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Of the proteins encoded by the pcrGVH-popBD operon of the Pseudomonas aeruginosa type III secretion
system, PcrG bound to PcrV and PcrH bound to PopB/PopD. In addition, Yersinia LcrG bound to PcrV, and
Yersinia LcrH bound to PopD. The results imply a highly functional conservation of type III secretion between
P. aeruginosa and Yersinia species.

Pseudomonas aeruginosa possesses a type III secretion sys-
tem that is highly homologous to that of Yersinia species (39,
40). In type III secretion, bacteria inject their effector proteins
directly into adjacent host cells (15, 20). In P. aeruginosa in-
fections, exoenzyme S (ExoS) and its coregulated type III se-
creted toxins (ExoT, ExoU, and ExoY) are responsible for
causing acute lung injury and sepsis (8, 9, 12, 21, 33, 38). In
type III secretion of Yersinia species, translocation, a process of
toxin transfer directly into the eukaryotic cytosol across the
eukaryotic plasma membrane, involves LcrG, LcrV, LcrH,
YopB, and YopD. These proteins are encoded by the lcrGVH-
yopBD operon in the Yop regulon of Yersinia pathogenic plas-
mids (5, 6). In P. aeruginosa, a chromosomal operon, pcrGVH-
popBD, encodes five proteins, PcrG, PcrV, PcrH, PopB, and
PopD, that are homologous to Yersinia LcrG, LcrV, LcrH,
YopB, and YopD, respectively. For Yersinia pestis, protective
antigenic characteristics of LcrV were reported previously as a
V antigen (1, 3, 4, 18, 22, 23, 25, 35). LcrV likely forms the
translocation pore in eukaryotic cell membranes in conjunction
with YopB and YopD (16, 17, 19, 27, 29, 30, 31, 34). LcrG,
which forms a stable complex with LcrV, acts as a negative
regulator that blocks secretion of Yops (7, 24, 28, 37). LcrH
was reported previously as a cognate chaperone of YopD (26,
32) and was found to be necessary for YopD stabilization
before secretion (10). Recently, an active role of LcrH in Yop
regulation was also reported (2, 10, 11).

The importance of V antigen in cytotoxicity has been well
established. Isogenic mutants of P. aeruginosa lacking the
genes for pcrV or popD were unable to intoxicate eukaryotic
cells (36). Active and passive immunization against PcrV in
animal models of P. aeruginosa-induced lung injury greatly
increased survival (36). Functional conservation from PopB
and PopD of P. aeruginosa to YopB and YopD of Yersinia
pseudotuberculosis was previously reported (14). However,

there have been fewer studies analyzing the proteins encoded
by the pcrGVH-popBD operon of the P. aeruginosa type III
secretion system. In this study, we examined the interactions
among the proteins encoded by the pcrGVH-popBD operon to
investigate the functional homology between the type III se-
cretion systems of P. aeruginosa and Yersinia.

In Escherichia coli, we induced the expression of glutathione
S-transferase (GST) fusion PcrG, PcrV, PcrH, PopB, and
PopD proteins whose genes were subcloned in pGEX plasmids
under the lac promoter. We also induced the expression of the
thioredoxin (Thio) fusion PcrG, PcrV, PcrH, PopB, and PopD
proteins from genes subcloned into the pThio plasmid under
the lac promoter. Induction of PopB fusion proteins appeared
to decrease E. coli density after isopropyl-�-D-thiogalactopyr-
anoside (IPTG) induction, suggesting bactericidal activity. We
performed affinity immunoblotting to examine the interaction
between PcrV and other proteins encoded by the pcrGVH-
popBD operon. We applied E. coli lysate containing Thio-PcrV
to a membrane blotted with the lysates of E. coli expressing a
series of GST tag-fused proteins. From this experiment, only
the GST-PcrG band was visualized (Fig. 1A). Next, we applied
GST-PcrG to a membrane blotted with the lysates of E. coli
expressing Thio tag-fused proteins. From this experiment, only
the Thio-PcrV band was intensely visualized (Fig. 1B). Next,
we performed affinity immunoblotting with purified recombi-
nant nontagged PcrV and applied it to membrane-bound Thio
fusion proteins to determine whether PcrV-blocking antibod-
ies could detect the PcrV-PcrG complex. Both rabbit poly-
clonal anti-PcrV antibody (data not shown) and murine anti-
PcrV monoclonal antibody (MAb) 166 detected PcrV bound to
Thio-PcrG (13) (Fig. 1C). All affinity immunoblotting resulted
in the detection of a PcrV-PcrG interaction.

Because LcrH, a Yersinia homolog of PcrH, was reported as
a chaperone protein for Yersinia YopD, we purified recombi-
nant GST-PcrH from E. coli transformed with pGEX-pcrH and
examined the interaction between PcrH and other proteins in
the same format as that previously used to find the PcrV-PcrG
interaction. Affinity immunoblotting was performed with re-
combinant purified GST-PcrH to a membrane blotted with the
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lysates of E. coli expressing Thio tag-fused proteins. GST-PcrH
bound to both Thio-PopB and Thio-PopD in this affinity im-
munoblot assay (Fig. 2). In order to verify protein interactions,
a GST pull-down assay was performed on PA103 lysates with
recombinant GST-PcrG and GST-PcrH. As a result, GST-
PcrG coprecipitated with native PcrV, and GST-PcrH copre-
cipitated with PopD (data not shown).

