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Xenoestrogens Alter Mammary Gland
Differentiation and Cell Proliferation in the Rat
Nadine M. Brown and Coral A. Lamartiniere
Department of Pharmacology and Toxicology, University of Alabama at Birmingham,
Birmingham, AL 35294 USA

We investigated mammary gland diferentia-
tion and cela profationin rsafter
exposure 'to, men esogens. Pubertal female
Sprague-DawIly rats (six/group) wr treat-
ed for 1 with diethysilbest.ol (DES),
genistein, ep-DDT, Aroclor 1221, Aroclor
1254, 2,3X7,8-tetrachlorodibenzo-pdioxin
(TCDD), or the vehicle, sesame oil. Animals
were killed 18 hr after the last treatment.
Analysis of mammary who'le"-mounts
revealed that exposure to DES. genistein,
and op -DDT resulted in enhanced gland
differentiation and increased epithelial cell
proliferation as measured by proliferating
cell nuclear antigen
TCDD treatment inhibited cell p ation
and gnd development. Arol.r 1221 and
Arodor 1254 treatments had ight :but not
statistically si c effects on cell prolif-
eration and mammary gland development.
We conclude that DES, genistein, and sp'.
DDT given to pubertal rats act as mor-
phons ie, thy increase cefl an,
which promotes mturation ofd th undiffer-
entiated tpe'mnal end buds to more difren-
tiated lobular terminal ductal structu. Key
word: Arodor, cell proliferation, diethyl-
stilbestrol, dioxin, genistein, mammary
gland, op'-DDT, xenoestrogens. Environ
HealthPert 103:708-713 (1995)

Breast cancer is the most common cancer
among females in the United States and is
the second leading cause of death among
women in this country. In the last decade,
the incidence of breast cancer has increased
at a rate of approximately 2% per year (1).
Speculation that environmental chemicals,
especially estrogenically active chemicals,
may be responsible for breast cancer is sup-
ported by epidemiological reports. Elevated
breast cancer rates have been reported for
women exposed to polychlorinated biphenyls
in Japan (2). A recent analysis of chemical
plant workers found a more than twofold
increase in breast cancer in female workers
exposed to dioxin (3), although other studies
report negative associations of polychlorinat-
ed biphenyls and dioxin with breast cancer
(4,5). In one report DDT was associated
with a higher risk of developing breast cancer
(6), although another study failed to observe
a higher risk after DDT exposure (7). DDT,
dioxins, polychlorinated biphenyls, and a
number of other organochlorine pesticides
have been found in breast milk and human
adipose tissue (8). Some hormonally active
chemicals are synthetic; others occur natural-
ly. We selected six such chemicals to investi-
gate their actions on mammary gland differ-
entiation and cell proliferation. Diethylstil-

bestrol (DES), genistein, op'-DDT, and
Aroclor 1221 are documented to be estro-
genically active xenobiotics (9-11); 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) has
been reported to be antiestrogenic (12).
Aroclor 1254 is not estrogenic, but it is more
toxic in mammalian systems than Aroclor
1221 (11).

Alterations to mammary gland develop-
ment and to cellular proliferation from
chemical exposure could alter cancer sus-
ceptibility. From birth through the first
week postpartum in the rat, the mammary
gland is composed of a single primary or
main lactiferous duct that branches into
three to five secondary ducts (13-15).
During the second week, further sprouting
of ducts occurs up to the sixth generation.
This sprouting of ducts causes an increase
in density of terminal end buds in the
growing periphery of the mammary gland.
Some of the terminal end bud differentiate
in response to each estrous cycle, giving rise
to alveolar buds which can be found in type
I lobules. Type I lobules can mature to type
II lobules. These lobules respond to hor-
mones of pregnancy by differentiating fur-
ther into type III lobules, which form the
functional units of the lactating gland.

The differentiation of terminal end
buds to lobules appears to be a basic and
protective mechanism against chemical
carcinogenesis. Terminal end buds and ter-
minal ducts are less differentiated struc-
tures that are more susceptible to chemical
carcinogenesis than the more differentiated
alveolar buds and lobules (13-19). This
may be due to the increased mitotic activi-
ty of terminal end bud and terminal duct
cells as opposed to cells in alveolar buds
and lobules.

