, Density	No 9/111]	
rial 1		5.01	63.1	97	(19)	/ / 1***	+ 5.23
(a)P (a)P	.000791 .000250	5.91 23.3	97.0	87 54	(18) (18)	4.41*** 2.72*	+ 2.26
(-).					()		
09712-		.000	41.2	116	(15,18)	5.56**	+ 3.88
.09712- .09712-		.000 15.4	84.4 87.1	59 38	(18) (18)	2.63 1.69	+ 1.91 .00 (24)
09712-		58.8	94.3	41	(18)	1.62	.00 (43)
C-1	Control	100.	100.	152	(71)	1.79	Control
rial 2	2 [102]						Mean $t = 1.45$
(a)P	.000791		69.9	99	(18)	4.65***	+ 9.48
(a)P	.000250		93.1	45	(18)	2.22***	+ 5.22
00712-	·L 7.78	.000	27.5	19	(7,18)	2.26***	+ 3.47
	L 5.83	.000	77.1		(18)	4.04***	+ 8.63
09712-		.000	96.5	31	(18)	1.27*	+ 2.21
09712-		13.4	93.3	17	(18)	.834	+ .65
C-1	Control	100.	100.	64	(72)	.697	$\frac{Control}{Mean t = 3.74}$
thv1	Acrylate	ΓΕΤΔΟ ΜΙ	J = 100 12	Density =	ND a/mll		
•	Ū	,	100.12,	50.0000			
	1 [23]	000	(1.0	4	(10)	/ 74444	
B(a)P B(a)P	.000791 .000250	.000 4.84	61.0 100.	157 57	(18) (18)	6.71*** 3.04***	+ 9.25 + 8.07
		1.07			(10)	5.04	
ETAC	.1199	.000	.000	1	(1,18)	1.00	.00 (- 4.75)
ETAC ETAC	.0799 .0400	.000 4.85	21.8 84.9	59 20	(18) (18)	3.03*** .864	+ 6.71 + .77
TAC	.0200	4.65 37.0	04.9 97.9	20	(18)	.289	+ .77
IC-1	Control	100.	100.	23	(27)	.661	Control
'ni-l (0 5257						Mean $t = 2.49$
rial : (a)P	2 [36] .000791	2.98	40.1	73	(9)	7.27***	+ 21.8
l(a)P	.000250	7.66	78.1	88	(18)	4.37***	+ 10.8
							-

Drug Conc AC .1195 AC .0895 AC .0595 AC .0300 1 Contr Ophorone .0307 al 1 [25] DP .0007 DP .0002 PH 1.34 PH 1.00 PH .668 PH .334 1 Contro al 2 [36] DP .0007	9 8. 9 27. 0 63. rol 100. [ISPH, M.W 250 N	4 99.3 100.	Focus Type Vo II1 45 53 50 43 20	essels	Foci/Vessel Focus Type III 1.87*** 2.68*** 2.20** 2.08***	<i>t</i> -statistic + 4.96 + 8.05 + 5.02
AC .1199 AC .0899 AC .0599 AC .0300 1 Contr Ophorone (a) 1 [25] (b) P .0007 (c) 1 .007 (c) 1 .007 (9 1. 9 8. 9 27. 0 63. rol 100. [ISPH, M.W 791 M.W	28 55.8 09 79.8 7 94.8 4 99.3 100.	45 53 50 43 20	I (N) (18) (18) (18) (18)	III 1.87*** 2.68*** 2.20**	+ 4.96 + 8.05 + 5.02
AC .1199 AC .0899 AC .0599 AC .0300 1 Contr Ophorone (a) 1 [25] (b) P .0007 (c) 1 .007 (c) 1 .007 (9 1. 9 8. 9 27. 0 63. rol 100. [ISPH, M.W 791 M.W	28 55.8 09 79.8 7 94.8 4 99.3 100.	45 53 50 43 20	(18) (18) (18) (18)	1.87*** 2.68*** 2.20**	+ 4.96 + 8.05 + 5.02
AC .0899 AC .0599 AC .0300 1 Contr Ophorone (a] 1 [25] (a) P .0007 (b) P .0007 (c) P .0007	9 8. 9 27. 0 63. rol 100. [ISPH, M.W 250 N	09 79.8 7 94.8 4 99.3 100.	53 50 43 20	(18) (18) (18)	2.68*** 2.20**	+ 8.05 + 5.02
AC .0899 AC .0599 AC .0300 1 Contr Ophorone (a] 1 [25] (a) P .0007 (b) P .0007 (c) P .0007	9 8. 9 27. 0 63. rol 100. [ISPH, M.W 250 N	09 79.8 7 94.8 4 99.3 100.	53 50 43 20	(18) (18) (18)	2.68*** 2.20**	+ 8.05 + 5.02
AC .0599 AC .0300 1 Contr ophorone (a] 1 [25] A)P .0007 A)P .0007 A)P .0007 A)P .0002 AL 1.34 AL 1.00 AL .668 AL .334 1 Contro a] 2 [36]	9 27. 0 63. rol 100. [ISPH, M.W 791 M	7 94.8 4 99.3 100.	50 43 20	(18) (18)	2.20**	+ 5.02
AC .0300 1 Contr Ophorone al 1 [25] a)P .0007 b)P .0002 PH 1.34 PH 1.34 PH 1.34 PH .668 PH .334 1 Contro al 2 [36]	0 63. rol 100. [ISPH, M.W 791 M	4 99.3 100.	43 20	(18)		
1 Contro ophorone (a) 1 [25] (b) P .0007 (c) P .0007 (rol 100. [ISPH, M.W 791 M 250 M	100.	20		2.00	+ 6.04
ophorone al 1 [25] b)P .0007 b)P .0002 ch 1.34 ch 1.00 ch .668 ch .334 1 Contro al 2 [36]	[ISPH, M.W 791 M 250 M			(30)	.424	Control
ial 1 [25] a)P .0007 b)P .0002 c)P 1.34 c)P 1.34 c)P 1.34 c)P .668 c)P .334 c)P .334 contro al 2 [36]	791 M 250 M	. = 138.21,		-		an t = 6.02
a)P .0007 a)P .0002 PH 1.34 PH 1.00 PH .668 PH .334 1 Contro al 2 [36]	250 N		Density = 0.92	29 g/m]]		
A)P .0002 PH 1.34 PH 1.00 PH .668 PH .334 1 Contro al 2 [36]	250 N					
2H 1.34 2H 1.00 2H .668 2H .334 1 Contro al 2 [36]		ND 21.4	192	(18)	9.74***	+ 19.9
2H 1.00 2H .668 2H .334 1 Contro al 2 [36]		ND 73.4	59	(18)	2.55***	+ 7.52
2H .668 2H .334 1 Contro al 2 [36]		ID 92.2	7	(18)	.268	.00 (- 1.35)
al 2 [36]		ID 89.6	3	(18)	.122	+ .27
1 Contro a] 2 [36]		ID 102.	3	(18)	.122	+ .27
a] 2 [36]		ID 102.	3	(18)	.122	+ .27
	סנ א	ID 100.	5	(36)	.101 Mea	an t = .203
1)P .0007	-			<i>(</i> 0)	7 . 7	
		98 40.1	73	(9)	7.27***	+ 21.8
i)P .0002	250 7.	66 78.1	88	(18)	4.37***	+ 10.8
н 4.01		000 31.5	33	(18)	1.65**	+ 5.29
PH 2.00		851 92.9	17	(18)	.754	+ 1.66
PH 1.00	21.		20	(18)	.950*	+ 2.60
.501	76.		28	(18)	1.38**	+ 4.29
1 Contro	ol 100.	100.	20	(36)	.424 Mea	<u>Control</u> an t = 3.46
a] 3 [104]		o // F	(2)	(40)	2 70+++	
a)P .0007 a)P .0002			62	(18)	2.79*** 2.47***	+ 4.87 + 4.10
a)P .0002	250 50.	0 09.0	63	(18)	2.4/***	+ 4.10
н 5.34	6.	75 80.2	34	(18)	1.68*	+ 2.61
РН 4.01	16.		30	(18)	1.53**	+ 2.85
РН 2.67	31.		36	(18)	1.66*	+ 2.45
PH 1.34	45.		21	(18)	.963	+ .32
1 Contro	ol 100.	100.	83	(71)	.878	Control
						an t = 2.06
		M.W. = 136.2	24, Density = (0.8411 g/m]]		
ia] 1 [72]		75 54 0	OF	(19)	4.11***	+ 10 7
a)P .000 a)P .000		.75 56.8 .61 82.1	85 84	(18) (18)	4.11*** 3.04***	+ 12.7 + 6.20
	200 0	02.1	04	(10)	J. 04	T 0.20
6267-L .	224	.000 90.7	7	(18)	.248	.00(30)
		.000 101.	9	(18)	.392	+ .75
		.000 94.4	17	(18)	.619	+ 1.54
		.000 96.2	15	(18)	.572	+ 1.80
	ntrol 100.	. 100.	29	(72)	-289 Me	<u>Control</u> an t = 1.02
ial 2 [76]				(10)		
a)P .0007 a)P .0007		.91 63.1 .3 97.0	87 54	(18) (18)	4.41*** 2.72*	+ 5.23 + 2.26
5267-L 1.5 5267-L 1.		.000 .893 .4 33.8	3 1 15	(17,18) (18)	.042 .557	.00(-13.6)
	786 49.		60			.00(- 4.30)
					1.95	
-1 Cor	393 82		30	(17) (18)	1.95 1.39	+ .27 + 1.15

Appendix D. Continue	ed.			
Treatment Condition ^a	Cytotoxic Activity ^b	Transforming Activity ^c	Transformation Response ^d	Significance ^e
	RCE (%)	Focus Data	Foci/Vessel	
		Type Vessels	Focus Type	
Drug Conc., mM	S.A CC.A.	III (N)		<i>t</i> -statistic
Trial 3 [88] B(a)P .000791	15.8 73.9	54 (15)	3.36***	+ 9.58
B(a)P .000250	35.5 82.6	24 (15)	1.50***	+ 4.90
036267-L 1.43	.000 .167	0 (6,16)	.000	.00(-6.49)
036267-L 1.07	9.07 10.7	4 (14)	. 194	.00(-1.32)
036267-L .714	88.0 85.7	10 (18)	.392	.00(09)
036267-L .357	103. 90.1	9 (18)	.392	.00(09)
NC-1 Control	100. 100.	37 (67)	.406 Mea	n t = .000
Malonaldehyde, S	Sodium Salt [605428-s	5, M.W. = 94.05]		
Trial 1 [75]				
B(a)P .000791	7.10 66.5	149 (20)	6.35***	+ 10.9
B(a)P .000250	28.4 85.4	67 (20)	3.10***	+ 6.56
605428-s 5.00	.000 14.2	34 (20)	1.18	+ 1.08
605428-S 3.75	2.92 66.5	19 (20)	.777	.00 (68)
605428-S 2.50	15.9 80.9	61 (20)	2.65***	+ 5.06
605428-s 1.25	59.3 93.1	38 (19)	1.79*	+ 2.61
NC-1 Control	100. 100.	89 (78)	.882 Mea	<u>Control</u> n t = 1.92
Trial 2 [97]				
B(a)P .000791	4.74 78.0	118 (20)	5.02***	+ 12.5
B(a)P .000250	17.4 104.	52 (20)	2.26***	+ 7.26
605428-s 5.00	.000 14.2	18 (19)	.751	+ 1.81
605428-S 3.75	.000 44.1	9 (20)	.320	.00 (62)
605428-s 2.50	9.49 89.2	26 (20)	1.04**	+ 3.08
605428-s 1.25	44.3 89.0	18 (20)	.652	+ 1.32
NC-1 Control	100. 100.	47 (80)	.414 Mea	n t = 1.55
2-Mercaptobenzo	thiazole [481989-S. N	I.W. = 167.25]		
•				
Trial 1 [62] B(a)P .000791	5.24 72.5	188 (20)	8.32*	+ 2.50
B(a)P .000250	18.6 85.1	105 (18)	5.59	.00 (62)
481989-s .294	.000 1.91	15 (20)	.543	.00 (-12.8)
481989-S .221	.476 11.0	48 (20)	1.84	.00 (- 5.85)
481989-5 .147	16.1 70.1	56 (17)	2.90	.00 (- 5.06)
481989-S .074	49.0 84.5	60 (20)	2.42	.00 (- 5.59)
NC-1 Control	100. 100.	261 (40)	6.02 Mea	$\frac{\text{Control}}{\text{an } t = .00}$
Trial 2 [77]	_ //	470 (00)	0 77444	
B(a)P .000791	5.66 69.5	179 (20)	8.33***	+ 13.6
B(a)P .000250	16.5 78.7	114 (19)	6.03***	+ 10.0
481989-S .265	.000 .275	2 (6)	.260	.00 (- 2.24)
481989-S .199	ND ND	7 (10)	.490	.00 (- 1.74)
481989-S .132	7.55 19.3	11 (2)	5.33** 1 70	+ 3.41 + 1.52
481989-S .066	11.8 82.0	12 (6) 94 (78)	1.70 .97	+ 1.52 Control
NC-1A+1B Control	100. 100.	94 (78)		t = 1.23
Trial 3 [89]	8.13 69.0	119 (20)	4.77***	+ 10.3
B(a)P .000791 B(a)P .000250	31.9 89.1	63 (20)	2.33***	+ 5.84
B(a)P .000250	JI.7 U7.1		2,35	

Appendix D. Continued.

	eatment dition ^a		totoxic tivity ^b		forming ivity ^c	Transformatio Response ^d	on Significance ^e
		RCE (%)			s Data Vessels	Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	I	II (N)	111	<i>t</i> -statistic
81989-S 81989-S	.212	.581 23.8	.771 19.9	22 41	(20) (20)	.762 1.45***	+ 1.26 + 3.63
B1989-S	.106	33.1	57.6	7	(14)	.385	.00 (52)
31989-S	.0530	47.3	84.3	. 6	(12)	.414	.00 (35)
C-1A+1B	Control	100.	100.	57	(79)	.492	Control
						Me	ean t = 1.22
ethapy	rilene-HC	1 [MEPY,	M.W. = 297	.88]			
rial 1 [[40]						
(a)P .	000791	1.06	39.7	182	(19)	8.71***	+ 14.9
(a)P .	.000250	8.48	79.2	101	(18)	4.86***	+ 9.93
EPY 1.	43	.000	4.87	4	(17,20)	177	004 2 225
	.955	.707	53.1	14	(17,20)	.177 .468	.00(-2.22)
	477	21.9	88.7	7	(20)	.256	.00(34) .00(-1.72)
	239	68.9	95.2	6	(19)	.208	.00(-2.00)
C-1 Co	ontrol	100.	100.	28	(40)	.533	Control
rial 2 [Б И Л					Me	an t = .000
-	.54] 000 791	1.47	17.6	105	(20)	/ 75	. 47 0
	000250	.490	61.1	105	(20) (20)	4.75*** 4.52***	+ 13.8 + 13.5
				100		4.76	T 13.3
	15	.000	.000	3	(17,20)	.130	.00(-1.10)
	859	3.92	18.6	7	(20)	.231	.26(26)
	573 286	20.6	81.1	11	(20)	.443	+ 1.25
	200 ntrol	33.8 100.	81.4 100.	3 15	(20)	.110	.00(-1.39)
	inci ot	100.	100.	61	(40)	.265 Me	$\frac{Control}{2}$
ial 3 [_						.uii C
	000791						
a)P .	000250	ND		ND		ND	ND
PY 1.	28	ND	13.2	0	(20)	.04	007 7 07
	853	ND	83.2	ě.	(20)	.32	.00(-3.94) .00(-1.68)
	426	ND	100.	5	(20)	.19	.00(-2.51)
-1 Co	ntrol	ND	100.	18	(20)	.67	Control
						Me	an t = .000
trilot	riacetic	Acid, Tr	isodium S	alt [NTTA,	M.W. = 257	.1]	
ia] 1 []							
	000791	2.21	71.9	61	(19)	2.60***	+ 8.09
a)P .	000250	7.18	88.8	48	(20)	1.58***	+ 4.37
TA 7.	78	.000	.836	3	(15,20)	.127	
TA 5.8		.000	12.7	24	(20)	.807*	.00 (95) + 2.76
TA 3.8		14.4	87.1	28	(20)	1.03***	+ 3.72
TA 1.9	94	44.8	92.5	10	(20)	.414	+ .91
-1 Cor	ntrol	100.	100.	45	(79)	.274	<u>Control</u>
ia] 2 [9	гос					Me	an t = 2.46
	000 79 1	18.9	68.4	160	(20)	6.67***	+ 12 /
	000250	32.1	85.0	94	(20)	3.59***	+ 12.4 + 7.95
TA 7.0		7.92	65.0	125	(20)	5.58***	+ 11.5
		23.8	89.3	148	(20)	6.87***	+ 13.3
TA 5.2	50				7 30 N		
TA 3.5			108.	64	(20)	2.37***	+ 4.55
TA 3.5 TA 1.7		76.6	108. 103. 100.	64 49 65	(20) (20) (80)	2.3/*** 1.78*** .586	+ 4.55 + 4.30 <u>Cont</u> rol

Treatment Condition ^a		Cytotoxic Activity ^b		Transfo Activi		Transformation Response ^d	Significance ^e	
		R	RCE (%)		Focus Data Type Vessels			
Drug	Conc., mM	S.A	CC.A.	Type Ves	ssels (N)	Focus Type III	<i>t</i> -statistic	
Polyb	rominated	Biphenyl	Mixture	[PBB, M.W.	= 628.]			
Trial	1 [20]							
B(a)P	.000791	.000	39.4	268	(20)	13.0***	+ 26.3	
B(a)P	.000250	2.34	77.3	99	(20)	4.00***	+ 9.22	
BB	.398	13.3	75.3	29	(19)	1.25***	+ 3.85	
BB	.199	33.6	92.4	23	(18)	1.07**	+ 3.30	
BB	.100	35.9	92.4	18	(20)	.668	+ 1.55	
PBB	.050	53.2	94.9	11	(20)	.394	+ .16	
NC-1	Control	100.	100.	21	(40)	.368	<u>Control</u>	
Trial	2 [28]						Mean t = 2.22	
B(a)P	.000791	2.84	28.6	189	(20)	9.02***	+ 16.9	
B(a)P	.000250	6.74	68.0	62	(20)	2.78***	+ 5.73	
	708	4/ 2	17 /	. 1	(20)	1.77**	+ 3.24	
PBB	.398	14.2	47.4	41 33	(20) (20)	1.37*	+ 2.00	
PBB	.199 .100	67.8 84.0	44.3 58.2	55 19	(20)	.737	.00 (35	
PBB PBB	.0500	86.9	67.0	27	(20)	1.15	+ 1.31	
NC-1	Control	100.	100.	41	(40)	.818	Control	
	controt	100.	1001				Mean $t = 1.64$	
Reser	pine [RES	, M.W. = 60	8.70]					
Trial	1 [1]							
B(a)P	.000791	9.75	56.3	171	(20)	8.16***	+ 12.1	
B(a)P	.000250	15.5	91.0	114	(20)	5.18***	+ 6.68	
						5.10		
DEC	0230	000	n nnn	n	(4, 20)		.00(-10.2)	
	.0230	.00			(4,20)	.000	.00(-10.2)	
RES RES	.0197	2.53	.000	0	(16,20)	.000 .000	.00(-10.2)	
RES RES	.0197 .0156	2.53 22.4	.000 57.6	0 9	(16,20) (20)	.000 .000 .301		
RES RES RES	.0197 .0156 .0099	2.53	.000	0	(16,20)	.000 .000	.00(-10.2) .00(- 4.41)	
RES RES RES NC-1	.0197 .0156 .0099 Control	2.53 22.4 94.2	.000 57.6 105.	0 9 51	(16,20) (20) (20)	.000 .000 .301 2.36** 1.44	.00(-10.2) .00(- 4.41) + 2.37	
RES RES RES NC-1 Trial	.0197 .0156 .0099 Control 2 [8]	2.53 22.4 94.2 100.	.000 57.6 105. 100.	0 9 51 73	(16,20) (20) (20) (40)	.000 .000 .301 2.36** 1.44	.00(-10.2) .00(- 4.41) + 2.37 <u>Control</u> Mean t = 1.38	
RES RES RES NC-1 Trial B(a)P	.0197 .0156 .0099 Control 2 [8] .000791	2.53 22.4 94.2 100. 1.45	.000 57.6 105. 100. 5.83	0 9 51 73 244	(16,20) (20) (20) (40) (19)	.000 .000 .301 2.36** 1.44 10.7***	.00(-10.2) .00(- 4.41) + 2.37 <u>Control</u> Mean t = 1.38 + 8.19	
RES RES RES NC-1 Trial B(a)P	.0197 .0156 .0099 Control 2 [8]	2.53 22.4 94.2 100.	.000 57.6 105. 100.	0 9 51 73	(16,20) (20) (20) (40)	.000 .000 .301 2.36** 1.44	.00(-10.2) .00(- 4.41) + 2.37 <u>Control</u> Mean t = 1.38	
RES RES NC-1 Trial B(a)P B(a)P	.0197 .0156 .0099 Control 2 [8] .000791	2.53 22.4 94.2 100. 1.45	.000 57.6 105. 100. 5.83	0 9 51 73 244 254 17	(16,20) (20) (20) (40) (19)	.000 .000 .301 2.36** 1.44 10.7***	$\begin{array}{r} .00(-10.2) \\ .00(-4.41) \\ + 2.37 \\ \underline{Control} \\ \text{Mean t} = 1.38 \\ + 8.19 \\ + 11.2 \\ .00(-4.29) \end{array}$	
RES RES NC-1 Trial B(a)P B(a)P RES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1	.000 57.6 105. 100. 5.83 52.4 .000 91.3	0 9 51 73 244 254 17 37	(16,20) (20) (20) (40) (19) (20) (20) (20) (20)	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60	$\begin{array}{r} .00(-10.2) \\ .00(-4.41) \\ + 2.37 \\ \hline \\ \underline{Control} \\ \\ \text{Mean t} = 1.38 \\ + 8.19 \\ + 11.2 \\ .00(-4.29) \\ .00(-1.36) \end{array}$	
RES RES NC-1 Trial B(a)P B(a)P RES RES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0082	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202.	0 9 51 73 244 254 17 37 39	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20)	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54	$\begin{array}{r} .00(-10.2) \\ .00(-4.41) \\ + 2.37 \\ \hline \\ \underline{Control} \\ \\ \text{Mean t} = 1.38 \\ + 8.19 \\ + 11.2 \\ .00(-4.29) \\ .00(-1.36) \\ .00(-1.46) \end{array}$	
RES RES RC-1 Trial B(a)P B(a)P RES RES RES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2 90.3	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202. 221.	0 9 51 73 244 254 17 37 39 52	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20) (20) (20)	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03	$\begin{array}{r} .00(-10.2) \\ .00(-4.41) \\ + 2.37 \\ \hline \\ \underline{Control} \\ \\ \text{Mean t} = 1.38 \\ + 8.19 \\ + 11.2 \\ .00(-4.29) \\ .00(-1.36) \\ .00(-1.46) \\ .00(32) \end{array}$	
RES RES RC-1 Trial B(a)P B(a)P RES RES RES RES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0082	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202.	0 9 51 73 244 254 17 37 39	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20)	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03 2.19	.00(-10.2) .00(- 4.41) + 2.37 <u>Control</u> Mean t = 1.38 + 8.19 + 11.2 .00(-4.29) .00(-1.36) .00(-1.46) .00(32) <u>Control</u>	
RES RES RES NC-1 Trial B(a)P B(a)P RES RES RES RES RES RES RES RES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0082 .0041 Control	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2 90.3	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202. 221.	0 9 51 73 244 254 17 37 39 52	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20) (20) (20)	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03 2.19	$\begin{array}{r} .00(-10.2) \\ .00(-4.41) \\ + 2.37 \\ \hline \\ \underline{Control} \\ \\ \text{Mean t} = 1.38 \\ + 8.19 \\ + 11.2 \\ .00(-4.29) \\ .00(-1.36) \\ .00(-1.46) \\ .00(32) \end{array}$	
RES RES NC-1 Trial B(a)P B(a)P RES RES RES RES NC-1 Trial	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0082 .0041 Control 3 [DRI3]	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2 90.3 100.	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202. 221. 100.	0 9 51 73 244 254 17 37 39 52	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20) (20) (20)	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03 2.19	.00(-10.2) .00(- 4.41) + 2.37 <u>Control</u> Mean t = 1.38 + 8.19 + 11.2 .00(-4.29) .00(-1.36) .00(-1.46) .00(32) <u>Control</u>	
RES RES RC-1 Trial 3(a)P 3(a)P RES RES RES RES RES RES RES RES RES RES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0082 .0041 Control 3 [DRI3] .000791	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2 90.3 100. ND	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202. 221. 100. ND	0 9 51 73 244 254 17 37 39 52	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20) (20) (20)	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03 2.19	.00(-10.2) .00(- 4.41) + 2.37 <u>Control</u> Mean t = 1.38 + 8.19 + 11.2 .00(-4.29) .00(-1.36) .00(-1.46) .00(32) <u>Control</u>	
RES RES RES NC-1 Trial B(a)P B(a)P RES RES RES RES RES RES RES RES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0082 .0041 Control 3 [DRI3] .000791 .000250	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2 90.3 100. ND	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202. 221. 100. ND	0 9 51 73 244 254 17 37 39 52 110	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20) (20) (20) (20	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03 2.19	$\begin{array}{r} .00(-10.2) \\ .00(-4.41) \\ + 2.37 \\ \hline \\ \underline{Control} \\ \\ \text{Mean t} = 1.38 \\ + 8.19 \\ + 11.2 \\ .00(-4.29) \\ .00(-1.36) \\ .00(-1.46) \\ .00(32) \\ \hline \\ \underline{Control} \\ \\ \text{Mean t} = .000 \end{array}$	
RES RES RES NC-1 Trial B(a)P RES RES RES RES NC-1 Trial B(a)P B(a)P RES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0082 .0041 Control 3 [DRI3] .000791 .000250 .0148	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2 90.3 100. ND ND	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202. 221. 100. ND ND 54.5	0 9 51 73 244 254 17 37 39 52 110	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20) (20) (20) (20	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03 2.19	$\begin{array}{r} .00(-10.2) \\ .00(-4.41) \\ + 2.37 \\ \hline \\ \underline{Control} \\ \\ \text{Mean t} = 1.38 \\ + 8.19 \\ + 11.2 \\ .00(-4.29) \\ .00(-1.36) \\ .00(-1.46) \\ .00(32) \\ \hline \\ \\ \text{Mean t} = .000 \end{array}$	
RES RES RES RC-1 Frial 3(a)P RES RES RES RES RES RES RES RES RES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0082 .0041 Control 3 [DRI3] .000791 .000250 .0148 .00986	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2 90.3 100. ND ND	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202. 221. 100. ND ND ND 54.5 101.	0 9 51 73 244 254 17 37 39 52 110	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20) (20) (20) (20	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03 2.19 .277 1.31*	$\begin{array}{r} .00(-10.2) \\ .00(-4.41) \\ + 2.37 \\ \hline \\ \underline{Control} \\ \\ \text{Mean t} = 1.38 \\ + 8.19 \\ + 11.2 \\ .00(-4.29) \\ .00(-1.36) \\ .00(-1.46) \\ .00(32) \\ \hline \\ \\ \text{Mean t} = .000 \end{array}$	
RES RES RES RC-1 Frial 3(a)P RES RES RES RES RES RES RES RES RES RES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0082 .0041 Control 3 [DRI3] .000791 .000250 .0148 .00986 .00493	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2 90.3 100. ND ND ND	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202. 221. 100. ND ND S4.5 101. 106.	0 9 51 73 244 254 17 37 39 52 110 5 32 11	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20) (20) (20) (20	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03 2.19 .277 1.31* .682	$\begin{array}{r} .00(-10.2) \\ .00(- 4.41) \\ + 2.37 \\ \hline \\ \underline{Control} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
RES RES RES NC-1 Frial 3(a)P RES RES RES RES NC-1 Trial B(a)P B(a)P RES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0082 .0041 Control 3 [DRI3] .000791 .000250 .0148 .00986	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2 90.3 100. ND ND	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202. 221. 100. ND ND ND 54.5 101.	0 9 51 73 244 254 17 37 39 52 110	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20) (20) (20) (20	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03 2.19 .277 1.31* .682 .424	$\begin{array}{r} .00(-10.2) \\ .00(-4.41) \\ + 2.37 \\ \hline \\ \underline{Control} \\ \\ \text{Mean t} = 1.38 \\ + 8.19 \\ + 11.2 \\ .00(-4.29) \\ .00(-1.36) \\ .00(-1.46) \\ .00(32) \\ \hline \\ \\ \text{Mean t} = .000 \end{array}$	
RES RES RES RC-1 Frial B(a)P RES RES RES RES RES RES RES RES RES RES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0041 Control 3 [DRI3] .000791 .000250 .0148 .00986 .00493 Control	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2 90.3 100. ND ND ND ND ND	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202. 221. 100. ND ND S4.5 101. 106. 100.	0 9 51 73 244 254 17 37 39 52 110 5 32 11 5	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20) (20) (20) (20	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03 2.19 .277 1.31* .682 .424	$\begin{array}{r} .00(-10.2) \\ .00(-4.41) \\ + 2.37 \\ \hline \\ \underline{Control} \\ \\ \text{Mean t} = 1.38 \\ + 8.19 \\ + 11.2 \\ .00(-4.29) \\ .00(-1.36) \\ .00(-1.46) \\ .00(32) \\ \hline \\ \text{Mean t} = .000 \\ \end{array}$	
ES ES ES C-1 Frial C(a)P ES ES ES ES ES ES C-1 Frial C(a)P ES ES ES ES ES ES ES ES ES ES ES ES ES	.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0041 Control 3 [DRI3] .000791 .000250 .0148 .00986 .00493 Control	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2 90.3 100. ND ND ND ND ND	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202. 221. 100. ND ND S4.5 101. 106. 100.	0 9 51 73 244 254 17 37 39 52 110 5 32 11 5	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20) (20) (20) (20	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03 2.19 .277 1.31* .682 .424	$\begin{array}{r} .00(-10.2) \\ .00(-4.41) \\ + 2.37 \\ \hline \\ \underline{Control} \\ \\ \text{Mean t} = 1.38 \\ + 8.19 \\ + 11.2 \\ .00(-4.29) \\ .00(-1.36) \\ .00(-1.46) \\ .00(32) \\ \hline \\ \text{Mean t} = .000 \\ \end{array}$	
RES RES RES RC-1 Frial RES RES RC-1 Frial RES RES RC-1 Frial RES RES RC-1 Trial RES RES RES RC-1 Tris(.0197 .0156 .0099 Control 2 [8] .000791 .000250 .0164 .0123 .0041 Control 3 [DRI3] .000791 .000250 .0148 .00986 .00493 Control	2.53 22.4 94.2 100. 1.45 4.35 28.0 68.1 94.2 90.3 100. ND ND ND ND ND	.000 57.6 105. 100. 5.83 52.4 .000 91.3 202. 221. 100. ND ND S4.5 101. 106. 100.	0 9 51 73 244 254 17 37 39 52 110 5 32 11 5	(16,20) (20) (20) (40) (19) (20) (20) (20) (20) (20) (20) (20) (20	.000 .000 .301 2.36** 1.44 10.7*** 11.8*** .677 1.60 1.54 2.03 2.19 .277 1.31* .682 .424	$\begin{array}{r} .00(-10.2) \\ .00(-4.41) \\ + 2.37 \\ \hline \\ \underline{Control} \\ \\ \text{Mean t} = 1.38 \\ + 8.19 \\ + 11.2 \\ .00(-4.29) \\ .00(-1.36) \\ .00(-1.46) \\ .00(32) \\ \hline \\ \text{Mean t} = .000 \\ \end{array}$	

Treatment Condition ^a		Cytotoxic Activity ^b		Transfo Activi	-	Transformation Response ^d	Significance®
		RCE (%)		Focus Data Type Vessels		Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	III (N)		111	<i>t</i> -statistic
2EHP	.920	.000	.000	0	(2,18)	.000	.00(-6.49)
2EHP	.460	.000	27.4	7	(18)	.260	.00(97)
EHP	.230	.000	74.9	2	(18)	.080	.00(-2.50)
EHP	.115	.000	84.7	6	(18)	.260	.00(-1.00)
	Control	100.	100.	37	(67)	.406	Control
	001111-01			5.			an t = $.000$
rial 2							
(a)P	.000791	8.38	79.6	21	(18)	6.82***	+ 11.8
(a)P	.000250	29.3	91.3	17	(18)	3.38***	+ 6.81
2EHP	.575	.000	36.5	10	(17,18)	.453	.00(76)
2EHP	.431	7.33	69.0	7	(18)	.268	.00(-1.79)
2EHP	.287	9.42	73.8	11	(18)	.479	.00(65)
2EHP	.144	6.28	67.3	13	(18)	.572	.00(21)
	Control	100.	100.	39	(45)	.618	Control
	controt	100.	100.	37	(4))		an t = $.000$
•	lcyclohexe	ene [19557	9-L, M.W. =	108.20, De	nsity = NA]		
rial 1	[74]	-				2 02***	+ 6 51
rial 1 (a)P	[74] .000791	3.00	69.2	43	(18)	2.02***	+ 4.51
rial 1 (a)P	[74]	-				2.02*** 1.29*	+ 4.51 + 2.49
rial 1 (a)P (a)P (a)P	[74] .000791 .000250 L 5.23	3.00 9.58 .000	69.2 78.4 2.53	43 27 1	(18)		
ria] 1 (a)P (a)P (a)P 95579- 95579-	[74] .000791 .000250 L 5.23 L 4.18	3.00 9.58 .000 22.8	69.2 78.4 2.53 93.1	43 27 1 3	(18) (18) (4,18) (12,18)	1.29*	+ 2.49
rial 1 (a)P (a)P (5579- 25579-	[74] .000791 .000250 L 5.23 L 4.18 L 3.14	3.00 9.58 .000 22.8 28.7	69.2 78.4 2.53	43 27 1 3 9	(18) (18) (4,18)	1.29* .189 .208 .348	+ 2.49 .00(-1.31)
ia] 1 (a)P (a)P (5579- (5579- (5579-	[74] .000791 .000250 L 5.23 L 4.18 L 3.14	3.00 9.58 .000 22.8	69.2 78.4 2.53 93.1 98.6 107.	43 27 1 3	(18) (18) (4,18) (12,18)	1.29* .189 .208	+ 2.49 .00(-1.31) .00(-2.02)
ial 1 (a)P (a)P (5579- (5579- (5579- (5579- (5579-	[74] .000791 .000250 L 5.23 L 4.18 L 3.14	3.00 9.58 .000 22.8 28.7	69.2 78.4 2.53 93.1 98.6	43 27 1 3 9	(18) (18) (4,18) (12,18) (18)	1.29* .189 .208 .348	+ 2.49 .00(-1.31) .00(-2.02) .00(-1.70)
rial 1 (a)P (a)P 25579- 25579- 25579- 25579- 2-1	[74] .000791 .000250 L 5.23 L 4.18 L 3.14 L 2.09 Control	3.00 9.58 .000 22.8 28.7 60.5	69.2 78.4 2.53 93.1 98.6 107.	43 27 1 3 9 11	(18) (18) (4,18) (12,18) (18) (18)	1.29* .189 .208 .348 .456 .657	+ 2.49 .00(-1.31) .00(-2.02) .00(-1.70) .00(-1.00)
rial 1 (a)P (a)P 95579- 95579- 95579- 95579- 2-1 rial 2	[74] .000791 .000250 L 5.23 L 4.18 L 3.14 L 2.09 Control [110]	3.00 9.58 .000 22.8 28.7 60.5 100.	69.2 78.4 2.53 93.1 98.6 107. 100.	43 27 1 3 9 11 65	(18) (18) (4,18) (12,18) (12,18) (18) (18) (71)	1.29* .189 .208 .348 .456 .657 Me	+ 2.49 .00(-1.31) .00(-2.02) .00(-1.70) .00(-1.00) <u>Control</u> an t = .000
rial 1 (a)P (a)P 25579- 25579- 25579- 25579- 25579- (-1 rial 2 (a)P	[74] .000791 .000250 L 5.23 L 4.18 L 3.14 L 2.09 Control [110] .000791	3.00 9.58 .000 22.8 28.7 60.5 100. 11.6	69.2 78.4 2.53 93.1 98.6 107. 100. 61.1	43 27 1 3 9 11 65	(18) (18) (4,18) (12,18) (18) (18) (71) (18)	1.29* .189 .208 .348 .456 .657 Me 5.78***	+ 2.49 .00(-1.31) .00(-2.02) .00(-1.70) .00(-1.00) <u>Control</u> an t = .000 + 10.7
rial 1 (a)P (a)P 25579- 25579- 25579- 25579- 25579- (-1 rial 2 (a)P	[74] .000791 .000250 L 5.23 L 4.18 L 3.14 L 2.09 Control [110]	3.00 9.58 .000 22.8 28.7 60.5 100.	69.2 78.4 2.53 93.1 98.6 107. 100.	43 27 1 3 9 11 65	(18) (18) (4,18) (12,18) (12,18) (18) (18) (71)	1.29* .189 .208 .348 .456 .657 Me	+ 2.49 .00(-1.31) .00(-2.02) .00(-1.70) .00(-1.00) <u>Control</u> an t = .000
rial 1 (a)P (a)P (5579-)))))))))))))))))))))))))))))))))))	[74] .000791 .000250 L 5.23 L 4.18 L 3.14 L 2.09 Control [110] .000791 .000250	3.00 9.58 .000 22.8 28.7 60.5 100. 11.6	69.2 78.4 2.53 93.1 98.6 107. 100. 61.1	43 27 1 3 9 11 65	(18) (18) (4,18) (12,18) (12,18) (18) (18) (18) (18)	1.29* .189 .208 .348 .456 .657 Me 5.78***	+ 2.49 .00(-1.31) .00(-2.02) .00(-1.70) .00(-1.00) <u>Control</u> an t = .000 + 10.7
rial 1 (a)P (a)P (5579- (5579- (5579- (5579- (5579- (-1) (a)P (a)P (a)P (a)P	[74] .000791 .000250 L 5.23 L 4.18 L 3.14 L 2.09 Control [110] .000791 .000250 L 5.82	3.00 9.58 .000 22.8 28.7 60.5 100. 11.6 26.7	69.2 78.4 2.53 93.1 98.6 107. 100. 61.1 88.0	43 27 1 3 9 11 65 116 75	(18) (18) (4,18) (12,18) (18) (18) (18) (18) (18) (1,18)	1.29* .189 .208 .348 .456 .657 Me 5.78*** 3.89***	+ 2.49 .00(-1.31) .00(-2.02) .00(-1.70) .00(-1.00) an t = .000 + 10.7 + 8.52 .00(-7.87)
rial 1 (a)P (b)5579- 05579- 05579- 05579- 05579- 0-1 (a)P (a)P (a)P (b)5579- 05579- 05579- 05579-	[74] .000791 .000250 L 5.23 L 4.18 L 3.14 L 2.09 Control [110] .000791 .000250 L 5.82 L 4.36	3.00 9.58 .000 22.8 28.7 60.5 100. 11.6 26.7 .000	69.2 78.4 2.53 93.1 98.6 107. 100. 61.1 88.0 .000	43 27 1 3 9 11 65 116 75 0	(18) (18) (12,18) (12,18) (18) (18) (18) (18) (18) (1,18) (3,18)	1.29* .189 .208 .348 .456 .657 Me 5.78*** 3.89*** .000 .000	+ 2.49 .00(-1.31) .00(-2.02) .00(-1.70) .00(-1.00) an t = .000 + 10.7 + 8.52 .00(-7.87) .00(-7.87)
rial 1 (a)P (a)P 25579- 25579- 25579- 25579- C-1 rial 2 (a)P (a)P (a)P 25579- 25579- 25579- 25579-	[74] .000791 .000250 L 5.23 L 4.18 L 3.14 L 2.09 Control [110] .000791 .000250 L 5.82 L 4.36 L 2.91	3.00 9.58 .000 22.8 28.7 60.5 100. 11.6 26.7 .000 8.04 .322	69.2 78.4 2.53 93.1 98.6 107. 100. 61.1 88.0 .000 .712 4.24	43 27 1 3 9 11 65 116 75 0 0 4	(18) (18) (12,18) (12,18) (18) (18) (18) (18) (18) (18) (1,18) (3,18) (15,17)	1.29* .189 .208 .348 .456 .657 Me 5.78*** 3.89*** .000 .000 .157	+ 2.49 .00(-1.31) .00(-2.02) .00(-1.70) .00(-1.00) an t = .000 + 10.7 + 8.52 .00(-7.87) .00(-7.87) .00(-2.19)
rial 1 (a)P (a)P 25579- 25579- 25579- 25579- C-1 rial 2 (a)P (a)P 25579- 25579- 25579-	[74] .000791 .000250 L 5.23 L 4.18 L 3.14 L 2.09 Control [110] .000791 .000250 L 5.82 L 4.36 L 2.91	3.00 9.58 .000 22.8 28.7 60.5 100. 11.6 26.7 .000 8.04	69.2 78.4 2.53 93.1 98.6 107. 100. 61.1 88.0 .000 .712	43 27 1 3 9 11 65 116 75 0 0	(18) (18) (12,18) (12,18) (18) (18) (18) (18) (18) (1,18) (3,18)	1.29* .189 .208 .348 .456 .657 Me 5.78*** 3.89*** .000 .000	+ 2.49 .00(-1.31) .00(-2.02) .00(-1.70) .00(-1.00) an t = .000 + 10.7 + 8.52 .00(-7.87) .00(-7.87)

Appendix D. Continued.

Abbreviations: B(a)P, benzo(a)pyrene; CC.A., co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels, NC, negative control; ND, not determined; %RCE, percent relative cloning efficiency; S.A., standard clonal survival assay.

^aTreatment condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to μ g/ml using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

^bCytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as & RCE and was calculated as described in the Materials and Methods.

^cThe criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci > 2-mm in diameter per culture vessel scored are recorded in this table.

^dTransformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a \log_{10} mathematical transformation procedure (refer to Materials and Methods). The arithmetic value or foci/vessel represents the antilog of the \log_{10} mean transformation response minus one.

^cSignificance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22), and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (-) t-statistics were given a value of zero (0).

*Significant BaP or test chemical transformation response, 0.01 .

**Significant BaP or test chemical transformation response, 0.001 .

***Significant or BaP or test chemical transformation response, $p \le 0.001$.

Appendix E.

Summary of the transformation responses of 30 cytotoxic, nonmutagenic noncarcinogens.