We performed affinity immunoblotting to examine the cross-
species interaction between Yersinia and P. aeruginosa type III
proteins. From this experiment, we found that GST-LcrG
binds to Thio-PcrV (Fig. 3A) and GST-LcrH binds to Thio-
PopD (Fig. 3B). Therefore, the protein binding between LcrG
and PcrV and between LcrH and PopD occurred in a cross-
species manner between Yersinia and P. aeruginosa.

These findings imply high functional and structural homol-
ogy among these proteins despite the fact that their amino acid
sequence similarities range from 56 to 57%. Our results sug-
gest that PcrG serves the role of a potential negative regulator
of PcrV. The neutralizing epitope on PcrV appears to be dif-
ferent from the PcrG binding site, given that the blocking
anti-PcrV MAb 166 clearly detected the PcrV-PcrG complex in
our study. Since P. aeruginosa PcrH and PopD are homolog
equivalents of Yersinia LcrH and YopD, respectively, our find-
ings suggest that PcrH is a chaperone for PopD secretion.
Although PcrH binds to PopB in the immunoblot that we
made, a similar interaction between LcrH and PopB was not
found. The experimental conditions that we tested may have
been affected by the fact that the expression of recombinant
PopB in E. coli was bactericidal. This phenomenon has been
reported elsewhere for Yersinia YopB expression in E. coli
without coexpression of LcrH (26). LcrV, YopB, and YopD

FIG. 1. Affinity immunoblot analysis. (A) Binding of Thio-PcrV to GST-PcrG. The protein samples from induced E. coli clones carrying pGEX
plasmids were electrophoresed onto a sodium dodecyl sulfate–4 to 12% bis-Tris polyacrylamide gel, electroblotted onto a nitrocellulose membrane,
and incubated with E. coli lysate including expressed Thio-PcrV. The membrane was developed with anti-Thio immunoglobulin G (IgG) and
secondary anti-mouse IgG conjugated with horseradish peroxidase and a chemiluminescent substrate. An intense isolated band represents binding
of GST-PcrG to Thio-PcrV. (B) Binding of GST-PcrG to Thio-PcrV. The protein samples were from induced E. coli clones carrying pThio
plasmids. The blotted membrane was incubated with recombinant GST-PcrG (10 �g/ml) and then developed with anti-GST IgG conjugated with
horseradish peroxidase and a chemiluminescent substrate. An intense isolated band represents binding of GST-PcrG to Thio-PcrV. (C) Binding
of PcrV to Thio-PcrG. The protein samples were from induced E. coli clones carrying pThio plasmids. The membrane was incubated with
recombinant PcrV (10 �g/ml), then developed with murine anti-PcrV MAb 166, and developed with secondary anti-mouse antibodies conjugated
with horseradish peroxidase and a chemiluminescent substrate. An intense isolated band represents binding of PcrV to Thio-PcrG.

FIG. 2. Affinity immunoblot analysis demonstrates the binding of
GST-PcrH to Thio-PopD and Thio-PopB. The protein samples from
E. coli expressing Thio-tagged fusion proteins were loaded onto a
sodium dodecyl sulfate–4 to 12% bis-Tris polyacrylamide gel electro-
phoresis gel for electrophoresis. Proteins were then blotted onto a
nitrocellulose membrane for subsequent affinity immunoblot analysis.
Affinity immunoblotting demonstrates the interaction between GST-
PcrH and Thio-PopD. The blotted membrane was incubated in a
solution with purified recombinant GST-PcrH. After the membrane
was washed several times, immunostaining against the GST tag was
performed with anti-GST antibody conjugated with horseradish per-
oxidase and chemiluminescent substrate. The intense bands demon-
strating the interaction with GST-PcrH were recognized in Thio-
tagged PopB and PopD lanes (arrowheads). IgG, immunoglobulin G.
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are thought to form a pore complex involved in the transloca-
tion of type III secreted proteins across the eukaryotic plasma
membrane, but interactions with LcrV among these proteins
have not been experimentally elucidated. We tested PcrV
binding to PopB and PopD, but no interaction was found.

In conclusion, PcrG binds to PcrV and PcrH binds to PopB
and PopD. From interactions between Pcr and Lcr proteins, a
highly functional conservation of type III system translocators
was also confirmed between P. aeruginosa and Yersinia. Thus,
investigations of the roles and mechanisms of PcrV secretion
and anti-PcrV blockade and of LcrV secretion and anti-LcrV
blockade may complement each other.
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luminescent substrate. (A) An intense isolated band represents
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represents binding of GST-LcrH to Thio-PopD (arrowhead). IgG,
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