Methods
Weanling female Sprague-Dawley CD rats
were purchased from Charles River Breeding
Laboratories (Raleigh, North Carolina).
Upon receipt, animals were placed on AIN-
76A diet (Harlan Texlad, Madison,
Wisconsin). Animals were maintained in a
dimate-controlled room at 210C ±10C on a
12-hr light/dark cycle. Diet and tap water
were available ad libitum. Animals in experi-
ment I were injected subcutaneously with 50
pg DES, 50 pg genistein, or 50 pg op'-
DDT per gram body weight, or the vehicle,
sesame oil (200 pL/rat), on days 23, 25, 27,
and 29 postpartum. Rats in experiment II
were treated by gavage with 25 pg Aroclor
1221, 25 pg Arodor 1254, or 2.5 ngTCDD

per gram body weight, or sesame oil (200
p1/rat), on days 25, 27, 29, and 31 postpar-
tum. The doses were derived from the litera-
ture which showed these chemicals caused
alterations to the endocrine system, repro-
ductive tract, or the liver, or from our
unpublished data. We killed the rats 18 hr
after the last treatment and removed both
abdominal glands-one for preparation of a
whole mount and the other for processing as
a tissue block for sectioning.

The whole mount was spread on a
slide, fixed in 10% neutral buffered forma-
lin (8-24 hr), defatted in acetone (8-24
hr), rehydrated in 70% ethanol (30 min),
rinsed in water (15 min), and stained in
alum carmine (2 g/L) overnight. The
stained gland was progressively dehydrated
in ethanol from 35% to 95% in four steps
(30 min/step), then left in 100% ethanol
overnight. The glands were subsequently
transferred to xylene for clearing for 24 hr,
compressed with a second glass slide held
with paper clips for 24 hr, and then
released and allowed to expand for 6-24
hr before coverslipping using Permount
(Fisher Scientific, Atlanta, Georgia).
We examined coded whole mounts

under light microscopy at 40x and 100x
magnification and scored them for the
numbers of terminal end buds, terminal
ducts, alveolar buds, and lobules. In our
evaluations, terminal ductal structures with
diameters .100 pm were called terminal
end buds, while those of <100 pm in diam-
eter were called terminal ducts. Terminal
ductal structures composed of 5-10 alveoli
were called type I lobules. The criteria for
identification of the structures were based
on the work by Russo and Russo (13). We
evaluated the outer portion of the entire
gland (periphery to 1.78 mm inward).

We measured cell proliferation in the
contralateral gland using proliferating cell
nuclear antigen (PCNA) as a marker of
mitotic activity (20). Formalin-fixed glands
were processed for paraffin embedding
within 24 hr of their removal from the ani-
mal. We cut 5-pm sections and mounted
them on Superfrost Plus Electrostatic Slides
(Fisher Scientific, Atlanta, Georgia). The
sections were deparaffinized and subjected
to 3% hydrogen peroxide to quench
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endogenous peroxide activity. Tissues were
blocked with 5% normal horse serum to
suppress nonspecific binding of lgG. Next
the tissues were incubated with 1) PCNA
antibody (PC10 clone; Signet Laboratories,
Dedham, Massachusetts), 2) biotinylated
horse anti-mouse secondary antibody, and
3) avidin-biotin-bound peroxidase.
Secondary antibody and avidin-biotin
complex were purchased from Signet
Laboratories. Color was developed by 3,3'-
diaminobenzidine tetrahydrochloride and
cells were counterstained with Gills no. 2
hematoxylin (Sigma, St. Louis, Missouri).

We analyzed the cell cycle using the
immunocytochemical staining patterns of
PCNA as described by Foley et al. (20).
Cells in S-phase were characterized by uni-
form dark-brown to black nuclear staining.
We calculated the labeling index by divid-
ing the number of epithelial nuclei in S-
phase by the total number of epithelial
nuclei counted and expressed the results as
a percentage. Because mammary cells have
a high nuclear to cytoplasmic ratio, we were
not able to distinguish between cells in G1
and G2, but we did report our data as the
percentage of cells in the active cell cycle.
Proliferative index was defined as the per-
centage of epithelial cells in the active cell
cycle, i.e., (G1 + S + G2 + M)/total number
of epithelial cells. PCNA analysis was car-
ried out with an image analysis system
(Image-1 Universal Imaging Corporation,
West Chester, Pennsylvania) using an
Olympus AH3 microscope, a Dage CCD
72 video camera, and a 486 computer.