Treatment Condition ^a	Cytotoxic Activity ^b	Transforming Activity ^c	Transformation Response ^d	Significance ^e
	RCE (%)	Focus Data	Foci/Vessel	
rug Conc., mM	S.A CC.A.	Type Vessels III (N)	Focus Type III	* **** *****
rug conc., am	J.A (L.A.	(N)	111	<i>t</i> -statistic
ilazine [ANIL,	M.W. = 275.53]			
al 1 [29] DP .000791	1.15 57.0	122 (20)	5.79***	+ 13.1
)P .000250	2.29 78.5	142 (20)	6.19***	+ 10.3
L .0581	5.34 7.59	9 (20)	.347	.00(-1.31)
L .0436	34.0 71.1	43 (20)	1.81***	+ 3.86
L .0290	73.7 87.3	19 (20)	.721	+ .48
L .0145	93.9 105. 100. 100.	13 (20) 36 (40)	.503	.00(48) Control
1 Control	100. 100.	36 (40)	.606 Mean	$\frac{\text{Control}}{t = 1.09}$
al 2 [85])P .000791	18.8 55.6	133 (20)	3.43***	+ 5.10
)P .000250	28.7 91.5	66 (19)	2.10***	+ 4.56
L .0581	3.19 20.4	4 (11,20)	.110	.00(59)
L .0436	51.1 64.7	46 (20)	2.00***	+ 7.57
L .0290	46.7 96.7	13 (20)	.365	+ .34
L .0145	50.3 107.	14 (20)	.394	+ .52
1 Control	100. 100.	38 (80)	.313 Mean	$\frac{\text{Control}}{\text{t} = 2.81}$
scorbic Acid [[ASC, M.W. = 176.14]			
a] 1 [4]		404 4200	0 04+++	
)P .000791	15.7 74.7	184 (20)	8.81*** 4.38***	+ 9.38 + 3.62
)P .000250	24.0 82.9	116 (20)		
.341	62.0 53.5	34 (20)	1.34	.00(33)
.298	75.2 58.1	68 (20) (7 (20)	2.24	+ 1.20
.256 .199	89.7 56.2 100. 84.8	43 (20) 30 (20)	1.08 1.02	.00(82) .00(-1.03)
1 Control	100. 100.	118 (40)	1.51	Control
				t = .300
a] 2 [11])P .000791	1.37 34.4	128 (20)	4.94***	+ 10.5
)P .000250	7.22 36.0	37 (20)	1.62***	+ 5.38
.568	9.97 73.1	18 (20)	.525	+ 1.11
.426	23.4 86.0	6 (20)	.231	.00(45)
.284	63.2 90.3	5 (20)	. 189	.00(86)
.142 1 Control	78.0 64.5 100. 100.	9 (20) 21 (40)	.347 .301	+ .28 Control
i control	100. 100.	21 (40)		t = .348
sphenol A [BIS,	M.W. = 228.29]			
a] 1 [2]	1 0 7 7 /	197 (20)	0 00+++	. 15 5
)P .000791)P .000250	1.02 36.4 3.41 68.7	187 (20) 110 (20)	8.89*** 4.52***	+ 15.5 + 8.43
			4.72	T 0.43
.215	2.39 56.4	8 (20)	.282	.00(-2.11)
.193 .167	11.3 73.5 46.4 95.5	12 (19) 18 (20)	.449 .712	.00(-1.04) + .24
.127	61.1 118.	16 (20)	.573	+ .24 .00(41)
1 Control	100. 100.	34 (40)	.660	<u>Control</u>
al 2 [8]			Mean	t = .060
P .000791	1.45 5.83	244 (19)	10.7***	+ 8.19
)P .000250	4.35 52.4	254 (20)	11.8***	+ 11.2

Treatment Condition ^a		Cytotoxic Activity ^b		Transf Activ		Transformation Response ^d	Significance ^e	
		RC	E (%)	Focus Type Vo		Foci/Vessel		
Drug	Conc., mM	S.A	CC.A.	II:		Focus Type III	<i>t</i> -statistic	
S	.263	.000	.000	1	(15)	.047	.00(-10.8)	
S	.219	7.25	.000	13	(18)	.572	.00(- 4.58)	
S	.175	22.2	1.94	55	(20)	2.15	.00(08	
S	.131	43.9	27.2	89	(19)	4.31**	+ 3.45	
- 1	Control	100.	100.	110	(40)	2.19 Mea	$\frac{Control}{1.15}$	
	[IP17]	000		100	(45)			
a)P	.000791	.000	NA	100	(15)	5.28***	+ 8.30	
a)P	.000250	3.1	NA	84	(15)	5.28***	+ 11.4	
S	. 197	8.3	NA	4	(15)	. 18	.00(-1.15)	
S	.131	34.8	NA	15	(15)	.72	+ 1.14	
S	.0657	76.0	NA	8	(15)	.42	+ .04	
-1	Control	100.	NA	20	(29)	.41 Mea	$\frac{Control}{1}$	
	[IP18]	. –						
a)P	.000791	1.3	3.7	82	(11)	6.31***	+ 20.5	
a)P	.000250	2.6	22.1	110	(12)	8.85***	+ 10.7	
s	.210	.000	2.7	1	(12)	.059	.00(-1.18)	
S	.158	3.0	19.5	10	(12)	.55	+ 1.48	
S	.105	20.6	52.3	11	(12)	.658	+ 1.92	
S	.0526	69.5	81.3	17	(12)	1.01*	+ 2.75	
C-1	Control	100.	100.	4	17/1	400		
rial	No. 6 was co			6 Nes using 2	(24) 20000 BALB/c [.]	.189 Mea 3T3 Cells (refer	$\frac{Control}{1.54}$	
rial xp.IP	No. 6 was co	onducted in	100 mm dish			Mea	an $t = 1.54$	
rial xp.IP arbro	No. 6 was co 18). mal [CARB,	onducted in	100 mm dish			Mea	an $t = 1.54$	
rial xp.IP	No. 6 was co 18). mal [CARB,	onducted in	100 mm dish			Mea	an $t = 1.54$	
rial xp.IP arbro rial 1	No. 6 was co 18). mal [CARB, [35]	onducted in M.W. = 237	100 mm dish .10]	nes using 2	20000 BALB/c·	Mea 3T3 Cells (refer	an t = 1.54 to	
rial xp.IP arbro rial 1 (a)P (a)P	No. 6 was co 18). mal [CARB, [35] .000791 .000250	onducted in M.W. = 237 4.51 12.3	100 mm dish 10] 66.1 87.5	ues using 2 103 133	20000 BALB/c· (20) (20)	Mea 3T3 Cells (refer 4.91*** 6.01***	an t = 1.54 to + 6.41 + 6.34	
rial xp.IP arbro rial 1 (a)P (a)P	No. 6 was co 18). mal [CARB, [35] .000791	onducted in M.W. = 237 4 . 51	100 mm dish .10] 66.1	es using 2	20000 BALB/c [.] (20)	Mea 3T3 Cells (refer 4.91***	an t = 1.54 to + 6.41	
rial xp.IP arbro rial 1 (a)P (a)P (a)P	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06	0nducted in M.W. = 237 4.51 12.3 2.05	100 mm dish 10] 66.1 87.5 12.5	ues using 2 103 133 12	20000 BALB/c· (20) (20) (11,20)	Mea 3T3 Cells (refer 4.91*** 6.01*** .782	to + 6.41 + 6.34 .00(-2.76)	
rial xp.IP arbro ial 1 a)P a)P RB RB RB RB	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53 1.27	M.W. = 237 4.51 12.3 2.05 7.79 30.7 59.0	100 mm dish .10] 66.1 87.5 12.5 72.1 115. 111.	103 103 133 12 67 36 37	(20) (20) (20) (11,20) (20) (20) (20) (20)	Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68	to $+ 6.41$ $+ 6.34$ $-00(-2.76)$ $+ 2.02$ $-00(-1.41)$ $-00(79)$	
rial xp.IP arbro rial 1 (a)P (a)P (a)P (a)R (RB (RB (RB) (RB) (RB)	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53	0nducted in M.W. = 237 4.51 12.3 2.05 7.79 30.7	100 mm dish 10] 66.1 87.5 12.5 72.1 115.	103 103 133 12 67 36	(20) (20) (20) (11,20) (20) (20) (20)	Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68 1.97	<pre>in t = 1.54 to + 6.41 + 6.34 .00(-2.76) + 2.02 .00(-1.41) .00(79) Control</pre>	
rial xp.IP arbro rial 1 (a)P (a)P (a)P (a)P	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53 1.27 Control	M.W. = 237 4.51 12.3 2.05 7.79 30.7 59.0 100.	100 mm dish 10] 66.1 87.5 12.5 72.1 115. 111. 100.	103 103 133 12 67 36 37 94	(20) (20) (20) (11,20) (20) (20) (20) (20) (20) (40)	Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68 1.97 Mea	to $+ 6.41$ $+ 6.34$ $.00(-2.76)$ $+ 2.02$ $.00(-1.41)$ $.00(79)$ $Control$ an t = .673	
rial xp.IP arbro rial 1 (a)P (a)P (a)P (a)P (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53 1.27 Control [44] .000791	0nducted in M.W. = 237 4.51 12.3 2.05 7.79 30.7 59.0 100. 5.07	100 mm dish 10] 66.1 87.5 12.5 72.1 115. 111. 100. 25.9	103 103 133 12 67 36 37 94 335	(20) (20) (20) (11,20) (20) (20) (20) (20) (40) (20)	Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68 1.97 Mea 15.8***	to $+ 6.41$ $+ 6.34$ $.00(-2.76)$ $+ 2.02$ $.00(-1.41)$ $.00(79)$ $Control$ an t = .673 + 16.3	
rial xp.IP arbro rial 1 (a)P (a)P (a)P (a)R (a)R (a)R (a)R (a)R (a)R (a)R (a)R	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53 1.27 Control	M.W. = 237 4.51 12.3 2.05 7.79 30.7 59.0 100.	100 mm dish 10] 66.1 87.5 12.5 72.1 115. 111. 100.	103 103 133 12 67 36 37 94	(20) (20) (20) (11,20) (20) (20) (20) (20) (20) (40)	Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68 1.97 Mea	to $+ 6.41$ $+ 6.34$ $.00(-2.76)$ $+ 2.02$ $.00(-1.41)$ $.00(79)$ $Control$ an t = .673	
rial (xp.IP) arbro (a)P (a)P (a)P (xRB) (x	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53 1.27 Control [44] .000791	0nducted in M.W. = 237 4.51 12.3 2.05 7.79 30.7 59.0 100. 5.07	100 mm dish 10] 66.1 87.5 12.5 72.1 115. 111. 100. 25.9	103 103 133 12 67 36 37 94 335	(20) (20) (20) (11,20) (20) (20) (20) (20) (40) (20)	Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68 1.97 Mea 15.8***	to $+ 6.41$ $+ 6.34$ $.00(-2.76)$ $+ 2.02$ $.00(-1.41)$ $.00(79)$ $Control$ an t = .673 + 16.3	
rial (xp. IP arbro rial 1 (a)P (a)P (a)P (xB (xB (xB (xB) (a)P (a)P (a)P (xB) (xB) (xB) (xB) (xB) (xB) (xB) (xB)	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53 1.27 Control [44] .000791 .000250 4.00 2.00	M.W. = 237 4.51 12.3 2.05 7.79 30.7 59.0 100. 5.07 14.2 9.80 35.1	100 mm dish .10] 66.1 87.5 12.5 72.1 115. 111. 100. 25.9 67.2	103 103 133 12 67 36 37 94 335 137	(20) (20) (20) (11,20) (20) (20) (20) (20) (40) (20) (20)	Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68 1.97 Mea 15.8*** 6.15***	an t = 1.54 to + 6.41 + 6.34 .00(-2.76) + 2.02 .00(-1.41) .00(79) Control an t = $.673$ + 16.3 + 7.33	
rial (xp. IP arbro ial 1 (a)P (a)P (a)P (xB (xB (xB (a)P (a)P (a)P (a)P (xB (xB (xB) (xB) (xB) (xB) (xB) (xB) (No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53 1.27 Control [44] .000791 .000250 4.00 2.00 1.00	0nducted in M.W. = 237 4.51 12.3 2.05 7.79 30.7 59.0 100. 5.07 14.2 9.80 35.1 89.2	100 mm dish .10] 66.1 87.5 12.5 72.1 115. 111. 100. 25.9 67.2 22.0 85.2 84.4	103 103 133 12 67 36 37 94 335 137 156 83 68	(20) (20) (20) (11,20) (20) (20) (20) (20) (20) (20) (20) (Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68 1.97 Mea 15.8*** 6.15*** 7.00*** 3.80** 2.60*	an $t = 1.54$ to + 6.41 + 6.34 .00(-2.76) + 2.02 .00(-1.41) .00(79) <u>Control</u> an $t = .673$ + 16.3 + 7.33 + 8.03 + 4.39 + 2.26	
rial xp.IP arbro ial 1 a)P a)P kRB kRB kRB kRB kRB kRB kRB kRB kRB kRB	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53 1.27 Control [44] .000791 .000250 4.00 2.00 1.00 .500	0nducted in M.W. = 237 4.51 12.3 2.05 7.79 30.7 59.0 100. 5.07 14.2 9.80 35.1 89.2 98.3	100 mm dish .10] 66.1 87.5 12.5 72.1 115. 111. 100. 25.9 67.2 22.0 85.2 84.4 91.3	103 103 133 12 67 36 37 94 335 137 156 83 68 47	(20) (20) (20) (11,20) (20) (20) (20) (20) (20) (20) (20) (Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68 1.97 Mea 15.8*** 6.15*** 7.00*** 3.80** 2.60* 1.97	an $t = 1.54$ to + 6.41 + 6.34 .00(-2.76) + 2.02 .00(-1.41) .00(79) <u>Control</u> an $t = .673$ + 16.3 + 7.33 + 8.03 + 4.39 + 2.26 + 1.09	
rial xp.IP arbro ial 1 a)P a)P RB RB RB RB RB c-1 ial 2 a)P RB RB RB RB RB RB RB RB	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53 1.27 Control [44] .000791 .000250 4.00 2.00 1.00	0nducted in M.W. = 237 4.51 12.3 2.05 7.79 30.7 59.0 100. 5.07 14.2 9.80 35.1 89.2	100 mm dish .10] 66.1 87.5 12.5 72.1 115. 111. 100. 25.9 67.2 22.0 85.2 84.4	103 103 133 12 67 36 37 94 335 137 156 83 68	(20) (20) (20) (11,20) (20) (20) (20) (20) (20) (20) (20) (Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68 1.97 Mea 15.8*** 6.15*** 7.00*** 3.80** 2.60* 1.97 1.52	an $t = 1.54$ to + 6.41 + 6.34 .00(-2.76) + 2.02 .00(-1.41) .00(79) <u>Control</u> an $t = .673$ + 16.3 + 7.33 + 8.03 + 4.39 + 2.26 + 1.09 <u>Control</u>	
rial xp.IP arbro ial 1 a)P a)P RB RB RB RB RB RB RB RB RB RB RB RB RB	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53 1.27 Control [44] .000791 .000250 4.00 2.00 1.00 .500	M.W. = 237 4.51 12.3 2.05 7.79 30.7 59.0 100. 5.07 14.2 9.80 35.1 89.2 98.3 100.	100 mm dish .10] 66.1 87.5 12.5 72.1 115. 111. 100. 25.9 67.2 22.0 85.2 84.4 91.3 100.	103 103 133 12 67 36 37 94 335 137 156 83 68 47 77	(20) (20) (20) (20) (20) (20) (20) (20)	Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68 1.97 Mea 15.8*** 6.15*** 7.00*** 3.80** 2.60* 1.97 1.52	an $t = 1.54$ to + 6.41 + 6.34 .00(-2.76) + 2.02 .00(-1.41) .00(79) <u>Control</u> an $t = .673$ + 16.3 + 7.33 + 8.03 + 4.39 + 2.26 + 1.09	
rial xp.IP arbro rial 1 a)P a)P RB RB RB RB RB RB RB RB RB RB RB RB RB	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53 1.27 Control [44] .000791 .000250 4.00 2.00 1.00 .500 Control heniramine	M.W. = 237 4.51 12.3 2.05 7.79 30.7 59.0 100. 5.07 14.2 9.80 35.1 89.2 98.3 100.	100 mm dish .10] 66.1 87.5 12.5 72.1 115. 111. 100. 25.9 67.2 22.0 85.2 84.4 91.3 100.	103 103 133 12 67 36 37 94 335 137 156 83 68 47 77	(20) (20) (20) (20) (20) (20) (20) (20)	Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68 1.97 Mea 15.8*** 6.15*** 7.00*** 3.80** 2.60* 1.97 1.52	an $t = 1.54$ to + 6.41 + 6.34 .00(-2.76) + 2.02 .00(-1.41) .00(79) <u>Control</u> an $t = .673$ + 16.3 + 7.33 + 8.03 + 4.39 + 2.26 + 1.09 <u>Control</u>	
rial (xp.IP) arbro ial 1 (a)P (a)P (xB) (xB) (xB) (xB) (xB) (xB) (xB) (xB)	No. 6 was co 18). mal [CARB, [35] .000791 .000250 5.06 3.80 2.53 1.27 Control [44] .000791 .000250 4.00 2.00 1.00 .500 Control heniramine	M.W. = 237 4.51 12.3 2.05 7.79 30.7 59.0 100. 5.07 14.2 9.80 35.1 89.2 98.3 100.	100 mm dish .10] 66.1 87.5 12.5 72.1 115. 111. 100. 25.9 67.2 22.0 85.2 84.4 91.3 100.	103 103 133 12 67 36 37 94 335 137 156 83 68 47 77	(20) (20) (20) (20) (20) (20) (20) (20)	Mea 3T3 Cells (refer 4.91*** 6.01*** .782 2.96* 1.41 1.68 1.97 Mea 15.8*** 6.15*** 7.00*** 3.80** 2.60* 1.97 1.52	an $t = 1.54$ to + 6.41 + 6.34 .00(-2.76) + 2.02 .00(-1.41) .00(79) <u>Control</u> an $t = .673$ + 16.3 + 7.33 + 8.03 + 4.39 + 2.26 + 1.09 <u>Control</u>	

Appendix E. Continued.

	atment lition ^a	on ^a Activity ^b			ming ty ^c	Transformation Response ^d	Significance ^e	
		RCE (%)		Focus Data		Foci/Vessel		
				Type Ves	sels	Focus Type		
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic	
05004-s		.000	.000	0	(0,8)	.000	NA	
05004-s		.000	4.50	1	(4,11)	.119	.00(-1.15)	
05004-s		.000	74.3	2	(9)	.167	.00(-1.83)	
05004-S	5.128	8.07	105.	10	(17)	.503	.00(13)	
2-1	Control	100.	100.	36	(54)	.526	<u>Control</u>	
rial 2	F85 1					Mea	n t = .000	
(a)P	.000791	18.8	55.6	133	(20)	3.43***	+ 5.10	
(a)P	.000250	28.7	91.8	66	(19)	2.10***	+ 4.56	
(4)/		2011	/1.0	00		2.10	4.50	
05004-s	.410	.000	.000	3	(10,20)	.231	.00(55)	
05004-s	.308	.000	34.1	20	(20)	.807**	+ 2.91	
05004-s		1.20	91.8	18	(20)	.737*	+ 2.56	
05004-s		63.1	103.	10	(20)	.374	.43	
C-1	Control	100.	100.	38	(80)	.313	Control	
- •	30.101 01			50	,		n t = 1.97	
								
. I. A	Acid Red 14	[CIAR14,	M.W. = 502.	44]				
rial 1	F301							
(a)P	.000791	1.32	60.3	158	(20)	7.23***	+ 12.3	
(a)P	.000250	2.63	101.	98	(19)	4.25***	+ 8.08	
/ !		2.00					2	
IAR14	3.98	3.95	32.6	44	(20)	1.54*	+ 2.33	
	2.98	21.5	48.4	35	(20)	1.61**	+ 3.17	
	1.99	32.9	51.7	38	(20)	1.59**	+ 2.75	
	1.00	72.4	78.5	22	(20)	.966	+ .78	
		100.	100.	22 40	(40)	.787	f .70 Control	
6- I	Control	100.	100.	40	(40)		t = 2.26	
rial 2	[45]							
(a)P	.000791	8.74	42.5	186	(20)	8.98***	+ 20.9	
(a)P	.000250	28.2	86.4	77	(20)	3.42***	+ 8.88	
		4		_ .		0 /0±		
	4.00	13.9	87.9	26	(20)	.848*	+ 2.15	
	2.00	89.3	103.	- 48	(19)	2.30***	+ 8.11	
	1.00	102.	99.2	35	(20)	1.48***	+ 4.80	
IAR14	.500	100.	103.	15	(20)	.547	+ 1.32	
2-1	Control	100.	100.	54	(59)	.732	Control	
						Меа	n t = 4.09	
. I. A	Acid Yellow	1 73 [CIA	1773, M.W. =	= 376.]				
rial 1		-		-				
(a)P	.000791	5.6	6 69.5	17	9 (20)	8.33***	+ 13.6	
(a)P	.000250	16.5		11		5.53***	+ 10.0	
		10.5				2.20		
ΙΑΥ73	7.98	2.8	3 11.9	1	3 (16)	.664	.00(-1.31)	
IAY73	5.98		00 18.7		4 (16)	.645	.00(-1.36)	
IAY73	3.99	9.9			7 (20)	.221	.00(-4.09)	
IAY73	1.99	54.2			7 (20)	.702	.00(-1.25)	
C-1	Control	100.	100.		4 (78)	.972	Control	
	Sontrot	100.	100.	,	- (10)		t = .000	
rial 2	[83]							
(a)P	.000791	2.8	6 73.0	14	1 (20)	6.14***	+ 13.5	
(a)P	.000250	13.8		6		2.93***	+ 9.12	
		-						
IAY73	7.98	.0			3 (13)	.173	.00(-1.01)	
IAY73	5.98	2.3			0 (13)	-406	+ .26	
IAY73	3.99	4.2			4 (12)	.230	.00(64)	
	1.99	34.8	78.4		6 (20)	.231	.00(81)	
IAY73	1.77							
(AY73 C-1	Control	100.	100.		8 (80)	.351	<u>Control</u> In t = .065	

Appendix E. Continued.

Treatment Condition ^a	Cytotoxic Activity ^b RCE (%)		Transf Activ	vity	Transformati Response ^d	Significance ^e
	RC NO	- (**)	Focus Type V		Foci/Vessel Focus Type	
Drug Conc.,mM	S.A	CC.A.	II:		III	<i>t</i> -statistic
phedrine Sulfat	e [213387-9	5, M.W. = 42	8.54]			
rial 1 [71]						
(a)P .000791 (a)P .000250	4.48 18.1	50.7 68.7	251 77	(20) (20)	11.0*** 3.50***	+ 12.1 + 7.12
a)r .000290	10.1	00.7		(20)	3.30	+ 7.12
3387-s .279	73.9	80.9	18	(20)	.712	.00(-1.26)
3387-S .209	75.7	79.4	16	(20)	.611	.00(-1.67)
3387-S .140	80.6	87.8	37	(15)	1.96*	+ 2.14
3387-S .0700 1 Control	93.1 100.	83.2 100.	24	(13)	1.51	+ 1.10
i control	100.	100.	110	(75)	1.06 M	<u>Control</u> Hean t = .810
a] 2 [77]	E //	(0 F	470	(20)		
)P .000791)P .000250	5.66 16.5	69.5 78.7	179 114	(20) (19)	8.33*** 5.53***	+ 13.6 + 10.0
	10.5	10.1	14	(17)		T 10.0
3387-S 2.79	.000	.367	0	(7,20)	.000	.00(-12.5)
3387-S 2.09	.000	10.6	4	(19)	. 157	.00(- 6.21)
3387-S 1.40	.943	83.6	28	(20)	.880	.00(37)
3387-S .698 1 Control	30.2 100.	97.6 100.	19 94	(19) (78)	.760	.00(92) Control
	100.	100.	74	(78)	.972 M	<u>Control</u> lean t = .000
al 3 [89]	0.47	(0.0		(20)	/	
a)P .000791 a)P .000250	8.13	69.0	119	(20)	4.77***	+ 10.3
)P .000250	31.9	89.1	63	(20)	2.33***	+ 5.84
387-S 2.09	. ?	.2 ?	0	(5,20)	.000	.00(-7.01)
387-S 1.74	42.5 ?	2.3 ?	8	(15)	.270	.00(-1.12)
387-s 1.40	102.	13.3	23	(19)	.704	+ .96
3387-S .698	107.	91.9	12	(19)	.480	.00(06)
1 Control	100.	100.	57	(79)	.492	<u>Control</u>
					M	lean t = .320
thromycin Ste	arate [302	486-S, M.W.	= 1018.59]		
a] 1 [71]						
)P .000791	4.48	50.7	251	(20)	11.0***	+ 12.1
)P .000250	18.1	68.7	77	(20)	3.50***	+ 7.12
486-S .118	.000	13.4	6	(16)	.242	.00(-3.18)
486-S .0882	.000	39.1	7	(20)	.275	.00(-4.65)
486-S .0588	1.79	75.1	9	(20)	.366	.00(-3.89)
486-S .0294	25.1	98.9	10	(16)	.461	.00(-2.13)
1 Control	100.	100.	110	(75)	1.06	Control
al 2 [89]					M	lean t = .000
)P .000791	8.13	69.0	119	(20)	4.77***	+ 10.3
)P .000250	31.9	89.1	63	(20)	2.33***	+ 5.84
486-S .118	.000	12.0	5	(20)	.172	001-2 551
486-5 .0882	.000	27.0	7	(20)	.275	.00(-2.55) .00(-1.31)
486-5 .0588	2.61	75.4	11	(20)	.402	.00(-50)
486-S .0294	49.3	83.7	17	(20)	.620	+ .65
1 Control	100.	100.	57	(79)	.492	<u>Control</u>
					M	lean t = .163
oxylated Dodeo	cyl Alcoho	D] [EDA, M.W	1. = ~1200.	, Density	= 0.999 g/ml]	
-	•				J	
a] 1 [82]		(7.0	771	(19)	10 / ***	+ 7/5

	וויבן							
B(a)P	.000791	46.8	47.2	371	(18)	19.4***	+	7.45
B(a)P	.000250	56.3	51.6	288	(18)	15.5***	+	7.97

Treatment Condition ^a		Cytotoxic Activity ^b		Transfor Activit		Transformation Response ^d	Significance ^e
		RCE (%)		Focus Data		Foci/Vessel	
				Type Ves		Focus Type	
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic
DA	.0417	.000	.000	0	(0,18)	.000	NA
DA	.0132	.867	67.8	125	(18)	6.42	.00(-1.74)
DA	.00417	26.9	101.	110	(18)	5.77	.00(-2.59)
DA	.00132	63.3	91.8	82	(18)	4.40	.00(-6.45)
C-1	Control	100.	100.	649	(72)	8.01 Moa	<u>Control</u> n t = .000
rial	2 [90]					nec	in c = .000
(a)P	.000791	28.5	76.0	157	(18)	7.60***	+ 5.89
(a)P	.000255	51.8	95.8	111	(18)	4.91***	+ 3.71
DA	.0250	.000	.000	1	(12,18)	.059	.00(-9.90)
DA	.0188	8.70	12.5	11	(18)	.414	.00(-4.07)
DA	.0125	8.35	62.1	68	(18)	2.85	+ 1.44
DA	.00625	15.7	94.3	51	(18)	2.12	+ .31
C-1	Control	100.	100.	219	(71)	1.95	Control
U 1	JUNCIUL	100.	100.	217	(11)		n t = .583
thyl	enediamine	Tetraacet	ic Acid,	Trisodium	Salt [EDT/	A, M.W. = 358.22]	
rial	1 [73]						
B(a)P	.000791	2.21	71.9	61	(19)	2.60***	+ 8.09
(a)P	.000250	7.18	88.8	48	(20)	1.58***	+ 4.37
DTA	2 72	000	7 17	5	(20)	1.20	.00(45)
DTA	2.72	.000 5.00	3.13 60.0	5 34	(20) (20)	.172 1.26**	+ 4.49
DTA	1.81						
DTA	1.36	45.3	79.4	14	(20)	.525	
DTA	.907	80.1	98.8	19	(20)	.542	+ 1.48
IC-1	Control	100.	100.	45	(79)	.274 Mea	$\frac{\text{Control}}{10 \text{ t} = 2.49}$
	2 [85]		/				
3(a)P ⁿ		12.8	55.6	133	(20)	3.43***	+ 5.10
(a)P	.000250	22.4	91.8	66	(19)	2.10***	+ 4.56
B(a)P	.000791	18.8	55.9				
l(a)P	.000250	28.7	79.4				
DTA	2.79	.000	.000	2	(15,20)	.072	.00(-2.26)
DTA	2.33	1.20	2.33	11	(20)	.423	+ .75
DTA	1.67	37.5	49.1	15	(20)	.578	+ 1.68
DTA	.837	94.6	89.7	7	(20)	.272	.00(29)
IC-1	Control	100.	100.	38	(80)	.313	Control
U-1	CONTROL	100.	100.	50	(00)		t = .810
•	10] [EUG, M.I	W. = 164.20	, Density :	= 1.064 g/m]]		
	1 [74]	2	40.2	17	(19)	2 02***	+ / 51
B(a)P	.00079	?	69.2	43	(18)	2.02***	+ 4.51
3(a)P	.000250	9.58	78.4	27	(18)	1.29*	+ 2.49
EUG	.649	.000	96.3	43	(18)	1.99***	+ 4.45
EUG	.325	11.4	110.	30	(18)	1.00	+ 1.07
	.162	39.5	99.1	23	(18)	1.03	+ 1.51
	.0812	66.5	107.	17	(18)	.765	+ .49
EUG		100.	100.	65	(71)	.657	<u>Control</u>
EUG EUG NC - 1	Control					Ma	m + - 1.00
UG UG IC - 1						Med	an t = 1.88
UG UG IC-1 [ria]	2 [94]	000	75 7	100	(18)		
UG UG IC-1		.000 17.4	75.7 114.	122 81	(18) (18)	тек 5.92*** 3.88***	+ 6.26 + 4.08

450

Treatment Condition ^a		Ac	totoxic tivity ^b		forming vity ^c	Transformatio Response ^d	n Significance ^e
		R	CE (%)		s Data	Foci/Vessel	
Drug	Conc., mM	S.A	CC.A.	Iype V Il	/essels I (N)	Focus Type III	<i>t</i> -statistic
		5.6			·• (II)		
EUG	1.62	.000	.000	0	(1.10)		
EUG	.812	.000		32	(1,18) (15)	.000	.00(-1.44)
EUG	.406	5.13	121.	22	(18)	1.52 .586	.00(01)
EUG	.203	5.13	137.	15	(18)	.624	.00(-2.72)
IC-1	Control	100.	100.	150	(71)	1.52	.00(-2.73) <u>Contr</u> ol
•	.						lean t = .000
peran	yl Acetate	[GEAC, M.W	. = 196.32, [Density =	0.907 - 0.91	18 g/m]]	
	1 [84]	<i>(</i> 0 0					
l(a)P	.000791	49.8	57.9	71	(18)	3.27***	+ 6.82
(a)P	.000250	ND	71.7	57	(18)	2.44***	+ 6.14
EAC	.560	.733	1.68	1	(16,18)	.039	.00(-5.25)
EAC EAC	.280	53.5	50.9	10	(18)	.446	.00(36)
EAC	.140 .0700	84.2	60.6	18	(18)	.834	+ 1.59
C-1	Control	114.	101.	9	(18)	.339	.00(98)
		100.	100.	50	(72)	.511 M	$\frac{Control}{ean t = .530}$
rial 2 (a)P		70/	/5.7				
(a)P (a)P	.00250 .000791	.394	45.3	69	(18)	3.54***	+ 8.31
(a)P	.000250	18.2 19.4	72.2	44	(18)	2.14***	+ 5.20
		17.4	78.2	32	(17)	1.52**	+ 3.32
AC	.509	1.19	.000	0	(0,18)	.000	NA
AC	.382	14.7	19.9	9	(9,18)	.714	+ .39
EAC	.255	61.4	66.2	14	(18)	.634	+ .18
EAC	.127	89.5	98.1	7	(18)	.260	.00(-1.86)
2-1	Control	100.	100.	62	(71)	.597	Control
						Me	an t = .090
Hexy	lresorcino [:]	l [012776-s	5, M.W. = 194	.27]			
ial 1	[63]						
a)P	.000791	4.00	80.5	141	(20)	6.13***	+ 6.87
a)P	.000250	24.8	93.1	93	(20)	3.20*	+ 2.02
ajr							
	- 150	/ -	2.24	-			
2776-9		4.7	2.21	2	(18)	.080	.00(-11.5)
2776-9 2776-9	s .118	14.5	51.0	3	(9)	.220	.00(- 5.54)
2776-9 2776-9 2776-9	s .118 s .079	14.5 49.1	51.0 82.7	3 16	(9) (10)	.220 1.35	.00(- 5.54) .00(- 1.36)
2776-9 2776-9 2776-9 2776-9	S .118 S .079 S .039	14.5 49.1 76.3	51.0 82.7 103.	3 16 26	(9) (10) (15)	.220 1.35 1.57	.00(- 5.54) .00(- 1.36) .00(- 1.00)
2776-9 2776-9 2776-9 2776-9 2776-9	S .118 S .079 S .039 Control	14.5 49.1	51.0 82.7	3 16	(9) (10)	.220 1.35 1.57 1.92	.00(- 5.54) .00(- 1.36) .00(- 1.00) <u>Control</u>
2776-9 2776-9 2776-9 2776-9 2776-9 -1 ial 2	S .118 S .079 S .039 Control [85]	14.5 49.1 76.3 100.	51.0 82.7 103. 100.	3 16 26 84	(9) (10) (15) (39)	.220 1.35 1.57 1.92 Me	.00(- 5.54) .00(- 1.36) .00(- 1.36) <u>Control</u> an t = .000
2776-9 2776-9 2776-9 2776-9 2776-9 -1 ial 2 a)P	s .118 s .079 s .039 Control [85] .000791	14.5 49.1 76.3 100. 12.8	51.0 82.7 103. 100. 55.9	3 16 26 84 133	(9) (10) (15) (39) (20)	.220 1.35 1.57 1.92 Me 3.43***	.00(- 5.54) .00(- 1.36) .00(- 1.36) .00(- 1.00) <u>Control</u> an t = .000 + 5.10
2776-9 2776-9 2776-9 2776-9 2776-9 -1 ial 2	S .118 S .079 S .039 Control [85]	14.5 49.1 76.3 100.	51.0 82.7 103. 100.	3 16 26 84	(9) (10) (15) (39)	.220 1.35 1.57 1.92 Me	.00(- 5.54) .00(- 1.36) .00(- 1.36) <u>Control</u> an t = .000
2776-5 2776-5 2776-5 2776-5 -1 ial 2 a)P a)P 2776-5	s .118 s .079 s .039 Control [85] .000791 .000250 s .147	14.5 49.1 76.3 100. 12.8 28.7 2.00	51.0 82.7 103. 100. 55.9 79.4 .000	3 16 26 84 133	(9) (10) (15) (39) (20)	.220 1.35 1.57 1.92 Me 3.43***	.00(- 5.54) .00(- 1.36) .00(- 1.36) .00(- 1.00) <u>Control</u> an t = .000 + 5.10
2776-5 2776-5 2776-5 -1 ial 2 a)P a)P 2776-5 2776-5	s .118 s .079 s .039 Control [85] .000791 .000250 s .147 s .111	14.5 49.1 76.3 100. 12.8 28.7 2.00 25.1	51.0 82.7 103. 100. 55.9 79.4 .000 44.0	3 16 26 84 133 66 2 26	(9) (10) (15) (39) (20) (19)	.220 1.35 1.57 1.92 Me 3.43*** 2.10***	.00(- 5.54) .00(- 1.36) .00(- 1.00) an t = .000 + 5.10 + 4.56
2776-5 2776-5 2776-5 2776-5 776-5 2776-5 3)P 3)P 2776-5 2776-5 2776-5	s .118 s .079 s .039 Control [85] .000791 .000250 s .147 s .111 s .074	14.5 49.1 76.3 100. 12.8 28.7 2.00 25.1 48.3	51.0 82.7 103. 100. 55.9 79.4 .000 44.0 80.2	3 16 26 84 133 66 2 26 12	(9) (10) (15) (39) (20) (19) (19) (20) (20)	.220 1.35 1.57 1.92 Me 3.43*** 2.10*** .076 .927* .374	.00(- 5.54) .00(- 1.36) .00(- 1.00) <u>Control</u> an t = .000 + 5.10 + 4.56 .00(-2.85) + 3.28 + .40
2776-5 2776-5 2776-5 2776-5 2776-5 2776-5 2776-5 2776-5 2776-5 2776-5	s .118 s .079 s .039 Control [85] .000791 .000250 s .147 s .111 s .074 s .037	14.5 49.1 76.3 100. 12.8 28.7 2.00 25.1 48.3 70.3	51.0 82.7 103. 100. 55.9 79.4 .000 44.0 80.2 95.2	3 16 26 84 133 66 2 26 12 7	(9) (10) (15) (39) (20) (19) (19) (20) (20) (20) (20)	.220 1.35 1.57 1.92 Me 3.43*** 2.10*** .076 .927* .374 .172	$\begin{array}{r} .00(-5.54) \\ .00(-1.36) \\ .00(-1.00) \\ \hline \\ an t = .000 \\ + 5.10 \\ + 4.56 \\ .00(-2.85) \\ + 3.28 \end{array}$
2776-5 2776-5 2776-5 2776-5 776-5 2776-5 3)P 3)P 2776-5 2776-5 2776-5	s .118 s .079 s .039 Control [85] .000791 .000250 s .147 s .111 s .074	14.5 49.1 76.3 100. 12.8 28.7 2.00 25.1 48.3	51.0 82.7 103. 100. 55.9 79.4 .000 44.0 80.2	3 16 26 84 133 66 2 26 12	(9) (10) (15) (39) (20) (19) (19) (20) (20)	.220 1.35 1.57 1.92 Me 3.43*** 2.10*** .076 .927* .374 .172 .313	.00(- 5.54) .00(- 1.36) .00(- 1.00) <u>Control</u> an t = .000 + 5.10 + 4.56 .00(-2.85) + 3.28 + .40 .00(-1.04) <u>Control</u>
2776-5 2776-5 2776-5 2776-5 -1 ial 2 a)P 2776-5 2776-5 2776-5 2776-5 2776-5 -1	S .118 S .079 S .039 Control [85] .000791 .000250 S .147 S .111 S .074 S .037 Control	14.5 49.1 76.3 100. 12.8 28.7 2.00 25.1 48.3 70.3 100.	51.0 82.7 103. 100. 55.9 79.4 .000 44.0 80.2 95.2 100.	3 16 26 84 133 66 2 26 12 7	(9) (10) (15) (39) (20) (19) (19) (20) (20) (20) (20)	.220 1.35 1.57 1.92 Me 3.43*** 2.10*** .076 .927* .374 .172 .313	.00(- 5.54) .00(- 1.36) .00(- 1.00) <u>Control</u> an t = .000 + 5.10 + 4.56 .00(-2.85) + 3.28 + .40 .00(-1.04)
2776-5 2776-5 2776-5 2776-5 -1 ial 2 a)P 2776-5 2776-5 2776-5 2776-5 2776-5 -1	s .118 s .079 s .039 Control [85] .000791 .000250 s .147 s .111 s .074 s .037	14.5 49.1 76.3 100. 12.8 28.7 2.00 25.1 48.3 70.3 100.	51.0 82.7 103. 100. 55.9 79.4 .000 44.0 80.2 95.2 100.	3 16 26 84 133 66 2 26 12 7	(9) (10) (15) (39) (20) (19) (19) (20) (20) (20) (20)	.220 1.35 1.57 1.92 Me 3.43*** 2.10*** .076 .927* .374 .172 .313	.00(- 5.54) .00(- 1.36) .00(- 1.00) <u>Control</u> an t = .000 + 5.10 + 4.56 .00(-2.85) + 3.28 + .40 .00(-1.04) <u>Control</u>
2776-5 2776-5 2776-5 2776-5 -1 ial 2 a)P 2776-5 2776-5 2776-5 2776-5 2776-5 -1	S .118 S .079 S .039 Control [85] .000791 .000250 S .147 S .111 S .074 S .037 Control hthol [MENT.	14.5 49.1 76.3 100. 12.8 28.7 2.00 25.1 48.3 70.3 100.	51.0 82.7 103. 100. 55.9 79.4 .000 44.0 80.2 95.2 100.	3 16 26 84 133 66 2 26 12 7	(9) (10) (15) (39) (20) (19) (19) (20) (20) (20) (20)	.220 1.35 1.57 1.92 Me 3.43*** 2.10*** .076 .927* .374 .172 .313	.00(- 5.54) .00(- 1.36) .00(- 1.36) .00(- 1.00) an t = .000 + 5.10 + 4.56 .00(-2.85) + 3.28 + .40 .00(-1.04) <u>Control</u>
2776-5 2776-5 2776-5 2776-5 2776-5 2776-5 2776-5 2776-5 2776-5 -1	S .118 S .079 S .039 Control [85] .000791 .000250 S .147 S .111 S .074 S .037 Control hthol [MENT.	14.5 49.1 76.3 100. 12.8 28.7 2.00 25.1 48.3 70.3 100.	51.0 82.7 103. 100. 55.9 79.4 .000 44.0 80.2 95.2 100.	3 16 26 84 133 66 2 26 12 7	(9) (10) (15) (39) (20) (19) (19) (20) (20) (20) (20)	.220 1.35 1.57 1.92 Me 3.43*** 2.10*** .076 .927* .374 .172 .313	.00(- 5.54) .00(- 1.36) .00(- 1.00) <u>Control</u> an t = .000 + 5.10 + 4.56 .00(-2.85) + 3.28 + .40 .00(-1.04) <u>Control</u>

Treatment Condition ^a		Cytotoxic Activity ^b		Transfo		Transformatio	
Condition		ACTIVITY RCE (%)		Activity ^c Focus Data		Response ^d Foci/Vessel	Significance ^e
				Type Ves		Focus Type	
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic
MENT	6.40	.000	.000	7	(10,20)	.578	.00(34)
MENT	3.20	.000	39.8	3	(4,19)	.414	.00(67)
MENT	1.60	42.2	102.	14	(20)	.525	.00(71
IENT	.800	69.5	110.	58	(20)	.925	+ .69
IC-1	Control	100.	100.	33	(40)	.663	Control
rial	2 [24]						Mean t = .215
B(a)P	.000791	.000	18.7	83	(20)	3.65***	+ 10.7
3(a)P	.000250	5.66	70.0	86	(20)	3.73***	+ 10.7
4CNT	/ 90	400	000	2	(15. 20)	007	004 4 00
1ENT 1ENT	4.80 3.20	.629 50.3	.000 85.6	2 4	(15,20) (20)	.097 .132	.00(-1.92)
MENT	1.60	64.8	91.7	4	(20)	.231	.00(-1.35)
IENT	.800	72.3	98.7	10	(20)	.231	.00(56) + .25
	Control	100.	100.	10	(20)		
10 ⁻ 1	Control	100.	100.	10	(40)	.308	$\frac{Control}{Moan t = 0.083}$
							Mean t = .083
letho	xychlor [ME	TH, M.W. =	345.66]				
[ria]	1 [37]						
B(a)P	.000791	1.60	46.0	101	(20)	4.59***	+ 9.94
3(a)P	.000250	6.80	77.2	113	(20)	5.38***	+ 13.5
				-			
AETH	.231	.000	.000	0	(0,20)	.000	ND
IETH	.174	.000	.000	0	(5,20)	.000	.00(-6.46)
1ETH	.116	.000	2.48	7	(19)	.272	.00(-2.01)
1ETH	.058	72.8	78.3	24	(20)	.966	+ 1.41
IC-1	Control	100.	100.	32	(39)	.631	Control
[ria]	2 [89]						Mean $t = .705$
B(a)P	.000791	8.13	69.0	119	(20)	4.77***	+ 10.3
3(a)P	.000250	31.9	89.1	63	(20)	2.33***	+ 5.84
1ETH	.145	.000	16.8	3	(14)	. 160	.00(-1.79)
1ETH	.108	31.1	60.9	21	(19)	.809	+ 1.45
AETH	.072	63.6	84.4	30	(20)	1.30***	+ 1.45
1ETH	.036	90.3	85.0	15	(18)	.502	
	Control	100.	100.	57	(79)	.492	
	50111101	100.			(17)	.472	$\frac{Control}{Mean t = 1.26}$
							incull t = 1.20
lethy	1dopa Sesqu	iihydrate	[973697-S,	M.W. = 238	.24]		
	1 [75]	7 40	// F	410	(20)	/ ==+++	40 -
3(a)P	.000791	7.10	66.5	149	(20)	6.35***	+ 10.9
3(a)P	.000250	28.4	85.4	67	(20)	3.10***	+ 6.56
973697	-s .119	.000	45.8	51	(20)	2.09***	+ 3.85
973697		55.5	71.3	39	(20)	1.37	+ 3.85 + 1.71
973697		92.3	71.0	32	(20)	1.18	+ 1.11
73697		100.	72.2	52 17	(20)	.677	
IC-1	Control	100.	100.	89	(78)	.882	.00(93) Control
	0011101	100.		07	(10)		<u>Control</u> Mean t = 1.67
'ni-l	2 5013						
	2 [91] .000791	28.9	77 4	10	(20)	3 00+++	
l(a)P l(a)P	.000250	28.9 58.1	73.6 89.9	60 14	(20) (20)	2.00***	+ 5.11
(a)r	.000230	1.00	07.7	14	(20)	.503	+ 1.31
73697		.000	.849	5	(10,20)	. 155	+ .08
73697		.000	16.1	17	(18,20)	.596	+ 1.80
	-S .083	.000	84.4	5	(20)	.172	.00(-1.34)
73697							
73697 73697	-S .042	93.5	93.1	3	(20)	.110	.00(-2.04)
73697							

	reatment ondition ^a	Acti	otoxic ivity ^b	Transf Activ	-	Transformation Response ^d	n Significance ^e
		RCE (%)		Focus Data Type Vessels		Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	II		III	<i>t</i> -statistic
Methyl	phenidate	[MEPH, M.	W. = 269.80]				
Trial 1							
B(a)P B(a)P	.00791 .00250	2.28 10.1		148 63	(20) (20)	7.06*** 2.68***	+ 16.5 + 6.53
MEPH	8.36	.00		23	(20)	.927	+ 1.72
MEPH	6.27	3.9		25	(20)	1.08*	+ 2.40
MEPH MEPH	4.18 2.09	57.2 82.6	103. 102.	18 9	(19)	.777	+ 1.12
NC-1	Control	100.	102.	29	(20) (40)	.327 .537	.00(-1.19) <u>Control</u>
Trial 2	[57]					M	an t = 1.31
B(a)P	.000791	3.55	5 30.1	162	(20)	7.55***	+ 18.7
B(a)P	.000250	5.32		37	(20)	1.63***	+ 6.91
MEPH	8.00	.00	20.3	14	(20)	.525	+ 1.60
MEPH	6.00	12.4	71.4	12	(20)	.473	+ 1.35
MEPH	4.18	68.4	81.8	3	(20)	.094	.00(-1.66)
	2.09	95.0	78.6	8	(20)	.301	+ .17
NC-1	Control	100.	100.	15	(40)	.278 Me	<u>Control</u> ean t = .780
Dxytet	racycline-	HC1 [925728	8-S, M.W. = 4	96.90]			
[ria] 1	[73]						
B(a)P	.000791	2.21	71.9	61	(19)	2.60***	+ 8.09
3(a)P	.000250	7.18	88.8	48	(20)	1.58***	+ 4.37
25728-	s 1.80	.000	.000	0	(2,19)	.000	.00(-4.49)
25728-		.000	.000	0	(19,20)	.000	.00(-4-49)
25728-		.000	.000	1	(20)	.035	.00(-3.24)
925728-: NC-1		.000	20.7 100.	1	(20)	.035	.00(-3.24)
NC-1	Control	100.	100.	45	(79)	.274 Me	<u>Control</u> ean t = .000
Frial 2 3(a)P	[103] .000791	8.60	76.9	95	(20)	4.59***	
3(a)P 3(a)P	.000250	23.6	76.9 91.5	95 75	(20)	4.59*** 2.86***	+ 13.7 + 5.37
				70			
25728-: 25728-:		.000 31.4	20.7 86.2	38 19	(20) (19)	.623 .777	.00(75) .00(41)
25728-		77.8	81.4	19	(20)	.634	.00(-1.05)
25728-		81.7	95.5	11	(19)	.389	.00(-2.31)
NC-1	Control	100.	100.	89	(79)	.874	<u>Control</u>
[ria] 3							ean t = .000
B(a)P	.000791	5.81	47.3	131	(20)	6.09***	+ 5.74
3(a)P	.000250	21.2	75.8	122	(20)	5.53***	+ 4.05
25728-		1.37	19.0	10	(20)	.347	.00(-8.60)
25728-		22.2	68.5	10	(19)	.397	.00(-8.19)
25728-: 25728-:		44.4 88.2	86.0 97.0	16 23	(20) (20)	.619 .899	.00(-7.09) .00(-5.68)
VC-1	Control	100.	100.	274	(80)	2.95	Control
				_, .	<i>*</i>		an t = .000
	[PHENOL, M.	W. = 94.11]]				
Pheno 1							
	[76]						
Phenol Trial 1 B(a)P	[76] .000791	5.91	63.1	87	(18) (18)	4.41*** 2.72*	+ 5.23 + 2.26

Treatment		Cytotoxic		ming	Transformation	
Condition	Activity ^b		Activity ^c		Responsed	Significance ^e
	RCE	(*)	Focus D		Foci/Vessel	
During Course with	c i		Type Ves		Focus Type	
Drug Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic
UENO: (25		<i>(</i> F 0	070			
HENOL 4.25 HENOL 2.13	.000 4.60	65.0 82.9	239	(18)	13.0***	+ 20.3
HENOL 1.06	25.9	92.4	152 89	(18) (18)	8.01*** 4.61***	+ 12.3 + 5.54
HENOL .53	59.1	102.	97	(18)	3.84***	+ 3.90
IC-1 Control	100.	100.	152	(71)	1.79	Control
		1001	175			an t = 10.5
rial 2 [90]	20 F	7/ 0	457	(10)	7 (0+++	
(a)P .000791	28.5	76.0	157	(18)	7.60***	+ 5.89
(a)P .000250	51.8	95.8	111	(18)	4.91***	+ 3.71
HENOL 4.25	7.65	42.5	159	(18)	8.17***	+ 8.78
HENOL 3.19	13.6	48.6	114	(18)	5.95***	+ 7.15
HENOL 2.13	17.7	67.9	55	(18)	2.74	+ 1.80
HENOL 1.06	61.2	90.9	49	(18)	2.33	+ .67
C-1 Control	100.	100.	219	(71)	1.95	<u>Control</u>
					Me	t = 4.60
henylephrine-H	IC7 [571483-s	5, M.W. = 2	03.67]			
ria] 1 [73]						
(a)P .000791	2.21	71.9	61	(19)	2.60***	+ 8.09
(a)P .000250	7.18	88.8	48	(20)	1.58***	+ 4.37
71483-s 7.00	.000	.209	0	(7 20)	000	004 / /01
71483-8 7.00	.000	2.09	0	(3,20)	.000 .000	.00(-4.49)
71483-8 3.50	.552	38.6	8	(19,20) (20)	.275	.00(-4.49)
71483-S 1.75	.552 88.4	99.2	0 10	(20)	.394	.00 + .77
C-1 Control	100.	100.	45	(79)	.274	+ .// Control
			77	~ / / /		an t = .385
ria] 2 [105]	E 47	<u> </u>	50	(20)) /7+++	70
(a)P .000791	5.67	63.1 86.5	59 60	(20)	2.43***	+ 6.70
(a)P .000250	18.2	00.0	40	(19)	1.93***	+ 5.54
71483-s 6.00	.000	.792	0	(10,19)	.000	.00(-8.86)
71483-s 4.50	.000	10.6	6	(20)	.172	.00(-2.68)
71483-s 3.00	9.67	89.2	20	(20)	.715	+ .69
71483-s 1.50	81.7	98.7	14	(18)	.598	+ .09
C-1 Control	100.	100.	58	(77)	.581	Control
					Me	an t = .260
ropyl Gallate	[PRGA, M.W.	= 212.22]				
ria] 1 [3]						
3(a)P .000791	10.7	47.1	127	(20)	5.84***	+ 14.8
(a)P .000250	13.4	81.6	39	(20)	1.61***	+ 5.63
RGA .087	.000	32.2	33	(19)	1.04*	+ 2.60
RGA .075	.000	37.9	27	(20)	.977**	+ 3.31
RGA .059	.000	42.5	17	(20)	.658*	+ 2.24
RGA .038	.000	72.4	14	(20)	.556	+ 1.65
C-1 Control	100.	100.	17	(40)	.285	Control
		-	••	• • • •		t = 2.42
rial 2 [9]	·	70 7		1001		
(a)P .000791	3.14	38.3	108	(20)	4.93***	+ 16.2
(a)P .000250	8.52	87.2	47	(20)	1.92***	+ 7.04
RGA .094	.000	44.1	25	(20)	.800**	+ 2.98
RGA .071	.000	66.7	7	(20)	.238	+ .85
RGA .047	1.35	83.1	3	(20)	.110	.00(46)
RGA .024	74.4	84.1	0	(20)	.000	.00(-3.12)
C-1 Control	100.	100.	8	(40)	. 149	<u>Control</u>

Condition ^a	Act	otoxic ivity ^b E (%)	Acti	orming vity ^c Data	Transformation Response ^d Foci/Vessel	Significance ^e
			Туре V		Focus Type	
Drug Conc., mM	S.A	CC.A.	II	I (N)	III	<i>t</i> -statistic
otenone [959444-s	5, M.W. = 3	94.43]				
ial 1 [75]						
a)P .000791 a)P .000250	7.10 28.4	66.5 85.4	149 67	(20) (20)	6.35*** 3.10***	+ 10.9 + 6.56
9444-s .00513	.000	13.7	1	(19,20)	.037	.00(- 8.85)
9444-s .00162	.000	49.2	0	(10,20)	.000	.00(-11.2)
9444-S .000513	2.92	45.4	2	(19)	.060	.00(- 7.10)
9444-S .000162	5.43	85.2	9	(20)	.289	.00(- 3.09)
C-1 Control	100.	100.	89	(78)	.882 Me	an t = .000
ial 2 [96] a)P .000791	11.0	43.5	86	(20)	4.03***	+ 9.40
a)P .000250	38.9	75.5	62	(20)	2.88***	+ 7.12
9444-s .00256	.786	23.5	0	(1,20)	.000	.00(-1.02)
9444-s .000810	2.36	51.9	0	(11,20)	.000	.00(-8.55)
9444-S .000256	21.6	54.6	18	(20)	.813	+ .94
9444-S .0000810	46.8	86.5	19	(20)	.677	+ .08
-1 Control	100.	100.	62	(70)	.660 Me	an t = .510
odium Diethyldi	thiocarba	mate [SDED	TC, M.W. =	171.27]		
rial 1 [38]						
(a)P .000791	2.10	28.4	174	(20)	7.75***	+ 15.6
· · · · · · · · · · · · · · · · · · ·	2.10 9.44	28.4 74.7	174 162	(20) (20)	7.75*** 8.17***	+ 15.6 + 18.0
(a)P .000791						
(a)P .000791 (a)P .000250	9.44	74.7	162	(20)	8.17***	+ 18.0
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117	9.44 .000 17.1 87.4	74.7 4.39 12.9 71.4	162 31 42 39	(20) (20) (19) (19)	8.17*** 1.18** 1.91*** 1.63**	+ 18.0 + 2.74 + 5.18 + 4.06
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117 DECTC .0000584	9.44 .000 17.1 87.4 96.5	74.7 4.39 12.9 71.4 84.3	162 31 42 39 19	(20) (20) (19) (19) (19)	8.17*** 1.18** 1.91*** 1.63** .815	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117	9.44 .000 17.1 87.4	74.7 4.39 12.9 71.4	162 31 42 39	(20) (20) (19) (19)	8.17*** 1.18** 1.91*** 1.63** .815 .496	+ 18.0 + 2.74 + 5.18 + 4.06
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control	9.44 .000 17.1 87.4 96.5 100.	74.7 4.39 12.9 71.4 84.3 100.	162 31 42 39 19 27	(20) (20) (19) (19) (19) (40)	8.17*** 1.18** 1.91*** 1.63** .815 .496 Me	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean t = 3.37
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control	9.44 .000 17.1 87.4 96.5	74.7 4.39 12.9 71.4 84.3	162 31 42 39 19	(20) (20) (19) (19) (19)	8.17*** 1.18** 1.91*** 1.63** .815 .496	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u>
(a)P .000791 (a)P .000250 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control rial 2 [96] (a)P .000791 (a)P .000250	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4	162 31 42 39 19 27 86	(20) (20) (19) (19) (19) (40) (20) (20)	8.17*** 1.18** 1.91*** 1.63** .815 .496 Me 4.03*** 2.88***	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean t = 3.37 + 9.40 + 7.12
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control rial 2 [96] (a)P .000791	9.44 .000 17.1 87.4 96.5 100. 11.0	74.7 4.39 12.9 71.4 84.3 100. 43.5	162 31 42 39 19 27 86 62	(20) (20) (19) (19) (19) (40) (20)	8.17*** 1.18** 1.91*** 1.63** .815 .496 Me 4.03***	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean t = 3.37 + 9.40
(a)P .000791 (a)P .000250 DEDTC .000234 DEDTC .000117 DECTC .000584 C-1 Control rial 2 [96] (a)P .000791 (a)P .000250 DEDTC .000350	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88	162 31 42 39 19 27 86 62 41	(20) (20) (19) (19) (19) (40) (20) (20) (20)	8.17*** 1.18** 1.91*** 1.63** .815 .496 Me 4.03*** 2.88*** 1.75***	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean t = 3.37 + 9.40 + 7.12 + 3.99
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control mial 2 [96] (a)P .000791 (a)P .000250 DEDTC .000350 DECTC .000263 DEDTC .000175 DEDTC .0000876	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786 7.07 23.6 97.4	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88 11.1 48.8 100.	162 31 42 39 19 27 86 62 41 46 27 13	(20) (19) (19) (19) (40) (20) (20) (20) (20) (20) (20) (20) (2	8.17*** 1.18** 1.91*** 1.63** .815 .496 4.03*** 2.88*** 1.75*** 1.98*** 1.00 .49	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean t = 3.37 + 9.40 + 7.12 + 3.99 + 4.64
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000177 DECTC .0000584 C-1 Control cial 2 [96] (a)P .000791 (a)P .000250 DEDTC .000350 DECTC .000263 DEDTC .000175	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786 7.07 23.6	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88 11.1 48.8	162 31 42 39 19 27 86 62 41 46 27	(20) (19) (19) (19) (40) (20) (20) (20) (20) (20) (20)	8.17*** 1.18** 1.91*** 1.63** .815 .496 Mc 4.03*** 2.88*** 1.75*** 1.98*** 1.00 .49 .660	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 Control ean $t = 3.37$ + 9.40 + 7.12 + 3.99 + 4.64 + 1.45
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control mial 2 [96] (a)P .000791 (a)P .000250 DEDTC .000350 DECTC .000263 DEDTC .000175 DEDTC .0000876	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786 7.07 23.6 97.4 100.	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88 11.1 48.8 100. 100.	162 31 42 39 19 27 86 62 41 46 27 13 62	(20) (19) (19) (19) (40) (20) (20) (20) (20) (20) (20) (20) (2	8.17*** 1.18** 1.91*** 1.63** .815 .496 Mc 4.03*** 2.88*** 1.75*** 1.98*** 1.00 .49 .660	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean t = 3.37 + 9.40 + 7.12 + 3.99 + 4.64 + 1.45 .00(86) <u>Control</u>
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control rial 2 [96] (a)P .000791 (a)P .000250 DEDTC .000350 DEDTC .000263 DEDTC .000175 DEDTC .0000876 C-1 Control	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786 7.07 23.6 97.4 100.	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88 11.1 48.8 100. 100.	162 31 42 39 19 27 86 62 41 46 27 13 62	(20) (19) (19) (19) (40) (20) (20) (20) (20) (20) (20) (20) (2	8.17*** 1.18** 1.91*** 1.63** .815 .496 Mc 4.03*** 2.88*** 1.75*** 1.98*** 1.00 .49 .660	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean t = 3.37 + 9.40 + 7.12 + 3.99 + 4.64 + 1.45 .00(86) <u>Control</u>
(a)P .000791 (a)P .000250 DEDTC .000234 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control rial 2 [96] (a)P .000791 (a)P .000250 DEDTC .000263 DEDTC .000263 DEDTC .0000876 C-1 Control	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786 7.07 23.6 97.4 100. e [STCL, M. .000	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88 11.1 48.8 100. 100.	162 31 42 39 19 27 86 62 41 46 27 13 62	(20) (19) (19) (19) (40) (20) (20) (20) (20) (20) (20) (20) (2	8.17*** 1.18** 1.91*** 1.63** .815 .496 Mc 4.03*** 2.88*** 1.75*** 1.98*** 1.00 .49 .660	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean t = 3.37 + 9.40 + 7.12 + 3.99 + 4.64 + 1.45 .00(86) <u>Control</u>
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control rial 2 [96] (a)P .000791 (a)P .000250 DEDTC .000250 DEDTC .000250 DEDTC .000263 DEDTC .000175 DEDTC .0000876 C-1 Control tannous Chlorid rial 1 [19]	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786 7.07 23.6 97.4 100. e [STCL, M	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88 11.1 48.8 100. 100.	162 31 42 39 19 27 86 62 41 46 27 13 62	(20) (19) (19) (19) (40) (20) (20) (20) (20) (20) (20) (20) (2	8.17*** 1.18** 1.63** .815 .496 4.03*** 2.88*** 1.75*** 1.98*** 1.00 .49 .660 Me	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean t = 3.37 + 9.40 + 7.12 + 3.99 + 4.64 + 1.45 .00(86) <u>Control</u> ean t = 2.52
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control cial 2 [96] (a)P .000791 (a)P .000250 DEDTC .000263 DEDTC .000263 DEDTC .000175 DEDTC .0000876 C-1 Control tannous Chlorid cial 1 [19] (a)P .000791	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786 7.07 23.6 97.4 100. e [STCL, M. .000	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88 11.1 48.8 100. 100. W. = 189.6 62.5	162 31 42 39 19 27 86 62 41 46 27 13 62 0] 99	(20) (19) (19) (19) (40) (20) (20) (20) (20) (20) (20) (20) (2	8.17*** 1.18** 1.91*** 1.63** .815 .496 Me 4.03*** 1.75*** 1.98*** 1.00 .49 .660 Me 4.61*** 4.02*** .402	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean t = 3.37 + 9.40 + 7.12 + 3.99 + 4.64 + 1.45 .00(86) <u>Control</u> ean t = 2.52 + 13.4
(a)P .000791 (a)P .000250 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control rial 2 [96] (a)P .000791 (a)P .000250 DEDTC .000350 DECTC .000263 DEDTC .000175 DEDTC .000175 DEDTC .000175 DEDTC .000175 DEDTC .0000876 C-1 Control tannous Chlorid rial 1 [19] (a)P .000791 (a)P .000250 TCL .0633 TCL .0422	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786 7.07 23.6 97.4 100. e [STCL. M. .000 1.67 .000 7.08	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88 11.1 48.8 100. 100. W. = 189.6 62.5 89.0 9.19 29.6	162 31 42 39 19 27 86 62 41 46 27 13 62 0] 99 100 11 9	(20) (19) (19) (19) (40) (20) (20) (20) (20) (20) (20) (20) (2	8.17*** 1.18** 1.91*** 1.63** .815 .496 Me 4.03*** 1.75*** 1.98*** 1.00 .49 .660 Me 4.61*** 4.02*** .402 .327	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean $t = 3.37$ + 9.40 + 7.12 + 3.99 + 4.64 + 1.45 .00(86) <u>Control</u> ean $t = 2.52$ + 13.4 + 10.6
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control rial 2 [96] (a)P .000791 (a)P .000250 DEDTC .000350 DEDTC .000263 DEDTC .000175 DEDTC .0000876 C-1 Control tannous Chlorid rial 1 [19] (a)P .000791 (a)P .000791 (a)P .000250 rCL .0633 rCL .0422 rCL .0211	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786 7.07 23.6 97.4 100. e [STCL, M. .000 1.67 .000 7.08 47.9	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88 11.1 48.8 100. 100. 100. W. = 189.6 62.5 89.0 9.19 29.6 72.4	162 31 42 39 19 27 86 62 41 46 27 13 62 0] 99 100 11 9 910	(20) (19) (19) (19) (40) (20) (20) (20) (20) (20) (20) (20) (2	8.17*** 1.18** 1.91*** 1.63** .815 .496 Me 4.03*** 2.88*** 1.75*** 1.98*** 1.00 .49 .660 Me 4.61*** 4.02*** .402 .327 .266	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean $t = 3.37$ + 9.40 + 7.12 + 3.99 + 4.64 + 1.45 .00(86) <u>Control</u> ean $t = 2.52$ + 13.4 + 10.6 + .28 .00(20) .00(58)
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000177 DECTC .0000584 C-1 Control rial 2 [96] (a)P .000791 (a)P .000250 DEDTC .000350 DEDTC .000263 DEDTC .000175 DEDTC .0000876 C-1 Control tannous Chlorid rial 1 [19] (a)P .000791 (a)P .000791 (a)P .000791 (a)P .000250 TCL .0633 TCL .0422 TCL .0211 TCL .0105	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786 7.07 23.6 97.4 100. e [STCL. M. .000 1.67 .000 7.08 47.9 75.0	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88 11.1 48.8 100. 100. 100. W. = 189.6 62.5 89.0 9.19 29.6 72.4 93.0	162 31 42 39 19 27 86 62 41 46 27 13 62 0] 0] 99 100 11 9 10 11	(20) (19) (19) (19) (40) (20) (20) (20) (20) (20) (20) (20) (2	8.17*** 1.18** 1.91*** 1.63** .815 .496 Me 4.03*** 2.88*** 1.75*** 1.98*** 1.00 .49 .660 Me 4.61*** 4.02*** .402 .327 .266 .423	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean t = 3.37 + 9.40 + 7.12 + 3.99 + 4.64 + 1.45 .00(86) <u>Control</u> ean t = 2.52 + 13.4 + 10.6 + .28 .00(20) .00(58) + .42
(a)P .000791 (a)P .000250 DEDTC .000467 DEDTC .000234 DEDTC .000117 DECTC .0000584 C-1 Control rial 2 [96] (a)P .000791 (a)P .000250 DEDTC .000350 DEDTC .000263 DEDTC .000175 DEDTC .0000876 C-1 Control tannous Chlorid rial 1 [19] (a)P .000791 (a)P .000791 (a)P .000250 rCL .0633 rCL .0422 rCL .0211	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786 7.07 23.6 97.4 100. e [STCL, M. .000 1.67 .000 7.08 47.9	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88 11.1 48.8 100. 100. 100. W. = 189.6 62.5 89.0 9.19 29.6 72.4	162 31 42 39 19 27 86 62 41 46 27 13 62 0] 99 100 11 9 910	(20) (19) (19) (19) (40) (20) (20) (20) (20) (20) (20) (20) (2	8.17*** 1.18** 1.91*** 1.63** .496 4.03*** 2.88*** 1.75*** 1.98*** 1.00 .49 .660 Me 4.61*** 4.02*** .402 .327 .266 .423 .357	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean $t = 3.37$ + 9.40 + 7.12 + 3.99 + 4.64 + 1.45 .00(86) <u>Control</u> ean $t = 2.52$ + 13.4 + 10.6 + .28 .00(20) .00(58)
a)P .000791 a)P .000250 EDTC .000234 EDTC .000234 EDTC .0000584 -1 Control ial 2 [96] a)P .000791 a)P .000250 EDTC .000350 ECTC .000263 EDTC .000175 EDTC .000175 EDTC .0000876 -1 Control Cannous Chlorid ial 1 [19] a)P .000791 a)P .000791 a)P .000250 CL .0633 CL .0422 CL .0211 CL .0105	9.44 .000 17.1 87.4 96.5 100. 11.0 38.9 .786 7.07 23.6 97.4 100. e [STCL. M. .000 1.67 .000 7.08 47.9 75.0	74.7 4.39 12.9 71.4 84.3 100. 43.5 75.4 4.88 11.1 48.8 100. 100. 100. W. = 189.6 62.5 89.0 9.19 29.6 72.4 93.0	162 31 42 39 19 27 86 62 41 46 27 13 62 0] 0] 99 100 11 9 10 11	(20) (19) (19) (19) (40) (20) (20) (20) (20) (20) (20) (20) (2	8.17*** 1.18** 1.91*** 1.63** .496 4.03*** 2.88*** 1.75*** 1.98*** 1.00 .49 .660 Me 4.61*** 4.02*** .402 .327 .266 .423 .357	+ 18.0 + 2.74 + 5.18 + 4.06 + 1.50 <u>Control</u> ean t = 3.37 + 9.40 + 7.12 + 3.99 + 4.64 + 1.45 .00(86) <u>Control</u> ean t = 2.52 + 13.4 + 10.6 + .28 .00(58) + .42 <u>Control</u>

Treatment Condition ^a		Act	otoxic ivity ^b	Transfo Activ		Transformatic Response ^d	onSignificance ^e
		RC	E (%)	Focus Type Ve		Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	III		III	<i>t</i> -statistic
STCL	.0527	3.82	33.6	28	(20)	1.18	+ .99 + 1.77
STCL STCL	.0264 .0132	26.3 58.8	69.7 56.9	35 39	(20) (20)	1.45 1.61*	+ 1.77 + 2.27
STCL	.00659	78.2	68.2	25	(20)	1.04	+ .48
	Control	100.	100.	46	(40)	.907	$\frac{Control}{1ean t = 1.38}$
etracy	/cline-HCl	[186206-S	, M.W. = 480).94]			
rial 1	[71]						
3(a)P	.000791	4.48	50.7	251	(20)	11.0***	+ 12.1
l(a)P	.000250	18.1	68.7	77	(20)	3.50***	+ 7.12
86206-s		.000	.000	3	(20)	.110	.00(-6.87)
86206-5		3.58	1.27	3	(20)	.110	.00(-6.87)
86206-5		27.3	18.5	25	(20)	.988	.00(23)
86206-s IC-1	5 .135 Control	43.5 100.	61.1 100.	20 110	(16) (75)	1.03 1.06	.00(09) Control
				110	(12)		fean t = $.000$
rial 2 (a)P	[89] .000791	8.13	69.0	119	(20)	4.77***	+ 10.3
a)P	.000250	31.9	89.1	63	(20)	2.33***	+ 5.84
86206-s	.458	9.29	52.4	9	(18)	.348	.00(78)
86206-S		56.3	58.2	9	(19)	.389	.00(58)
86206-S		87.4	77.1	3	(19)	.116	.00(-3.52)
86206-S		89.1	94.3 100.	19 57	(19) (79)	.526 .492	+ .17 Control
IC-1	Control	100.	100.	70	(79)		<u>Control</u> 1ean t = .043
letraki	is(hydroxy	methyl)ph	osphonium	Chloride		[120152-L, M.W. = 1]	90.58, Density = 1.322 g
[ria] 1	[72]		•		(40)	-	
rial 1 B(a)P	[72] .000791	2.75	56.8	85	(18)	4.11***	+ 12.7
rial 1 K(a)P	[72]		•		(18) (18)	-	
rial 1 (a)P (a)P	[72] .000791 .000250	2.75 6.61 .000	56.8	85		4.11***	+ 12.7
rial 1 (a)P (a)P 20152-L 20152-L	[72] .000791 .000250 .0263 .0132	2.75 6.61 .000 .000	56.8 82.1 3.76 14.5	85 84 11 4	(18) (18) (18)	4.11*** 3.04*** .456 .148	+ 12.7 + 6.20 + 1.15 .00(-1.16)
rial 1 3(a)P 3(a)P 20152-L 20152-L 20152-L 20152-L	[72] .000791 .000250 .0263 .0132 .00658	2.75 6.61 .000 .000 17.1	56.8 82.1 3.76 14.5 53.1	85 84 11 4 3	(18) (18) (18) (18)	4.11*** 3.04*** .456 .148 .122	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42)
rial 1 (a)P (a)P 20152-L 20152-L 20152-L 20152-L 20152-L	[72] .000791 .000250 .0263 .0132 .00658 .00329	2.75 6.61 .000 .000 17.1 40.8	56.8 82.1 3.76 14.5 53.1 91.2	85 84 11 4 3 5	(18) (18) (18) (18) (18)	4.11*** 3.04*** .456 .148 .122 .212	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61)
Frial 1 3(a)P 3(a)P 120152-L 120152-L 120152-L 120152-L NC-1	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control	2.75 6.61 .000 .000 17.1	56.8 82.1 3.76 14.5 53.1	85 84 11 4 3	(18) (18) (18) (18)	4.11*** 3.04*** .456 .148 .122 .212 .289	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42)
Frial 1 3(a)P 3(a)P 20152-L 20152-L 20152-L 20152-L 20152-L IC-1 Frial 2	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control [90]	2.75 6.61 .000 .000 17.1 40.8 100.	56.8 82.1 3.76 14.5 53.1 91.2 100.	85 84 11 4 3 5 29	(18) (18) (18) (18) (18) (72)	4.11*** 3.04*** .456 .148 .122 .212 .289	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) <u>Control</u> fean t = .288
Frial 1 8(a)P 8(a)P 120152-L 1	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control	2.75 6.61 .000 .000 17.1 40.8	56.8 82.1 3.76 14.5 53.1 91.2	85 84 11 4 3 5	(18) (18) (18) (18) (18)	4.11*** 3.04*** .456 .148 .122 .212 .289	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) Control
rial 1 (a)P (a)P 20152-L 20152-L 20152-L 20152-L (20152-L (c-1 rial 2 (a)P (a)P	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control [90] .000791 .000250	2.75 6.61 .000 17.1 40.8 100. 28.5	56.8 82.1 3.76 14.5 53.1 91.2 100. 76.0	85 84 11 4 3 5 29 157	 (18) (18) (18) (18) (72) (18) 	4.11*** 3.04*** .456 .148 .122 .212 .289 7.60*** 4.91*** 4.93***	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) Control Mean t = .288 + 5.89
rial 1 (a)P (a)P 20152-L 20152-L 20152-L 20152-L (20152-L (a)P 8(a)P 20152-L 20152-L 20152-L	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control [90] .000791 .000250 .0132 .00987	2.75 6.61 .000 17.1 40.8 100. 28.5 51.8 .348 2.43	56.8 82.1 3.76 14.5 53.1 91.2 100. 76.0 95.8 4.89 18.6	85 84 11 4 3 5 29 157 111 101 122	 (18) (18) (18) (18) (72) (18) (18) (18) (18) (18) (18) 	4.11*** 3.04*** .456 .148 .122 .212 .289 7.60*** 4.91*** 4.93*** 5.70***	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) <u>Control</u> 4ean t = .288 + 5.89 + 3.71 + 3.88 + 4.52
rial 1 (a)P (a)P 20152-L 20152-L 20152-L 20152-L (c-1 rial 2 (a)P 2(a)P 20152-L 20152-L 20152-L	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control [90] .000791 .000791 .000750 .0132 .00987 .00658	2.75 6.61 .000 17.1 40.8 100. 28.5 51.8 .348 2.43 12.2	56.8 82.1 3.76 14.5 53.1 91.2 100. 76.0 95.8 4.89 18.6 38.1	85 84 11 4 3 5 29 157 111 101 122 106	 (18) (18) (18) (18) (72) (18) (18) (18) (18) (18) (18) (18) (18) (18) 	4.11*** 3.04*** .456 .148 .122 .212 .289 7.60*** 4.91*** 4.93*** 5.70*** 5.22***	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) Control 4ean t = .288 + 5.89 + 3.71 + 3.88 + 4.52 + 5.42
rial 1 (a)P (a)P 20152-L 20152-L 20152-L 20152-L C-1 rial 2 (a)P 20152-L 20152-L 20152-L 20152-L	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control [90] .000791 .000250 .0132 .00987 .00658 .00329	2.75 6.61 .000 17.1 40.8 100. 28.5 51.8 .348 2.43 12.2 50.4	56.8 82.1 3.76 14.5 53.1 91.2 100. 76.0 95.8 4.89 18.6 38.1 78.7	85 84 11 4 3 5 29 157 111 101 122 106 66	 (18) (18) (18) (18) (72) (18) 	4.11*** 3.04*** .456 .148 .122 .212 .289 7.60*** 4.91*** 4.93*** 5.70*** 5.22*** 2.12	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) Control Mean t = .288 + 5.89 + 3.71 + 3.88 + 4.52 + 5.42 + .29
Frial 1 (a)P (a)P (a)P (20152-L (20152-L (20152-L (20152-L (c-1) (a)P (a)P (20152-L (20152-L (20152-L (20152-L (20152-L (c-1)	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control [90] .000791 .000250 .0132 .00987 .00658 .00329 Control	2.75 6.61 .000 17.1 40.8 100. 28.5 51.8 .348 2.43 12.2	56.8 82.1 3.76 14.5 53.1 91.2 100. 76.0 95.8 4.89 18.6 38.1	85 84 11 4 3 5 29 157 111 101 122 106	 (18) (18) (18) (18) (72) (18) (18) (18) (18) (18) (18) (18) (18) (18) 	4.11*** 3.04*** .456 .148 .122 .212 .289 7.60*** 4.91*** 4.93*** 5.70*** 5.70*** 5.22*** 2.12 1.95	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) Control 4ean t = .288 + 5.89 + 3.71 + 3.88 + 4.52 + 5.42
[ria] 1 3(a)P 3(a)P 120152-L 120152-L 120152-L 120152-L 120152-L 120152-L 120152-L 120152-L 120152-L 120152-L 120152-L 120152-L 1713] 3	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control [90] .000791 .000250 .0132 .00987 .00987 .00588 .00329 Control [98]	2.75 6.61 .000 17.1 40.8 100. 28.5 51.8 .348 2.43 12.2 50.4 100.	56.8 82.1 3.76 14.5 53.1 91.2 100. 76.0 95.8 4.89 18.6 38.1 78.7 100.	85 84 11 4 3 5 29 157 111 101 122 106 66 219	 (18) (18) (18) (18) (72) (18) (18) (18) (18) (18) (18) (71) 	4.11*** 3.04*** .456 .148 .122 .212 .289 7.60*** 4.91*** 4.93*** 5.70*** 5.22*** 2.12 1.95	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) <u>Control</u> 4ean t = .288 + 5.89 + 3.71 + 3.88 + 4.52 + 5.42 + .29 <u>Control</u> 4ean t = 3.53
rial 1 (a)P (a)P (a)P 20152-L 20152-L 20152-L (20152-L (a)P (a)P (a)P 20152-L 20152-L (20152-L (20152-L (20152-L (20152-L (20152-L (20152-L (20152-L (20152-L) (20152-L (20152-L) (20152-L	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control [90] .000791 .000250 .0132 .00987 .00658 .00329 Control	2.75 6.61 .000 17.1 40.8 100. 28.5 51.8 .348 2.43 12.2 50.4	56.8 82.1 3.76 14.5 53.1 91.2 100. 76.0 95.8 4.89 18.6 38.1 78.7	85 84 11 4 3 5 29 157 111 101 122 106 66	 (18) (18) (18) (18) (72) (18) 	4.11*** 3.04*** .456 .148 .122 .212 .289 7.60*** 4.91*** 4.93*** 5.70*** 5.70*** 5.22*** 2.12 1.95	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) Control Mean t = .288 + 5.89 + 3.71 + 3.88 + 4.52 + 5.42 + .29 Control
rial 1 (a)P (a)P (a)P (20152-L 20152-L 20152-L (c)1 (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control [90] .000791 .000250 .0132 .00987 .00658 .00329 Control [98] .000791 .000250	2.75 6.61 .000 17.1 40.8 100. 28.5 51.8 .348 2.43 12.2 50.4 100. 8.38	56.8 82.1 3.76 14.5 53.1 91.2 100. 76.0 95.8 4.89 18.6 38.1 78.7 100. 79.6	85 84 11 4 3 5 29 157 111 101 122 106 66 219 132	 (18) (18) (18) (18) (72) (18) (18) (18) (18) (18) (18) (71) (18) 	4.11*** 3.04*** .456 .148 .122 .212 .289 7.60*** 4.91*** 4.93*** 5.70*** 5.22*** 2.12 1.95	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) Control Mean t = .288 + 5.89 + 3.71 + 3.88 + 4.52 + 5.42 + 5.42 + 29 Control Mean t = 3.53 + 11.8
rial 1 (a)P (a)P (a)P 20152-L 20152-L 20152-L 20152-L (c-1 7 (a)P 20152-L 20152-L 20152-L (c-1 7 (a)P (a)P 2(a)P 2(a)P 2(a)P 2(a)P	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control [90] .000791 .000791 .000250 .0132 Control [98] .000791 .000250 0132	2.75 6.61 .000 17.1 40.8 100. 28.5 51.8 .348 2.43 12.2 50.4 100. 8.38 29.3 .000 2.10	56.8 82.1 3.76 14.5 53.1 91.2 100. 76.0 95.8 4.89 18.6 38.1 78.7 100. 79.6 91.3 17.8 26.3	85 84 11 4 3 5 29 157 111 101 122 106 66 219 132 75 12 10	 (18) (18) (18) (18) (72) (18) 	4.11*** 3.04*** .456 .148 .122 .212 .289 7.60*** 4.91*** 4.93*** 5.70*** 5.22*** 2.12 1.95 6.82*** 3.38*** .489 .414	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) <u>Control</u> Mean t = .288 + 5.89 + 3.71 + 3.88 + 4.52 + 5.42 + .29 <u>Control</u> Mean t = 3.53 + 11.8 + 6.81 .00(59) .00(98)
rial 1 ((a)P ((a)P ((a)P (20152-L 20152-L 20152-L (20152-L (C-1) ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P) ((a)P ((a)P) ((a)P ((a)P) ((a)P) ((a)P ((a)P) ((a)P	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control [90] .000791 .000250 .0132 .00987 .00329 Control [98] .000791 .000250 [98] .000791 .000250 .0132 .00987 .000250	2.75 6.61 .000 .000 17.1 40.8 100. 28.5 51.8 .348 2.43 12.2 50.4 100. 8.38 29.3 .000 2.10 5.24	56.8 82.1 3.76 14.5 53.1 91.2 100. 76.0 95.8 4.89 18.6 38.1 78.7 100. 79.6 91.3 17.8 26.3 44.2	85 84 11 4 3 5 29 157 111 101 122 106 66 219 132 75 12 10 6	 (18) (18) (18) (18) (72) (18) 	4.11*** 3.04*** .456 .148 .122 .212 .289 7.60*** 4.91*** 4.93*** 5.70*** 5.22*** 2.12 1.95 6.82*** 3.38*** .489 .414 .240	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) Mean t = .288 + 5.89 + 3.71 + 3.88 + 4.52 + 5.42 + .29 <u>Control</u> Mean t = 3.53 + 11.8 + 6.81 .00(59) .00(98) .00(-1.99)
rial 1 (a)P (a)P 20152-L 20152-L 20152-L 20152-L C-1 rial 2 (a)P 20152-L 20152-L 20152-L C-1 rial 3 (a)P 2(a)P 2(a)P 2(a)P 2(a)P	[72] .000791 .000250 .0263 .0132 .00658 .00329 Control [90] .000791 .000250 .0132 .00987 .00658 .00329 Control [98] .000791 .000791 .000250 .0132 .000791 .000250	2.75 6.61 .000 17.1 40.8 100. 28.5 51.8 .348 2.43 12.2 50.4 100. 8.38 29.3 .000 2.10	56.8 82.1 3.76 14.5 53.1 91.2 100. 76.0 95.8 4.89 18.6 38.1 78.7 100. 79.6 91.3 17.8 26.3	85 84 11 4 3 5 29 157 111 101 122 106 66 219 132 75 12 10	 (18) (18) (18) (18) (72) (18) 	4.11*** 3.04*** .456 .148 .122 .212 .289 7.60*** 4.91*** 4.93*** 5.70*** 5.22*** 2.12 1.95 6.82*** 3.38*** .489 .414	+ 12.7 + 6.20 + 1.15 .00(-1.16) .00(-1.42) .00(61) Control Mean t = .288 + 5.89 + 3.71 + 3.88 + 4.52 + 5.42 + .29 Control Mean t = 3.53 + 11.8 + 6.81 .00(59) .00(98)

	eatment ndition ^a	Act	otoxic ivity ^b		orming vity ^c	Transformation Response ^d	Significance [®]
		RC	E (%)		s Data essels	Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	11	I (N)	III	<i>t</i> -statistic
trak	is(hydroxy	methyl)ph	osphonium	Sulfate	[003374-L, M	.W. = 404.32, Den	sity = NA g/ml]
ial 1		0.75	54 0	05		(66 444	40 7
a)P a)P	.000791 .000250	2.75 6.61	56.8 82.1	85 84	(18) (18)	4.11*** 3.04***	+ 12.7 + 6.20
3374-ι	.01098	.000	1.25	10	(18)	.361	+ .50
374-L		.000	1.75	6	(18)	.220	.00(53)
3374-L	.00366	12.1	35.3	4	(18)	.148	.00(-1.16)
374-L		51.8	68.9	1	(18)	.039	.00(-3.59)
•1	Control	100.	100.	29	(72)	.289 Me	<u>Control</u> an t = .125
ial 2	[84] .000791	49.8	57.9	71	(18)	3.27***	
a)P a)P	.000250	49.8 NA	71.7	71 57	(18) (18)	2.44***	+ 6.82 + 6.14
374-L	.01098	.000	.635	0	(2,18)	.000	.00(-7.45)
374-L		.000	.212	1	(16,18)	.044	.00(-5.25)
374-L	.00366	1.47	2.96	13	(18)	.413	.00(52)
374-L		11.7	51.0	6	(18)	.240	.00(-1.66)
·1	Control	100.	100.	50	(72)	.511 Mo	<u>Control</u> an t = .000
ipher	ıyltin Hyd	roxide [TP	H, M.W. = 3	67.03]			
al 1	F391						
)P	.000791	1.07	23.6	172	(20)	8.04***	+ 14.5
)P	.000250	3.56	64.5	145	(20)	6.84***	+ 15.8
н	.000272	.000	35.1	5	(18)	. 193	+ .50
'H	.000136	26.0	78.5	24	(20)	.955	+ .51
Ή.	.0000681	67.6	88.4	16	(20)	.533*	+ 2.30
Ή 1 C	.0000341	86.8	98.3	13	(19)	.526	.00(-1.36)
-1 C	ontrol	100.	100.	27	(40)	.427 Mei	<u>Control</u> an t = .828
al 2 DP	[93] .000791	2.65	46.7	138	(20)	6.48***	+ 16.8
a)P	.000250	7.96	79.9	115	(20)	4.80***	+ 12.0
н	.000327	.000	17.4	1	(3,18)	.260	.00(49)
.H	.000163	.000	9.50	1	(10,20)	.072	.00(-3.35)
.H	.0000817	.000	73.6	45	(18)	1.58**	+ 3.33
H 1 C	.0000409	34.5	86.3	25	(20)	-999**	+ 3.21
·1 C	ontrol	100.	100.	43	(79)	.416 Mea	<u>Control</u> an t = 3.27
lenes	(Mixed)	F109591.I	MW = 106	17 Densi	ty = NA g/ml		
		LI03331-L,		. 17, Delisi	cy nn y/⊪⊓	L	
al 1)P	[72] .000 79 1	2.75	56.8	85	(18)	4.11***	+ 12.7
	.000250	6.61	82.1	84	(18)	3.04***	+ 6.20
591-L	4.77	.000	.000	0	(0,18)	.000	NA
591-L		.000	53.8	Õ	(1,18)	.000	.00(65)
591-L		20.9	44.3	3	(10,18)	.231	.00(35)
591-L		53.4	99.7	5	(18)	. 193	.00(76)
1	Control	100.	100.	29	(72)	.289 Mea	$\frac{\text{Control}}{\text{an t} = .000}$
al 2		a	-				
		U (1) 7	// n				
)P)P	.000791 .000250	89.7 81.0	77.9 93.8	65 62	(18) (18)	3.30*** 2.85***	+ 11.7 + 7.75

Treatment Condition ^ª		Cytotoxic Activity ^b		Transforming Activity ^c		Transformation Response ^d	Significance	
		RCE	(%)	Type Ves	Focus Data Foci/Vessel Type Vessels Focus Type		<u></u>	
Drug Con	c., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic	
109591-L	9.09	.000	.000	0	(2,18)	.000	.00(-5.11)	
109591-L (5.82	29.9	54.1	1	(8,18)	.091	.00(-1.06)	
109591-L	4.55	30.3	71.8	9	(18)	.348	+ .57	
109591-L	2.27	57.0	92.1	12	(18)	.464	+ 1.32	
NC-1	Control	100.	100.	28	(72)	.268 Mea	<u>Control</u> n t = .945	

Abbreviations: B(a)P, benzo(a)pyrene; CC.A., co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels, NC, negative control; ND, not determined; %RCE, percent relative cloning efficiency; S.A., standard clonal survival assay.

^aTreatment Condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to $\mu g/ml$ using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

^bCytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as & RCE and was calculated as described in the Materials and Methods.

 $^{\circ}$ The criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci > 2-mm in diameter per culture vessel scored are recorded in this table.

^dTransformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a \log_{10} mathematical transformation procedure (refer to Materials and Methods). The arithmetic value or foci/vessel represents the antilog of the \log_{10} mean transformation response minus one.

^eSignificance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22), and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (-) t-statistics were given a value of zero (0).

*Significant BaP or test chemical transformation response, 0.01 .