Mammary gland size was determined
from whole mounts using an image analysis
system connected to a Vidicon Black &
White video camera designed for gross speci-
mens and a 486 computer. The glands were
magnified 8.55 times, projected to the video
screen, and video prints were made on a
Seikosha video printer. Video prints of the
carmine stained whole mounts of the right
abdominal gland were measured with a sonic
digitizer system (Graf Bar, Science
Accessories Corporation, Southport,
Connecticut) using computer programs
developed in-house. The system was cali-
brated with a micrometer photographed
with the glands. Uterine-ovarian weights
represent fluid-filled wet weights of both
uterine horns and ovaries. Statistical compar-
isons between treatment groups were per-
formed using Student's t-test (two-tailed).

Results
Pubertal female rats treated with DES for 1
week had reduced body weights as com-
pared to the vehicle-treated females (Table
1). The other treatments did not signifi-
candy affect body weights. Uterine-ovarian
weights were increased after treatment with
DES and genistein, decreased by TCDD

Table 1. Effects of xenoestrogens on body weights, uterine-ovarian weights, and mammary gland size in
pubertal female ratsa

Uterine-ovarian Mammary
Treatment (n) Body weight (g) weight (mg) gland size (mm2)
Experiment 1
Sesame oil, 200 pi SC (6) 82±2 185±30 122±10
DES, 50 ng/g SC (5) 74±2* 298±17* 104±8
Genistein, 50 pg/g SC (5) 81±1 265±18* 149±7*
o,p'-DDT, 50 pg/g SC (6) 82±2 220±9 131±7

Experiment 2
Sesame oil, 200 pL IG(6) 93±3 230±33 132±6
Aroclor 1221, 25 pg/g IG (6) 94±3 255±27 133±7
Aroclor 1254, 25 p/g IG (6) 97±2 250±27 122±8
TCDD, 2.5 ng/g IG (6) 88±2 110±12* 81±9**

Abbreviations: SC, subcutaneous; DES, diethylstilbestrol; IG, intragastric (gavage); TCDD, 2,3,7,8-tetra-
chlorodibenzo-p-dioxin.
aRats in experiment 1 were treated on days 23, 25, 27, and 29 postpartum. Rats in experiment 2 were treat-
ed on days 25, 27, 29, and 31 postpartum. Eighteen hours after the last treatment, rats were killed and
mammary whole mounts of the left abdominal glands were prepared. Numbers in parentheses indicate
the numbers of rats in each group. Data are expressed as means ± SEM.
*p<0.05, **p<0.01 compared to respective sesame oil-treated animals.

Figure 1. Whole mount of carmine-stained abdominal mammary glands from 30-day-old (A) sesame oil-
treated and (B) genistein-treated rats. The gland grows from the nipple at the upper left toward the
lymph nodes (dark red) at the lower right. The cranial inguinal gland can be seen (top right) growing
toward the abdominal gland; 4.6x; bar = 3.9 mm.
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treatment, and not significantly affected by
the other chemical treatments. Mammary
glands were significantly larger in genistein-
treated animals and smaller in TCDD-
treated animals as compared to vehicle-
treated rats. The other treatments did not
have a significant effect on gland sizes.
Examples of glands from genistein-treated
and vehicle-treated female rats are present-
ed in Figure 1. Note the larger gland size in
the genistein-treated female rat.

The periphery or actively growing part
of the abdominal glands of 30- to 32-day
old female rats treated with vehicle was
composed of terminal end buds, terminal
ducts, alveolar buds, and type I lobules
(approximately 64%, 23%, 7%, and 6%,
respectively; Table 2). DES treatment
resulted in significantly fewer terminal end
buds, terminal ducts, and alveolar buds
with a concomitant increase in lobules. The
only other treatment to result in a signifi-
cantly increased number of lobules was the
genistein treatment, but the numbers of
terminal end buds and terminal ducts were

only slightly decreased. TCDD treatment
resulted in a significant decrease in terminal
end buds, but no significant effects on ter-
minal ducts, alveolar buds, or lobules.
Treatment with op'-DDT, Aroclor 1221,
and Aroclor 1254 caused slight but not sta-
tistically significant alterations in the num-
ber of terminal ductal structures.