**Significant BaP or test chemical transformation response, 0.001 .

***Significant or BaP or test chemical transformation response, $p \le 0.001$.

Appendix F.

	eatment ndition ^ª	Cytot Activ		Transform Activit	•	Transformation Response ^d	Significance ^e
		RCE	(*)	Focus Da Type Vess		Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic
-Amino	0-1,2,4-Tria	zole [AM	Γ, M.W. = 84	.08]			
rial 1	[69]						
(a)P	.000791	1.72	50.1	63	(20)	2.67***	+ 9.34
(a)P	.000250	11.3	68.1	33	(20)	1.17**	+ 3.53
4T	200.	.000	.000	1	(9,20)	.080	.00(-1.42)
1T	100.	3.44	57.7	21	(20)	.798*	+ 2.53
IT	50.0	53.3	94.2	33	(20)	1.30***	+ 4.24
IT	25.0	88.7	75.3	27	(19)	1.14***	+ 3.86
-1	Control	100.	100.	15	(40)	.288	Control
							an $t = 3.54$
'ial 2							
a)P	.000791	18.9	68.4	160	(20)	6.67***	+ 12.4
(a)P	.000250	32.1	85.0	94	(20)	3.59***	+ 7.95
	107	/	74 0	F.4	(20)	3 30±++	
1T	107.	4.91	31.0	50	(20)	2.20***	+ 5.77
11	80.3	39.6	56.9	123	(20)	5.57***	+ 11.6
11	53.5	87.5	87.3	104	(20)	4.39***	+ 9.35
T	26.8	96.6	106.	53	(20)	2.20***	+ 5.60
-1	Control	100.	100.	65	(80)	.586	$\frac{\text{Control}}{\text{an } t = 8.08}$
/clama	ate, Sodium	Salt [CYC	C, M.W. = 20	1.22]		neo	in t - 8.00
	c 7 1 7						
rial 1		4.48	50.7	251	(20)	11.0***	+ 12.1
a)P	.000791				(20)	3.50***	
a)P	.000250	18.1	68.9	77	(20)	3.30"""	+ 7.12
'C	29.8	42.3	84.4	74	(18)	3.10***	+ 4.21
/C	22.4	57.4	78.9	54	(18)	2.39**	+ 3.12
rC	14.9	67.6	76.3	55	(19)	2.40**	+ 3.32
rc	7.45	78.4	77.3	28	(20)	1.18	+ .38
:-1	Control	100.	100.	110	(75)	1.06	Control
	controt	100.		110	(13)		an t = 2.76
rial 2	٢107٦						
a)P	.000791	5.81	47.3	131	(20)	6.09***	+ 5.74
a)P	.000250	21.2	75.8	122	(20)	5.53***	+ 4.05
'C	149.	8.55	31.4	61	(20)	2.57	.00(78)
°C	112.	25.0	77.1	159	(19)	7.99***	+ 9.43
C	74.6	67.4	87.8	151	(20)	7.21***	+ 8.24
C 1	37.3	92.3	85.6	142	(20)	5.69***	+ 4.00
-1	Control	100.	100.	274	(80)	2.95 Mo:	$\frac{\text{Control}}{\text{t} = 5.42}$
						Mea	un ι = 0.42
L-Amir	noundecanoic	Acid [1]	LAMI, M.W. =	= 201.35]			
ial 1							
a)P	.000791	.000	52.9	94	(20)	4.43***	+ 13.5
a)P	.000250	3.54	79.1	86	(20)	3.91***	+ 11.6
	(07		100		(20)	F7 0	
AMI	-497	.000	100.	15	(20)	.578	+ 1.49
AMI	.248	.000	102.	11	(20)	.374	+ .30
AMI	.124	9.29	104.	17	(20)	.606	+ 1.54
AMI	.0621	57.1	106.	12	(20)	.494	+ 1.08
-1	Control	100.	100.	18	(40)	.327	<u>Control</u>
ial 2	[24]					Mea	an t = 1.10
idi 2 a)P	.000791	.000	18.7	83	(20)	3.65***	+ 10.7
a)P	.000250	5.66	70.0	86	(20)	3.73***	+ 10.7
a)r	.000200	0.00	10.0	00	(20)	2.12	+ 10.7

	atment	Cytotox		Transformi		Transformation	Significance ^e	
Conc	dition [®]	Activit	-	<u>Activity</u> ^c		Responsed	Significance ^e	
		RCE (%)		Focus Data Type Vessels		Foci/Vessel		
Drug	Conc., mM	S.A C	C.A.	Type vesser	(N)	Focus Type III	<i>t</i> -statistic	
Drug		3.M U	U.A.		(")	111		
11AMI	.993	.000	105.	4	(20)	.132	.00(-1.35	
11AMI	.745	.000	104.	3	(20)	.110	.00(-1.88	
11AMI	.497	.000	106.	7	(20)	.275	.00(24	
11AMI	.248	.000	104.	3	(20)	.072	.00(-1.87	
IC-1	Control	100.	100.	18	(40)	.308	Control	
[rial 3	[32]						Mean $t = .000$	
B(a)P	.000791	10.1	51.7	197	(19)	10.1***	+ 12.6	
B(a)P	.000250	6.37	77.4	115	(20)	5.46***	+ 6.94	
1AMI	19.87	.000	26.2	100	(20)	4.52***	+ 4.31	
11AMI	9.93	.000	20.2 75.3	87	(20)	4.52*** 3.77***	+ 4.51	
11AMI	4.97	.000	78.1	42	(20)	1.56	.00(97	
11AMI	2.48	.000	74.2	53	(20)	1.79	.00(41	
	Control	100.	100.	91	(38)	1.99	Control	
				71	(33)	1.77	Mean $t = 1.86$	
[ria] 4 3(a)P	[67] .000791	5.87	34.4	48	(20)	2.07***	+ 8.71	
3(a)P 3(a)P	.000250	20.8	54.4 63.9	40 39	(20)	.969**	+ 3.32	
	20.0	000	72.0	A 7				
	20.0	.000	72.0	17	(20)	-644***	+ 3.52	
	10.0	.000	90.7	10	(20)	.354*	+ 2.08	
	5.00	.000	86.8	10	(18)	.392*	+ 2.16	
1AMI	2.50	.000	87.6	9 5	(20) (39)	.301 .085	+ 1.71	
10-1						1185	Control	
IC-1	Control	100.	100.	2	(39)	.005	Mean t = 2.37	
nc-1 Decabro	omodiphenyla			-	(37)	.005		
	omodiphenyla [75]	oxide [917	884-S, M.	W. = 959.22]			Mean t = 2.37	
Decabro Trial 1	omodiphenylo [75] .000791	oxide [917 7.10	884-S, M. 66.5	W. = 959.22] 149	(20)	6.35***	Mean t = 2.37 + 10.9	
Decabro Trial 1 B(a)P	omodiphenyla [75]	oxide [917	884-S, M.	W. = 959.22]			Mean t = 2.37	
Decabro Trial 1 B(a)P B(a)P	omodiphenyl [75] .000791 .000250	oxide [917 7.10	884-S, M. 66.5	W. = 959.22] 149	(20)	6.35***	Mean t = 2.37 + 10.9 + 6.56	
Decabro Trial 1 B(a)P B(a)P 917884-s	omodiphenylo [75] .000791 .000250 s 4.00	oxide [917 7.10 28.4	884-S, M. 66.5 85.4	W. = 959.22] 149 67	(20) (20)	6.35*** 3.10***	Mean t = 2.37 + 10.9 + 6.56	
Decabro Trial 1 B(a)P B(a)P 917884-9 917884-9	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00	oxide [917 7.10 28.4 83.9	884-S, M. 66.5 85.4 80.9	W. = 959.22] 149 67 22	(20) (20) (20) (20)	6.35*** 3.10*** .818	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00	
Decabro Trial 1 B(a)P B(a)P 917884-9 917884-9 917884-9	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00	0xide [917 7.10 28.4 83.9 94.8	884-S, M. 66.5 85.4 80.9 91.0	W. = 959.22] 149 67 22 22	(20) (20) (20)	6.35*** 3.10*** .818 .882	Mean t = 2.37 + 10.9 + 6.56 .00(27	
Decabro Trial 1 B(a)P B(a)P 917884-9 917884-9 917884-9 917884-9	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00	7.10 7.10 28.4 83.9 94.8 101.	884-S, M. 66.5 85.4 80.9 91.0 82.8	W. = 959.22] 149 67 22 22 24	(20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 .00	
Decabro Trial 1 B(a)P B(a)P 917884-5 917884-5 917884-5 917884-5 NC-1	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00 s .500 Control	7.10 7.10 28.4 83.9 94.8 101. 92.7	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4	W. = 959.22] 149 67 22 22 24 30	(20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 .00 + .60	
Decabro Trial 1 B(a)P B(a)P 917884-5 917884-5 917884-5 917884-5 917884-5 NC-1 Trial 2	omodiphenyla [75] .000791 .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101]	7.10 7.10 28.4 83.9 94.8 101. 92.7 100.	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100.	W. = 959.22] 149 67 22 24 30 89	(20) (20) (20) (20) (20) (20) (20) (78)	6.35*** 3.10*** .818 .882 .882 1.04 .882	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 .00 + .60 <u>Control</u> Mean t = .150	
Decabro Trial 1 B(a)P B(a)P 917884-9 917884-9 917884-9 917884-9 917884-9 NC-1 Trial 2 B(a)P	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000791	Dxide [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8	W. = 959.22] 149 67 22 24 30 89 108	(20) (20) (20) (20) (20) (20) (20) (78) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63***	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 + .60 <u>Control</u> Mean t = .150 + 12.7	
Decabr(Trial 1 B(a)P B(a)P 917884-9 917884-9 917884-9 917884-9 917884-9 NC-1 Trial 2 B(a)P	omodiphenylo [75] .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000250	Dxide [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6	W. = 959.22] 149 67 22 24 30 89 108 48	(20) (20) (20) (20) (20) (20) (20) (78) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11***	Mean t = 2.37 + 10.9 + 6.56 .00(27) .00 + .60 Control Mean t = .150 + 12.7 + 9.73	
Decabro Trial 1 B(a)P B(a)P 917884-9 917884-9 917884-9 917884-9 NC-1 Trial 2 B(a)P B(a)P 917884-9	omodiphenylo [75] .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000791 .000250 s 4.17	Dxide [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106.	W. = 959.22] 149 67 22 24 30 89 108 48 6	(20) (20) (20) (20) (20) (20) (20) (78) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11***	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 + .60 <u>Control</u> Mean t = .150 + 12.7 + 9.73 .00(14	
Decabro Trial 1 B(a)P B(a)P 917884-9 917884-9 917884-9 917884-9 NC-1 Trial 2 B(a)P B(a)P 917884-9 917884-9	omodiphenyld [75] .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000250 s 4.17 s 2.08	DXIDE [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108.	W. = 959.22] 149 67 22 24 30 89 108 48 6 7	(20) (20) (20) (20) (20) (20) (20) (78) (20) (20) (20) (20) (19) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 + .60 <u>Control</u> Mean t = .150 + 12.7 + 9.73 .00(14 .00(19	
Decabro Trial 1 B(a)P B(a)P 917884-9 917884-9 917884-9 917884-9 B(a)P B(a)P 917884-9 917884-9 917884-9	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000791 .000250 s 4.17 s 2.08 s 1.04	DXIDE [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND ND	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108. 108.	W. = 959.22] 149 67 22 22 24 30 89 108 48 6 7 12	(20) (20) (20) (20) (20) (20) (20) (78) (20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238 .473	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 + .60 <u>Control</u> Mean t = .150 + 12.7 + 9.73 .00(14 .00(19 + 1.72	
Decabro Trial 1 3(a)P 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000791 .000250 s 4.17 s 2.08 s 1.04 s .521	DXIDE [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND ND ND ND	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108. 108. 108. 110.	W. = 959.22] 149 67 22 22 24 30 89 108 48 6 7 12 5	(20) (20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238 .473 .189	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 + .60 <u>Control</u> Mean t = .150 + 12.7 + 9.73 .00(14 .00(19 + 1.72 .00(68	
Decabro Trial 1 8(a)P 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000791 .000250 s 4.17 s 2.08 s 1.04	DXIDE [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND ND	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108. 108.	W. = 959.22] 149 67 22 22 24 30 89 108 48 6 7 12	(20) (20) (20) (20) (20) (20) (20) (78) (20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238 .473	<pre>Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 .00 + .60 Control Mean t = .150 + 12.7 + 9.73 .00(14 .00(14 .00(19 + 1.72 .00(68 Control</pre>	
Decabro Trial 1 B(a)P B(a)P 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000791 .000250 s 4.17 s 2.08 s 1.04 s .521	Dxide [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND ND ND ND ND ND ND	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108. 108. 110. 100.	W. = 959.22] 149 67 22 22 24 30 89 108 48 6 7 12 5	(20) (20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238 .473 .189	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 + .60 <u>Control</u> Mean t = .150 + 12.7 + 9.73 .00(14 .00(19 + 1.72 .00(68	
Decabro Trial 1 B(a)P B(a)P 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9	omodiphenylo [75] .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000791 .000250 s 4.17 s 2.08 s 1.04 s .521 Control No. 9 [DCRS	Dxide [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND ND ND ND ND ND ND	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108. 108. 110. 100.	W. = 959.22] 149 67 22 22 24 30 89 108 48 6 7 12 5	(20) (20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238 .473 .189	<pre>Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 .00 + .60 Control Mean t = .150 + 12.7 + 9.73 .00(14 .00(19 + 1.72 .00(68 Control</pre>	
Decabro Trial 1 B(a)P B(a)P 917884-9 917884-9 917884-9 917884-9 917884-9 8(a)P 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-9 917884-1 91784	omodiphenylo [75] .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000791 .000250 s 4.17 s 2.08 s 1.04 s .521 Control No. 9 [DCRS [43]	Dxide [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND ND ND ND ND ND ND ND ND 00.	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108. 108. 108. 110. 100.	W. = 959.22] 149 67 22 24 30 89 108 48 6 7 12 5 27	(20) (20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238 .473 .189 .260	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 + .60 <u>Control</u> Mean t = .150 + 12.7 + 9.73 .00(14 .00(19 + 1.72 .00(68 Mean t = .430	
Decabro Trial 1 B(a)P B(a)P 917884-9 917894-9 9178991904-9 917894-9 917894-9 917894-	omodiphenylo [75] .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000791 .000250 s 4.17 s 2.08 s 1.04 s .521 Control No. 9 [DCRS	Dxide [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND ND ND ND ND ND ND	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108. 108. 110. 100.	W. = 959.22] 149 67 22 22 24 30 89 108 48 6 7 12 5	(20) (20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238 .473 .189	<pre>Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 .00 + .60 Control Mean t = .150 + 12.7 + 9.73 .00(14 .00(14 .00(14 .00(14 .00(68 Control </pre>	
Decabro Trial 1 B(a)P B(a)P 917884-9 9178919191919191919191919191919191919191	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00 s 500 Control [101] .000791 .000250 s 4.17 s 2.08 s 1.04 s .521 Control No. 9 [DCR9 [43] .000250	Dxide [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND ND ND ND ND ND ND ND ND ND ND	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108. 108. 110. 100. 100. 14.49] 53.0 77.5	W. = 959.22] 149 67 22 24 30 89 108 48 6 7 12 5 27 382 270	(20) (20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238 .473 .189 .260 18.9*** 13.0***	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 + .60 <u>Control</u> Mean t = .150 + 12.7 + 9.73 .00(14 .00(19 + 1.72 .00(68 <u>Control</u> Mean t = .430 + 26.3 + 19.0	
Decabro Trial 1 B(a)P B(a)P 917884-9 917894-9 91	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00 s 500 Control [101] .000791 .000250 s 4.17 s 2.08 s 1.04 s .521 Control No. 9 [DCR9 [43] .000791 .000250 4.50	Dxide [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND ND ND ND ND ND ND ND ND ND ND	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108. 108. 108. 110. 100. 100. 14.49] 53.0 77.5 80.5	W. = 959.22] 149 67 22 24 30 89 108 48 6 7 12 5 27 382 270 145	(20) (20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238 .473 .189 .260 18.9*** 13.0***	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 + .60 <u>Control</u> Mean t = .150 + 12.7 + 9.73 .00(14 .00(19 + 1.72 .00(68 <u>Control</u> Mean t = .430 + 26.3 + 19.0 + 10.9	
Decabro Trial 1 8(a)P 917884-9 9	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000791 .000250 s 4.17 s 2.08 s 1.04 s .521 Control No. 9 [DCR9 [43] .000791 .000250 4.50 2.50	Dxide [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND ND ND 100. 9, M.W. = 44 1.02 4.75 30.0 71.1	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108. 100. 100. 100. 100. 100. 100. 100	W. = 959.22] 149 67 22 22 24 30 89 108 48 6 7 12 5 27 382 270 145 108	(20) (20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238 .473 .189 .260 18.9*** 13.0*** 5.12***	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 + .60 <u>Control</u> Mean t = .150 + 12.7 + 9.73 .00(14 .00(19 + 1.72 .00(68 <u>Control</u> Mean t = .430 + 26.3 + 19.0 + 10.9 + 10.9 + 10.5	
Decabro Trial 1 B(a)P B(a)P 917884-9 917894-9 91	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000791 .000250 s 4.17 s 2.08 s 1.04 s .521 Control No. 9 [DCR9 [43] .000791 .000250 4.50 2.50 1.12	Dxide [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND ND ND ND 100. 9, M.W. = 44 1.02 4.75 30.0 71.1 93.9	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108. 100. 100. 100. 100. 100. 100. 100	W. = 959.22] $149 67 22 22 24 30 89 108 48 6 7 12 5 27 382 270 145 108 95$	(20) (20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238 .473 .189 .260 18.9*** 13.0*** 6.75*** 5.12*** 4.22***	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 + .60 <u>Control</u> Mean t = .150 + 12.7 + 9.73 .00(14 .00(19 + 1.72 .00(68 <u>Control</u> Mean t = .430 + 26.3 + 19.0 + 10.9 + 10.5 + 7.16	
Decabro Frial 1 3(a)P 917884-9 9	omodiphenylo [75] .000791 .000250 s 4.00 s 2.00 s 1.00 s .500 Control [101] .000791 .000250 s 4.17 s 2.08 s 1.04 s .521 Control No. 9 [DCR9 [43] .000791 .000250 4.50 2.50	Dxide [917 7.10 28.4 83.9 94.8 101. 92.7 100. ND ND ND ND ND 100. 9, M.W. = 44 1.02 4.75 30.0 71.1	884-S, M. 66.5 85.4 80.9 91.0 82.8 99.4 100. 64.8 83.6 106. 108. 100. 100. 100. 100. 100. 100. 100	W. = 959.22] 149 67 22 22 24 30 89 108 48 6 7 12 5 27 382 270 145 108	(20) (20) (20) (20) (20) (20) (20) (20)	6.35*** 3.10*** .818 .882 .882 1.04 .882 4.63*** 2.11*** .245 .238 .473 .189 .260 18.9*** 13.0*** 5.12***	Mean t = 2.37 + 10.9 + 6.56 .00(27 .00 + .60 <u>Control</u> Mean t = .150 + 12.7 + 9.73 .00(14 .00(19 + 1.72 .00(68 <u>Control</u> Mean t = .430 + 26.3 + 19.0 + 10.9 + 10.9 + 10.5	

Treatment Condition ^a		Cytotoxic Activity ^b		Transformi Activity		Transformation Response ^d	Significance ^e
		RCE	(%)	Focus Dat Type Vesse		Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic
[ria] 2							
3(a)P	.000791	1.47	17.6	105	(20)	4.75***	+ 13.8
3(a)P	.000250	.490	61.1	100	(20)	4.52***	+ 13.5
DCR9	2.02	67.6	65.9	19	(18)	017++	
DCR9	1.01	111.	81.8	12		.817**	+ 2.96
CR9	.526	112.			(19)	.480	+ 1.39
CR9			98.3	9	(20)	.270	+ .04
	.253	102.	99.3	6	(20)	.214	.00(41
IC-1	Control	100.	100.	15	(40)	.265	<u>Control</u>
rial 3	[67]					M	ean t = 1.10
l(a)P	.000791	5.87	34.4	48	(20)	2.07***	+ 8.71
B(a)P	.000250	20.8	63.9	39	(20)	.969**	+ 3.32
				37	(20)	. 707	+ J.JC
CR9	4.05	80.8	47.8	47	(20)	1.65***	+ 5.47
CR9	2.02	91.4	59.3	27	(20)	.835**	+ 3.37
CR9	1.01	93.3	65.4	13	(20)	.503**	+ 3.07
CR9	.506	106.	74.1	9	(20)	.308	+ 1.78
IC-1	Control	100.	100.	5	(39)	.085	
	30/10/00			J	(37)		<u>Control</u> ean t = 3.42
			•				
Di(2-E	thylhexyl)ac	dipate [D	EHA, M.W.	= 370.57, D	ensity = 0.	928 g/m]]	
[ria] 1	F881						
ιι ιαι τ							
		15.8	73.9	54	(15)	3.36***	+ 9.58
3(a)P 3(a)P	.000791	15.8 35.5	73.9 82.6	54 24	(15) (15)	3.36*** 1.50***	+ 9.58 + 4.90
3(a)P 3(a)P	.000791	35.5	82.6	24	(15)	1.50***	+ 4.90
B(a)P	.000791 .000250 85.3	35.5 2.76	82.6 57.0	24 6	(15)	1.50*** .181	+ 4.90
3(a)P 3(a)P	.000791	35.5	82.6	24 6 3	(15)	1.50***	+ 4.90 .00(-1.53
B(a)P B(a)P DEHA	.000791 .000250 85.3	35.5 2.76	82.6 57.0	24 6	(15)	1.50*** .181	+ 4.90 .00(-1.53 .00(-2.11
B(a)P B(a)P DEHA DEHA	.000791 .000250 85.3 27.0	35.5 2.76 3.53	82.6 57.0 71.2	24 6 3	(15) (18) (18)	1.50*** .181 .122	+ 4.90 .00(-1.53 .00(-2.11 .00(43
B(a)P B(a)P DEHA DEHA DEHA	.000791 .000250 85.3 27.0 8.53	35.5 2.76 3.53 11.4	82.6 57.0 71.2 94.9	24 6 3 8	(15) (18) (18) (18)	1.50*** .181 .122 .339	+ 4.90 .00(-1.53 .00(-2.11 .00(43
3(a)P 3(a)P DEHA DEHA DEHA DEHA	.000791 .000250 85.3 27.0 8.53 2.70	35.5 2.76 3.53 11.4 17.0	82.6 57.0 71.2 94.9 102.	24 6 3 8 6	(15) (18) (18) (18) (18) (18)	1.50*** .181 .122 .339 .240 .406	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13
3(a)P 3(a)P DEHA DEHA DEHA DEHA	.000791 .000250 85.3 27.0 8.53 2.70 Control [108]	35.5 2.76 3.53 11.4 17.0 100.	82.6 57.0 71.2 94.9 102. 100.	24 6 3 8 6 37	(15) (18) (18) (18) (18) (67)	1.50*** .181 .122 .339 .240 .406 M	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000
3(a)P 3(a)P DEHA DEHA DEHA NC-1 Frial 2	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791	35.5 2.76 3.53 11.4 17.0 100. 15.5	82.6 57.0 71.2 94.9 102. 100. 31.3	24 6 3 8 6 37 139	(15) (18) (18) (18) (18) (67) (18)	1.50*** .181 .122 .339 .240 .406 M 7.38***	+ 4.90 .00(-1.53) .00(-2.11) .00(-3.43) .00(-1.13) lean t = .000 + 13.9
B(a)P B(a)P DEHA DEHA DEHA NC-1 Frial 2 B(a)P	.000791 .000250 85.3 27.0 8.53 2.70 Control [108]	35.5 2.76 3.53 11.4 17.0 100.	82.6 57.0 71.2 94.9 102. 100.	24 6 3 8 6 37	(15) (18) (18) (18) (18) (67)	1.50*** .181 .122 .339 .240 .406 M	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000
3(a)P 3(a)P DEHA DEHA DEHA NC-1 Irial 2 3(a)P 3(a)P	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7	24 6 3 8 6 37 139 72	 (15) (18) (18) (18) (67) (18) (18) (18) 	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77***	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96
B(a)P B(a)P DEHA DEHA DEHA NC-1 Trial 2 B(a)P B(a)P DEHA	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3	24 6 3 8 6 37 139 72 5	(15) (18) (18) (18) (18) (67) (18) (18) (18)	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88
8(a)P 8(a)P 9EHA 9EHA 9EHA 9EHA 1C-1 1 8(a)P 8(a)P 9EHA 9EHA	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6	24 6 3 6 37 139 72 5 3	(15) (18) (18) (18) (18) (67) (18) (18) (18) (18)	1.50*** .181 .122 .339 .240 .406 .406 M 7.38*** 4.77*** .212 .122	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33
S(a)P S(a)P DEHA DEHA DEHA IC-1 Crial 2 S(a)P S(a)P DEHA DEHA DEHA	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0	24 6 3 6 37 139 72 5 3 12	 (15) (18) (18) (18) (67) (18) (18) (18) (18) (18) (18) (18) (18) 	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33 .00(-3.07
B(a)P B(a)P DEHA DEHA DEHA DEHA S(a)P B(a)P DEHA DEHA DEHA DEHA	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53 2.70	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0	24 6 3 8 6 37 139 72 5 3 12 7	 (15) (18) (18) (18) (67) (18) 	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289	+ 4.90 .00(-1.53) .00(-2.11) .00(-43) .00(-1.13) lean t = $.000$ + 13.9 + 5.96 .00(-5.88) .00(-5.88) .00(-3.84)
S(a)P S(a)P DEHA DEHA DEHA S(a)P S(a)P S(a)P DEHA DEHA DEHA DEHA	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0	24 6 3 6 37 139 72 5 3 12	 (15) (18) (18) (18) (67) (18) (18) (18) (18) (18) (18) (18) (18) 	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33 .00(-3.84 Control
B(a)P B(a)P DEHA DEHA DEHA DEHA S(a)P B(a)P DEHA DEHA DEHA DEHA	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53 2.70	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0	24 6 3 8 6 37 139 72 5 3 12 7	 (15) (18) (18) (18) (67) (18) 	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17	+ 4.90 .00(-1.53) .00(-2.11) .00(-43) .00(-1.13) lean t = $.000$ + 13.9 + 5.96 .00(-5.88) .00(-5.88) .00(-3.84)
3(a)P 3(a)P DEHA DEHA DEHA NC-1 Frial 2 3(a)P DEHA DEHA DEHA DEHA NC-1	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53 2.70	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100.	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100.	24 6 3 8 6 37 139 72 5 3 12 7 108	 (15) (18) (18) (18) (67) (18) (18) (18) (18) (18) (18) (18) (18) (70) 	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33 .00(-3.84 Control
3(a)P 3(a)P DEHA DEHA DEHA NC-1 Frial 2 3(a)P DEHA DEHA DEHA DEHA NC-1	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53 2.70 Control thylhexyl)ph [36]	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100. nthalate	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100. [DEHP, M.	24 6 3 8 6 37 139 72 5 3 12 7 108	<pre>(15) (18) (18) (18) (18) (18) (18) (18) (18</pre>	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33 .00(-3.07 .00(-3.84 <u>Control</u> lean t = .000
3(a)P 3(a)P DeHA DeHA DeHA NC-1 Frial 2 3(a)P DeHA DeHA DeHA NC-1 Di(2-E	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53 27.0 8.53 2.70 Control	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100.	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100.	24 6 3 8 6 37 139 72 5 3 12 7 108	 (15) (18) (18) (18) (67) (18) (18) (18) (18) (18) (18) (18) (18) (18) (70) 	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33 .00(-3.84 Control
B(a)P B(a)P DEHA DEHA DEHA DEHA NC-1 Crial 2 B(a)P DEHA DEHA DEHA DEHA DEHA DEHA DEHA DEHA	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53 2.70 Control thylhexyl)ph [36]	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100. nthalate	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100. [DEHP, M.	24 6 3 8 6 37 139 72 5 3 12 7 108 W. = 390.54,	<pre>(15) (18) (18) (18) (18) (18) (18) (18) (18</pre>	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M 0.981 g/m]]	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33 .00(-3.07 .00(-3.84 <u>Control</u> lean t = .000
B(a)P B(a)P B(a)P DEHA	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 2.70 Control 8.53 2.70 Control thylhexyl)ph [36] .000791 .000250	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100. 100. 100. 100. 100.	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100. [DEHP, M. 40.1 78.1	24 6 3 8 6 37 139 72 5 3 12 7 108 W. = 390.54, 73 88	<pre>(15) (18) (18) (18) (18) (18) (18) (18) (18</pre>	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M 0.981 g/m]] 7.27*** 4.37***	+ 4.90 .00(-1.53) .00(-2.11) .00(43) .00(-1.13) lean t = .000 + 13.9 + 5.96 .00(-5.88) .00(-7.33) .00(-3.07) .00(-3.07) .00(-3.84) lean t = .000 + 21.8 + 10.8
B(a)P B(a)P B(a)P DEHA DEHA DEHA JC-1 IC-1 S(a)P S(a)P DEHA S(a)P DI (2-E S(a)P S(a)P S(a)P DEHA S(a)P DI (2-E S(a)P DEHA DI (2-E S(a)P DEHA DEHA<	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53 2.70 Control thylhexyl)ph [36] .000791 .000250 30.1	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100. 100. 100. 100. 100.	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100. [DEHP, M. 40.1 78.1 31.5	24 6 3 8 6 37 139 72 5 3 12 7 108 W. = 390.54, 73 88 0	<pre>(15) (18) (18) (18) (18) (18) (18) (18) (18</pre>	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M 0.981 g/m1] 7.27*** 4.37*** .000	+ 4.90 .00(-1.53 .00(-2.11) .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33 .00(-3.07 .00(-3.84 <u>Control</u> lean t = .000 + 21.8 + 10.8 .00(-5.07
B(a)P B(a)P B(a)P DEHA DEHA DEHA DEHA DEHA S(a)P S(a)P DEHA	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53 2.70 Control thylhexyl)ph [36] .000791 .000250 30.1 15.1	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100. 100. 100. 100. 100. 100. 100.	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100. [DEHP, M. 40.1 78.1 31.5 70.3	24 6 3 8 6 37 139 72 5 3 12 7 108 W. = 390.54, 73 88 0 1	<pre>(15) (18) (18) (18) (18) (18) (18) (18) (18</pre>	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M 0.981 g/m1] 7.27*** 4.37*** .000 .080	+ 4.90 .00(-1.53 .00(-2.11) .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33 .00(-3.07 .00(-3.84 <u>Control</u> lean t = .000 + 21.8 + 10.8 .00(-5.07
B(a)P B(a)P B(a)P DEHA DEHA DEHA DEHA IC-1 S(a)P S(a)P DEHA S(a)P DEHA DEHA DEHA S(a)P S(a)P S(a)P S(a)P S(a)P DEHA DI (2-E Trial 1 S(a)P S(a)P DEHA	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53 2.70 Control thylhexyl)ph [36] .000791 .000250 30.1	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100. 100. 100. 100. 101. 101. 101.	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100. [DEHP, M. 40.1 78.1 31.5 70.3 92.3	24 6 3 8 6 37 139 72 5 3 12 7 108 W. = 390.54, 73 88 0 1 2	<pre>(15) (18) (18) (18) (18) (18) (18) (18) (18</pre>	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M 0.981 g/m1] 7.27*** 4.37*** .000	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33 .00(-3.07 .00(-3.84 <u>Control</u> lean t = .000 + 21.8 + 10.8 .00(-5.07 .00(-1.90
B(a)P B(a)P B(a)P DEHA DEHA DEHA DEHA DEHA S(a)P S(a)P DEHA	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53 2.70 Control thylhexyl)ph [36] .000791 .000250 30.1 15.1	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100. 100. 100. 100. 100. 100. 100.	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100. [DEHP, M. 40.1 78.1 31.5 70.3	24 6 3 8 6 37 139 72 5 3 12 7 108 W. = 390.54, 73 88 0 1	<pre>(15) (18) (18) (18) (18) (18) (18) (18) (18</pre>	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M 0.981 g/m1] 7.27*** 4.37*** .000 .080	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33 .00(-7.33 .00(-3.07 .00(-3.07 .00(-3.84 <u>Control</u> lean t = .000 + 21.8 + 10.8 .00(-5.07 .00(-2.49)
(a)P (b) (c)	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53 27.0 8.53 27.0 control thylhexyl)ph [36] .000791 .000250 30.1 15.1 7.54	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100. 100. 100. 100. 101. 101. 101.	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100. [DEHP, M. 40.1 78.1 31.5 70.3 92.3	24 6 3 8 6 37 139 72 5 3 12 7 108 W. = 390.54, 73 88 0 1 2	<pre>(15) (18) (18) (18) (18) (18) (18) (18) (18</pre>	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M 0.981 g/m1] 7.27*** 4.37*** .000 .080 .071 .289 .424	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-5.88 .00(-7.33 .00(-3.07 .00(-3.84 <u>Control</u> lean t = .000 + 21.8 + 10.8 .00(-5.07 .00(-1.90 .00(-2.49 .00(85 Control
(a)P (a)P (a)P (a)P (b)EHA (c)C-1 (c)C-1	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 27.0 8.53 2.70 Control thylhexyl)ph [36] .000791 .000250 30.1 15.1 7.54 3.77	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100. 100. 100. 100. 101. 101. 101.	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100. [DEHP. M. 40.1 78.1 31.5 70.3 92.3 94.4	$ \begin{array}{r} 24\\ 6\\ 3\\ 8\\ 6\\ 37\\ 139\\ 72\\ 5\\ 3\\ 12\\ 7\\ 108\\ W. = 390.54, \\73\\ 88\\ 0\\ 1\\ 2\\ 7\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 0\\ 1\\ 8\\ 0\\ 1\\ 8\\ 0\\ 1\\ 8\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	<pre>(15) (18) (18) (18) (18) (18) (18) (18) (18</pre>	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M 0.981 g/m1] 7.27*** 4.37*** .000 .080 .071 .289 .424	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33 .00(-7.33 .00(-3.07 .00(-3.84 <u>Control</u> lean t = .000 + 21.8 + 10.8 .00(-5.07 .00(-2.49 .00(85)
(a)P (a)P EHA EHA C-1 2 (a)P EHA EHA EHA EHA C-1 1 (a)P EHA EHA C-1 1 (a)P EHP EHP EHP EHP EHP EHP EHP EHP C-1 2 (a)P	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 2.70 Control thylhexyl)ph [36] .000791 .000250 30.1 15.1 7.54 3.77 Control [100]	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100. 100. 100. 100. 100. 100. 100.	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100. [DEHP, M. 40.1 78.1 31.5 70.3 92.3 94.4 100.	24 6 3 8 6 37 139 72 5 3 12 7 108 W. = 390.54, 7 88 0 1 2 7 20	<pre>(15) (18) (18) (18) (18) (18) (18) (18) (18</pre>	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M 0.981 g/m1] 7.27*** 4.37*** .000 .080 .071 .289 .424 M	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-7.33 .00(-7.33 .00(-3.07 .00(-3.84 <u>Control</u> lean t = .000 + 21.8 + 10.8 .00(-5.07 .00(-1.90 .00(-2.49 .00(85 <u>Control</u> lean t = .000
(a)P (a)P EHA EHA EHA C-1 (a)P EHA EHA EHA C-1 (a)P EHA EHA C-1 (a)P (a)P EHP EHP EHP EHP EHP EHP C-1	.000791 .000250 85.3 27.0 8.53 2.70 Control [108] .000791 .000250 85.3 2.70 Control thylhexyl)ph [36] .000791 .000250 30.1 15.1 7.54 3.77 Control	35.5 2.76 3.53 11.4 17.0 100. 15.5 30.0 15.8 22.6 42.3 60.0 100. 100. 100. 100. 101. 101. 101.	82.6 57.0 71.2 94.9 102. 100. 31.3 65.7 57.3 83.6 78.0 92.0 100. [DEHP. M. 40.1 78.1 31.5 70.3 92.3 94.4	$ \begin{array}{r} 24\\ 6\\ 3\\ 8\\ 6\\ 37\\ 139\\ 72\\ 5\\ 3\\ 12\\ 7\\ 108\\ W. = 390.54, \\73\\ 88\\ 0\\ 1\\ 2\\ 7\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 7\\ 88\\ 0\\ 1\\ 2\\ 7\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 8\\ 0\\ 1\\ 8\\ 0\\ 1\\ 8\\ 0\\ 1\\ 8\\ 0\\ 1\\ 8\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	<pre>(15) (18) (18) (18) (18) (18) (18) (18) (18</pre>	1.50*** .181 .122 .339 .240 .406 M 7.38*** 4.77*** .212 .122 .587 .289 1.17 M 0.981 g/m1] 7.27*** 4.37*** .000 .080 .071 .289 .424	+ 4.90 .00(-1.53 .00(-2.11 .00(43 .00(-1.13 <u>Control</u> lean t = .000 + 13.9 + 5.96 .00(-5.88 .00(-5.88 .00(-7.33 .00(-3.07 .00(-3.84 <u>Control</u> lean t = .000 + 21.8 + 10.8 .00(-5.07 .00(-1.90 .00(-2.49 .00(85 Control

Treatment Condition ^a		Cytotoxic Activity ^b		Transforming Activity ^c		Transformation Response ^d	Significance [®]
		RCE (%)		Focus Data Type Vessel		Foci/Vessel Focus Type	
Drug	Conc., mM	S.A CO	.A.	III	(N)	III	<i>t</i> -statistic
EHP	37.7	.000	64.3	7	(17)	170	00/ 1 1/
EHP	18.8	3.22	64.3 74.7	3 0	(17) (18)	.130 .000	.00(-1.14 .00(-5.11
DEHP	9.42	22.1	69.0	ž	(18)	.080	.00(-1.66
DEHP	4.71	47.4	87.0	4	(18)	. 148	.00(99
IC-1	Control	100.	100.	20	(72)	.268	Control
							Mean = .000
Dimeth	nyl Hydrogen	Phosphite	[DMHP, M	.W. = 110.05	. Density	= ND g/m]]]	
[ria] 1							
B(a)P	.000791	49.8	57.9	71	(18)	3.27***	+ 6.82
8(a)P	.000250	ND	71.7	57	(18)	2.44***	+ 6.14
MHP	200.	.000	.000	0	(3,18)	.000	.00(-7.45
MHP	150.	1.47	7.36	7	(18)	.248	.00(-1.56
MHP	100.	5.13	66.9	141	(18)	7.00***	+ 13.6
MHP	50.0	22.7	90.4	33	(18)	1.60***	+ 4.47
IC-1	Control	100.	100.	50	(72)	.511	Control
[rial '	2 [104]					•	Mean $t = 6.02$
3(a)P	.000791	25.0	64.5	62	(18)	2.79***	+ 4.87
3(a)P	.000250	50.6	89.6	63	(18)	2.47***	+ 4.10
MHP	164.	.000	16.6	30	(18)	1.18	+ 1.01
OMHP	123.	6.96	65.7	111	(18)	5.76***	+ 9.55
MHP	81.8	16.8	71.0	89	(18)	4.67***	+ 11.1
OMHP	40.9	63.3	94.1	32	(18)	1.50*	+ 2.06
NC-1	Control	100.	100.	83	(71)	.878	Control
					()		Mean t = 5.93
Diethy	/lnitrosamine	E [DEN, M.V	1. = 102.14	I, Density =	ND g/ml]		
Trial 1	L [79]			-		20.0444	. 47.0
[ria]] B(a)P	[[79] .000 7 91	22.7	79.6	279	(13)	20.8***	+ 13.9
[ria]] B(a)P	L [79]			-		20.8*** 12.9***	+ 13.9 + 9.34
Frial 1 B(a)P B(a)P DEN	L [79] .000791 .000250 138.	22.7 39.3 .000	79.6 94.2 .000	2 79 241 0	(13) (18) (0,18)	12.9*** .000	+ 9.34 ND
Trial 1 B(a)P B(a)P DEN DEN	L [79] .000791 .000250 138. 104.	22.7 39.3 .000 .000	79.6 94.2 .000 .000	279 241 0 0	(13) (18) (0,18) (0,18)	12.9*** .000 .000	+ 9.34 ND ND
Trial 1 B(a)P B(a)P DEN DEN DEN	L [79] .000791 .000250 138. 104. 69.2	22.7 39.3 .000 .000 .826	79.6 94.2 .000 .000 4.05	279 241 0 0 153	(13) (18) (0,18) (0,18) (18)	12.9*** .000 .000 8.12***	+ 9.34 ND ND + 4.11
Trial 1 3(a)P 3(a)P DEN DEN DEN DEN DEN	L [79] .000791 .000250 138. 104. 69.2 34.6	22.7 39.3 .000 .000 .826 2.48	79.6 94.2 .000 4.05 78.8	279 241 0 153 207	(13) (18) (0,18) (0,18) (18) (18)	12.9*** .000 .000 8.12*** 11.1***	+ 9.34 ND + 4.11 + 7.71
Trial 1 3(a)P 3(a)P DEN DEN DEN DEN DEN	L [79] .000791 .000250 138. 104. 69.2	22.7 39.3 .000 .000 .826	79.6 94.2 .000 .000 4.05	279 241 0 0 153	(13) (18) (0,18) (0,18) (18)	12.9*** .000 .000 8.12***	+ 9.34 ND + 4.11 + 7.71 <u>Control</u>
Trial 1 B(a)P B(a)P DEN DEN DEN DEN DEN NC-1	L [79] .000791 .000250 138. 104. 69.2 34.6	22.7 39.3 .000 .000 .826 2.48	79.6 94.2 .000 4.05 78.8	279 241 0 153 207	(13) (18) (0,18) (0,18) (18) (18)	12.9*** .000 .000 8.12*** 11.1*** 5.12	+ 9.34 ND + 4.11 + 7.71
Trial 1 B(a)P B(a)P DEN DEN DEN DEN NC-1 Frial 2	L [79] .000791 .000250 138. 104. 69.2 34.6 Control	22.7 39.3 .000 .000 .826 2.48	79.6 94.2 .000 4.05 78.8 100. 69.9	279 241 0 153 207	 (13) (18) (0,18) (0,18) (18) (18) (72) (18) 	12.9*** .000 .000 8.12*** 11.1*** 5.12 4.65***	+ 9.34 ND + 4.11 + 7.71 <u>Control</u> Mean t = 5.91 + 9.48
Trial 1 3(a)P 3(a)P DEN DEN DEN DEN NC-1 Trial 2 3(a)P	L [79] .000791 .000250 138. 104. 69.2 34.6 Control 2 [102]	22.7 39.3 .000 .000 .826 2.48 100.	79.6 94.2 .000 4.05 78.8 100.	279 241 0 153 207 430	(13) (18) (0,18) (0,18) (18) (18) (72)	12.9*** .000 .000 8.12*** 11.1*** 5.12	+ 9.34 ND + 4.11 + 7.71 <u>Control</u> Mean t = 5.91
Trial 1 B(a)P B(a)P DEN DEN DEN DEN DEN NC-1	L [79] .000791 .000250 138. 104. 69.2 34.6 Control 2 [102] .000791	22.7 39.3 .000 .826 2.48 100. 9.64	79.6 94.2 .000 4.05 78.8 100. 69.9	279 241 0 153 207 430 99	 (13) (18) (0,18) (0,18) (18) (18) (72) (18) 	12.9*** .000 .000 8.12*** 11.1*** 5.12 4.65***	+ 9.34 ND + 4.11 + 7.71 <u>Control</u> Mean t = 5.91 + 9.48
Trial 1 3(a)P 3(a)P DEN DEN DEN NC-1 Trial 2 3(a)P 3(a)P	L [79] .000791 .000250 138. 104. 69.2 34.6 Control 2 [102] .000791 .000250	22.7 39.3 .000 .000 .826 2.48 100. 9.64 19.3	79.6 94.2 .000 4.05 78.8 100. 69.9 93.1	279 241 0 153 207 430 99 45	 (13) (18) (0,18) (0,18) (18) (18) (72) (18) (18) (18) 	12.9*** .000 .000 8.12*** 11.1*** 5.12 4.65*** 2.22***	+ 9.34 ND ND + 4.11 + 7.71 <u>Control</u> Mean t = 5.91 + 9.48 + 5.22 + 1.20 + 3.78
Trial 1 3(a)P 3(a)P DEN DEN DEN NC-1 Trial 2 3(a)P 3(a)P	L [79] .000791 .000250 138. 104. 69.2 34.6 Control 2 [102] .000791 .000250 73.8	22.7 39.3 .000 .826 2.48 100. 9.64 19.3 .000	79.6 94.2 .000 4.05 78.8 100. 69.9 93.1 .000	279 241 0 153 207 430 99 45 2	(13) (18) (0,18) (18) (18) (18) (72) (18) (18) (18) (18) (18) (18) (18)	12.9*** .000 .000 8.12*** 11.1*** 5.12 4.65*** 2.22*** .063 2.46** 1.77***	+ 9.34 ND + 4.11 + 7.71 <u>Control</u> Mean t = 5.91 + 9.48 + 5.22 + 1.20
Frial 1 3(a)P 3(a)P DEN DEN DEN DEN NC-1 Frial 2 3(a)P 3(a)P DEN DEN DEN DEN DEN	L [79] .000791 .000250 138. 104. 69.2 34.6 Control 2 [102] .000791 .000250 73.8 55.3 36.9 18.4	22.7 39.3 .000 .826 2.48 100. 9.64 19.3 .000 .000 .000 1.26	79.6 94.2 .000 4.05 78.8 100. 69.9 93.1 .000 1.87 45.9 57.3	279 241 0 153 207 430 99 45 2 61 40 44	(13) (18) (0,18) (18) (18) (18) (72) (18) (18) (18) (18) (18) (18) (18) (18	12.9*** .000 .000 8.12*** 11.1*** 5.12 4.65*** 2.22*** .063 2.46** 1.77*** 1.91***	+ 9.34 ND ND + 4.11 + 7.71 Control Mean $t = 5.91$ + 9.48 + 5.22 + 1.20 + 3.78 + 3.77 + 4.10
Frial 1 3(a)P DEN DEN DEN DEN DEN NC-1 Frial 2 3(a)P 3(a)P DEN DEN DEN	L [79] .000791 .000250 138. 104. 69.2 34.6 Control 2 [102] .000791 .000250 73.8 55.3 36.9	22.7 39.3 .000 .826 2.48 100. 9.64 19.3 .000 .000 .000	79.6 94.2 .000 4.05 78.8 100. 69.9 93.1 .000 1.87 45.9	279 241 0 153 207 430 99 45 2 61 40	(13) (18) (0,18) (18) (18) (18) (72) (18) (18) (18) (18) (18) (18) (18)	12.9*** .000 .000 8.12*** 11.1*** 5.12 4.65*** 2.22*** .063 2.46** 1.77***	+ 9.34 ND ND + 4.11 + 7.71 <u>Control</u> Mean t = 5.91 + 9.48 + 5.22 + 1.20 + 3.78 + 3.77
Frial 1 3(a)P 3(a)P DEN DEN DEN DEN C-1 5(a)P 3(a)P DEN DEN DEN DEN DEN DEN DEN NC-1	L [79] .000791 .000250 138. 104. 69.2 34.6 Control 2 [102] .000791 .000250 73.8 55.3 36.9 18.4 Control	22.7 39.3 .000 .826 2.48 100. 9.64 19.3 .000 .000 1.26 100.	79.6 94.2 .000 4.05 78.8 100. 69.9 93.1 .000 1.87 45.9 57.3 100.	279 241 0 153 207 430 99 45 2 61 40 44 64	 (13) (18) (0,18) (0,18) (18) (172) 	12.9*** .000 .000 8.12*** 11.1*** 5.12 4.65*** 2.22*** .063 2.46** 1.77*** 1.91*** .697	+ 9.34 ND ND + 4.11 + 7.71 <u>Control</u> Mean t = 5.91 + 9.48 + 5.22 + 1.20 + 3.78 + 3.77 + 4.10 <u>Control</u>
Frial 1 3(a)P 3(a)P DEN DEN DEN DEN DEN DEN DEN DEN DEN DEN	<pre>L [79] .000791 .000250 138. 104. 69.2 34.6 Control 2 [102] .000791 .000250 73.8 55.3 36.9 18.4 Control hylnitrosamin</pre>	22.7 39.3 .000 .826 2.48 100. 9.64 19.3 .000 .000 1.26 100.	79.6 94.2 .000 4.05 78.8 100. 69.9 93.1 .000 1.87 45.9 57.3 100.	279 241 0 153 207 430 99 45 2 61 40 44 64	 (13) (18) (0,18) (0,18) (18) (172) 	12.9*** .000 .000 8.12*** 11.1*** 5.12 4.65*** 2.22*** .063 2.46** 1.77*** 1.91*** .697	+ 9.34 ND ND + 4.11 + 7.71 <u>Control</u> Mean t = 5.91 + 9.48 + 5.22 + 1.20 + 3.78 + 3.77 + 4.10 <u>Control</u>
Frial 1 3(a)P 3(a)P DEN DEN DEN DEN DEN DEN DEN DEN DEN DEN	L [79] .000791 .000250 138. 104. 69.2 34.6 Control 2 [102] .000791 .000250 73.8 55.3 36.9 18.4 Control	22.7 39.3 .000 .826 2.48 100. 9.64 19.3 .000 .000 1.26 100.	79.6 94.2 .000 4.05 78.8 100. 69.9 93.1 .000 1.87 45.9 57.3 100.	279 241 0 153 207 430 99 45 2 61 40 44 64	 (13) (18) (0,18) (0,18) (18) (172) 	12.9*** .000 .000 8.12*** 11.1*** 5.12 4.65*** 2.22*** .063 2.46** 1.77*** 1.91*** .697	+ 9.34 ND ND + 4.11 + 7.71 <u>Control</u> Mean t = 5.91 + 9.48 + 5.22 + 1.20 + 3.78 + 3.77 + 4.10 <u>Control</u>

Treatment Condition ^a		Cytot Activ	ity⁵	Transform Activit		Transformation Response ^d	Significance ^e
		RCE	(%)	Focus Da		Foci/Vessel	
-	•			Type Vess		Focus Type	
Drug	Conc., mM	<u>S.A</u>	CC.A.	III	(N)	III	<i>t</i> -statistic
MN	489.	.000	.000	1	(18)	.059	007 E 79
MN	367.	.000		31			.00(-5.78
					(18)	1.49	+ 1.78
MN	244.	.000		42	(17)	1.98**	+ 2.72
MN	122.	10.7	113.	123	(18)	4.76**	+ 6.42
C-1	Control	100.	100.	43	(36)	.930	$\frac{\text{Control}}{1-2}$
rial 2	[100]						Mean t = 3.64
(a)P	.000791	89.7	77.9	65	(18)	3.30***	+ 11.7
(a)P	.000250	81.0	93.8	62	(18)	2.85***	+ 7.75
•••	747	000	000	0	(0.40)		
4N ANI	367.	.000		0	(0,18)	.000	NA NA
1N	244.	.000		3	(16,18)	.139	.00(-1.03
1N	122.	.000		35	(18)	1.54***	+ 4.82
4N	61.1	18.9	88.7	30	(18)	1.49***	+ 6.50
C-1	Control	100.	100.	29	(72)	.268	<u>Control</u>
						١	1ean t = 5.66
imethy	yl Methyl Ph	osphonate	e [267599-L	., M.W. = 12	4.08, Dens	ity = 1.145 g/m]]	
rial 1							
(a)P	.000791	49.8	57.9	71	(18)	3.27***	+ 6.82
(a)P	.000250	ND	71.7	57	(18)	2.44***	+ 6.14
57599-L	175.	.000	17.6	14	(17)	(0)	
					(17)	.604	+ .47
7599-L		2.93	77.7	32	(18)	1.32**	+ 3.26
57599-L		11.7	88.3	20	(18)	.876	+ 1.72
57599-L		60.1	101.	27	(18)	1.25**	+ 3.21
:-1	Control	100.	100.	50	(72)	.511	Control
rial 2	F1021					1	1ean t = 2.17
(a)P	.000791	9.64	69.9	99	(18)	4.65***	+ 9.48
(a)P	.000250	19.3	93.1	45	(18)	2.22***	+ 5.22
57599-L		.419	27.5	57	(18)	2.80***	+ 6.57
57599-L	. 137.	1.33	70.9	52	(18)	2.36***	+ 5.23
57599-L	. 91.7	11.3	82.1	20	(17)	.947	+ 1.07
7599-L	45.8	55.8	82.9	27	(18)	1.11	+ 1.65
-1	Control	100.	100.	64	(72)	.697	Control
•	bonner or	100.	100.	04	(12)		lean t = 3.63
imeth	ylmorpholino	phosphora	midate [9	045355-L, M.	W. = 195.1	8, Density = NA g	/m]]
rial 1	[86]						
(a)P	.000791	18.7	63.3	64	(18)	3.32***	+ 9.07
(a)P	.000250	47.9	87.6	42	(18)	2.02***	+ 5.74
			70 5	75	(10)	7 / 7++++	
45355-1		.000		75	(18)	3.48***	+ 8.69
45355-1		.000		43	(18)	2.12***	+ 6.15
45355-l		5.45	77.7	24	(18)	1.11**	+ 2.90
45355-L	L ND	27.2	77.7	12	(18)	.441	.00(12
	Control	100.	100.	47	(72)	.464	<u>Control</u>
;-1	F1087					١	1ean t = 4.44
C-1	11001	15 5	71 7	170	(18)	7 70+++	+ 17 0
rial 2		15.5	31.3 65.7	139 72	(18) (13)	7.38*** 4.77***	+ 13.9 + 5.96
rial 2 (a)P	.000791		1.00	12	(13)	4.//***	- J. y 0
rial 2 (a)P		30.0					
rial 2 (a)P (a)P	.000791 .000250	.000	61.2	31	(16)	1.66	+ 1.36
rial 2 (a)P (a)P (a)P	.000791 .000250			31 33		1.66 2.63**	
rial 2 (a)P (a)P 45355-1 45355-1	.000791 .000250 L ND L ND	.000 .000	73.5	33	(11)	2.63**	+ 2.96
rial 2 (a)P (a)P 45355-1 45355-1 45355-1	.000791 .000250 L ND L ND L ND	.000 .000 .000	73.5 86.7	33 58	(11) (12)	2.63** 4.62***	+ 2.96 + 8.96
rial 2 (a)P (a)P (a)P (5355-1 (5355-1	.000791 .000250 L ND L ND L ND	.000 .000	73.5	33	(11)	2.63**	+ 2.96

Appendix F. Continued.

Treatment Condition [®]		Cytot Activ RCE	ity [⊳]	Transformi Activity ^c	:	Transformation Response ^d	Significance
Drug	Conc., mM	S.A	(*) CC.A.	Focus Data Type Vesse III		Foci/Vessel Focus Type III	<i>t</i> -statistic
Diug		<u> </u>			(11)		t-statistic
imet	hylmorpholin	ophospho	ramidate	[DMMP, M.W. =	= 195.16, D	ensity = ND g/ml]
	1 [86]	40.7	/7 7				
(a)P (a)P	.000791 .000250	18.7 47.9	63.3 87.6	64 42	(18) (18)	3.32*** 2.02***	+ 9.07 + 5.74
(4)	.000290	47.7	07.0	42	(10)	2.02	+ 5.74
MMP	16.4	.00	0 50.7	64	(18)	2.99***	+ 7.70
MMP	8.21	4.09	74.0	29	(18)	1.31**	+ 3.56
MMP	4.10	12.1	83.0	28	(18)	1.06*	+ 2.54
MMP	2.05	49.8	82.6	14	(18)	.650	+ .98
2-1	Control	100.	100.	47	(72)	.464	Control
aial 4	2 51067						Mean $t = 3.70$
rial : (a)P	2 [106] .00079	27.0	56.9	134	(18)	L 00+++	
(a)P	.00025	44.3	77.9	91		6.88***	+ 8.00
(<i>a</i>)r	.00025	44.3	11.7	71	(18)	4.53***	+ 5.56
MMP	23.1	.00	0 47.3	47	(18)	2.30*	+ 2.28
IMP	17.3	.00		66	(18)	3.13***	+ 2.28 + 3.56
1MP	11.5	.00		57	(18)	2.86**	+ 3.35
MP	5.77	7.65		41	(18)	1.95	+ 1.54
-1	Control	100.	100.	74	(43)	1.30	
			100.	/4	(43)		Control
ietha	anolnitrosam 1 [86]		N, M.W. =	134.14, Densi	ity = ND g/n		Mean t = 2.68
ietha rial (a)P	anolnitrosam		N, M.W. = 63.3 87.6	64 (ity = ND g/1 18) 18)		Mean t = 2.68 + 9.07 + 5.74
ietha rial (a)P (a)P	anolnitrosam 1 [86] .000791	ine [DETI 18.7	63.3	64 (42 (18)	n]] 3.32***	+ 9.07
ietha rial (a)P (a)P ETN	anolnitrosam 1 [86] .000791 .000250	ine [DETI 18.7 47.9	63.3 87.6	64 (42 (38 (18) 18)	n]] 3.32*** 2.02***	+ 9.07 + 5.74
ietha	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8	ine [DETI 18.7 47.9 .000	63.3 87.6 66.6	64 (42 (38 (24 (18) 18) 18)	n]] 3.32*** 2.02*** 1.83***	+ 9.07 + 5.74 + 5.39
ietha rial (a)P (a)P ETN ETN ETN	anolnitrosam 1 [86] .000791 .000250 59.6 44.7	ine [DETI 18.7 47.9 .000 1.17	63.3 87.6 66.6 75.2	64 (42 (38 (24 (21 (25 (18) 18) 18) 18) 18) 18)	n]] 3.32*** 2.02*** 1.83*** 1.24***	+ 9.07 + 5.74 + 5.39 + 3.61
ietha ial a)P a)P TN TN TN	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8	ine [DETI 18.7 47.9 .000 1.17 26.1	63.3 87.6 66.6 75.2 87.0	64 (42 (38 (24 (21 (25 (18) 18) 18) 18) 18) 18)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04**	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75
ietha a)P a)P TN TN TN	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8	63.3 87.6 66.6 75.2 87.0 90.5	64 (42 (38 (24 (21 (25 (18) 18) 18) 18) 18) 18)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22
ietha (a)P (a)P ETN ETN ETN C-1 thyle	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9 Control ene Thiourea	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100.	63.3 87.6 66.6 75.2 87.0 90.5 100.	64 (42 (38 (24 (21 (25 (47 (18) 18) 18) 18) 18) 18)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 <u>Control</u>
ietha (a)P (a)P ETN ETN ETN ETN C-1 thyle	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59]	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M.	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16	64 (42 (38 (24 (21 (25 (47 (18) 18) 18) 18) 18) 18) 18) 72)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 <u>Control</u> n t = 4.01
ietha (a)P (a)P TN TN TN C-1 thyle (a)P	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. [ETU, M.	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5	64 (42 (38 (24 (21 (25 (47 (5]	18) 18) 18) 18) 18) 18) 18) 72) (20)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31***	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 <u>Control</u> n t = 4.01 + 17.9
ietha (a)P (a)P TN TN TN C-1 thyle (a)P	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59]	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M.	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16	64 (42 (38 (24 (21 (25 (47 (18) 18) 18) 18) 18) 18) 18) 72)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 <u>Control</u> n t = 4.01
ietha ca)P ca)P etn etn ca)P etn ca)P ca)P ca)P	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. [ETU, M. 1.3 7.4	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5	64 (42 (38 (24 (21 (25 (47 (5] 165 33	18) 18) 18) 18) 18) 18) 18) 72) (20) (19)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34***	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 <u>Control</u> n t = 4.01 + 17.9 + 4.28
ietha a)P a)P TN TN TN C-1 thyle a)P a)P	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157.	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. [ETU, M. 1.3 7.4 7.4	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8	64 (42 (38 (24 (25 (47 (5] 165 33 14	18) 18) 18) 18) 18) 18) 18) 72) (20) (20)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 <u>Control</u> n t = 4.01 + 17.9 + 4.28 + 1.62
ietha a)P a)P TN TN TN C-1 thyle a)P a)P U	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157. 117.	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. 1.3 7.4 7.4 47.8	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8 96.1	64 (42 (28 (21 (25 (47 (5] 165 33 14 12	18) 18) 18) 18) 18) 18) 18) 72) (20) (20) (20) (20)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533 .473	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 <u>Control</u> n t = 4.01 + 17.9 + 4.28 + 1.62 + 1.27
ietha ia)P a)P TN TN TN C-1 thyle ia)P a)P U U U	anolnitrosam 1 [86] .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157. 117. 78.3	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. 1.3 7.4 7.4 47.8 68.4	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8 96.1 83.9	64 (42 (24 (21 (25 (47 (5] 165 33 14 12 59	18) 18) 18) 18) 18) 18) 18) 72) (20) (20) (20) (20) (20)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533 .473 1.21*	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 Control n t = 4.01 + 17.9 + 4.28 + 1.62 + 1.27 + 2.41
ietha a)P a)P TN TN TN TN C-1 thyle ial a)P u U U U U U	anolnitrosam 1 [86] .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157. 117. 78.3 39.1	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. [ETU, M. 1.3 7.4 7.4 47.8 68.4 80.8	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8 96.1 83.9 104.	64 (42 (28 (21 (25 (47 (5] 5] 165 33 14 12 59 13	18) 18) 18) 18) 18) 18) 18) 18)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533 .473 1.21* .459	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 Control n t = 4.01 + 17.9 + 4.28 + 1.62 + 1.27 + 2.41 + .99
ietha rial (a)P TN TN TN TN TN TN TN TN TN TN TN TN TN	anolnitrosam 1 [86] .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157. 117. 78.3	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. 1.3 7.4 7.4 47.8 68.4	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8 96.1 83.9	64 (42 (24 (21 (25 (47 (5] 165 33 14 12 59	18) 18) 18) 18) 18) 18) 18) 72) (20) (20) (20) (20) (20)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533 .473 1.21* .459 .297	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 Control n t = 4.01 + 17.9 + 4.28 + 1.62 + 1.27 + 2.41 + .99 Control
ietha rial (a)P TN TN TN TN TN TN TN C-1 thyle rial (a)P (a)P (a)P (a)P (a)P (b) (c) (c) (c) (c) (c) (c) (c) (c	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157. 117. 78.3 39.1 Control 2 [65]	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. 1.3 7.4 47.8 68.4 80.8 100.	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8 96.1 83.9 104. 100.	64 (42 (38 (24 (25 (47 (5] 165 33 14 12 59 13 15	18) 18) 18) 18) 18) 18) 18) 72) (20) (2	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533 .473 1.21* .459 .297	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 <u>Control</u> n t = 4.01 + 17.9 + 4.28 + 1.62 + 1.27 + 2.41 + .99 <u>Control</u> Mean t = 1.57
ietha (a)P (a)P TN TN TN TN C-1 thyle (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157. 117. 78.3 39.1 Control	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. 1.3 7.4 7.4 47.8 68.4 80.8 100. 6.95	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8 96.1 83.9 104. 100. 60.7	64 (42 (28 (21 (25 (47 (5] 5] 165 33 14 12 59 13	18) 18) 18) 18) 18) 18) 18) 18)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533 .473 1.21* .459 .297	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 Control n t = 4.01 + 17.9 + 4.28 + 1.62 + 1.27 + 2.41 + .99 Control
ietha ia)P ia)P TN TN TN TN TN TN TN TN TN TN TN TN TN	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157. 117. 78.3 39.1 Control 2 [65]	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. 1.3 7.4 47.8 68.4 80.8 100.	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8 96.1 83.9 104. 100.	64 (42 (38 (24 (25 (47 (5] 165 33 14 12 59 13 15	18) 18) 18) 18) 18) 18) 18) 72) (20) (2	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533 .473 1.21* .459 .297	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 <u>Control</u> n t = 4.01 + 17.9 + 4.28 + 1.62 + 1.27 + 2.41 + .99 <u>Control</u> Mean t = 1.57
ietha ia)P a)P TN TN TN TN C-1 thyle ia)P U U U U U U U C U U C U U C U C U C U	anolnitrosam 1 [86] .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157. 117. 78.3 39.1 Control 2 [65] .000791 .000250	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. 1.3 7.4 7.4 47.8 68.4 80.8 100. 6.95 19.2	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8 96.1 83.9 104. 100. 60.7 90.2	64 (42 (38 (21 (25 (47 (5] 165 33 14 12 59 13 15 85 43	18) 18) 18) 18) 18) 18) 18) 72) (20) (2	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533 .473 1.21* .459 .297 4.38*** 1.80***	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 <u>Control</u> n t = 4.01 + 17.9 + 4.28 + 1.62 + 1.27 + 2.41 + .99 <u>Control</u> Mean t = 1.57 + 13.9 + 6.94
ietha ia)P a)P TN TN TN TN TN C-1 thyle ia)P U U U U C C C C C C C C C C C C C	anolnitrosam 1 [86] .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157. 117. 78.3 39.1 Control 2 [65] .000791 .000250 157.	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. 1.3 7.4 7.4 47.8 68.4 80.8 100. 6.95 19.2 2.65	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8 96.1 83.9 104. 100. 60.7 90.2 .000	64 (42 (38 (24 (25 (47 (5) 165 33 14 12 59 13 15 85 43 12	18) 18) 18) 18) 18) 18) 18) 18)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533 .473 1.21* .459 .297 4.38*** 1.80*** .829**	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 Control n t = 4.01 + 17.9 + 4.28 + 1.62 + 1.27 + 2.41 + .99 Control Mean t = 1.57 + 13.9 + 6.94 + 2.72
ietha ial : (a)P TN TN TN TN TN TN TN TN C-1 thyle ial : (a)P (a)P (a)P (a)P (a)P TN TN TN TN TN TN TN TN TN TN	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157. 117. 78.3 39.1 Control 2 [65] .000791 .000250 157. 78.3	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. 1.3 7.4 7.4 47.8 68.4 80.8 100. 6.95 19.2 2.65 15.2	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8 96.1 83.9 104. 100. 60.7 90.2 .000 57.3	64 (42 (38 (24 (21 (25 (47 (5] 5] 165 33 14 12 59 13 15 85 43 12 19	18) 18) 18) 18) 18) 18) 18) 18)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533 .473 1.21* .459 .297 4.38*** 1.80*** .829** .772**	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 Control n t = 4.01 + 17.9 + 4.28 + 1.62 + 1.27 + 2.41 + .99 Control Mean t = 1.57 + 13.9 + 6.94 + 2.72 + 3.18
ietha rial : ra)P ra)P rn rn rn rn ru ru ru ru ru ru ru ru ru ru ru ru ru	anolnitrosam 1 [86] .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157. 117. 78.3 39.1 Control 2 [65] .000791 .000250 157. 78.3 39.1	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. 1.3 7.4 7.4 47.8 68.4 80.8 100. 6.95 19.2 2.65 15.2 45.7	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8 96.1 83.9 104. 100. 60.7 90.2 .000 57.3 62.5	64 (42 (38 (24 (25 (47 (5] 165 33 14 12 59 13 15 15 85 43 12 19 10	18) 18) 18) 18) 18) 18) 18) 18)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533 .473 1.21* .459 .297 4.38*** 1.80*** .829** .772** .394	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 Control n t = 4.01 + 17.9 + 4.28 + 1.62 + 1.27 + 2.41 + .99 Control Mean t = 1.57 + 13.9 + 6.94 + 2.72 + 3.18 + 1.10
ietha ia)P a)P TN TN TN TN TN TN TN TN TN TN	anolnitrosam 1 [86] .000791 .000250 59.6 44.7 29.8 14.9 Control ene Thiourea 1 [59] .00079 .00025 157. 117. 78.3 39.1 Control 2 [65] .000791 .000250 157. 78.3	ine [DETI 18.7 47.9 .000 1.17 26.1 49.8 100. [ETU, M. 1.3 7.4 7.4 47.8 68.4 80.8 100. 6.95 19.2 2.65 15.2	63.3 87.6 66.6 75.2 87.0 90.5 100. W. = 102.16 36.5 74.5 80.8 96.1 83.9 104. 100. 60.7 90.2 .000 57.3	64 (42 (38 (24 (21 (25 (47 (5] 5] 165 33 14 12 59 13 15 85 43 12 19	18) 18) 18) 18) 18) 18) 18) 18)	n]] 3.32*** 2.02*** 1.83*** 1.24*** 1.04** 1.18** .464 Mea 7.31*** 1.34*** .533 .473 1.21* .459 .297 4.38*** 1.80*** .829** .772**	+ 9.07 + 5.74 + 5.39 + 3.61 + 2.75 + 3.22 Control n t = 4.01 + 17.9 + 4.28 + 1.62 + 1.27 + 2.41 + .99 Control Mean t = 1.57 + 13.9 + 6.94 + 2.72 + 3.18

Co	reatment ndition ^a	Cytot Activ		Transform Activit		Transformation Response ^d	Significance ^e
		RCE	(%)	Focus Da Type Vess		Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	111	(N)	III	<i>t</i> -statistic
lexamet	thylphospho	ramide [HN	1PA, M.W. =	179.2, Den	sity = NA	g/m]]	
[ria] 1							
B(a)P	.000791	8.09	60.6	116	(18)	6.11***	+ 4.93
B(a)P	.000250	14.9	84.2	184	(18)	9.84***	+ 9.74
IMPA	78.1	.426	34.0	92	(18)	4.02	+ 1.01
IMPA	58.6	.426	76.5	167	(18)	8.50***	+ 5.42
IMPA	39.1	8.09	77.6	103	(18)	5.44***	+ 4.05
IMPA	19.5	48.9	94.8	64	(18)	3.13	.00(23)
IC-1	Control	100.	100.	296	(72)	3.28	Control
							t = 2.62
rial 2							
B(a)P	.000791	8.38	79.6	132	(18)	6.82***	+ 11.8
8(a)P	.000250	29.3	91.3	75	(18)	3.38***	+ 6.81
	83.7	1 05	26 0	10	(10)	104	00/ 4 07:
IMPA IMPA	62.8	1.05 5.24	26.0 62.2	10 34	(18)	.401	.00(-1.03)
		6.28	83.5		(18)	1.43**	+ 2.67
IMPA IMPA	41.9 20.9	36.6	93.0	19 31	(18)	.805 1.40**	+ .75
IC-1	Control	100.	100.	39	(18) (45)	.618	+ 2.71
	controt	100.	100.	39	(4))		$\frac{Control}{ean t = 1.53}$
						n	ean t - 1.55
1elamir	NE [MELM, M.	W. = 126.12]				
rial 1	F/21						
B(a)P	.000791	1.02	53.0	382	(20)	18.9***	+ 26.3
l(a)P	.000250	4.75	77.5	270	(20)	13.0***	+ 19.0
		4.//	11.5	210	(20)	13.0	T 19.0
			45.5		(19)	2 32**	
IELM	31.7	8.50	45.5 73.1	55	(19)	2.32**	+ 3.23
IELM	31.7 15.9	8.50 35.0	73.1	55 64	(20)	2.56***	+ 3.23 + 4.03
IELM IELM IELM	31.7 15.9 7.93	8.50 35.0 63.6	73.1 75.3	55 64 51	(20) (20)	2.56*** 1.61	+ 3.23 + 4.03 + 1.56
IELM	31.7 15.9	8.50 35.0	73.1	55 64	(20) (20) (20)	2.56*** 1.61 .69	+ 3.23 + 4.03 + 1.56 .00(-1.48)
IELM IELM IELM IELM IC-1	31.7 15.9 7.93 3.96 Control	8.50 35.0 63.6 95.6	73.1 75.3 80.1	55 64 51 17	(20) (20)	2.56*** 1.61 .69 1.05	+ 3.23 + 4.03 + 1.56
IELM IELM IELM IELM IC-1 Trial 2	31.7 15.9 7.93 3.96 Control [58]	8.50 35.0 63.6 95.6 100.	73.1 75.3 80.1 100.	55 64 51 17 44	(20) (20) (20) (35)	2.56*** 1.61 .69 1.05	+ 3.23 + 4.03 + 1.56 .00(-1.48) <u>Control</u>
IELM IELM IELM IC-1 Trial 2 S(a)P	31.7 15.9 7.93 3.96 Control [58] .000791	8.50 35.0 63.6 95.6 100. 3.92	73.1 75.3 80.1 100. 34.3	55 64 51 17 44	(20) (20) (20) (35) (20)	2.56*** 1.61 .69 1.05 M 6.17***	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5
IELM IELM IELM IELM IC-1 Trial 2	31.7 15.9 7.93 3.96 Control [58]	8.50 35.0 63.6 95.6 100.	73.1 75.3 80.1 100.	55 64 51 17 44	(20) (20) (20) (35)	2.56*** 1.61 .69 1.05 M	+ 3.23 + 4.03 + 1.56 .00(-1.48) <u>Control</u> ean t = 1.82
IELM IELM IELM IELM IC-1 Trial 2 (a)P	31.7 15.9 7.93 3.96 Control [58] .000791 .000250	8.50 35.0 63.6 95.6 100. 3.92 14.7	73.1 75.3 80.1 100. 34.3 60.6	55 64 51 17 44 128 71	(20) (20) (20) (35) (20) (20)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83***	+ 3.23 + 4.03 + 1.56 .00(-1.48) control ean t = 1.82 + 22.5 + 4.78
IELM IELM IELM IC-1 IC-1 S(a)P S(a)P	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0	73.1 75.3 80.1 100. 34.3 60.6 68.9	55 64 51 17 44 128 71 26	(20) (20) (20) (35) (20) (20) (20)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12***	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97
IELM IELM IELM IELM IC-1 IC-1 IC-1 IC-1 IC-1 IC-1 IC-1 IC-1	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7	55 64 51 17 44 128 71 26 10	(20) (20) (20) (35) (20) (20) (20) (20)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97
IELM IELM IELM IELM IC-1 (a)P IELM IELM IELM	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7	55 64 51 17 44 128 71 26 10 4	(20) (20) (20) (35) (20) (20) (20) (20) (20) (20) (19)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33)
IELM IELM IELM IELM IC-1 rial 2 (a)P (a)P IELM IELM IELM IELM	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.4	55 64 51 17 44 128 71 26 10 4 4	(20) (20) (20) (35) (20) (20) (20) (20) (20) (19) (20)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43)
IELM IELM IELM IC-1 IC-1 Crial 2 S(a)P S(a)P	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7	55 64 51 17 44 128 71 26 10 4	(20) (20) (20) (35) (20) (20) (20) (20) (20) (20) (19)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189	+ 3.23 + 4.03 + 1.56 .00(-1.48) <u>Control</u> ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) <u>Control</u>
IELM IELM IELM IC-1 Trial 2 S(a)P S(a)P IELM IELM IELM IELM	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.4	55 64 51 17 44 128 71 26 10 4 4	(20) (20) (20) (35) (20) (20) (20) (20) (20) (19) (20)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43)
IELM IELM IELM IELM IC-1 20(a)P IC-1 IELM IELM IELM IELM IELM	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100.	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.7 80.4 100.	55 64 51 17 44 128 71 26 10 4 4	(20) (20) (20) (35) (20) (20) (20) (20) (20) (19) (20)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189	+ 3.23 + 4.03 + 1.56 .00(-1.48) control ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) <u>Control</u>
IELM IELM IELM IELM IC-1 2(a)P C(a)P C(a)P IELM IELM IELM IELM IC-1 Iethy]	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00 Control Carbamate	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100.	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.7 80.4 100.	55 64 51 17 44 128 71 26 10 4 4	(20) (20) (20) (35) (20) (20) (20) (20) (20) (19) (20)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189	+ 3.23 + 4.03 + 1.56 .00(-1.48) control ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) <u>Control</u>
IELM IELM IELM IELM IC-1 Trial 2 (a)P IELM IELM IELM IELM IC-1 Iethyl Irial 1	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00 Control Carbamate [42]	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100. [MEC, M.W.	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.7 80.4 100. = 75.07]	55 64 51 17 44 128 71 26 10 4 4 10	(20) (20) (20) (35) (20) (20) (20) (20) (20) (19) (20) (40)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189 M	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) <u>Control</u> ean t = 1.99
IELM IELM IELM IELM IELM IC-1 (a)P IELM IELM IELM IELM IELM IELM IC-1 IELM IELM IELM IELM IELM IELM IELM IELM	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00 Control Carbamate [42] .000791	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100. [MEC, M.W. 2.41	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.7 80.4 100. = 75.07] 35.7	55 64 51 17 44 128 71 26 10 4 4 10 280	(20) (20) (20) (35) (20) (20) (20) (20) (20) (20) (20) (40)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189 M	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) ean t = 1.99 + 20.2
IELM IELM IELM IELM IELM IC-1 (a)P IELM IELM IELM IELM IELM IELM IC-1 IELM IELM IELM IELM IELM IELM IELM IELM	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00 Control Carbamate [42]	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100. [MEC, M.W.	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.7 80.4 100. = 75.07]	55 64 51 17 44 128 71 26 10 4 4 10	(20) (20) (20) (35) (20) (20) (20) (20) (20) (19) (20) (40)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189 M	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) <u>Control</u> ean t = 1.99
IELM IELM IELM IELM IC-1 Trial 2 S(a)P IELM IELM IELM IELM IELM IELM IELM IELM	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00 Control Carbamate [42] .000791 .000250	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100. [MEC, M.W. 2.41 5.72	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.4 100. = 75.07] 35.7 65.4	55 64 51 17 44 128 71 26 10 4 4 10 280 161	(20) (20) (20) (35) (20) (20) (20) (20) (20) (19) (20) (40)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189 M 13.7*** 7.44***	+ 3.23 + 4.03 + 1.56 .00(-1.48) <u>Control</u> ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) ean t = 1.99 + 20.2 + 9.55
ELM ELM ELM C-1 rial 2 (a)P (a)P ELM ELM ELM C-1 rial 1 (a)P (a)P EC	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00 Control Carbamate [42] .000791 .000250 293.	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100. [MEC, M.W. 2.41 5.72 1.81	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.4 100. = 75.07] 35.7 65.4 6.91	55 64 51 17 44 128 71 26 10 4 4 10 280 161 13	(20) (20) (20) (35) (20) (20) (20) (20) (20) (19) (20) (40) (20) (19) (20)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189 M 13.7*** 7.44*** .400	+ 3.23 + 4.03 + 1.56 .00(-1.48) <u>Control</u> ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) ean t = 1.99 + 20.2 + 9.55 .00(-1.67)
IELM IELM IELM IELM IC-1 Tial 2 (a)P IELM IELM IELM IELM IELM IC-1 IC-1 IC-1 IC-1 IC-1 IC-1 IC-1 IC-1	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00 Control Carbamate [42] .000791 .000250 293. 220.	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100. [MEC, M.W. 2.41 5.72 1.81 13.6	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.4 100. = 75.07] 35.7 65.4 6.91 57.8	55 64 51 17 44 128 71 26 10 4 4 4 10 280 161 13 114	(20) (20) (20) (35) (20) (20) (20) (20) (20) (19) (20) (40) (20) (19) (20) (20) (20) (20)	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189 M 13.7*** 7.44*** .400 4.69***	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) ean t = 1.99 + 20.2 + 9.55 .00(-1.67) + 6.73
IELM IELM IELM IELM IC-1 Tial 2 (a)P IELM IELM IELM IELM IELM IELM IELM IELM	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00 Control Carbamate [42] .000791 .000250 293. 220. 147.	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100. [MEC, M.W. 2.41 5.72 1.81 13.6 62.3	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.4 100. = 75.07] 35.7 65.4 6.91 57.8 72.3	55 64 51 17 44 128 71 26 10 4 4 4 10 280 161 13 114 156	(20) (20) (20) (35) (20) (20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189 M 13.7*** 7.44*** .400 4.69*** 6.70***	+ 3.23 + 4.03 + 1.56 . $.00(-1.48)$ ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 . $.00(33)$. $.00(43)$ ean t = 1.99 + 20.2 + 9.55 . $.00(-1.67)$ + 6.73 + 9.44
IELM IELM IELM IELM IC-1 Trial 2 (a)P IELM IELM IELM IELM IELM IC-1 IC-1 IC-1 IC-1 IC-1 IC-1 IELM IELM IEC IEC IEC IEC IEC	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00 Control Carbamate [42] .000791 .000250 293. 220. 147. 73.3	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100. [MEC, M.W. 2.41 5.72 1.81 13.6 62.3 84.9	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.4 100. = 75.07] 35.7 65.4 6.91 57.8 72.3 85.8	55 64 51 17 44 128 71 26 10 4 4 10 280 161 13 114 156 137	(20) (20) (20) (35) (20) (20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189 M 13.7*** 7.44*** .400 4.69*** 6.70*** 5.23***	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) ean t = 1.99 + 20.2 + 9.55 .00(-1.67) + 6.73 + 9.44 + 7.23
ELM ELM ELM ELM C-1 rial 2 (a)P ELM ELM ELM C-1 rial 1 (a)P (a)P EC EC EC EC	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00 Control Carbamate [42] .000791 .000250 293. 220. 147.	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100. [MEC, M.W. 2.41 5.72 1.81 13.6 62.3	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.4 100. = 75.07] 35.7 65.4 6.91 57.8 72.3	55 64 51 17 44 128 71 26 10 4 4 4 10 280 161 13 114 156	(20) (20) (20) (35) (20) (20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189 M 13.7*** 7.44*** .400 4.69*** 6.70*** .23*** .861	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) ean t = 1.99 + 20.2 + 9.55 .00(-1.67) + 6.73 + 9.44
ELM ELM ELM C-1 rial 2 (a)P ELM ELM ELM ELM C-1 rial 1 (a)P (a)P (a)P EC EC EC EC EC C-1	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00 Control Carbamate [42] .000791 .000250 293. 220. 147. 73.3 Control	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100. [MEC, M.W. 2.41 5.72 1.81 13.6 62.3 84.9	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.4 100. = 75.07] 35.7 65.4 6.91 57.8 72.3 85.8	55 64 51 17 44 128 71 26 10 4 4 10 280 161 13 114 156 137	(20) (20) (20) (35) (20) (20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189 M 13.7*** 7.44*** .400 4.69*** 6.70*** 5.23*** .861 M	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) ean t = 1.99 + 20.2 + 9.55 .00(-1.67) + 6.73 + 9.44 + 7.23 <u>Control</u> ean t = 5.85
ELM ELM ELM ELM C-1 rial 2 (a)P (a)P ELM ELM C-1 rial 1 (a)P (a)P (a)P EC EC EC EC EC	31.7 15.9 7.93 3.96 Control [58] .000791 .000250 32.0 16.0 8.00 4.00 Control Carbamate [42] .000791 .000250 293. 220. 147. 73.3 Control	8.50 35.0 63.6 95.6 100. 3.92 14.7 14.0 25.2 87.9 93.1 100. [MEC, M.W. 2.41 5.72 1.81 13.6 62.3 84.9	73.1 75.3 80.1 100. 34.3 60.6 68.9 70.7 80.7 80.4 100. = 75.07] 35.7 65.4 6.91 57.8 72.3 85.8	55 64 51 17 44 128 71 26 10 4 4 10 280 161 13 114 156 137	(20) (20) (20) (35) (20) (20) (20) (20) (20) (20) (40) (20) (20) (20) (20) (20) (20) (20) (2	2.56*** 1.61 .69 1.05 M 6.17*** 1.83*** 1.12*** .414 .157 .149 .189 M 13.7*** 7.44*** .400 4.69*** 6.70*** .23*** .861	+ 3.23 + 4.03 + 1.56 .00(-1.48) ean t = 1.82 + 22.5 + 4.78 + 5.97 + 1.97 .00(33) .00(43) <u>Control</u> ean t = 1.99 + 20.2 + 9.55 .00(-1.67) + 6.73 + 9.44 + 7.23 <u>Control</u>

Treatm Condit		Cytotoxi Activity		Transformin Activity ^c	g	Transformation Response ^d	Significance ^e
		RCE (%)		Focus Data Type Vessel	s	Foci/Vessel Focus Type	
Drug Co	nc., mM	S.A CC	.A.	III	(N)	III	<i>t</i> -statistic
		F / 4	6 0 <i>(</i>	10		770	. 1.50
	00.	5.41 86.1	80.6 101.	10 13	(16) (20)	.330 .525***	+ 1.59 + 3.80
	63.3 20.0	91.9	107.	4	(19)	.123	+ .72
	6.32	105.	111.	1	(20)	.035	.00(41
MEC NC-1 (Control	100.	100.	3	(38)	.056	Control
	Control	100.	100.	5	(30)	.050	Mean $t = 1.53$
Trial 3 [8		44.0	(5.2	244	(20)	12.9***	+ 13.0
B(a)P	.000791	16.9	65.2	261 185	(20) (20)	8.53***	+ 7.65
B(a)P	.000250	35.6	87.2	601	(20)	0.))	+ 1.05
	20.	.000	3.24	12	(20)	.473	.00(-8.62
	40.	3.86	60.6	86	(20)	3.54	+ .77
	60.	52.2	76.3	179	(20)	8.36***	+ 7.72
	80.0	87.8	106.	237	(20)	10.2***	+ 6.75
NC-1 (Control	100.	100.	317	(80)	3.02	<u>Control</u> Mean t = 3.81
Methyl C	arbamate	[315183-S,	M.W. = 75.	07]			
•							
Trial 1 [8	33] .000791	2.86	73.0	141	(20)	6.14***	+ 13.5
B(a)P B(a)P	.000250	13.9	78.9	64	(20)	2.93***	+ 9.12
	.000250	13.7	10.7	04	(20)	21/0	···-
315183-s	325.	.000	.000	1	(18,20)	.039	.00(-3.94
315183-S	244.	2.86	34.2	8	(20)	.301	.00(33
315183-S	163.	19.5	63.5	23	(20)	.771*	+ 2.09
315183-S	81.3	71.9	87.9	48	(19)	1.65***	+ 5.02
NC-1	Control	100.	100.	48	(80)	.351	<u>Control</u> Mean t = 2.38
Trial 2 [991						
B(a)P	.000791	18.9	68.4	160	(20)	6.67***	+ 12.4
B(a)P	.000250	32.1	85.0	94	(20)	3.59***	+ 7.95
315183-S	231.	7.92	39.8	50	(20)	1.35	+ 2.01
315183-S	173.	41.9	70.9	48	(20)	1.91***	+ 4.66
315183-S	116.	84.9	82.7	92	(20)	3.99***	+ 9.12
315183-S	57.8	103.	104.	63	(20)	2.00**	+ 3.43
NC-1	Control	100.	100.	65	(80)	.586	Control
	CONTINU	100.	100.	05	(00)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mean t = 4.81
Monuron	[MONU, M.W	N. = 198.65]					
Trial 1 [201						
B(a)P	.000791	.000	39.4	268	(20)	13.0***	+ 26.3
B(a)P	.000250	2.34	77.3	99	(20)	4.00***	+ 9.22
MONT	7 05	000	// =	F/	(20)	3 17444	+ 6.19
MONU	7.95	.000		54	(20)	2.17***	+ 6.19 + .09
MONU	2.52	1.56	79.5 80.7	14	(20)	.385 .214	+ .09 .00(-1.0
MONU	.795	7.03	89.7	6 3	(20) (20)	.110	.00(-1.0
MONU NC-1	.252 Control	28.1 100.	92.4 100.	21	(20)	.368	Control
	Sontiot	100.		E 1	(40)	1500	Mean t = 1.57
Trial 2 [0.004	
B(a)P	.000791	2.84	28.6	189	(20)	9.02***	+ 16.9
B(a)P	.000250	6.74	68.0	62	(20)	2.78***	+ 5.73
MONU	12.1	.000	19.1	7	(18,19)	. 289	.00(-2.7
MONU	8.05	.000	45.9	4	(18,20)	.167	.00(-4.3
MONU	4.03	.000	90.2	21	(20)	.807	.00(0
MONU	2.01	15.6	109.	32	(20)	1.32	+ 1.81
NC-1	Control	100.	100.	41	(40)	.818	Control
	CONTROL	100.	100.	41	(40)	.010	Mean $t = .453$

	reatment ndition ^a	Cytoto Activ	ity ^b	Transform Activity	-	Transformation Response ^d	Significance ^e
		RCE (%)		Focus Data Type Vessels		Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic
henob	arbital, So	dium Salt	ΓΡΗΕNB. M.	W. = 254.22	1		
			L				
rial 1		1 75	74 5	165	(20)	7.31***	+ 17.9
B(a)P	.000791	1.35	36.5 74.3	33	(19)	1.34***	+ 4.28
8(a)P	.000250	7.41	74.5		(19)	1.54	. 4.20
HENB	7.87	21.2	23.1	12	(20)	.494	+ 1.46
HENB	5.90	33.0	81.7	11	(20)	.414	+ .86
HENB	3.94	59.6	89.9	14	(20)	.578	+ 1.88
			100.	22	(20)	.927***	+ 3.85
HENB	1.97	100.					Control
IC-1	Control	100.	100.	15	(40)	.297 M	t = 2.01
	F1007					rit interest of the second sec	ταπ τ = 2.01
[ria] 2		F4 0	0/ 7	00	(20)	4.69***	+ 5.31
B(a)P	.000791	51.9	94.3	99 91	(20)	3.91***	+ 4.16
8(a)P	.000250	66.2	108.	81	(20)	2.71	+ 4.10
	7.0/	10.4	10/	70	(20)	3.37	+ 1.78
PHENB	3.94	69.1	104.	72	(20)	5.99***	+ 5.76
PHENB	2.95	70.1	110.	128	(20)		
PHENB	1.97	85.0	112.	95	(17)	5.25***	+ 4.50
PHENB	.984	86.9	112.	81	(20)	3.56*	+ 2.04
IC-1	Control	100.	100.	237	(80)	2.55	<u>Control</u>
						Me	an t = 3.52
		C . 1 +	с <u>и</u> ц _ /	005 07			
Saccha Trial 1	rin, Sodium	Salt LSA		205.2]			
Trial 1		Sait [SA	66.5	149	(20)	6.35***	+ 10.9
[ria] 1 3(a)P	[75]				(20) (20)	6.35*** 3.10***	+ 10.9 + 6.56
	[75] .000791	7.10	66.5 85.4	149	(20)		+ 6.56
[ria] 1 3(a)P 3(a)P	[75] .000791	7.10	66.5 85.4	149			+ 6.56
Frial 1 B(a)P B(a)P BAC	[75] .000791 .000250 136.	7.10 28.4	66.5 85.4	149 67	(20)	3.10***	+ 6.56
[ria] 1 3(a)P 3(a)P SAC SAC	[75] .000791 .000250 136. 102.	7.10 28.4 .835 7.93	66.5 85.4 .000 19.2	149 67 10 63	(20) (20) (20)	3.10*** .394	+ 6.56
Trial 1 8(a)P 8(a)P 8(a)P SAC SAC SAC	[75] .000791 .000250 136. 102. 68.2	7.10 28.4 .835 7.93 33.4	66.5 85.4 .000 19.2 59.5	149 67 10 63 64	(20) (20) (20) (20)	3.10*** .394 2.41*** 2.88***	+ 6.56 .00(-2.5(+ 4.55 + 5.93
Trial 1 8(a)P 8(a)P 8(a)P 8AC 8AC 8AC 8AC	[75] .000791 .000250 136. 102. 68.2 34.1	7.10 28.4 .835 7.93 33.4 82.3	66.5 85.4 19.2 59.5 73.2	149 67 10 63 64 51	(20) (20) (20) (20) (20) (20)	3.10*** .394 2.41*** 2.88*** 2.23***	+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36
Trial 1 3(a)P 3(a)P 3(a)P SAC SAC SAC SAC	[75] .000791 .000250 136. 102. 68.2	7.10 28.4 .835 7.93 33.4	66.5 85.4 .000 19.2 59.5	149 67 10 63 64	(20) (20) (20) (20)	3.10*** .394 2.41*** 2.88*** 2.23*** .882	+ 6.56 .00(-2.50 + 4.55 + 5.93
Trial 1 3(a)P 3(a)P SAC SAC SAC SAC SAC SAC	[75] .000791 .000250 136. 102. 68.2 34.1 Control	7.10 28.4 .835 7.93 33.4 82.3	66.5 85.4 19.2 59.5 73.2	149 67 10 63 64 51	(20) (20) (20) (20) (20) (20)	3.10*** .394 2.41*** 2.88*** 2.23*** .882	+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 <u>Control</u>
Frial 1 3(a)P 3(a)P SAC SAC SAC SAC NC-1 Frial 2	[75] .000791 .000250 136. 102. 68.2 34.1 Control	7.10 28.4 .835 7.93 33.4 82.3 100.	66.5 85.4 19.2 59.5 73.2 100.	149 67 10 63 64 51	(20) (20) (20) (20) (20) (78)	3.10*** .394 2.41*** 2.88*** 2.23*** .882	+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 <u>Control</u>
Frial 1 3(a)P 3(a)P SAC SAC SAC SAC NC-1 Frial 2 3(a)P	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791	7.10 28.4 .835 7.93 33.4 82.3 100. ND	66.5 85.4 19.2 59.5 73.2 100. 64.8	149 67 10 63 64 51 89 108	(20) (20) (20) (20) (20) (20) (78) (20)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Ma 4.63***	+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71
Frial 1 3(a)P 3(a)P SAC SAC SAC SAC NC-1 Frial 2 3(a)P	[75] .000791 .000250 136. 102. 68.2 34.1 Control	7.10 28.4 .835 7.93 33.4 82.3 100.	66.5 85.4 19.2 59.5 73.2 100.	149 67 10 63 64 51 89	(20) (20) (20) (20) (20) (78)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Mo	+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7
Frial 1 S(a)P SAC SAC SAC SAC SAC SAC SAC S(c-1 Frial 2 S(a)P S(a)P	[75] .000791 .000250 136. 102. 68.2 34.1 Control [101] .000791 .000250	7.10 28.4 .835 7.93 33.4 82.3 100. ND	66.5 85.4 19.2 59.5 73.2 100. 64.8 83.6	149 67 10 63 64 51 89 108 48	(20) (20) (20) (20) (20) (78) (20) (20) (20)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Ma 4.63***	+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7
Trial 1 S(a)P SAC SAC SAC SAC SAC SAC SAC SAC S(a)P S(a)P SAC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122.	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND	66.5 85.4 9 .000 19.2 59.5 73.2 100. 64.8 83.6 0 12.2	149 67 10 63 64 51 89 108 48 33	(20) (20) (20) (20) (20) (20) (78) (20) (20) (20) (18)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Mu 4.63*** 2.11*** 1.30**	+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 control ean t = 3.71 + 12.7 + 9.73 + 3.74
Frial 1 S(a)P SAC SAC SAC SAC SAC SAC SAC S(a)P S(a)P SAC SAC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7	66.5 85.4 9 .000 19.2 59.5 73.2 100. 64.8 83.6 9 12.2 53.2	149 67 10 63 64 51 89 108 48 33 67	(20) (20) (20) (20) (20) (78) (20) (20) (20) (18) (17)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Mu 4.63*** 2.11*** 1.30** 3.33***	+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 control ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12
Frial 1 S(a)P SAC SAC SAC SAC SAC SC-1 S(a)P S(a)P SAC SAC SAC SAC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000791 .000250 122. 91.4 60.9	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND ND .000 28.7 91.3	66.5 85.4 9.000 19.2 59.5 73.2 100. 64.8 83.6 9.12.2 53.2 67.7	149 67 10 63 64 51 89 108 48 33 67 149	(20) (20) (20) (20) (20) (78) (20) (20) (20) (20) (18) (17) (17)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 M 4.63*** 2.11*** 1.30** 3.33*** 8.32***	+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8
Frial 1 ((a)P ((a)P SAC SAC SAC SAC SAC SAC SAC SAC SAC SAC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND ND .000 28.7 91.3 93.4	66.5 85.4 9.000 19.2 59.5 73.2 100. 64.8 83.6 9.12.2 53.2 67.7 108.	149 67 10 63 64 51 89 108 48 33 67 149 48	(20) (20) (20) (20) (20) (78) (20) (20) (20) (20) (20) (18) (17) (17) (19)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05***	+ 6.56 .00(-2.50) + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43
rial 1 (a)P (a)P AC AC AC AC AC AC AC AC AC AC AC AC AC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000791 .000250 122. 91.4 60.9	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND ND .000 28.7 91.3	66.5 85.4 9.000 19.2 59.5 73.2 100. 64.8 83.6 9.12.2 53.2 67.7	149 67 10 63 64 51 89 108 48 33 67 149	(20) (20) (20) (20) (20) (78) (20) (20) (20) (20) (18) (17) (17)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Me 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05*** .260	+ 6.56 .00(-2.57 + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 Control
Frial 1 S(a)P SAC SAC SAC SAC SAC SAC SAC SAC SAC SAC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100.	66.5 85.4 9 .000 19.2 59.5 73.2 100. 64.8 83.6 9 12.2 53.2 67.7 108. 100.	149 67 10 63 64 51 89 108 48 33 67 149 48 27	(20) (20) (20) (20) (20) (78) (20) (20) (20) (18) (17) (17) (17) (19) (78)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 M 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05*** .260 Me	+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>Control</u> an t = 10.3
Frial 1 3(a)P 3(a)P SAC SAC SAC SAC NC-1 Frial 2 3(a)P SAC SAC SAC SAC SAC SAC SAC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100.	66.5 85.4 9 .000 19.2 59.5 73.2 100. 64.8 83.6 9 12.2 53.2 67.7 108. 100.	149 67 10 63 64 51 89 108 48 33 67 149 48 27	(20) (20) (20) (20) (20) (78) (20) (20) (20) (18) (17) (17) (17) (19) (78)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Me 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05*** .260	+ 6.56 .00(-2.57 + 4.55 + 5.93 + 4.36 control ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>control</u> an t = 10.3
Frial 1 3(a)P 3(a)P SAC SAC SAC SAC SAC SAC SAC SAC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100.	66.5 85.4 9 .000 19.2 59.5 73.2 100. 64.8 83.6 9 12.2 53.2 67.7 108. 100.	149 67 10 63 64 51 89 108 48 33 67 149 48 27	(20) (20) (20) (20) (20) (78) (20) (20) (20) (18) (17) (17) (17) (19) (78)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 M 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05*** .260 Me	+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>Control</u> an t = 10.3
Frial 1 S(a)P SAC SAC SAC SAC SAC SAC SAC SAC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene 1 [76]	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100. Diisothio	66.5 85.4 9.000 19.2 59.5 73.2 100. 64.8 83.6 9.12.2 53.2 67.7 108. 100. 9.000 100.	149 67 10 63 64 51 89 108 48 33 67 149 48 27 TDIC, M.W.	(20) (20) (20) (20) (20) (20) (20) (20)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Ma 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05*** .260 Me . Density = 1.255 g	+ 6.56 .00(-2.54 + 4.55 + 5.93 + 4.36 control ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>Control</u> an t = 10.3
Trial 1 (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene 1 [76] .000791	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100. Diisothio 5.91	66.5 85.4 .000 19.2 59.5 73.2 100. 64.8 83.6 0 12.2 53.2 67.7 108. 100. 9 0 0 0 0 12.2 53.2 67.7 108. 100.	149 67 10 63 64 51 89 108 48 33 67 149 48 27 TDIC, M.W.	(20) (20) (20) (20) (20) (20) (20) (20)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 M4 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05*** .260 Me . Density = 1.255 g 4.41***	+ 6.56 .00(-2.54 + 4.55 + 5.93 + 4.36 control ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>Control</u> an t = 10.3 /m1] + 5.23
Trial 1 (a)P (a)P SAC SAC SAC SAC IC-1 (rial 2 S(a)P SAC SAC SAC SAC SAC SAC SAC SAC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene 1 [76]	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100. Diisothio	66.5 85.4 9.000 19.2 59.5 73.2 100. 64.8 83.6 9.12.2 53.2 67.7 108. 100. 9.000 100.	149 67 10 63 64 51 89 108 48 33 67 149 48 27 TDIC, M.W.	(20) (20) (20) (20) (20) (20) (20) (20)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Ma 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05*** .260 Me . Density = 1.255 g	+ 6.56 .00(-2.5) + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>Control</u> an t = 10.3
Trial 1 S(a)P SAC SAC SAC SAC SAC SC-1 SAC SAC SAC SAC SAC SAC SAC SAC SAC SAC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene 1 [76] .000250	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100. Diisothio 5.91 23.3	66.5 85.4 .000 19.2 59.5 73.2 100. 64.8 83.6 0 12.2 53.2 67.7 108. 100. 0 cyanate [63.1 97.0	149 67 10 63 64 51 89 108 48 33 67 149 48 27 TDIC, M.W. 87 54	(20) (20) (20) (20) (20) (78) (20) (20) (20) (20) (20) (18) (17) (17) (19) (78) = 174.16. (18) (18) (18)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Mr 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05*** .260 Me . Density = 1.255 g 4.41*** 2.72*	+ 6.56 .00(-2.5) + 4.55 + 5.93 + 4.36 <u>control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>control</u> an t = 10.3 /m1] + 5.23 + 2.26
Trial 1 (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P (b)C (c)	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene 1 [76] .000791 .000250 8.76	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .0000 28.7 91.3 93.4 100. Diisothio 5.91 23.3 115.	66.5 85.4 9.000 19.2 59.5 73.2 100. 64.8 83.6 9.12.2 53.2 67.7 108. 100. 9.0 9.0 59.2	149 67 10 63 64 51 89 108 48 33 67 149 48 27 TDIC, M.W. 87 54 46	(20) (20) (20) (20) (20) (78) (20) (20) (20) (20) (18) (17) (17) (17) (19) (78) = 174.16, (18) (18) (18)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Mr 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05*** .260 Me . Density = 1.255 g 4.41*** 2.72* 1.39	+ 6.56 .00(-2.5) + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>Control</u> an t = 10.3 /m1] + 5.23 + 2.26 .00(6
rial 1 (a)P (a)P AC AC AC AC AC AC AC AC AC AC AC AC AC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene 1 [76] .000791 .000250 8.76 4.38	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100. Diisothio 5.91 23.3 115. 110.	66.5 85.4 9 .000 19.2 59.5 73.2 100. 64.8 83.6 9 12.2 53.2 67.7 108. 100. 9 (yanate [63.1 97.0 59.2 64.7	149 67 10 63 64 51 89 108 48 33 67 149 48 27 TDIC, M.W. 87 54 46 92	(20) (20) (20) (20) (20) (78) (20) (20) (20) (18) (17) (17) (17) (19) (78) = 174.16, (18) (18) (18) (18) (18) (18)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Mr 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05*** .260 Me . Density = 1.255 g 4.41*** 2.72* 1.39 3.60*	+ 6.56 .00(-2.5) + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>Control</u> an t = 10.3 /m]] + 5.23 + 2.26 .00(6
Trial 1 (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene 1 [76] .000791 .000250 8.76	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .0000 28.7 91.3 93.4 100. Diisothio 5.91 23.3 115.	66.5 85.4 9 .000 19.2 59.5 73.2 100. 64.8 83.6 9 12.2 53.2 67.7 108. 100. 9 (cyanate [63.1 97.0 59.2 64.7 72.6	149 67 10 63 64 51 89 108 48 33 67 149 48 27 TDIC, M.W. 87 54 46 92 83	(20) (20) (20) (20) (20) (20) (20) (20)	3.10*** .394 2.41*** 2.88** 2.23*** .882 Mu 4.63*** 2.11*** 1.30** 3.33*** 2.05*** .260 Me . Density = 1.255 g 4.41*** 2.72* 1.39 3.60* 4.53***	<pre>+ 6.56 .00(-2.5) + 4.55 + 5.93 + 4.36 control ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 control an t = 10.3 /m]] + 5.23 + 2.26 .00(6 + 2.40 + 5.32</pre>
Trial 1 ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P ((a)P) ((a)P ((a)P) ((a)P ((a)P) ((a)P ((a)P) ((a)P ((a)P)	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene 1 [76] .000791 .000250 8.76 4.38	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100. Diisothio 5.91 23.3 115. 110.	66.5 85.4 9 .000 19.2 59.5 73.2 100. 64.8 83.6 9 12.2 53.2 67.7 108. 100. 9 (yanate [63.1 97.0 59.2 64.7	149 67 10 63 64 51 89 108 48 33 67 149 48 27 TDIC, M.W. 87 54 46 92	(20) (20) (20) (20) (20) (78) (20) (20) (20) (18) (17) (17) (17) (19) (78) = 174.16, (18) (18) (18) (18) (18) (18)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Mr 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05*** .260 Me . Density = 1.255 g 4.41*** 2.72* 1.39 3.60*	+ 6.56 .00(-2.54 + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>Control</u> an t = 10.3 /m]] + 5.23 + 2.26 .00(6
rial 1 (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene 1 [76] .000791 .000791 .000250 8.76 4.38 1.39	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100. Diisothio 5.91 23.3 115. 110. 106.	66.5 85.4 9.000 19.2 59.5 73.2 100. 64.8 83.6 9.12.2 53.2 67.7 108. 100. 9.2 63.1 97.0 59.2 64.7 72.6	149 67 10 63 64 51 89 108 48 33 67 149 48 27 TDIC, M.W. 87 54 46 92 83	(20) (20) (20) (20) (20) (20) (20) (20)	3.10*** .394 2.41*** 2.88** 2.23*** .882 Mu 4.63*** 2.11*** 1.30** 3.33*** 2.05*** .260 Me . Density = 1.255 g 4.41*** 2.72* 1.39 3.60* 4.53***	<pre>+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>Control</u> an t = 10.3 /m1] + 5.23 + 2.26 .00(6 + 2.40 + 5.32</pre>
rial 1 (a)P (a)P AC AC AC C-1 (a)P (a)P (a)P (a)P AC AC AC AC AC AC AC AC AC Trial 2 (a)P AC AC AC AC AC AC AC AC AC AC AC AC AC	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene 1 [76] .000791 .000791 .000250 8.76 4.38 1.39 .438	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100. Diisothio 5.91 23.3 115. 110. 106. 107.	66.5 85.4 9.000 19.2 59.5 73.2 100. 64.8 83.6 9.12.2 53.2 67.7 108. 100. 9.2 63.1 97.0 59.2 64.7 72.6 83.6	149 67 10 63 64 51 89 108 48 33 67 149 48 27 TDIC, M.W. 87 54 46 92 83 65	(20) (20) (20) (20) (20) (20) (20) (20)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Me 4.63*** 2.11*** 1.30** 3.33*** 2.05*** .260 Me . Density = 1.255 g 4.41*** 2.72* 1.39 3.60* 4.53*** 3.02** 1.79	+ 6.56 .00(-2.5) + 4.55 + 5.93 + 4.36 control ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>control</u> an t = 10.3 /m]] + 5.23 + 2.26 .00(4 + 2.40 + 5.32 + 2.70
rial 1 (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene 1 [76] .000791 .000791 .000250 8.76 4.38 1.39 .438	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100. Diisothio 5.91 23.3 115. 110. 106. 107.	66.5 85.4 9.000 19.2 59.5 73.2 100. 64.8 83.6 9.12.2 53.2 67.7 108. 100. 9.2 63.1 97.0 59.2 64.7 72.6 83.6	149 67 10 63 64 51 89 108 48 33 67 149 48 27 TDIC, M.W. 87 54 46 92 83 65	(20) (20) (20) (20) (20) (20) (20) (20)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Mr 4.63*** 2.11*** 1.30** 3.33*** 8.32*** 2.05*** .260 Me . Density = 1.255 g 4.41*** 2.72* 1.39 3.60* 4.53*** 3.02** 1.79	<pre>+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>Control</u> an t = 10.3 /ml] + 5.23 + 2.26 .00(6 + 2.40 + 5.32 + 2.70 <u>Control</u></pre>
Trial 1 (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P (a)P (b)C (c)	[75] .000791 .000250 136. 102. 68.2 34.1 Control 2 [101] .000791 .000250 122. 91.4 60.9 30.5 Control 2,6-Toluene 1 [76] .000791 .000250 8.76 4.38 1.39 .438 Control	7.10 28.4 .835 7.93 33.4 82.3 100. ND ND .000 28.7 91.3 93.4 100. Diisothio 5.91 23.3 115. 110. 106. 107.	66.5 85.4 .000 19.2 59.5 73.2 100. 64.8 83.6 0 12.2 53.2 67.7 108. 100. 9 cyanate [63.1 97.0 59.2 64.7 72.6 83.6 100.	149 67 10 63 64 51 89 108 48 33 67 149 48 27 TDIC, M.W. 87 54 46 92 83 65	(20) (20) (20) (20) (20) (20) (20) (20)	3.10*** .394 2.41*** 2.88*** 2.23*** .882 Me 4.63*** 2.11*** 1.30** 3.33*** 2.05*** .260 Me . Density = 1.255 g 4.41*** 2.72* 1.39 3.60* 4.53*** 3.02** 1.79	<pre>+ 6.56 .00(-2.50 + 4.55 + 5.93 + 4.36 <u>Control</u> ean t = 3.71 + 12.7 + 9.73 + 3.74 + 9.12 + 21.8 + 6.43 <u>Control</u> an t = 10.3 /ml] + 5.23 + 2.26 .00(6 + 2.40 + 5.32 + 2.70 <u>Control</u></pre>

Treatment Condition [®]		Cytotoxic Activity ^b		Transforming Activity ^c		Transformation Response ^d	Significance ^e	
Drug	Conc., mM	RCE (% S.A C) C.A.	Focus Data Type Vessels III (N)		Foci/Vessel Focus Type III	<i>t</i> -statistic	
TDIC	4.02	.000	2.19	6	(14,16)	.281	.00(-3.38)	
TDIC	3.02	12.8	10.3	12	(18)	.513	.00(-2.68)	
TDIC	2.01	64.8	47.7	60	(17)	3.17***	+ 3.74	
TDIC	1.01	100.	92.6	78	(17)	4.33***	+ 6.89	
NC-1	Control	100.	100.	74	(43)	1.30	<u>Control</u> Mean t = 3.54	

Abbreviations: B(a)P, benzo(a)pyrene; CC.A., co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels, NC, negative control; ND, not determined; %RCE, percent relative cloning efficiency; S.A., standard clonal survival assav.

^aTreatment Condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to µg/ml using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

^bCytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as & RCE and was calculated as described in the Materials and Methods.

The criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci > 2-mm in diameter per culture vessel scored are recorded in this table.
^dTransformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a log₁₀ mathematical

transformation procedure (refer to Materials and Methods). The arithmetic value or foci/vessel represents the antilog of the login mean transformation response minus one.

Significance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22), and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (-) t-statistics were given a value of zero (0).

*Significant BaP or test chemical transformation response, 0.01 .**Significant BaP or test chemical transformation response, <math>0.001 .

***Significant or BaP or test chemical transformation response, $p \le 0.001$.

Appendix G.

Summary of the transformation responses of 26 noncytotoxic, noncarcinogens.

Treatment Condition ^a		Cytot Activ	ity ^b	Transform Activit	-	Transformation Response ^d	Significance [®]
		RCE	(*)	Focus Da	ta	Foci/Vessel	
				Type Vess	els	Focus Type	
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic
ldicar	b [ALDC, M.W	J = 190 27	1				
rial 1	-	150.27	1				
(a)P	.000791	10.1	51.7	197	(19)	10.1***	+ 12.6
(a)P	.000250	6.37	77.4	115	(20)	5.46***	+ 6.94
LDC	15.8	.000	.000	3	(15,20)	. 149	.00(-8.26
LDC	10.5	.000	38.4	52	(19)	2.36	+ .80
LDC	5.26	6.37	95.0	29	(19)	1.41	.00(-1.85
LDC	2.63	58.1	85.1	35	(19)	1.58	.00(-1.00
C-1	Control	100.	100.	91	(38)	1.99	Control
U ⁻ I	Control	100.	100.	71	(30)		ean t = .267
rial 2		10.0	<i>40 4</i>	4/0	(20)		
(a)P	.000791	18.9	68.4	160	(20)	6.67***	+ 12.4
(a)P	.000250	32.1	85.0	94	(20)	3.59***	+ 7.95
LDC	14.7	15.5	24.0	41	(18,20)	1.73***	+ 3.92
LDC	11.0	26.4	97.2	43	(19)	1.74***	+ 4.09
LDC	7.36	47.2	86.6	30	(20)	1.23**	+ 2.69
LDC	3.68	51.7	108.	27	(20)	1.05*	+ 1.99
C-1	Control	100.	100.	65	(80)	.586	Control
					• •		ean t = 3.17
mpicil	lin Trihydr	ate [5776	42-S, M.W.	= 403.50]			
rial 1							
(a)P	.000791	2.86	73.0	141	(20)	6.14***	+ 13.5
(a)P	.000250	13.8	78.9	64	(20)	2.93***	+ 9.12
77642-s	65.0	.000	.000	0	(0,14)	.000	NA
77642-S		1.43	.257	3	(15)	.127	.00(-1.82
77642-S		72.9	18.3	9	(17)	.395	+ .25
77642-S		111.	88.7	25	(26)	.938**	+ 2.87
C-1	Control	100.	100.	48	(80)	.351	Control
	controt	100.	100.	-0	(00)		ean t = 1.04
rial 2		-	/ - -				
(a)P	.000791	5.67	63.1	59	(20)	2.43***	+ 6.70
(a)P	.000250	18.2	86.5	40	(19)	1.93***	+ 5.54
77642-s	52.5	.000	.000	14	(16)	.593	+ .06
77642-S		.000	1.32	11	(12)	.740	+ .68
77642-S		11.7	13.0	45	(16)	2.07**	+ 3.60
77642-S		114.	84.0	21	(18)	.950	+ 1.75
C-1	Control	100.	100.	58	(77)	.581	Control
	Control	100.	100.	50	(11)		ean t = 1.52
A	anilic Acid	[ANT, M.	W. = 137.14]			
Anthra							
	151		12.4	209	(20)	8.95***	+ 15.8
ial 1 [.851				3.40***	+ 14.9
ia] 1 [a)P	[15] .000791 .000250	.851 3.83	56.7	72	(20)	J.40	
ria] 1 [[a)P [a)P	.000791	3.83	56.7				
ria] 1 [:a)P :a)P IT	.000791 .000250 36.5	3.83 68.9	56.7 95.9	7	(17)	.206	+ .15
rial 1 (a)P a)P IT IT	.000791 .000250 36.5 18.2	3.83 68.9 78.7	56.7 95.9 113.	7 13	(17) (19)	.206 .379	+ .15 + 1.06
rial 1 (a)P a)P a)P IT IT	.000791 .000250 36.5 18.2 9.11	3.83 68.9 78.7 94.0	56.7 95.9 113. 113.	7 13 24	(17) (19) (19)	.206 .379 .605	+ .15 + 1.06 + 1.78
rial 1 (a)P a)P IT IT IT IT	.000791 .000250 36.5 18.2 9.11 4.56	3.83 68.9 78.7 94.0 94.9	56.7 95.9 113. 113. 114.	7 13 24 14	(17) (19) (19) (18)	.206 .379 .605 .608*	+ .15 + 1.06 + 1.78 + 2.53
ial 1 [a)P a)P T T T	.000791 .000250 36.5 18.2 9.11	3.83 68.9 78.7 94.0	56.7 95.9 113. 113.	7 13 24	(17) (19) (19)	.206 .379 .605 .608* .186	+ .15 + 1.06 + 1.78 + 2.53 <u>Control</u>
ial 1 [a)P a)P T T T T -1	.000791 .000250 36.5 18.2 9.11 4.56 Control	3.83 68.9 78.7 94.0 94.9	56.7 95.9 113. 113. 114.	7 13 24 14	(17) (19) (19) (18)	.206 .379 .605 .608* .186 Me	+ .15 + 1.06 + 1.78 + 2.53
ial 1 [a)P a)P T T T T T	.000791 .000250 36.5 18.2 9.11 4.56 Control	3.83 68.9 78.7 94.0 94.9	56.7 95.9 113. 113. 114.	7 13 24 14	(17) (19) (19) (18)	.206 .379 .605 .608* .186	+ .15 + 1.06 + 1.78 + 2.53 <u>Control</u>

	eatment dition ^a	Cytotox Activit	¢γ⁵	Transformi Activity		Transformation Response ^d	Significance ^e
		RCE (%		Focus Dat Type Vesse	ls	Foci/Vessel Focus Type	
Drug	Conc., mM	S.A C	C.A.	III	(N)	III	<i>t</i> -statistic
A.1.T	10.0	70.0					
ANT	18.2	70.2	95.2	44	(19)	2.06***	+ 3.71
ANT	9.11	82.6	106.	52	(20)	2.11**	+ 3.42
ANT	4.56	90.4	105.	38	(20)	1.60*	+ 2.33
ANT	2.28	91.0	108.	37	(20)	1.62*	+ 2.51
NC-1	Control	100.	100.	45	(40)	.893	Mean $\frac{Control}{t} = 2.9$
Benzoi	n [BENZ, M.I	$W = 212.2^{10}$	51				
			.1				
Trial 1		45 7	7/7	407			
B(a)P B(a)D	.000791	15.7	74.7	184	(20)	8.81***	+ 9.38
B(a)P	.000250	24.0	82.9	116	(20)	4.38***	+ 3.62
BENZ	14.1	.000	54.4	29	(20)	.849	.00(-1.42
BENZ	9.42	.000	61.8	34	(20)	1.20	.00(61
BENZ	4.71	.000	62.7	18	(20)	.711	.00(-1.91
BENZ	2.36	2.89	75.6	30	(20)	1.12	.00(80
IC-1	Control	100.	100.	118	(40)	1.51	Control
rial 2	Г107						Mean $t = .000$
B(a)P	.000791	1.89	30.6	105	(20)	4.79***	+ 18.3
B(a)P	.000250	8.49	91.7	34	(20)	1.37***	+ 6.23
BENZ	9.42	.000	69.4	3	(19)	. 116	+ .98
BENZ	4.71	.000	76.4	9	(20)	.308*	+ 2.13
BENZ	2.36	.000	100.	5	(20)	. 189	+ 1.62
BENZ	1.18	.000	115.	10	(19)	.266	+ 1.20
IC-1	Control	100.	100.	3	(40)	.053	
				5	(40)	.055	<u>Control</u> Mean t = 1.48
Benzyl	Alcohol [92	6895-L, M.I	W. = 108.3	l3, Density =	= 1.04013	g/ml]	
Trial 1							
B(a)P	.000791	10.2	63.9	378	(18)	20.8***	+ 15.5
B(a)P	.000250	28.0	67.8	280	(18)	15.3***	+ 10.5
926895-1	L 20.0	.000	10.2	59	(18)	2.41	.00(-4.95
926895-1	L 15.0	3.15	72.1	167	(18)	8.66	+ 1.35
26895-1	L 10.0	10.8	85.0	243	(18)	13.1***	+ 7.10
926895-1	L 5.00	24.8	101.	136	(18)	6.00	.00(-1.51
VC-1	Control	100.	100.	583	(72)	7.36	Control
[min] 2	F1107				• • - •		Mean t = 2.11
Trial 2 B(a)P	.000791	11 4	61 1		(10)	F 70444	
		11.6	61.1	116	(18)	5.78***	+ 10.7
3(a)P	.000250	26.7	88.0	75	(18)	3.89***	+ 8.52
926895-1		.000	51.1	14	(18)	.572	.00(17
926895-1		8.04	84.4	29	(18)	1.25*	+ 2.39
926895-L		28.6	95.1	40	(18)	1.97***	+ 4.60
726895-1		48.2	101.	15	(18)	.645	+ .16
IC-1	Control	100.	100.	65	(75)	.609	Control
							Mean t = 1.79
Caprola	actam [CAP,	M.W. = 113	.16]				
rial 1	[5]						
B(a)P	.000791	7.76	9.41	84	(19)	3.97***	+ 15.5
B(a)P	.000250	12.5	12.5	57	(20)	2.58***	+ 12.5
				- •	•	3	

Appendix G. Continued.

(Continued on next page)

.

	reatment ondition ^a	Cytot Activ	ity ^b	Transform Activity		Transformation Response ^d	Significance ^e
		RCE	(*)	Focus Da		Foci/Vessel Focus Type	
Drug	Conc., mM	S.A	CC.A.	Type Vess III	eis (N)	Focus Type III	<i>t</i> -statistic
ug	conc., m4	<u>J.n</u>			(4)		
AP	106.	.862	.000	1	(18,20)	.039	+ .09
AP	88.4	.862		2	(20)	.072	+ .72
AP	70.7	4.74	58.0	3	(20)	.110	+ 1.12
AP	53.0	23.7	95.7	7	(20)	.256*	+ 2.26
	Control	100.	100.	2	(40)	.035	Control
				-			Mean $t = 1.37$
rial 2	[10] .000791	1.89	30.6	105	(20)	4.79***	+ 18.3
(a)P	.000250	8.49	91.7	34	(20)	1.37***	+ 6.23
(a)P	.000250	0.49	91.7	54	(20)	1.57	+ 0.25
AP	70.7	.472	38.9	5	(20)	.172	+ 1.33
AP	53.0	4.72	190.	3	(20)	.110	+ .90
AP	35.3	5.66	108.	1	(20)	.035	.00(36
AP	17.7	28.8	144.	17	(19)	.419	+ 2.08
 C-1	Control	100.	100.	3	(40)	.053	Control
- •				5	••••		Mean $t = 1.80$
-Chlo	roethanol	[2CE, M.W.	= 80.52, De	nsity = 1.2	200 g/m]]		
rial 1	[78]						
(a)P	.000791	8.09	60.6	116	(18)	6.11***	+ 4.93
(a)P	.000250	14.9	84.2	184	(18)	9.84***	+ 9.74
CΕ	74.3	.000	67.7	133	(18)	6.98***	+ 5.81
CE .	37.2	1.70	79.7	161	(18)	8.36***	+ 7.18
CΕ	18.6	39.1	99.8	109	(18)	4.99*	+ 2.13
CE	9.29	68.5	100.	56	(18)	2.72	.00(92
C-1	Control	100.	100.	296	(72)	3.28	Control
							Mean t = 3.78
rial 2		00 7	77 0	/-	/10>	7 70444	
(a)P	.000791	89.7	77.9	65	(18)	3.30***	+ 11.7
(a)P	.000250	81.0	93.8	62	(18)	2.85***	+ 7.75
CE	74.3	.000	65.8	35	(18)	1.52***	+ 4.76
CE	37.2	.460		24	(18)	1.02***	+ 3.28
CE	18.6	37.2	86.4	15	(18)	.671*	+ 2.58
CE	9.29	70.8	92.6	6	(18)	.240	.00(22
2-1	Control	100.	100.	28	(18)	.268	Control
	control		100.	20	(10)	.200	Mean $t = 2.66$
2-Ch10	oroethyl)tr	imethylamn	onium Chlo	oride [2CE	ETS, M.W. =	158.07]	
rial 1	[30]						
(a)P	.000791	1.32	60.3	158	(20)	7.23***	+ 12.3
(a)P	.000250	2.63	101.	98	(19)	4.25***	+ 8.08
		2.00					5.00
CETA	75.9	.000	17.8	54	(20)	1.88**	+ 3.24
CETA	50.6	.000	62.4	51	(20)	2.18***	+ 4.36
CETA	25.3	10.1	103.	17	(20)	.668	.00(54
CETA	12.7	65.4	101.	18	(20)	.677	.00(49
:-1	Control	100.	100.	40	(40)	.787	Control
							Mean t = 1.90
rial 2							
a)P	.000791	8.74	42.5	186	(20)	8.98***	+ 19.5
a)P	.000250	28.2	86.4	77	(20)	3.42***	+ 7.04
	50.6	12.9	77.1	25	(20)	.988	+ 1.03
FTA		98.1	114.	37	(20)	1.46*	+ 2.57
CETA	4 110	70.1	1177.	51			
CETA	4.00		102	1.1	(10)	1 67*	T 3 EE
ETA ETA	2.00	100.	108.	44	(19)	1.53*	+ 2.55
ETA			108. 116. 100.	44 25 54	(19) (20) (79)	1.53* .876 .732	+ 2.55 + .57 Control

Drug Conc., #M S.A CC.A. III (H) III r-statistic . I. Acid Orange 10 [CLA010. H.W. = 452.38]	Treatment Condition ^a		Cytotox Activit RCE (%)	y [⊳]	Transformin Activity ^c Focus Data Type Vessel	 1	Transformation Response ^d Foci/Vessel Focus Type	Significance ^e																																																																																																																																																																																																																																																																																																									
Tail 1 [64] (a) P .000791 6.45 26.6 98 (20) 4.47*** + 12.7 (a) P .000791 6.45 26.6 98 (20) 1.37*** + 5.13 (a) P .000250 16.9 69.1 32 (20) 1.47** + 5.13 (a) D .20.2 78.3 4 (20) 149 .00(-1.13) (a) D .300 37.1 103. 13 (20) .473 + 1.10 (a) D .56.4 81.2 19 (20) .702* + 2.20 (a) P .000791 8.60 76.9 95 (20) 4.59*** + 13.7 (a) P .000250 23.6 91.5 75 (20) 2.66*** + 5.37 (a) D .000250 23.6 91.5 75 (20) .726 .00(45) (a) D .00791 8.60 76.9 95 (20) .751 .00(45) (a) D .00791 8.60 76.9 95 (20) .726 .00(45) (a) D .00791 8.60 76.9 95 (20) .737 + 1.74 Control 100. 100. 89 (79)	Drug	Conc., mM	S.A CC.A.		•••		••	<i>t</i> -statistic																																																																																																																																																																																																																																																																																																									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C. I. /	Acid Orange	10 [CIA010), M.W. =	452.38]																																																																																																																																																																																																																																																																																																												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trial 1	[64]																																																																																																																																																																																																																																																																																																															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B(a)P B(a)P	.000791																																																																																																																																																																																																																																																																																																															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CIA010	32.0	.000	9.35	6	(20)	.231	.00(45)																																																																																																																																																																																																																																																																																																									
$ \begin{array}{rrrrr} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IA010	16.0				(20)																																																																																																																																																																																																																																																																																																											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IA010																																																																																																																																																																																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IA010																																																																																																																																																																																																																																																																																																																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C-1	Control	100.	100.	17	(40)	.291																																																																																																																																																																																																																																																																																																										
The set of	rial 2																																																																																																																																																																																																																																																																																																																
A010 35.4 .000 .798 18 (20) .751 .00(54) A010 17.7 4.73 63.3 19 (20) .726 .00(64) A010 8.64 43.0 99.2 15 (20) .588 .00(64) A010 4.42 82.2 104. 37 (20) .37 + 1.74 A010 4.42 82.2 104. 37 (20) .874 Control Mean t = .435 .00791 8.60 76.9 95 (20) 4.59*** + 13.7 (a)P .00791 8.60 76.9 95 (20) 1.60* + 2.15 (a)P .00250 23.6 91.5 75 (20) 1.83** + 3.12 TTP 2.58 24.5 83.2 45 (20) 1.60* + 2.15 Tail 2 [107] .00791 5.81 47.3 131 (20) 6.09*** + 5.74 (a)P .00250 21.2 75.8 122 (20) 3.26 + .55 <td< td=""><td>B(a)P</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	B(a)P																																																																																																																																																																																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(a)P	.000250	25.6	91.5	(5	(20)	2.00***	+ 5.5/																																																																																																																																																																																																																																																																																																									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IA010	35.4	.000	.798																																																																																																																																																																																																																																																																																																													
(A0104.4282.2104.37(20)1.37+ 1.74ControlControl100.100.89(79).874ControlMean t = .435imethyl Terephthalate[DMTP. M.W. = 194.19]rial 1[103](a) 0.007918.6076.995(20)4.59****+ 13.7(a) 0.0025023.691.575(20)2.86***+ 5.37TTP5.1518.581.143(20)1.63**+ 3.12TTP1.2945.6100.26(20)1.02+ .57TTP.64467.198.127(19)1.14+ 1.00rial 2[107].007915.8147.3131(20)6.09***+ 5.74(a) P.0025021.275.8122(20)3.26+ .55TTP5.1594.775.274(20)3.26+ .48TTP1.29107.87.2101(19)5.02***+ 4.59Control100.100.274(80)2.02+ .48TTP1.29107.87.2101(19)5.02***+ 4.59C-1Control100.100.26(20).005.00(-3.10)TtP1.5632.7122(20).554***+ 16.5(a) P.0007912.5532.7122(20).000.00(-4.36)(a) P.0007912.5535.4	IA010																																																																																																																																																																																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IA010																																																																																																																																																																																																																																																																																																																
Mean $t = .435$ imath late [DMTP, M.W. = 194.19]rial 1 [103](a) p .007918.60 76.995 (20)4.59***+ 13.7(a) p .0025023.691.575 (20)1.50*+ 2.15TTP 5.1518.581.143 (20)1.50*+ 2.15TTP 5.1518.581.143 (20)1.64467.187.7(107)-100.1100.1101.02-1.6-1.75.8122 (20)3.26+ 5.74(20)3.26+ 5.74(20)3.26+ 5.74(20)3.26+ 5.74(20)3.26+ 1.82(20)3.26+ 1.82(20)5.54***+ 1.65(21) <tr <td="" colspan="2">- 0.00791<td>IA010</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>imethyl Terephthalate [DMTP, M.W. = 194.19] rial 1 [103] (a)P .00791 8.60 76.9 95 (20) 4.59*** + 13.7 (a)P .00250 23.6 91.5 75 (20) 2.86*** + 5.37 MTP 5.15 18.5 81.1 43 (20) 1.50* + 2.15 MTP 2.58 24.5 83.2 45 (20) 1.83** + 3.12 MTP 1.29 45.6 100. 26 (20) 1.02 + .57 MTP .644 67.1 98.1 27 (19) 1.14 + 1.00 Control 100. 100. 89 (79) .874 Control Mean t = 1.71 rial 2 [107] (a)P .00791 5.81 47.3 131 (20) 6.09*** + 5.74 (a)P .00250 21.2 75.8 122 (20) 5.53*** + 4.05 MTP 3.87 94.7 75.2 74 (20) 3.26 + .55 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 2.58 90.8 76.1 77 (20) 3.65 + 1.82 MTP 1.29 107. 87.2 101 (20) 4.65 + 1.82 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 1.29 107. 87.7 122 (20) 3.20 + .48 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 1.29 107. 87.7 122 (20) 3.65 + 1.82 MTP 1.29 107. 87.7 122 (20) 3.65 + 1.82 Mean t = 1.86 iphenylhydantoin [DPH, M.W. = 252.27] rial 1 [56] (a)P .000250 2.19 61.0 33 (20) 1.47*** + 6.97 Mean t = 1.86 iphenylhydantoin [DPH, M.W. = 252.7] rial 1 [56] (a)P .000250 2.19 61.0 33 (20) .000 .00(-4.36) PH 3.96 57.3 50.4 2 (20) .035 .00(-3.10] Mean t = 1.000 Mean t = .000 mean t = .0</td><td>C-1</td><td>Control</td><td>100.</td><td>100.</td><td>89</td><td>(79)</td><td>.8/4</td><td></td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td>1 T</td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>limeth</td><td>yl Terephtha</td><td>late [DMT</td><td>P, M.W. =</td><td>• 194.19]</td><td></td><td></td><td></td></tr> <tr><td>The set of the set of</td><td>rial 1</td><td>[103]</td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>l(a)P</td><td>.00791</td><td>8.60</td><td>76.9</td><td>95</td><td>(20)</td><td>4.59***</td><td>+ 13.7</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>(a)P</td><td>.00250</td><td>23.6</td><td>91.5</td><td>75</td><td>(20)</td><td>2.86***</td><td>+ 5.37</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>MTP</td><td>5.15</td><td>18.5</td><td>81.1</td><td>43</td><td>(20)</td><td>1.50*</td><td>+ 2,15</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>MTP</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>MTP</td><td></td><td></td><td></td><td></td><td></td><td>1.02</td><td>+ .57</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>MTP</td><td>.644</td><td>67.1</td><td>98.1</td><td>27</td><td></td><td>1.14</td><td>+ 1.00</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>IC-1</td><td>Control</td><td>100.</td><td>100.</td><td>89</td><td>(79)</td><td>.874</td><td></td></tr> <tr><td>(a) P $.00791$ 5.81 47.3 131 (20) 6.09^{***} + 5.74 (a) P $.00250$ 21.2 75.8 122 (20) 5.53^{***} + 4.05 ATP 5.15 94.7 64.8 90 (20) 3.26 + .55 ATP 3.87 94.7 75.2 74 (20) 3.20 + .48 ATP 2.58 90.8 76.1 77 (20) 3.65 + 1.82 ATP 1.29 107. 87.2 101 (19) 5.02^{***} + 4.59 C-1 Control 100. 100. 274 (80) 2.95 Control Mean t = 1.86 iphenylhydantoin [DPH, M.W. = 252.27] rial 1 [56] (a) P .000791 2.55 32.7 122 (20) 5.54^{***} + 16.5 (a) P .000791 2.55 32.7 122 (20) 1.47^{***} + 6.97 PH 39.6 52.6 31.4 0 (20) .000 .00(-4.36) PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-2.27) C-1 Control 100. 100. 13 (39) .260 $\frac{Control}{Mean t = 1.000}$</td><td>rial 2</td><td>F1071</td><td></td><td></td><td></td><td></td><td></td><td>Mean $t = 1./1$</td></tr> <tr><td>The second seco</td><td>1141 Z B(a)P</td><td></td><td>5.81</td><td>47.3</td><td>131</td><td>(20)</td><td>6.09***</td><td>+ 5.74</td></tr> <tr><td>ATP$3.87$$94.7$$75.2$$74$$(20)$$3.20$$+$$.48ATP2.58$$90.8$$76.1$$77$$(20)$$3.65$$+$$1.82ATP1.29$$107.$$87.2$$101$$(19)$$5.02^{***}$$+$$4.59$C-1Control$100.$$100.$$274$$(80)$$2.95$$Control$Mean t = 1.86iphenyl hydantoin[DPH, M.W. = 252.27]rial 1[56](a)P$.000791$$2.55$$32.7$$122$$(20)$$5.54^{***}$$+$$16.5$(a)P$.000250$$2.19$$61.0$$33$$(20)$$1.47^{***}$$+$$6.97PH39.6$$52.6$$31.4$$0$$(20)$$.000$$.00(-4.36)PH3.96$$57.3$$50.4$$2$$(20)$$.072$$.00(-2.27)PH3.96$$57.3$$50.4$$2$$(20)$$.172$$.00(-2.27)PH1.25$$66.4$$55.1$$5$$(20)$$.172$$.00(-7.9)$C-1Control$100.$$100.$$13$$(39)$$.260$$Control$mean t = $.000$$rand t = .000$$rand t = .000$$rand t = .000$$rand t = .000$</td><td>(a)P</td><td></td><td></td><td></td><td></td><td></td><td></td><td>+ 4.05</td></tr> <tr><td>ATP$3.87$$94.7$$75.2$$74$$(20)$$3.20$$+$$.48ATP2.58$$90.8$$76.1$$77$$(20)$$3.65$$+$$1.82ATP1.29$$107.$$87.2$$101$$(19)$$5.02^{***}$$+$$4.59$C-1Control$100.$$100.$$274$$(80)$$2.95$$Control$Mean t = 1.86iphenyl hydantoin[DPH, M.W. = 252.27]rial 1[56](a)P$.000791$$2.55$$32.7$$122$$(20)$$5.54^{***}$$+$$16.5$(a)P$.000250$$2.19$$61.0$$33$$(20)$$1.47^{***}$$+$$6.97PH39.6$$52.6$$31.4$$0$$(20)$$.000$$.00(-4.36)PH3.96$$57.3$$50.4$$2$$(20)$$.072$$.00(-2.27)PH3.96$$57.3$$50.4$$2$$(20)$$.172$$.00(-2.27)PH1.25$$66.4$$55.1$$5$$(20)$$.172$$.00(-7.9)$C-1Control$100.$$100.$$13$$(39)$$.260$$Control$mean t = $.000$$rand t = .000$$rand t = .000$$rand t = .000$$rand t = .000$</td><td>MTD</td><td>E 1E</td><td>0/7</td><td><i>41</i> 0</td><td>00</td><td>(20)</td><td>7 34</td><td>1 EE</td></tr> <tr><td>ATP2.5890.876.177(20)3.65+1.82ATP1.29107.$87.2$101(19)5.02^{***}+4.59C-1Control100.100.274(80)2.95Controlrial 1[56]</td><td>MTP</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>ATP1.29107.87.2101(19)$5.02^{***}$$+ 4.59$C-1Control100.100.274(80)2.95Controliphenylhydantoin[DPH. M.W. = 252.27]Mean t = 1.86iphenylhydantoin[DPH. M.W. = 252.27]rial 1[56](a)P.0007912.5532.7122(20)$5.54^{***}$$+ 16.5$(a)P.0002502.1961.033(20)$1.47^{***}$$+ 6.97$PH39.652.631.40(20).000$.00(-4.36)$PH12.555.845.71(20).035$.00(-3.10)$PH3.9657.350.42(20).072$.00(-2.27)$PH1.2566.455.15(20).172$.00(-7.9)$C-1Control100.13(39).260Controlrial 2[65](a)P.000791$6.95$$60.7$$85(18)4.38^{***}$$+ 13.9$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>C-1 Control 100. 100. 274 (80) 2.95 Control Mean $t = 1.86$ iphenylhydantoin [DPH. M.W. = 252.27] rial 1 [56] (a)P .000791 2.55 32.7 122 (20) 5.54*** + 16.5 (a)P .000250 2.19 61.0 33 (20) 1.47*** + 6.97 PH 39.6 52.6 31.4 0 (20) .000 .00(-4.36) PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-7.9) C-1 Control 100. 100. 13 (39) .260 Control rial 2 [65] (a)P .000791 6.95 60.7 85 (18) 4.38*** + 13.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>C-1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>linhon</td><td>vlhudantain</td><td></td><td>- 252 27</td><td>1</td><td></td><td></td><td></td></tr> <tr><td>(a)P.0007912.55$32.7$$122$$(20)$$5.54***$$+16.5$(a)P.000250$2.19$$61.0$$33$$(20)$$1.47***$$+6.97PH39.6$$52.6$$31.4$0$(20)$.000$.00(-4.36)PH12.5$$55.8$$45.7$1$(20)$.035$.00(-3.10)PH3.96$$57.3$$50.4$2$(20)$.072$.00(-2.27)PH1.25$$66.4$$55.1$$5$$(20)$.172$.00(-2.27)PH1.25$$66.4$$55.1$$5$$(20)$.172$.00(-2.27)$C-1Control$100.$$13$$(39)$$.260$Controlrial 2[65](a)P.000791$6.95$$60.7$$85$$(18)$$4.33***$$+13.9$</td><td>rpnen</td><td>yinyuancoin</td><td>LDRH, M.W.</td><td>- 252.27</td><td>1</td><td></td><td></td><td></td></tr> <tr><td>(a)P.0002502.1961.033(20)$1.47***$+ 6.97PH39.652.631.40(20).000.00(-4.36)PH12.555.845.71(20).035.00(-3.10)PH3.9657.350.42(20).072.00(-2.27)PH1.2566.455.15(20).172.00(-7.9)C-1Control100.13(39).260Controlrial 2[65](a)P.0007916.9560.785(18)4.38***+ 13.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · -</td></tr> <tr><td>PH 39.6 52.6 31.4 0 (20) .000 .00(-4.36) PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-7.79) C-1 Control 100. 100. 13 (39) .260 Control rial 2 [65] (a)P .000791 6.95 60.7 85 (18) $4.33***$ $+$ 13.9</td><td>B(a)P</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-79) C-1 Control 100. 13 (39) .260 Control mean t = .000 .000791 6.95 60.7 85 (18) 4.38*** + 13.9</td><td>(a)P</td><td>.000250</td><td>2.19</td><td>61.0</td><td>33</td><td>(20)</td><td>1.4/***</td><td>+ 6.9/</td></tr> <tr><td>PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-79) C-1 Control 100. 13 (39) .260 Control mean t = .000 .000791 6.95 60.7 85 (18) 4.38*** + 13.9</td><td>PH</td><td>39.6</td><td>52.6</td><td>31.4</td><td>0</td><td>(20)</td><td>.000</td><td>.00(-4.36)</td></tr> <tr><td>PH 3.96 57.3 50.4 2 (20) $.072$ $.00(-2.27)$ PH 1.25 66.4 55.1 5 (20) $.172$ $.00(79)$ C-1 Control $100.$ 13 (39) $.260$ Control mean t = $.000$ $.000791$ 6.95 60.7 85 (18) $4.33***$ $+$ 13.9</td><td>PH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>PH 1.25 66.4 55.1 5 (20) .172 .00(79) C-1 Control 100. 13 (39) .260 Control Mean t = .000 rial 2 [65] (a)P .000791 6.95 60.7 85 (18) $4.33***$ + 13.9</td><td>PH</td><td></td><td></td><td></td><td></td><td>(20)</td><td>.072</td><td></td></tr> <tr><td>C-1 Control 100. 100. 13 (39) .260 <u>Control</u> Mean t = .000 rial 2 [65] (a)P .000791 6.95 60.7 85 (18) 4.30*** + 13.9</td><td>PH</td><td></td><td></td><td>55.1</td><td>5</td><td></td><td></td><td></td></tr> <tr><td>rial 2 [65] (a)P .000791 6.95 60.7 85 (18) 4.38*** + 13.9</td><td>IC-1</td><td>Control</td><td>100.</td><td>100.</td><td>13</td><td>(39)</td><td>.260</td><td></td></tr> <tr><td>(a)P .000791 6.95 60.7 85 (18) 4.38*** + 13.9</td><td></td><td>F6E7</td><td></td><td></td><td></td><td></td><td></td><td>mean τ = .000</td></tr> <tr><td></td><td></td><td></td><td>6.95</td><td>60.7</td><td>85</td><td>(18)</td><td>4.38***</td><td>+ 13.9</td></tr> <tr><td></td><td>(a)P</td><td></td><td></td><td></td><td></td><td></td><td>1.80***</td><td></td></tr>	IA010								imethyl Terephthalate [DMTP, M.W. = 194.19] rial 1 [103] (a)P .00791 8.60 76.9 95 (20) 4.59*** + 13.7 (a)P .00250 23.6 91.5 75 (20) 2.86*** + 5.37 MTP 5.15 18.5 81.1 43 (20) 1.50* + 2.15 MTP 2.58 24.5 83.2 45 (20) 1.83** + 3.12 MTP 1.29 45.6 100. 26 (20) 1.02 + .57 MTP .644 67.1 98.1 27 (19) 1.14 + 1.00 Control 100. 100. 89 (79) .874 Control Mean t = 1.71 rial 2 [107] (a)P .00791 5.81 47.3 131 (20) 6.09*** + 5.74 (a)P .00250 21.2 75.8 122 (20) 5.53*** + 4.05 MTP 3.87 94.7 75.2 74 (20) 3.26 + .55 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 2.58 90.8 76.1 77 (20) 3.65 + 1.82 MTP 1.29 107. 87.2 101 (20) 4.65 + 1.82 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 1.29 107. 87.7 122 (20) 3.20 + .48 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 1.29 107. 87.7 122 (20) 3.65 + 1.82 MTP 1.29 107. 87.7 122 (20) 3.65 + 1.82 Mean t = 1.86 iphenylhydantoin [DPH, M.W. = 252.27] rial 1 [56] (a)P .000250 2.19 61.0 33 (20) 1.47*** + 6.97 Mean t = 1.86 iphenylhydantoin [DPH, M.W. = 252.7] rial 1 [56] (a)P .000250 2.19 61.0 33 (20) .000 .00(-4.36) PH 3.96 57.3 50.4 2 (20) .035 .00(-3.10] Mean t = 1.000 Mean t = .000 mean t = .0	C-1	Control	100.	100.	89	(79)	.8/4		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 T							$\begin{array}{cccccccccccccccccccccccccccccccccccc$	limeth	yl Terephtha	late [DMT	P, M.W. =	• 194.19]				The set of	rial 1	[103]							$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l(a)P	.00791	8.60	76.9	95	(20)	4.59***	+ 13.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(a)P	.00250	23.6	91.5	75	(20)	2.86***	+ 5.37	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MTP	5.15	18.5	81.1	43	(20)	1.50*	+ 2,15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MTP								$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MTP						1.02	+ .57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MTP	.644	67.1	98.1	27		1.14	+ 1.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IC-1	Control	100.	100.	89	(79)	.874		(a) P $.00791$ 5.81 47.3 131 (20) 6.09^{***} + 5.74 (a) P $.00250$ 21.2 75.8 122 (20) 5.53^{***} + 4.05 ATP 5.15 94.7 64.8 90 (20) 3.26 + .55 ATP 3.87 94.7 75.2 74 (20) 3.20 + .48 ATP 2.58 90.8 76.1 77 (20) 3.65 + 1.82 ATP 1.29 107. 87.2 101 (19) 5.02^{***} + 4.59 C-1 Control 100. 100. 274 (80) 2.95 Control Mean t = 1.86 iphenylhydantoin [DPH, M.W. = 252.27] rial 1 [56] (a) P .000791 2.55 32.7 122 (20) 5.54^{***} + 16.5 (a) P .000791 2.55 32.7 122 (20) 1.47^{***} + 6.97 PH 39.6 52.6 31.4 0 (20) .000 .00(-4.36) PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-2.27) C-1 Control 100. 100. 13 (39) .260 $\frac{Control}{Mean t = 1.000}$	rial 2	F1071						Mean $t = 1./1$	The second seco	1141 Z B(a)P		5.81	47.3	131	(20)	6.09***	+ 5.74	ATP 3.87 94.7 75.2 74 (20) 3.20 $+$ $.48$ ATP 2.58 90.8 76.1 77 (20) 3.65 $+$ 1.82 ATP 1.29 $107.$ 87.2 101 (19) 5.02^{***} $+$ 4.59 C-1Control $100.$ $100.$ 274 (80) 2.95 $Control$ Mean t = 1.86 iphenyl hydantoin[DPH, M.W. = 252.27]rial 1[56](a)P $.000791$ 2.55 32.7 122 (20) 5.54^{***} $+$ 16.5 (a)P $.000250$ 2.19 61.0 33 (20) 1.47^{***} $+$ 6.97 PH 39.6 52.6 31.4 0 (20) $.000$ $.00(-4.36)$ PH 3.96 57.3 50.4 2 (20) $.072$ $.00(-2.27)$ PH 3.96 57.3 50.4 2 (20) $.172$ $.00(-2.27)$ PH 1.25 66.4 55.1 5 (20) $.172$ $.00(-7.9)$ C-1Control $100.$ $100.$ 13 (39) $.260$ $Control$ mean t = $.000$ $rand t = .000$ $rand t = .000$ $rand t = .000$ $rand t = .000$	(a)P							+ 4.05	ATP 3.87 94.7 75.2 74 (20) 3.20 $+$ $.48$ ATP 2.58 90.8 76.1 77 (20) 3.65 $+$ 1.82 ATP 1.29 $107.$ 87.2 101 (19) 5.02^{***} $+$ 4.59 C-1Control $100.$ $100.$ 274 (80) 2.95 $Control$ Mean t = 1.86 iphenyl hydantoin[DPH, M.W. = 252.27]rial 1[56](a)P $.000791$ 2.55 32.7 122 (20) 5.54^{***} $+$ 16.5 (a)P $.000250$ 2.19 61.0 33 (20) 1.47^{***} $+$ 6.97 PH 39.6 52.6 31.4 0 (20) $.000$ $.00(-4.36)$ PH 3.96 57.3 50.4 2 (20) $.072$ $.00(-2.27)$ PH 3.96 57.3 50.4 2 (20) $.172$ $.00(-2.27)$ PH 1.25 66.4 55.1 5 (20) $.172$ $.00(-7.9)$ C-1Control $100.$ $100.$ 13 (39) $.260$ $Control$ mean t = $.000$ $rand t = .000$ $rand t = .000$ $rand t = .000$ $rand t = .000$	MTD	E 1E	0/7	<i>41</i> 0	00	(20)	7 34	1 EE	ATP2.5890.876.177(20) 3.65 +1.82ATP1.29107. 87.2 101(19) 5.02^{***} + 4.59 C-1Control100.100.274(80) 2.95 Controlrial 1[56]	MTP								ATP1.29107.87.2101(19) 5.02^{***} $+ 4.59$ C-1Control100.100.274(80) 2.95 Controliphenylhydantoin[DPH. M.W. = 252.27]Mean t = 1.86iphenylhydantoin[DPH. M.W. = 252.27]rial 1[56](a)P.0007912.5532.7122(20) 5.54^{***} $+ 16.5$ (a)P.0002502.1961.033(20) 1.47^{***} $+ 6.97$ PH39.652.631.40(20).000 $.00(-4.36)$ PH12.555.845.71(20).035 $.00(-3.10)$ PH3.9657.350.42(20).072 $.00(-2.27)$ PH1.2566.455.15(20).172 $.00(-7.9)$ C-1Control100.13(39).260Controlrial 2[65](a)P.000791 6.95 60.7 85 (18) 4.38^{***} $+ 13.9$									C-1 Control 100. 100. 274 (80) 2.95 Control Mean $t = 1.86$ iphenylhydantoin [DPH. M.W. = 252.27] rial 1 [56] (a)P .000791 2.55 32.7 122 (20) 5.54*** + 16.5 (a)P .000250 2.19 61.0 33 (20) 1.47*** + 6.97 PH 39.6 52.6 31.4 0 (20) .000 .00(-4.36) PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-7.9) C-1 Control 100. 100. 13 (39) .260 Control rial 2 [65] (a)P .000791 6.95 60.7 85 (18) 4.38*** + 13.9									$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-1								$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•								$\begin{array}{cccccccccccccccccccccccccccccccccccc$	linhon	vlhudantain		- 252 27	1				(a)P.0007912.55 32.7 122 (20) $5.54***$ $+16.5$ (a)P.000250 2.19 61.0 33 (20) $1.47***$ $+6.97$ PH 39.6 52.6 31.4 0 (20) .000 $.00(-4.36)$ PH 12.5 55.8 45.7 1 (20) .035 $.00(-3.10)$ PH 3.96 57.3 50.4 2 (20) .072 $.00(-2.27)$ PH 1.25 66.4 55.1 5 (20) .172 $.00(-2.27)$ PH 1.25 66.4 55.1 5 (20) .172 $.00(-2.27)$ C-1Control $100.$ 13 (39) $.260$ Controlrial 2[65](a)P.000791 6.95 60.7 85 (18) $4.33***$ $+13.9$	rpnen	yinyuancoin	LDRH, M.W.	- 252.27	1				(a)P.0002502.1961.033(20) $1.47***$ + 6.97PH39.652.631.40(20).000.00(-4.36)PH12.555.845.71(20).035.00(-3.10)PH3.9657.350.42(20).072.00(-2.27)PH1.2566.455.15(20).172.00(-7.9)C-1Control100.13(39).260Controlrial 2[65](a)P.0007916.9560.785(18)4.38***+ 13.9								· · -	PH 39.6 52.6 31.4 0 (20) .000 .00(-4.36) PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-7.79) C-1 Control 100. 100. 13 (39) .260 Control rial 2 [65] (a)P .000791 6.95 60.7 85 (18) $4.33***$ $+$ 13.9	B(a)P								PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-79) C-1 Control 100. 13 (39) .260 Control mean t = .000 .000791 6.95 60.7 85 (18) 4.38*** + 13.9	(a)P	.000250	2.19	61.0	33	(20)	1.4/***	+ 6.9/	PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-79) C-1 Control 100. 13 (39) .260 Control mean t = .000 .000791 6.95 60.7 85 (18) 4.38*** + 13.9	PH	39.6	52.6	31.4	0	(20)	.000	.00(-4.36)	PH 3.96 57.3 50.4 2 (20) $.072$ $.00(-2.27)$ PH 1.25 66.4 55.1 5 (20) $.172$ $.00(79)$ C-1 Control $100.$ 13 (39) $.260$ Control mean t = $.000$ $.000791$ 6.95 60.7 85 (18) $4.33***$ $+$ 13.9	PH								PH 1.25 66.4 55.1 5 (20) .172 .00(79) C-1 Control 100. 13 (39) .260 Control Mean t = .000 rial 2 [65] (a)P .000791 6.95 60.7 85 (18) $4.33***$ + 13.9	PH					(20)	.072		C-1 Control 100. 100. 13 (39) .260 <u>Control</u> Mean t = .000 rial 2 [65] (a)P .000791 6.95 60.7 85 (18) 4.30*** + 13.9	PH			55.1	5				rial 2 [65] (a)P .000791 6.95 60.7 85 (18) 4.38*** + 13.9	IC-1	Control	100.	100.	13	(39)	.260		(a)P .000791 6.95 60.7 85 (18) 4.38*** + 13.9		F6E7						mean τ = .000				6.95	60.7	85	(18)	4.38***	+ 13.9		(a)P						1.80***	
IA010																																																																																																																																																																																																																																																																																																																	
imethyl Terephthalate [DMTP, M.W. = 194.19] rial 1 [103] (a)P .00791 8.60 76.9 95 (20) 4.59*** + 13.7 (a)P .00250 23.6 91.5 75 (20) 2.86*** + 5.37 MTP 5.15 18.5 81.1 43 (20) 1.50* + 2.15 MTP 2.58 24.5 83.2 45 (20) 1.83** + 3.12 MTP 1.29 45.6 100. 26 (20) 1.02 + .57 MTP .644 67.1 98.1 27 (19) 1.14 + 1.00 Control 100. 100. 89 (79) .874 Control Mean t = 1.71 rial 2 [107] (a)P .00791 5.81 47.3 131 (20) 6.09*** + 5.74 (a)P .00250 21.2 75.8 122 (20) 5.53*** + 4.05 MTP 3.87 94.7 75.2 74 (20) 3.26 + .55 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 2.58 90.8 76.1 77 (20) 3.65 + 1.82 MTP 1.29 107. 87.2 101 (20) 4.65 + 1.82 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 1.29 107. 87.7 122 (20) 3.20 + .48 MTP 1.29 107. 87.2 101 (20) 3.65 + 1.82 MTP 1.29 107. 87.7 122 (20) 3.65 + 1.82 MTP 1.29 107. 87.7 122 (20) 3.65 + 1.82 Mean t = 1.86 iphenylhydantoin [DPH, M.W. = 252.27] rial 1 [56] (a)P .000250 2.19 61.0 33 (20) 1.47*** + 6.97 Mean t = 1.86 iphenylhydantoin [DPH, M.W. = 252.7] rial 1 [56] (a)P .000250 2.19 61.0 33 (20) .000 .00(-4.36) PH 3.96 57.3 50.4 2 (20) .035 .00(-3.10] Mean t = 1.000 Mean t = .000 mean t = .0	C-1	Control	100.	100.	89	(79)	.8/4																																																																																																																																																																																																																																																																																																										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 T																																																																																																																																																																																																																																																																																																															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	limeth	yl Terephtha	late [DMT	P, M.W. =	• 194.19]																																																																																																																																																																																																																																																																																																												
The set of	rial 1	[103]																																																																																																																																																																																																																																																																																																															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l(a)P	.00791	8.60	76.9	95	(20)	4.59***	+ 13.7																																																																																																																																																																																																																																																																																																									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(a)P	.00250	23.6	91.5	75	(20)	2.86***	+ 5.37																																																																																																																																																																																																																																																																																																									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MTP	5.15	18.5	81.1	43	(20)	1.50*	+ 2,15																																																																																																																																																																																																																																																																																																									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MTP																																																																																																																																																																																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MTP						1.02	+ .57																																																																																																																																																																																																																																																																																																									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MTP	.644	67.1	98.1	27		1.14	+ 1.00																																																																																																																																																																																																																																																																																																									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IC-1	Control	100.	100.	89	(79)	.874																																																																																																																																																																																																																																																																																																										
(a) P $.00791$ 5.81 47.3 131 (20) 6.09^{***} + 5.74 (a) P $.00250$ 21.2 75.8 122 (20) 5.53^{***} + 4.05 ATP 5.15 94.7 64.8 90 (20) 3.26 + .55 ATP 3.87 94.7 75.2 74 (20) 3.20 + .48 ATP 2.58 90.8 76.1 77 (20) 3.65 + 1.82 ATP 1.29 107. 87.2 101 (19) 5.02^{***} + 4.59 C-1 Control 100. 100. 274 (80) 2.95 Control Mean t = 1.86 iphenylhydantoin [DPH, M.W. = 252.27] rial 1 [56] (a) P .000791 2.55 32.7 122 (20) 5.54^{***} + 16.5 (a) P .000791 2.55 32.7 122 (20) 1.47^{***} + 6.97 PH 39.6 52.6 31.4 0 (20) .000 .00(-4.36) PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-2.27) C-1 Control 100. 100. 13 (39) .260 $\frac{Control}{Mean t = 1.000}$	rial 2	F1071						Mean $t = 1./1$																																																																																																																																																																																																																																																																																																									
The second seco	1141 Z B(a)P		5.81	47.3	131	(20)	6.09***	+ 5.74																																																																																																																																																																																																																																																																																																									
ATP 3.87 94.7 75.2 74 (20) 3.20 $+$ $.48$ ATP 2.58 90.8 76.1 77 (20) 3.65 $+$ 1.82 ATP 1.29 $107.$ 87.2 101 (19) 5.02^{***} $+$ 4.59 C-1Control $100.$ $100.$ 274 (80) 2.95 $Control$ Mean t = 1.86 iphenyl hydantoin[DPH, M.W. = 252.27]rial 1[56](a)P $.000791$ 2.55 32.7 122 (20) 5.54^{***} $+$ 16.5 (a)P $.000250$ 2.19 61.0 33 (20) 1.47^{***} $+$ 6.97 PH 39.6 52.6 31.4 0 (20) $.000$ $.00(-4.36)$ PH 3.96 57.3 50.4 2 (20) $.072$ $.00(-2.27)$ PH 3.96 57.3 50.4 2 (20) $.172$ $.00(-2.27)$ PH 1.25 66.4 55.1 5 (20) $.172$ $.00(-7.9)$ C-1Control $100.$ $100.$ 13 (39) $.260$ $Control$ mean t = $.000$ $rand t = .000$ $rand t = .000$ $rand t = .000$ $rand t = .000$	(a)P							+ 4.05																																																																																																																																																																																																																																																																																																									
ATP 3.87 94.7 75.2 74 (20) 3.20 $+$ $.48$ ATP 2.58 90.8 76.1 77 (20) 3.65 $+$ 1.82 ATP 1.29 $107.$ 87.2 101 (19) 5.02^{***} $+$ 4.59 C-1Control $100.$ $100.$ 274 (80) 2.95 $Control$ Mean t = 1.86 iphenyl hydantoin[DPH, M.W. = 252.27]rial 1[56](a)P $.000791$ 2.55 32.7 122 (20) 5.54^{***} $+$ 16.5 (a)P $.000250$ 2.19 61.0 33 (20) 1.47^{***} $+$ 6.97 PH 39.6 52.6 31.4 0 (20) $.000$ $.00(-4.36)$ PH 3.96 57.3 50.4 2 (20) $.072$ $.00(-2.27)$ PH 3.96 57.3 50.4 2 (20) $.172$ $.00(-2.27)$ PH 1.25 66.4 55.1 5 (20) $.172$ $.00(-7.9)$ C-1Control $100.$ $100.$ 13 (39) $.260$ $Control$ mean t = $.000$ $rand t = .000$ $rand t = .000$ $rand t = .000$ $rand t = .000$	MTD	E 1E	0/7	<i>41</i> 0	00	(20)	7 34	1 EE																																																																																																																																																																																																																																																																																																									
ATP2.5890.876.177(20) 3.65 +1.82ATP1.29107. 87.2 101(19) 5.02^{***} + 4.59 C-1Control100.100.274(80) 2.95 Controlrial 1[56]	MTP																																																																																																																																																																																																																																																																																																																
ATP1.29107.87.2101(19) 5.02^{***} $+ 4.59$ C-1Control100.100.274(80) 2.95 Controliphenylhydantoin[DPH. M.W. = 252.27]Mean t = 1.86iphenylhydantoin[DPH. M.W. = 252.27]rial 1[56](a)P.0007912.5532.7122(20) 5.54^{***} $+ 16.5$ (a)P.0002502.1961.033(20) 1.47^{***} $+ 6.97$ PH39.652.631.40(20).000 $.00(-4.36)$ PH12.555.845.71(20).035 $.00(-3.10)$ PH3.9657.350.42(20).072 $.00(-2.27)$ PH1.2566.455.15(20).172 $.00(-7.9)$ C-1Control100.13(39).260Controlrial 2[65](a)P.000791 6.95 60.7 85 (18) 4.38^{***} $+ 13.9$																																																																																																																																																																																																																																																																																																																	
C-1 Control 100. 100. 274 (80) 2.95 Control Mean $t = 1.86$ iphenylhydantoin [DPH. M.W. = 252.27] rial 1 [56] (a)P .000791 2.55 32.7 122 (20) 5.54*** + 16.5 (a)P .000250 2.19 61.0 33 (20) 1.47*** + 6.97 PH 39.6 52.6 31.4 0 (20) .000 .00(-4.36) PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-7.9) C-1 Control 100. 100. 13 (39) .260 Control rial 2 [65] (a)P .000791 6.95 60.7 85 (18) 4.38*** + 13.9																																																																																																																																																																																																																																																																																																																	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-1																																																																																																																																																																																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•																																																																																																																																																																																																																																																																																																																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	linhon	vlhudantain		- 252 27	1																																																																																																																																																																																																																																																																																																												
(a)P.0007912.55 32.7 122 (20) $5.54***$ $+16.5$ (a)P.000250 2.19 61.0 33 (20) $1.47***$ $+6.97$ PH 39.6 52.6 31.4 0 (20) .000 $.00(-4.36)$ PH 12.5 55.8 45.7 1 (20) .035 $.00(-3.10)$ PH 3.96 57.3 50.4 2 (20) .072 $.00(-2.27)$ PH 1.25 66.4 55.1 5 (20) .172 $.00(-2.27)$ PH 1.25 66.4 55.1 5 (20) .172 $.00(-2.27)$ C-1Control $100.$ 13 (39) $.260$ Controlrial 2[65](a)P.000791 6.95 60.7 85 (18) $4.33***$ $+13.9$	rpnen	yinyuancoin	LDRH, M.W.	- 252.27	1																																																																																																																																																																																																																																																																																																												
(a)P.0002502.1961.033(20) $1.47***$ + 6.97PH39.652.631.40(20).000.00(-4.36)PH12.555.845.71(20).035.00(-3.10)PH3.9657.350.42(20).072.00(-2.27)PH1.2566.455.15(20).172.00(-7.9)C-1Control100.13(39).260Controlrial 2[65](a)P.0007916.9560.785(18)4.38***+ 13.9								· · -																																																																																																																																																																																																																																																																																																									
PH 39.6 52.6 31.4 0 (20) .000 .00(-4.36) PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-7.79) C-1 Control 100. 100. 13 (39) .260 Control rial 2 [65] (a)P .000791 6.95 60.7 85 (18) $4.33***$ $+$ 13.9	B(a)P																																																																																																																																																																																																																																																																																																																
PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-79) C-1 Control 100. 13 (39) .260 Control mean t = .000 .000791 6.95 60.7 85 (18) 4.38*** + 13.9	(a)P	.000250	2.19	61.0	33	(20)	1.4/***	+ 6.9/																																																																																																																																																																																																																																																																																																									
PH 12.5 55.8 45.7 1 (20) .035 .00(-3.10) PH 3.96 57.3 50.4 2 (20) .072 .00(-2.27) PH 1.25 66.4 55.1 5 (20) .172 .00(-79) C-1 Control 100. 13 (39) .260 Control mean t = .000 .000791 6.95 60.7 85 (18) 4.38*** + 13.9	PH	39.6	52.6	31.4	0	(20)	.000	.00(-4.36)																																																																																																																																																																																																																																																																																																									
PH 3.96 57.3 50.4 2 (20) $.072$ $.00(-2.27)$ PH 1.25 66.4 55.1 5 (20) $.172$ $.00(79)$ C-1 Control $100.$ 13 (39) $.260$ Control mean t = $.000$ $.000791$ 6.95 60.7 85 (18) $4.33***$ $+$ 13.9	PH																																																																																																																																																																																																																																																																																																																
PH 1.25 66.4 55.1 5 (20) .172 .00(79) C-1 Control 100. 13 (39) .260 Control Mean t = .000 rial 2 [65] (a)P .000791 6.95 60.7 85 (18) $4.33***$ + 13.9	PH					(20)	.072																																																																																																																																																																																																																																																																																																										
C-1 Control 100. 100. 13 (39) .260 <u>Control</u> Mean t = .000 rial 2 [65] (a)P .000791 6.95 60.7 85 (18) 4.30*** + 13.9	PH			55.1	5																																																																																																																																																																																																																																																																																																												
rial 2 [65] (a)P .000791 6.95 60.7 85 (18) 4.38*** + 13.9	IC-1	Control	100.	100.	13	(39)	.260																																																																																																																																																																																																																																																																																																										
(a)P .000791 6.95 60.7 85 (18) 4.38*** + 13.9		F6E7						mean τ = .000																																																																																																																																																																																																																																																																																																									
			6.95	60.7	85	(18)	4.38***	+ 13.9																																																																																																																																																																																																																																																																																																									
	(a)P						1.80***																																																																																																																																																																																																																																																																																																										

Treatment Condition ^a		on ^a Activity ^b		Transform <u>Activit</u> y		Transformation Response ^d	Significance
		RCE (%)		Focus Data		Foci/Vessel	
				Type Vess	els	Focus Type	
Drug	Conc., mM	S.A	CC.A.	111	(N)	III	<i>t</i> -statistic
	70 /	40.0					
PH	39.6	19.2	27.3	1	(20)	.035	.00(-2.66)
PH	12.5	31.1	42.4	1	(20)	.035	.00(-2.66)
PH	3.96	33.8	52.0	2	(19)	.076	.00(-1.86)
РН	1.25	46.0	54.1	4	(19)	. 140	.00(92)
2-1	Control	100.	100.	14	(40)	.244 Me	<u>Control</u> ean t = .000
ר אר	Yellow No.	6 [FDCY6.	M.W. = 4	52 371			
		0 [10010,	M.M 4	52.573			
rial 1		4 01	50 7	147	(20)	0 07444	. 4/ 5
(a)P	.000791	6.91	58.7	167	(20)	8.23***	+ 14.5
(a)P	.000250	19.3	84.5	138	(20)	6.39***	+ 7.66
OCY6	88.4	6.18	69.5	135	(18)	7.02***	+ 8.24
DCY6	44.2	44.0	86.1	144	(20)	6.71***	+ 7.96
DCY6	22.1	53.8	92.4	196	(20)	8.71***	+ 9.47
DCY6	11.1	78.5	90.4	119	(20)	5.67***	+ 7.06
C-1	Control	100.	100.	108	(40)	2.51	<u>Control</u>
rial 2	[65]					Me	an t = 8.18
(a)P	.000791	6.95	60.7	85	(18)	4.38***	+ 13.9
(a)P	.000250	19.2	90.2	43	(20)	1.80***	+ 6.94
DCY6	63.2	.000	47.7	40	(20)	1.54***	+ 4.81
CY6	20.0	70.5	47.4	40 61	(20)	2.25***	+ 6.05
			56.9		•	1.34***	
	6.32	73.5		33	(20)		+ 5.27
	2.00	99.0 100	56.7	10	(20)	.762**	+ 3.27
C-1	Control	100.	100.	14	(40)	.244 Me	<u>Control</u> an t = 4.85
rial 3		• • •	-		(00)		
(a)P	.000791	8.60	76.9	95	(20)	4.59***	+ 13.7
(a)P	.000250	23.6	91.5	75	(20)	2.86***	+ 5.37
DCY6	88.4	.652	38.0	40	(17)	2.05***	+ 3.63
DCY6	44.2	46.5	59.8	162	(20)	7.69***	+ 16.8
DCY6	22.1	55.9	91.0	92	(18)	4.61***	+ 8.38
DCY6	11.1	75.3	91.5	85	(20)	4.02***	+ 10.8
C-1	Control	100.	100.	89	(79)	.874	Control
				•			an t = 9.90
)-Mann ⁻	itol [MANN,	M.W. = 60	.07]				
rial 1							
l(a)P	.000791	2.24	45.8	125	(20)	5.91***	+ 17.4
l(a)P	.000250	8.52	78.5	86	(20)	3.36***	+ 6.80
IANN	109.8	93.3	86.5	37	(20)	1.27*	+ 3.06
ANN	54.9	108.	103.	14	(20)	.600	.00(29
ANN	27.4	102.	101.	13	(20)	.547	.00(58
ANN	13.7	105.	106.	21	(20)	.792	+ .38
C-1	Control	100.	100.	33	(40)	.663	<u>Control</u>
rial 2	[45]					M	ean t = 1.72
(a)P	.000791	8.74	42.5	186	(20)	8.98***	+ 19.5
(a)P	.000250	28.2	86.4	77	(20)	3.42***	+ 7.04
ANN	110.	90.3	98.3	46	(20)	1.93***	+ 3.91
ANN ANN	4.00	90.3	96.5 104.	40	(20)	.556	
		94.8 96.8			(20)	.987**	.00(79
	2.00		98.6	22			+ 1.01
ANN	1.00 Control	100. 100.	99.0 100.	16 86	(19) (98)	.677 .732	00(24. Control
C-1							

Treatment Condition [®]	Cytotoxic Activity ^b	Transforming Activity ^c	Transformation Response ^d	Significance
	RCE (%)	Focus Data	Foci/Vessel	
		Type Vessels	Focus Type	
Drug Conc., mM	S.A CC.A.	III (N)	III	<i>t</i> -statistic
[
[ria] 3 [110] B(a)P .000791	11.6 61.1	116 (18)	5.78***	+ 17.5
B(a)P .000791 B(a)P .000250	26.7 88.0	75 (18)		+ 8.98
(a)P :000250	20.7 00.0		5.07	0.70
IANN 220.0	114. 101.	68 (20)	3.00***	+ 8.55
1ANN 110.0	100. 100.	50 (20)	2.17***	+ 5.60
1ANN 54.9	111. 92.	28 (20)	1.23**	+ 3.06
1ANN 27.4	168. 100.	28 (20)		+ 1.53
IC-1 Control	100. 100.	65 (75)	.609	<u>Control</u>
				Mean t = 4.69
lethyl Methacrylate	[794248-L, M.W.	= 110.12, Density	= 0.9433 g/ml]	
rial 1 [79]				
B(a)P .000791	22.7 79.6	279 (18)		+ 13.9
3(a)P .000250	39.3 94.2	241 (18)	12.9***	+ 9.34
794248-L 17.0	.000 .324	19 (13,	17) .615	.00(-6.9
794248-L 12.8	.000 60.7	174 (18)		+ 3.29
794248-L 8.50	4.13 90.8	244 (18)		+ 9.73
94248-L 4.25	45.0 100.	83 (18)		.00(-1.3
IC-1 Control	100. 100.	430 (62)	5.12	Control
				Mean $t = 4.34$
irial 2 [106] B(a)P .000791	24.8 56.9	134 (18)	6.88***	+ 8.00
B(a)P .000250	40.7 77.9	91 (18)		+ 5.56
	000 1 71	7 /7	202	004.2.4
794248-L 16.0	.000 1.31	3 (7) 52 (19)	.292	.00(-2.4
794248-L 12.0 794248-L 8.00	.000 24.7 3.98 68.5	52 (18) 47 (18)		+ 2.09 + 1.99
94248-L 8.00	51.1 95.4	33 (18)		+ .69
IC-1 Control	100. 100.	74 (43)		Control
	1001	14 (43)	1.50	Mean t = 1.19
lolybdenum Trioxide	[MOTO, M.W. = 1	44.0]		
rial 1 [47]				
(a)P .00791	.351 28.1	173 (20)		+ 14.6
s(a)P .00250	7.72 75.6	88 (20)	3.89***	+ 8.73
	.000 .000	7 (9,2	0) .661	+ .29
10TO 9.06 10TO 6.80	2.81 83.2	29 (19,2		+ .29 + 2.80
IOTO 4.53	36.1 96.5	7 (20)		.00(-1.9
IOTO 2.27	67.7 96.0	3 (20)		.00(-3.7
IC-1 Control	100. 100.	31 (39)		Control
		(37)		Mean $t = .830$
[ria] 2 [56] B(a)P .000791	2.55 32.7	122 (20)	5.54***	+ 16.5
8(a)P .000791 8(a)P .000250	2.19 61.0	33 (20)		+ 6.97
юто 11.0	1.46 .000			+ .57
юто 8.28	70.8 75.3 67.5 80.6	12 (18,		+ 1.04
	67.5 80.6	3 (20)	.099	.00(-1.6
10TO 5.52				
10T0 5.52 10T0 2.76 1C-1 Control	93.8 94.6 100. 100.	5 (20) 13 (39)	.182	.00(7 Control

	eatment ndition ^a	Cytoto Activi	ity ^b	Transformi Activity		Transformation Response ^d	Significance
		RCE (Focus Dat Type Vesse	els	Foci/Vessel Focus Type	
Drug	Conc., mM	<u> </u>	CC.A.	III	(N)	III	<i>t</i> -statistic
Nitr	oanthranilic	Acid [4	VANA, M.W.	= 182.15]			
ial 1		-		-			
(a)P	.000791	6.91	58.7	167	(20)	8.23***	+ 14.5
a)P	.000250	19.3	84.5	138	(20)	6.39***	+ 7.66
	0.99	0 74	59.3	11	(10)	1 00	00/ 1 /2
IANA IANA	9.88 6.59	8.36 16.7	59.5 81.0	41 55	(19) (20)	1.99 2.53	.00(-1.62 + .06
IANA	4.92	38.2	89.8	41	(20)	1.80	.00(-2.12
IANA	3.29	86.9	83.2	45	(20)	2.00	.00(-1.57
:-1	Control	100.	100.	108	(40)	2.51	Control
	F1023						Mean $t = .015$
יזמו 2 (a)P	[103] .000791	8.60	76.9	95	(20)	4.59***	+ 13.7
a)P a)P	.000791	23.6	70.9 91.5	95 75	(20)	2.86***	+ 13.7 + 5.37
	.000290	23.0		ر ،	(20)	2.00	
ANA	9.88	2.58	.000	24	(20)	.955	+ .33
IANA	6.59	4.30	82.7	75	(20)	2.59***	+ 3.79
ANA	4.94	5.59	85.4	55	(19)	2.42***	+ 4.52
	3.29	49.5	98.9	12	(20)	.423	.00(-2.18
:-1	Control	100.	100.	89	(79)	.874	<u>Control</u> Mean t = 2.16
enici	11in VK+ [51	.9829-S, M	I.W. = 388.	517			
				-			
rial 1	-			-			
	-	16.9	65.2	- 261	(20)	12.9***	+ 13.0
rial 1	[80]			-	(20) (20)	12.9*** 8.53***	+ 13.0 + 7.65
rial 1 (a)P (a)P	[80] .000791 .000250	16.9 35.6	65.2 87.2	261 185	(20)	8.53***	+ 7.65
rial 1 (a)P (a)P (a)P	[80] .000791 .000250 s 25.6	16.9 35.6 .000	65.2 87.2 1.13	261 185 29	(20)	8.53*** 1.35	+ 7.65
rial 1 (a)P (a)P (9829-)	[80] .000791 .000250 s 25.6 s 19.2	16.9 35.6 .000 15.1	65.2 87.2 1.13 18.6	261 185 29 156	(20) (17,20) (19)	8.53*** 1.35 7.62***	+ 7.65 .00(-3.24 + 6.69
ial 1 (a)P (a)P (9829-) (9829-)	[80] .000791 .000250 s 25.6 s 19.2 s 12.8	16.9 35.6 .000 15.1 79.2	65.2 87.2 1.13 18.6 89.3	261 185 29 156 282	(20) (17,20) (19) (20)	8.53*** 1.35	+ 7.65 .00(-3.24 + 6.69 + 8.16
rial 1 (a)P (a)P (9829-)	[80] .000791 .000250 s 25.6 s 19.2 s 12.8	16.9 35.6 .000 15.1	65.2 87.2 1.13 18.6	261 185 29 156	(20) (17,20) (19)	8.53*** 1.35 7.62*** 12.7***	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u>
rial 1 (a)P (a)P (9829	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control	16.9 35.6 .000 15.1 79.2 97.3	65.2 87.2 1.13 18.6 89.3 98.2	261 185 29 156 282 144	(20) (17,20) (19) (20) (20)	8.53*** 1.35 7.62*** 12.7*** 6.22***	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80
rial 1 (a)P (a)P (9829	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101]	16.9 35.6 15.1 79.2 97.3 100.	65.2 87.2 1.13 18.6 89.3 98.2 100.	261 185 29 156 282 144 317	(20) (17,20) (19) (20) (20) (80)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean t = 2.94
rial 1 (a)P (a)P (9829	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791	16.9 35.6 .000 15.1 79.2 97.3 100. ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8	261 185 29 156 282 144 317 108	(20) (17,20) (19) (20) (20) (80) (20)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63***	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean t = 2.94 + 12.7
rial 1 (a)P (a)P (9829	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101]	16.9 35.6 15.1 79.2 97.3 100.	65.2 87.2 1.13 18.6 89.3 98.2 100.	261 185 29 156 282 144 317	(20) (17,20) (19) (20) (20) (80)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean t = 2.94
rial 1 (a)P (a)P (9829	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6	16.9 35.6 .000 15.1 79.2 97.3 100. ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80	261 185 29 156 282 144 317 108 48 10	(20) (17,20) (19) (20) (20) (80) (20) (20) (20) (20) (19)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean t = 2.94 + 12.7 + 9.73 + .60
rial 1 (a)P (a)P (9829	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6 S 19.2	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7	261 185 29 156 282 144 317 108 48 10 39	(20) (17,20) (19) (20) (20) (80) (20) (20) (20) (19) (20)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53***	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean $t = 2.94$ + 12.7 + 9.73 + .60 + 5.03
rial 1 (a)P (9829	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6 S 19.2 S 12.8	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8	261 185 29 156 282 144 317 108 48 10 39 81	(20) (17,20) (19) (20) (20) (80) (20) (20) (20) (19) (20) (18)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05***	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean $t = 2.94$ + 12.7 + 9.73 + .60 + 5.03 + 14.5
rial 1 (a)P (9829-: (9829-: (9829-: (9829-: (9829-: (a)P (9829-: (9829-: (9829-: (9829-: (9829-:	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND ND ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108.	261 185 29 156 282 144 317 108 48 10 39 81 15	(20) (17,20) (19) (20) (20) (80) (20) (20) (20) (19) (20) (18) (19)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652**	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean $t = 2.94$ + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92
rial 1 (a)P (9829	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6 S 19.2 S 12.8	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8	261 185 29 156 282 144 317 108 48 10 39 81	(20) (17,20) (19) (20) (20) (80) (20) (20) (20) (19) (20) (18)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05***	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean t = 2.94 + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u>
rial 1 (a)P (9829-: (9829-: (9829-: (9829-: (9829-: (a)P (9829-: (9829-: (9829-: (9829-: (9829-:	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND ND ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108.	261 185 29 156 282 144 317 108 48 10 39 81 15	(20) (17,20) (19) (20) (20) (80) (20) (20) (20) (19) (20) (18) (19)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652**	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean $t = 2.94$ + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92
rial 1 (a)P (9829 (9829 (9829 (9829 (a)P (9829 (9829 (9829 (9829 (9829 (9829 (9829) (9829 (9829) (9829 (9829) (9829	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND ND ND ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108. 100.	261 185 29 156 282 144 317 108 48 10 39 81 15	(20) (17,20) (19) (20) (20) (80) (20) (20) (20) (19) (20) (18) (19)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652**	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean t = 2.94 + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u>
rial 1 (a)P (9829 (9829 (9829 (9829 (9829 (a)P (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829)) (9829 (9829)) (9829 (9829)) (9829)	[80] .000791 .000250 s 25.6 s 19.2 s 12.8 s 6.41 Control [101] .000791 .000250 s 25.6 s 19.2 s 12.8 s 6.41 Control amide [PHAM.	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND ND ND ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108. 100.	261 185 29 156 282 144 317 108 48 10 39 81 15	(20) (17,20) (19) (20) (20) (80) (20) (20) (20) (19) (20) (18) (19)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652**	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean t = 2.94 + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u>
rial 1 (a)P (9829 (9829 (9829 (9829 (9829 (a)P (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829) (9829 (9829) (9829 (9829) (9829 (9829) (982	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control amide [PHAM, [35]	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND ND ND ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108. 100. 54.18]	261 185 29 156 282 144 317 108 48 10 39 81 15 27	(20) (17,20) (19) (20) (20) (80) (20) (20) (19) (20) (19) (20) (18) (19) (78)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652** .260	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean $t = 2.94$ + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u> Mean $t = 5.76$
rial 1 (a)P (9829 (9829 (9829 (9829 (9829 (a)P (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829) (9829 (9829 (9829) (9829 (9829) (9829 (9829) (9829	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control amide [PHAM, [35] .000791	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND ND ND ND ND ND ND ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108. 100. 54.18] 66.1	261 185 29 156 282 144 317 108 48 10 39 81 15 27	(20) (17,20) (19) (20) (20) (20) (20) (20) (19) (20) (18) (19) (78)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652** .260	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean $t = 2.94$ + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u> Mean $t = 5.76$
rial 1 (a)P (9829 (9829 (9829 (9829 (9829 (a)P (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829) (9829 (9829) (9829 (9829) (9829 (9829) (982	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control amide [PHAM, [35]	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND ND ND ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108. 100. 54.18]	261 185 29 156 282 144 317 108 48 10 39 81 15 27	(20) (17,20) (19) (20) (20) (80) (20) (20) (19) (20) (19) (20) (18) (19) (78)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652** .260	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean $t = 2.94$ + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u> Mean $t = 5.76$
rial 1 (a)P (9829 (9829 (9829 (9829 (9829 (a)P (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829) (9829 (9829 (9829) (9829 (9829) (9829 (9829) (9829	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control amide [PHAM, [35] .000791	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND ND ND ND ND ND ND ND	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108. 100. 54.18] 66.1	261 185 29 156 282 144 317 108 48 10 39 81 15 27	(20) (17,20) (19) (20) (20) (20) (20) (19) (20) (18) (19) (78) (20) (20) (20) (20)	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652** .260	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean $t = 2.94$ + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u> Mean $t = 5.76$ + 6.41 + 6.34 .00(-2.24)
rial 1 (a)P (9829	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control amide [PHAM. [35] .000791 .000250 48.7 24.5	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND ND 100. M.W. = 10 4.51 12.3 4.92 20.5	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108. 100. 64.18] 66.1 87.5 97.7 111.	261 185 29 156 282 144 317 108 48 10 39 81 15 27 103 133 133 28 29	(20) (17,20) (19) (20) (20) (20) (20) (20) (19) (20) (18) (19) (78) (20) (20) (20) (20) (20) (20) (20) (20	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .260 4.91*** 6.01*** 1.17 1.23	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean t = 2.94 + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u> Mean t = 5.76 + 6.41 + 6.34 .00(-2.24 .00(14)
tial 1 (a)P (9829 (9829 (9829 (9829 (9829 (a)P (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829) (9829 (19829) (9829 (19829) (98	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control amide [PHAM. [35] .000791 .000250 48.7 24.5 12.2	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND 100. M.W. = 10 4.51 12.3 4.92 20.5 44.3	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108. 100. 64.18] 66.1 87.5 97.7 111. 116.	261 185 29 156 282 144 317 108 48 10 39 81 15 27 103 133 133 28 29 42	(20) (17,20) (19) (20) (20) (20) (20) (20) (19) (20) (18) (19) (78) (20) (20) (20) (20) (20) (20) (20) (20	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652** .260 4.91*** 6.01*** 1.17 1.23 1.92	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean t = 2.94 + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u> Mean t = 5.76 + 6.41 + 6.34 .00(-2.24 .00(14 .00(-2.06)
tial 1 (a)P (9829 (9829 (9829 (9829 (9829 (a)P (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829) (9829 (9829) (9829 (9829) (982	[80] .000791 .000250 s 25.6 s 19.2 s 12.8 s 6.41 Control [101] .000791 .000250 s 25.6 s 19.2 s 12.8 s 6.41 Control amide [PHAM. [35] .000791 .000250 48.7 24.5 12.2 6.09	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND 100. M.W. = 10 4.51 12.3 4.92 20.5 44.3 92.3	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108. 100. 64.18] 66.1 87.5 97.7 111. 116. 112.	261 185 29 156 282 144 317 108 48 10 39 81 15 27 103 133 28 29 42 52	(20) (17,20) (19) (20) (20) (20) (20) (20) (19) (20) (18) (19) (78) (20) (20) (20) (20) (20) (20) (20) (20	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652** .260 4.91*** 6.01*** 1.17 1.23 1.92 2.28	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean t = 2.94 + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u> Mean t = 5.76 + 6.41 + 6.34 .00(-2.24 .00(14 .00(-2.06 .00(70)
tial 1 (a)P (9829 (9829 (9829 (9829 (9829 (a)P (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829 (9829) (9829 (19829) (9829 (19829) (98	[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control amide [PHAM. [35] .000791 .000250 48.7 24.5 12.2	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND 100. M.W. = 10 4.51 12.3 4.92 20.5 44.3	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108. 100. 64.18] 66.1 87.5 97.7 111. 116.	261 185 29 156 282 144 317 108 48 10 39 81 15 27 103 133 133 28 29 42	(20) (17,20) (19) (20) (20) (20) (20) (20) (19) (20) (18) (19) (78) (20) (20) (20) (20) (20) (20) (20) (20	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652** .260 4.91*** 6.01*** 1.17 1.23 1.92	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean t = 2.94 + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u> Mean t = 5.76 + 6.41 + 6.34 .00(-2.24 .00(70)
tial 1 (a)P (9829 (9829 (9829 (9829 (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (3	<pre>[80] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control [101] .000791 .000250 S 25.6 S 19.2 S 12.8 S 6.41 Control amide [PHAM, [35] .000791 .000250 48.7 24.5 12.2 6.09 Control</pre>	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND 100. M.W. = 10 4.51 12.3 4.92 20.5 44.3 92.3	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108. 100. 64.18] 66.1 87.5 97.7 111. 116. 112.	261 185 29 156 282 144 317 108 48 10 39 81 15 27 103 133 28 29 42 52	(20) (17,20) (19) (20) (20) (20) (20) (20) (19) (20) (18) (19) (78) (20) (20) (20) (20) (20) (20) (20) (20	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652** .260 4.91*** 6.01*** 1.17 1.23 1.92 2.28	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean t = 2.94 + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u> Mean t = 5.76 + 6.41 + 6.34 .00(-2.24 .00(14 .00(-2.06) .00(70)
tial 1 (a)P (9829 (9829 (9829 (9829 (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (9829 (2a)P (3	[80] .000791 .000250 s 25.6 s 19.2 s 12.8 s 6.41 Control [101] .000791 .000250 s 25.6 s 19.2 s 12.8 s 6.41 Control amide [PHAM. [35] .000791 .000250 48.7 24.5 12.2 6.09	16.9 35.6 .000 15.1 79.2 97.3 100. ND ND ND ND ND ND 100. M.W. = 10 4.51 12.3 4.92 20.5 44.3 92.3	65.2 87.2 1.13 18.6 89.3 98.2 100. 64.8 83.6 8.80 54.7 95.8 108. 100. 64.18] 66.1 87.5 97.7 111. 116. 112.	261 185 29 156 282 144 317 108 48 10 39 81 15 27 103 133 28 29 42 52	(20) (17,20) (19) (20) (20) (20) (20) (20) (19) (20) (18) (19) (78) (20) (20) (20) (20) (20) (20) (20) (20	8.53*** 1.35 7.62*** 12.7*** 6.22*** 3.02 4.63*** 2.11*** .334 1.53*** 4.05*** .652** .260 4.91*** 6.01*** 1.17 1.23 1.92 2.28	+ 7.65 .00(-3.24 + 6.69 + 8.16 + 3.80 <u>Control</u> Mean $t = 2.94$ + 12.7 + 9.73 + .60 + 5.03 + 14.5 + 2.92 <u>Control</u> Mean $t = 5.76$ + 6.41 + 6.34 .00(-2.24 .00(70)

	eatment dition ^a	Cytoto Activi	ity⁵	Transformi Activity		Transformation Response ^d	Significance [®]	
_		RCE (Focus Data Type Vesse	ls	Foci/Vessel Focus Type		
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic	
PHAM Pham Pham	60.9 30.5 15.2	8.68 51.1 87.1	61.5 89.3 97.5	9 20 30	(20) (20) (20)	.29 .75 1.12	.00 (-2.06) + .64 + 1.87	
PHAM NC-1	7.60 Control	102. 100.	102. 100.	42 65	(20) (75)	1.87*** .609	+ 1.87 + 5.55 <u>Control</u> Mean t = 2.02	
Phthal	ic Anhydride	[PHAN,	M.W. = 148	.12]				
Trial 1								
B(a)P B(a)P	.000791 .000250	1.07 3.56	23.6 64.5	172 145	(20) (20)	8.04*** 6.84***	+ 14.5 + 15.8	
PHAN	27.0	.000		26	(15,20)	1.22	+ 2.61	
PHAN Phan	13.5 6.75	61.9 97.2	9.92 79.3	24 17	(20) (18)	.955* .765	+ 2.27 + 1.53	
PHAN	3.38	95.7	96.3	11	(20)	.402	.00(13)	
NC-1 Trial 2	Control	100.	100.	27	(40)	.427	<u>Control</u> Mean t = 1.27	
B(a)P B(a)P	.000791 .000250	5.81 21.2	47.3 75.8	131 122	(20) (20)	6.09*** 5.53***	+ 5.74 + 4.05	
PHAN	20.3	102.	68.5	53	(20)	1.87		
PHAN	15.2	112.	75.2	34	(20)	1.06	.00(-1.80) .00(-3.69)	
PHAN	10.1	114.	75.8	27	(14,19)	1.30	.00(-3.56)	
PHAN NC-1	5.06 Control	115. 100.	82.1 100.	46 274	(20) (80)	1.91 2.95	.00(-2.34) Control	
	Control	1001	100.	2/4	(00)	2.75	Mean $t = .000$	
Roxarso	-	5, M.W. =	260.??]					
Trial 1 B(a)P	[80] .000791	16.9	65.2	261	(20)	12.9***	+ 13.0	
B(a)P	.000250	35.6	87.2	185	(20)	8.53***	+ 7.65	
998307-9	\$ 40.0	4.45	68.5	117	(18)	5.96***	+ 3.49	
998307-9 998307-9		13.1	88.7 89.6	122	(20)	5.44**	+ 3.11	
998307-s		44.2 89.3	112.	79 142	(20) (20)	3.75 5.91***	+ 1.67 + 3.47	
NC-1	Control	100.	100.	317	(80)	3.02	<u>Control</u>	
Trial 2	[109]						Mean t = 2.94	
B(a)P B(a)P	.000791 .000250	51.9 66.2	94.3 108.	99 81	(20) (20)	4.69*** 3.91***	+ 5.31 + 4.16	
998307-9		.000		0	(12,20)	.000	.00(-23.0)	
998307-9		.000		3	(20)	.110	.00(-14.7)	
998307-9 998307-9		6.05 42.7	28.4 92.6	19 28	(20) (20)	.721 1.06	.00(- 5.74) .00(-4.28)	
NC-1	Control	100.	100.	237	(80)	2.55	$\frac{Control}{Mean t = .000}$	
3-Sulfo	olene [3SULF	, M.W. =	118.15]					
Trial 1	[33]							
B(a)P B(a)P	.000791	3.44	2.40	214	(20)	10.0***	+ 13.6	
u(a)r	.000250	5.73	51.4	130	(20)	5.86***	+ 7.74	

476

Treatment Condition [®]		Cytot Activ	ity [⊳]	Transform Activit		Transformation Response ^d	Significance ^e	
		RCE	(*)	Focus Da	ta	Foci/Vessel	· · · · · · · · · · · · · · · · · · ·	
				Type Vess	els	Focus Type	4	
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic	
ULF	114.3	.000	64.4	59	(20)	2.54**	+ 5.80	
ULF	76.2	.000	92.9	86	(20)	3.50**	+ 4.49	
ULF	38.1	13.4	107.	53	(20)	2.32**	+ 3.63	
ULF	19.0	48.1	101.	26				
					(20)	1.07	.00(39	
:-1	Control	100.	100.	54	(37)	1.04	<u>Control</u>	
ial 2	Г ЛЛ						Mean t = 3.48	
		5 07	25 0	775	(20)	15 0+++	. 14 7	
a)P	.000791	5.07	25.9	335	(20)	15.8***	+ 16.3	
a)P	.000250	14.2	67.2	137	(20)	6.15***	+ 7.33	
	7/ 0	7 00	0/ F		(20)	7 75444	0.00	
ULF	76.2	7.09	86.5	166	(20)	7.35***	+ 8.22	
ULF	4.00	95.6	90.5	57	(20)	2.02	+ 1.11	
ULF	2.00	94.9	94.2	46	(20)	1.80	+ .67	
ULF	1.00	95.3	92.9	60	(20)	2.43*	+ 2.01	
-1	Control	100.	100.	77	(40)	1.52	Control	
					-		Mean $t = 3.00$	
ulfiso	xazole [SUL	F, M.W. =	267.32]					
ial 1	Г197							
a)P	.000791	.000	62.5	99	(20)	4.61***	+ 13.4	
a)P	.000250	1.67	89.0	100	(20)	4.02***	+ 10.6	
u / F	.000200	1.07	07.0	100	(20)	4.02	T IU.0	
LF	12.0	14.6	71.5	18	(20)	.439	+ .37	
LF	5.99	37.5	89.7	16	(18)	.682	+ 1.73	
LF	2.99	62.1	93.0	12	(19)	.471	+ .66	
LF	1.50	75.4	103.	5	(19)	.182	.00(-1.29	
-1	Control	100.	100.	18	(38)	.357	<u>Control</u>	
							Mean t = $.690$	
ial 2			4			<u> </u>		
a)P	.000791	.382	13.5	204	(20)	9.88***	+ 17.8	
a)P	.000250	1.15	56.2	144	(20)	6.58***	+ 10.5	
LF	13.1	30.9	86.1	58	(20)	2.60***	+ 4.74	
LF	6.55	66.8	89.7	24	(20)	.988	+ .31	
LF	3.27	76.4	97.1	18	(20)	.713	.00(99	
LF	1.64	73.3	86.5	17	(20)	.573	.00(-1.34	
-1	Control	100.	100.	46	(40)	.907	Control	
•					,		Mean t = 1.26	
	0 athulba	1) 11006-	1 C118-+-	FCOFULC	M 12 - C			
Juiumi	(2-ethylhexy	I) AICON	on suffate	LSZEHAS,	M.W. = 23	32.28, Density =	1.114 g/mij	
ial 1	[82]							
a)P	.000791	46.8	47.2	371	(18)	19.4***	+ 7.45	
a)P	.000250	56.3	51.6	288	(18)	15.5***	+ 7.97	
				200				
EHAS	17.2	2.82	.0	1	(1,18)	.039	.00(-3.44	
EHAS	12.9	35.3	1.3	187	(18)	8.13	+ .07	
EHAS	8.61	71.7	95.8	170	(18)	8.58	+ .54	
EHAS	4.31	81.7	90.2	142	(18)	6.69		
							.00(-1.32	
:-1	Control	100.	100.	649	(72)	8.01	Control Moan t = 190	
ial 2	F1087						Mean t = .180	
a)P	.000791	15.5	31.3	139	(18)	7.38***	+ 13.9	
a)P	.000250	30.0	65.7	72	(13)	4.77***	+ 5.96	
EHAS	17.2	17.6	90.3	48	(18)	2.44***	+ 4.24	
	12.9	33.1	105.	45	(18)	2.27**	+ 2.96	
EHAS				61	(18)	3.09***	+ 4.64	
EHAS	8.61	59.4	YJ .4	01	(107		T 4_04	
EHAS EHAS	8.61 4.31	59.4 94.9	93.4 97.3					
EHAS	8.61 4.31 Control	59.4 94.9 100.	97.3 100.	41 108	(18) (70)	1.84 1.17	+ 1.85 Control	

Appendix G. Continued.

Appendix G. Continued.

Tr	l <u>ix G. Continued</u> eatment ndition ^a	Cytotox Activit	у ^ь	Transformi Activity ^c		Transformation Response ^d	Significance ^e
		RCE (%))	Focus Data Type Vesse		Foci/Vessel Focus Type	
Drug	Conc., mM	S.A C	C.A.	III	(N)	III	<i>t</i> -statistic
 .							
litani	um Dioxide	[TIDI, M.W.	= 79.90]				
Trial 1		2.10	20 /	17/	(20)	7.75***	+ 15 4
B(a)P B(a)P	.000791	2.10 9.44	28.4 74.7	174 162	(20) (20)	8.17***	+ 15.6 + 18.0
TIDI	12.5	98.3	54.2	5 5	(20)	- 189	.00(-2.01)
TIDI TIDI	6.26 3.13	98.6 92.3	66.8 79.9	5	(19) (20)	.182 .189	.00(-1.97) .00(-2.00)
TIDI	1.56	101.	88.4	11	(20)	.394	.00(56)
NC-1	Control	100.	100.	27	(40)	.496	<u>Control</u>
Trial 2	F1007						Mean t = $.000$
B(a)P	.000791	51.9	94.3	99	(20)	4.69***	+ 5.31
B(a)P	.000250	66.2	108.	81	(20)	3.91***	+ 4.16
TIDI	12.5	99.0	45.7	2	(20)	.072	.00(-16.4)
TIDI	6.25	87.6	45.7 55.4	8	(19)	.272	.00(- 8.31)
TIDI	3.13	97.8	72.4	28	(20)	.818	.00(- 3.95)
TIDI	1.56	104.	90.9	46	(20)	2.01	.00(- 1.35)
NC-1	Control	100.	100.	237	(80)	2.55	Control
							Mean t = .000
Tetrah	nydrofuran	[THF, M.W.	= 72.11, C	ensity = 0.9	∂g/m]]		
Trial 1	6001						
Trial 1 B(a)P	.000791	46.8	47.2	371	(18)	19.4***	+ 7.45
B(a)P	.000250	56.3	51.6	288	(18)	15.5***	+ 7.97
THF	111.	.000	63.4	206	(18)	0.99	+ 1.57
THF	55.5	6.50	83.1	155	(18)	9.88 7.99	.00(01)
THF	27.7	25.1	80.9	133	(18)	6.09	.00(-1.95)
THF	13.9	65.7	76.5	110	(18)	5.75	.00(-2.61)
NC-1	Control	100.	100.	649	(72)	8.01	Control Maan t = 202
Trial 2	2 [106]						Mean t = .393
B(a)P	.000791	24.8	56.9	134	(18)	6.88***	+ 8.00
B(a)P	.000250	40.7	77.9	91	(18)	4.53***	+ 5.56
THF	351.	.000	.000	0	(0,18)	.000	NA
THF	263.	.306	3.06	Ō	(9,13)	.000	.00(-9.15)
THF	176.	3.67	68.1	15	(14)	.805	.00(-1.35)
THF	87.8	7.34	82.1	35	(10)	3.02**	+ 2.72
NC-1	Control	100.	100.	74	(43)	1.30	<u>Control</u> Mean t = 1.36
							nean t - 1.50
Witch	Hazel [WH,	M.W. = 46.0	7, Density	/ = 0.790 g/ı	m]]		
Trial 1	<u>Г81</u> 7						
B(a)P	.000791	10.2	63.9	378	(18)	20.8***	+ 15.5
B(a)P	.000250	28.0	67.8	280	(18)	15.3***	+ 10.5
WH 150	000. 1500.ES	st. 1.05	85.2	167	(18)	8.85	+ 1.58
	0000. 1000.ES		86.1	213	(18)	11.2 ***	+ 3.55
	000. 500.ES		91.7	148	(17)	8.07	+ .75
	000. 250.ES		96.9	149	(18)	7.87	+ .57
NC-1	Control	100.	100.	583	(72)	7.36	$\frac{\text{Control}}{\text{Mean } t = 1.61}$
Trial 2	2 [110]						Mean t = 1.61
B(a)P	.000791	11.6	61.1	116	(18)	5.78***	+ 17.5
B(a)P	.000250	26.7	88.0	75	(18)	3.89***	+ 8.98

Appendix	G.	Continued.
----------	----	------------

Treatment Condition ^a Drug Conc., mM		Cytotoxic Activity ^b RCE (%) S.A CC.A.		Transforming <u>Activity^c</u> Focus Data Type Vessels III (N)		Transformation Response ^d	Significance ^e <i>t</i> -statistic
						Foci/Vessel Focus Type III	
WH 1500	00.	80.7	97.7	26	(18)	1.11	+ 1.99
WH 1000	00.	99.0	101.	32	(18)	1.34*	+ 2.36
WH 750	00.	97.7	95.3	23	(18)	1.07	+ 1.98
WH 500	00.	102.	97.8	34	(18)	1.37*	+ 2.36
NC-1	Control	100.	100.	65	(71)	.609	$\begin{array}{l} \frac{\text{Control}}{\text{Mean t}=2.17} \end{array}$

Abbreviations: B(a)P, benzo(a)pyrene; CC.A., co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels, NC, negative control; ND, not determined; %RCE, percent relative cloning efficiency; S.A., standard clonal survival assay.

^aTreatment Condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to µg/ml using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

^bCytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as & RCE and was calculated as described in the Materials and Methods.

^cThe criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci 2-mm in diameter per culture vessel scored are recorded in this table.

^dTransformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a log₁₀ mathematical transformation procedure (refer to Materials and Methods). The arithmetic value or foci/vessel represents the antilog of the logio mean transformation response minus one.

Significance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22). and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (-) t-statistics were given a value of zero (0).

*Significant BaP or test chemical transformation response, 0.01 .**Significant BaP or test chemical transformation response, <math>0.001 .

***Significant or BaP or test chemical transformation response, $p \leq 0.001$.

Treatment Condition [®]	Cytotoxic Activity ^b RCE (%)		Transforming Activity ^c Focus Data		Transformation Response ^d Foci/Vessel	Significance ^e	
Drug Conc., mM	5 A . CC		Type Vessel III	s (N)	Focus Type III	<i>t</i> -statistic	
	S.A CC.A.		111 (N)		111		
cetone [ACET, M.W.	= 58.08, De	ensity = ().786 g/m1]				
rial 1 [82]	14 9	47.2	771	(18)	19.4***	+ 7.45	
(a)P .000791 (a)P .000250	46.8 56.3	51.6	371 288	(18)	15.5***	+ 7.97	
CET 1377.	.000	.000	0	(0,18)	.000	ND	
CET 1033.	.000	.000	Ő	(0,18)	.000	ND	
CET 689.	.000	.000	10	(6,18)	1.15	.00(-4.78)	
CET 344.	1.08	75.7	397	(18)	21.0***	+ 8.19	
C-1 Control	100.	100.	649	(72)	8.01	<u>Control</u> Mean t = 8.19	
rial 2 [102]							
(a)P .000791	9.64	69.9	99	(18)	4.65***	+ 9.48	
(a)P .000250	19.3	93.1	45	(18)	2.22***	+ 5.22	
CET 517.	.000	.000	6	(13,18)	.347	.00(-1.66)	
CET 344.	.000	37.3	28	(18)	1.30*	+ 2.40	
CET 172.	1.26	76.8	55	(18)	2.67***	+ 6.15	
CET 86.1	34.8	79.5	22	(18)	.974	+ 1.20	
-1 Control	100.	100.	64	(72)	.697	<u>Control</u> Mean t = 3.25	
methyl Sulfoxide	[DMSO, M.W	I. = 78.13	3, Density =	1.100 g/m]	1		
ria] 1 [41]							
(a)P .000791	1.29	33.6	189	(18)	10.2***	+ 23.1	
a)P .000250	6.45	78.2	123	(18)	6.37***	+ 17.1	
SO 851.	.000	.000	0	(13,18)	.000	.00(-4.11)	
ISO 568.	22.9	27.4	69	(18)	3.15***	+ 7.36	
ISO 284.	76.8	77.1	15	(18)	.587	+ 1.59	
so 142.	88.4	89.9	17	(18)	.754**	+ 2.81	
:-1 Control	100.	100.	13	(36)	.274	<u>Control</u> Mean t = 3.92	
rial 2 [100]			. –				
(a)P .000791	89.7	77.9	65	(18)	3.30***	+ 11.7	
a)P .000250	81.0	93.8	62	(18)	2.85***	+ 7.75	
150 563.	27.1	.000	31	(18)	1.42***	+ 5.84	
150 426.	57.0	11.0	18	(18)	.720*	+ 2.19	
so 282.	91.5	83.9	16	(18)	.634*	+ 2.25	
SO 141.	94.3	88.7	16	(18)	.586	+ 1.61 Control	
:-1 Control	100.	100.	28	(72)	.268	<u>Control</u> Mean t = 2.97	
thanol [ETOH, M.W.	= 46.07, De	ensity = (0.790 g/ml]				
rial 1 [81]							
(a)P .000791	10.2	63.9	378	(18)	20.8***	+ 15.5	
(a)P .000250	28.0	67.8	280	(18)	15.3***	+ 10.5	
гон 866.	.000	.000	0	(0,18)	.000	NA	
гон 650.	.000	2.93	6	(11,18)	.422	.00(-13.2)	
TOH 433.	.000	49.1	159	(18)	8.07	+ .74	
TOH 217.	22.7	90.0	263	(18)	13.7***	+ 5.31	
C-1 Control	100.	100.	583	(72)	7.36	<u>Control</u> Mean t = 2.01	
rial 2 [108]		74 7					
(a)P .000791	15.5	31.3 65.7	139 72	(18) (13)	7.38*** 4.77***	+ 13.9 + 5.96	
(a)P .000250	30.0						

Appendix H.

Appendix H. Continued. Treatment Condition ^a		Cytotoxic Activity ^b		Transforming Activity ^c		Transformation Response ^d	Significance ^e	
		RCE (%)		Focus Data Type Vessels		Foci/Vessel Focus Type		
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic	
ЕТОН	606.	.00	0 1.68	1	(10)	.072	.00(-7.45	
ТОН	455.	2.46		25	(14)	1.59	+ 1.15	
ТОН	303.	36.5	99.5	48	(10)	3.92***	+ 4.34	
ТОН	152.	114.	91.1	47	(16)	2.61***	+ 3.44	
IC-1	Control	100.	100.	108	(70)	1.17	Control	
				100	(10)		Mean t = 2.23	
alycer	ol [GLY, M.W	. = 92.09,	Density = 1	1.25245 g/m1]			
rial 1								
B(a)P	.000791	46.8	47.2	371	(18)	19-4***	+ 7.45	
8(a)P	.000250	56.3	51.6	288	(18)	15.5***	+ 7.97	
GLY	434.	.000		91	(18)	4.04	.00(-3.65	
GLY	326.	1.30	44.2	308	(18)	16.2***	+ 5.79	
GLY	217.	16.3	91.8	220	(18)	11.5**	+ 2.95	
ilY	109.	70.2	77.8	191	(18)	9.64	+ 1.47	
IC-1	Control	100.	100.	649	(72)	8.01	<u>Control</u> Mean t = 2.55	
[rial 2 B(a)P	[108] .000791	15.5	31.3	139	(18)	7.38***	+ 13.9	
8(a)P	.000250	30.0	65.7	72	(13)	4.77***	+ 5.96	
SLY	434.	30.0	56.0	. 49	(18)	2.21**	+ 2.67	
GLY	326.	55.6	82.0	72	(17)	3.32***	+ 4.48	
GLY	217.	72.6	96.5	84	(18)	4.01***	+ 5.74	
GLY	109.	102.	92.3	37	(18)	1.75	+ 1.65	
IC-1	Control	100.	100.	108	(70)	1.17	Control	
				,				
							Mean $t = 3.64$	
Sodium	Chloride [1	NaCl, M.W.	= 58.44]				Mean t = 3.64	
	-	NaC1, M.W.	= 58.44]				Mean t = 3.64	
rial 1	[80]		-	261	(20)	12 0***		
rial 1 K(a)P	[80] .000791	16.9	65.2	261 185	(20)	12.9*** 8.53***	+ 13.0	
rial 1	[80]		-	261 185	(20) (20)	12.9*** 8.53***		
rial 1 K(a)P	[80] .000791	16.9	65.2				+ 13.0	
rial 1 (a)P (a)P	[80] .000791 .000250	16.9 35.6	65.2 87.2	185	(20)	8.53***	+ 13.0 + 7.65	
rial 1 8(a)P 8(a)P 8(a)P	[80] .000791 .000250	16.9 35.6 16.9	65.2 87.2 56.7	185 496	(20) (20)	8.53*** 24.1***	+ 13.0 + 7.65 + 20.6	
Trial 1 S(a)P S(a)P IaCl IaCl IaCl IaCl	[80] .000791 .000250 154. 116.	16.9 35.6 16.9 68.8	65.2 87.2 56.7 84.9 84.1 100.	185 496 463	(20) (20) (20)	8.53*** 24.1*** 22.2***	+ 13.0 + 7.65 + 20.6 + 17.3	
Trial 1 S(a)P S(a)P IaCl IaCl IaCl	[80] .000791 .000250 154. 116. 77.0	16.9 35.6 16.9 68.8 78.3	65.2 87.2 56.7 84.9 84.1	185 496 463 216	(20) (20) (20) (20)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u>	
rial 1 B(a)P B(a)P HaCl HaCl HaCl HaCl HC-1 Trial 2	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109]	16.9 35.6 16.9 68.8 78.3 86.9 100.	65.2 87.2 56.7 84.9 84.1 100. 100.	185 496 463 216 86 317	(20) (20) (20) (20) (20) (20) (80)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u> Mean t = 12.2	
rial 1 (a)P (a)P laCl laCl laCl laCl laCl laCl laCl laC	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109] .000791	16.9 35.6 16.9 68.8 78.3 86.9 100. 51.9	65.2 87.2 56.7 84.9 84.1 100. 100. 94.3	185 496 463 216 86 317 99	(20) (20) (20) (20) (20) (20) (80) (20)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02 4.69***	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u> Mean t = 12.2 + 5.31	
rial 1 B(a)P B(a)P HaCl HaCl HaCl HaCl HC-1 Trial 2	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109]	16.9 35.6 16.9 68.8 78.3 86.9 100.	65.2 87.2 56.7 84.9 84.1 100. 100.	185 496 463 216 86 317	(20) (20) (20) (20) (20) (20) (80)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u> Mean t = 12.2	
irial 1 ((a)P ((a)P (a)C (a)C (a)C (a)C (a)C ((a)P ((a)P (a)C (a)C	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109] .000791 .000250 171.	16.9 35.6 16.9 68.8 78.3 86.9 100. 51.9 66.2 22.9	65.2 87.2 56.7 84.9 84.1 100. 100. 94.3 108. 19.4	185 496 463 216 86 317 99 81 9	(20) (20) (20) (20) (20) (20) (80) (20) (20) (20) (20) (20) (20) (20)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02 4.69*** 3.91***	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u> Mean t = 12.2 + 5.31 + 4.16 .00(-6.63	
rial 1 (a)P (a)P aCl aCl aCl aCl aCl C-1 rial 2 (a)P (a)P aCl aCl	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109] .000791 .000250 171. 128.	16.9 35.6 16.9 68.8 78.3 86.9 100. 51.9 66.2 22.9 49.4	65.2 87.2 56.7 84.9 84.1 100. 100. 94.3 108. 19.4 86.7	185 496 463 216 86 317 99 81 9 65	(20) (20) (20) (20) (20) (20) (80) (20) (20) (20) (20) (15, 17) (19)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02 4.69*** 3.91*** .962 .134	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u> Mean t = 12.2 + 5.31 + 4.16 .00(-6.63 + .44	
rial 1 ((a)P ((a)P (a)P (a)C (a)C (a)C (a)C (a)P ((a)P ((a)P (a)C (a)C (a)C	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109] .000791 .000250 171. 128. 85.6	16.9 35.6 16.9 68.8 78.3 86.9 100. 51.9 66.2 22.9 49.4 69.1	65.2 87.2 56.7 84.9 84.1 100. 100. 94.3 108. 19.4 86.7 86.7	185 496 463 216 86 317 99 81 9 65 84	(20) (20) (20) (20) (20) (80) (20) (20) (20) (20) (15,17) (19) (20)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02 4.69*** 3.91*** .962 .134 .893*	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u> Mean t = 12.2 + 5.31 + 4.16 .00(-6.63 + .44 + 2.13	
rial 1 (a)P (a)P (a)P (a)C (a)C (a)C (a)P (a)P (a)P (a)P (a)P (a)C (a)C (a)C	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109] .000791 .000250 171. 128. 85.6 42.8	16.9 35.6 16.9 68.8 78.3 86.9 100. 51.9 66.2 22.9 49.4 69.1 83.8	65.2 87.2 56.7 84.9 84.1 100. 100. 94.3 108. 19.4 86.7 86.7 94.5	185 496 463 216 86 317 99 81 9 65 84 65	(20) (20) (20) (20) (20) (20) (20) (20)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02 4.69*** 3.91*** .962 .134 .893* .641	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u> Mean t = 12.2 + 5.31 + 4.16 .00(-6.63 + .44 + 2.13 + .85	
rial 1 (a)P (a)P aCl aCl aCl aCl aCl C-1 rial 2 (a)P (a)P aCl aCl	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109] .000791 .000250 171. 128. 85.6	16.9 35.6 16.9 68.8 78.3 86.9 100. 51.9 66.2 22.9 49.4 69.1	65.2 87.2 56.7 84.9 84.1 100. 100. 94.3 108. 19.4 86.7 86.7	185 496 463 216 86 317 99 81 9 65 84	(20) (20) (20) (20) (20) (80) (20) (20) (20) (20) (15,17) (19) (20)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02 4.69*** 3.91*** .962 .134 .893*	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u> Mean t = 12.2 + 5.31 + 4.16 .00(-6.63 + .44 + 2.13	
rial 1 (a)P (a)P (a)P (a)C (a)C (a)C (a)C (a)P (a)C (a)P (a)C (a)C (a)C (a)C (a)C (a)C (a)C (a)C	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109] .000791 .000250 171. 128. 85.6 42.8 Control [R1]	16.9 35.6 16.9 68.8 78.3 86.9 100. 51.9 66.2 22.9 49.4 69.1 83.8 100.	65.2 87.2 56.7 84.9 84.1 100. 100. 94.3 108. 19.4 86.7 86.7 94.5 100.	185 496 463 216 86 317 99 81 9 65 84 65 237	(20) (20) (20) (20) (20) (20) (20) (20)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02 4.69*** 3.91*** .962 .134 .893* .641 2.55	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u> Mean t = 12.2 + 5.31 + 4.16 .00(-6.63 + .44 + 2.13 + .85 <u>Control</u> Mean t = .855	
rial 1 ((a)P (a)P (a)C (a)C (a)C (a)C (a)C (a)P (a)C (a)P (a)C (a)C (a)C (a)C (a)C (a)C (a)C	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109] .000791 .000250 171. 128. 85.6 42.8 Control	16.9 35.6 16.9 68.8 78.3 86.9 100. 51.9 66.2 22.9 49.4 69.1 83.8	65.2 87.2 56.7 84.9 84.1 100. 100. 94.3 108. 19.4 86.7 86.7 94.5	185 496 463 216 86 317 99 81 9 65 84 65	(20) (20) (20) (20) (20) (20) (20) (20)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02 4.69*** 3.91*** .962 .134 .893* .641	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u> Mean t = 12.2 + 5.31 + 4.16 .00(-6.63 + .44 + 2.13 + .85 <u>Control</u>	
rial 1 (a)P (a)P (a)P (a)C (a)C (a)C (a)C (a)P (a)P (a)P (a)P (a)C (a)C (a)C (a)C (a)C (a)C (a)C (a)C	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109] .000791 .000250 171. 128. 85.6 42.8 Control [R1] .00186 .00850	16.9 35.6 16.9 68.8 78.3 86.9 100. 51.9 66.2 22.9 49.4 69.1 83.8 100. NA	65.2 87.2 56.7 84.9 84.1 100. 100. 94.3 108. 19.4 86.7 86.7 94.5 100. NA NA	185 496 463 216 86 317 99 81 9 65 84 65 84 65 237 45 95	(20) (20) (20) (20) (20) (20) (20) (20)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02 4.69*** 3.91*** .962 .134 .893* .641 2.55 1.61** 2.77***	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 Control Mean t = 12.2 + 5.31 + 4.16 .00(-6.63 + .44 + 2.13 + .85 Control Mean t = .855 + 3.49 + 4.53	
rial 1 (a)P (a)P (a)P (a)C (a)C (a)C (a)C (a)C (a)P (a)C (a)P (a)C (a)C (a)C (a)C (a)C (a)C (a)C (a)C	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109] .000791 .000250 171. 128. 85.6 42.8 Control [R1] .00186 .00850 128.	16.9 35.6 16.9 68.8 78.3 86.9 100. 51.9 66.2 22.9 49.4 69.1 83.8 100. NA NA	65.2 87.2 56.7 84.9 84.1 100. 100. 94.3 108. 19.4 86.7 86.7 94.5 100. NA NA	185 496 463 216 86 317 99 81 9 65 84 65 237 45 95 35	(20) (20) (20) (20) (20) (20) (20) (20)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02 4.69*** 3.91*** .962 .134 .893* .641 2.55 1.61** 2.77*** 3.17***	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u> Mean t = 12.2 + 5.31 + 4.16 .00(-6.63 + .44 + 2.13 + .85 <u>Control</u> Mean t = .855 + 3.49 + 4.53 + 8.25	
rial 1 (a)P (a)P (a)P (a)C (a)C (a)C (a)C (a)P (a)P (a)P (a)P (a)P (a)C (a)P (a)C (a)P (a)C (a)P (a)C (a)P (a)C (a)C (a)C (a)C (a)C (a)C (a)C (a)C	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109] .000791 .000250 171. 128. 85.6 42.8 Control [R1] .00186 .00850 128. 85.6	16.9 35.6 16.9 68.8 78.3 86.9 100. 51.9 66.2 22.9 49.4 69.1 83.8 100. NA NA NA	65.2 87.2 56.7 84.9 84.1 100. 100. 94.3 108. 19.4 86.7 86.7 94.5 100. NA NA NA	185 496 463 216 86 317 99 81 9 65 84 65 237 45 95 35 32	(20) (20) (20) (20) (20) (20) (20) (20)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02 4.69*** 3.91*** .962 .134 .893* .641 2.55 1.61** 2.77*** 3.17*** 2.07**	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 Control Mean t = 12.2 + 5.31 + 4.16 .00(-6.63 + .44 + 2.13 + .85 Control Mean t = .855 + 3.49 + 4.53 + 8.25 + 3.45	
rial 1 (a)P (a)P (a)P (a)C (a)C (a)C (a)P (a)P (a)C (a)P (a)C (a)C (a)C (a)C (a)C (a)C (a)C (a)C	[80] .000791 .000250 154. 116. 77.0 38.5 Control [109] .000791 .000250 171. 128. 85.6 42.8 Control [R1] .00186 .00850 128.	16.9 35.6 16.9 68.8 78.3 86.9 100. 51.9 66.2 22.9 49.4 69.1 83.8 100. NA NA	65.2 87.2 56.7 84.9 84.1 100. 100. 94.3 108. 19.4 86.7 86.7 94.5 100. NA NA	185 496 463 216 86 317 99 81 9 65 84 65 237 45 95 35	(20) (20) (20) (20) (20) (20) (20) (20)	8.53*** 24.1*** 22.2*** 10.0*** 4.00* 3.02 4.69*** 3.91*** .962 .134 .893* .641 2.55 1.61** 2.77*** 3.17***	+ 13.0 + 7.65 + 20.6 + 17.3 + 8.86 + 2.04 <u>Control</u> Mean t = 12.2 + 5.31 + 4.16 .00(-6.63 + .44 + 2.13 + .85 <u>Control</u> Mean t = .855 + 3.49 + 4.53 + 8.25	

Appendix H. Continued.

Treatment Condition ^a		Cytotoxic Activity ^b		Transforming Activity ^c		Transformation Response ^d	Significance	
		RCE	• •	Focus Data Type Vessels		Foci/Vessel Focus Type		
Drug	Conc., mM	S.A	CC.A.	III	(N)	III	<i>t</i> -statistic	
Sucros	e [SUC, M.W.	= 342.30]						
[ria] 1	[101]							
3(a)P	.000791	ND	64.8	108	(20)	4.63***	+ 12.7	
B(a)P	.000250	ND	83.6	48	(20)	2.11***	+ 9.73	
UC	438.	.000	.000	0	(0,20)	.000	NA	
SUC	219.	28.7	61.1	205	(19)	10.3***	+ 25.2	
SUC	110.	91.3	112.	38	(18)	1.67***	+ 5.19	
SUC	54.8	93.4	112.	9	(20)	.347	+ .75	
IC-1	Control	100.	100.	27	(78)	.260	<u>Control</u>	
rial 2	F1071						Mean t = 10.3	
3(a)P	.000791	5.81	47.3	131	(20)	6.09***	+ 5.74	
B(a)P	.000250	21.2	75.8	122	(20)	5.53***	+ 4.05	
SUC	292.	7.52	38.4	53	(20)	2.45	.00(-1.1	
SUC	219.	31.5	49.8	115	(20)	5.34***	+ 3.85	
SUC	146.	65.3	77.7	114	(20)	5.37***	+ 5.09	
SUC	73.0	96.4	93.0	60	(20)	2.60	.00(7	
IC-1	Control	100.	100.	274	(80)	2.95	Control	
				2,4			Mean t = 2.24	
lrea [UREA, M.W. = 6	50.07]						
rial 1	Г1097							
B(a)P	.000791	51.9	94.3	99	(20)	4.69***	+ 5.31	
l(a)P	.000250	66.2	108.	81	(20)	3.91***	+ 4.16	
REA	416.	.000	.243	0	(20)	.000	.00(-23.0	
REA	312.	43.0	17.5	43	(20)	1.85	.00(- 1.8	
REA	208.	80.6	69.2	102	(20)	4.40**	+ 3.39	
REA	104.	90.8	74.1	80	(20)	3.57*	+ 2.05	
C-1	Control	100.	100.	237	(80)	2.55	<u>Control</u>	
							Mean t = 1.81	

Abbreviations: B(a)P, benzo(a)pyrene; CC.A., co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels, NC, negative control; ND, not determined; %RCE, percent relative cloning efficiency; S.A., standard clonal survival assav.

^aTreatment Condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to µg/ml using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

^bCytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as & RCE and was calculated as described in the Materials and Methods.

[°]The criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci 2-mm in diameter per culture vessel scored are recorded in this table.

^dTransformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a log₁₀ mathematical transformation procedure (refer to Materials and Methods). The arithmetic value or foci/vessel represents the antilog of the logio mean transformation response minus one.

Significance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22), and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (-) t-statistics were given a value of zero (0).

*Significant BaP or test chemical transformation response, 0.01 .**Significant BaP or test chemical transformation response, <math>0.001 .

***Significant or BaP or test chemical transformation response, $p \le 0.001$.