Cell proliferation, as measured by total
PCNA staining, was approximately 30% in
cells of terminal end buds and terminal
ducts and 10% in cells of type I lobules in
vehicle-treated animals (Fig. 2). PCNA
staining was not analyzed in the alveolar
buds because there were too few of these
terminal ductal structures. DES-, genis-
tein- and op'-DDT-treated animals had
higher percentages of PCNA-stained cells
in all terminal ductal structures than did
cells from sesame oil-treated animals
(experiment 1). TCDD treatment resulted
in decreased PCNA staining in terminal
ducts and lobules and no change in termi-
nal end buds (experiment 2). Aroclor 1221
and Aroclor 1254 had slight, but not sta-

Table 2. Number of terminal ductal structures in mammary glands of pubertal rats treated with
xenoestrogensa

Treatment (n) Terminal end buds Terminal ducts Alveolar buds Lobules
Experiment 1
Sesame oil, 200 pL SC (6) 92±8 37±10 13±3 10±1
DES, 50 ng/g SC (5) 55±5** 3±2t 4±3* 43±6t
Genistein, 50 pg/g SC (5) 79±4 18±4 10±1 43±8
o,p'-DDT, 50 pg/g SC (6) 83±4 43±6 7±1 17±5

Experiment 2
Sesame oil, 200 pL IG (6) 105±8 33±6 7±2 8±3
Aroclor 1221, 25 pg/g IG (6) 91±3 35±4 9±3 2±1
Aroclor 1254, 25 pg/g IG (6) 85±8 28±5 5±1 11±4
TCDD, 25 ng/g IG (6) 43±3+ 26±2 2±1 10±3

Abbreviations: SC, subcutaneous; DES, diethylstilbestrol; IG, intragastric (gavage); TCDD, 2,3,7,8-tetra-
chlorodibenzo-p-dioxin.
aRats in experiment 1 were treated on days 23, 25, 27, and 29 postpartum. Rats in experiment 2 were
treated on days 25, 27, 29, and 31 postpartum. Eighteen hours after the last treatment, rats were killed and
mammary whole mounts of the left abdominal glands were prepared. Numbers in parentheses indicate
the numbers of rats in each group. Data are expressed as means ± SEM. Evaluations were carried out in
the outer portion of the entire gland (periphery to 1.78 mm inward).
*p<0.05, pp<0.01, tp<0.001 compared to respective sesame oil-treated animals.
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Figure 2. Cell proliferation as represented by the proliferating index for mammary terminal ductal struc-
tures of pubertal female rats exposed to xenoestrogens. The proliferating index represents the percent-
age of proliferating cell nuclear antigen-labeled cells. Values represent means ± SEM of six animals.
Proliferation was determined in two structures from each gland; p<0.05, 'p<0.01, p<0.001 compared to
vehicle-treated animals.

tistically significant, effects on cell cycling.
Figure 3 contains photomicrographs of
PCNA-stained terminal end buds from
animals treated with sesame oil, genistein,
o,p'-DDT, and TCDD. The differences in
proliferative indexes are obvious.

Analysis of the PCNA staining for S-
phase revealed that DES and genistein
treatments resulted in a greater percentage
of cells from terminal end buds, terminal
ducts, and lobules in S-phase (Fig. 4). op'-
DDT caused an increase in S-phase cells in
terminal end buds and terminal ducts but
not in lobules. TCDD treatment resulted
in a decreased percentage of cells in S-phase
in terminal ducts only (Fig. 4). Aroclor
1221 and Aroclor 1254 had no significant
effect on PCNA staining for S-phase.

When total cell proliferation in the
periphery of an abdominal gland was con-
sidered (mean number of terminal ductal
structures x mean number of PCNA-
stained cells per terminal ductal structure),
DES-treated females had more PCNA-
labeled lobular cells and fewer PCNA-
labeled terminal duct cells than the vehicle-
treated animals (Fig. 5). Total S-phase cells
were increased in terminal end buds and
lobules and decreased in terminal ducts of
DES-treated animals (Fig. 6).

Genistein treatment resulted in
increased total PCNA-stained terminal end
bud and lobular cells (Fig. 5) and in S-
phase cells (Fig. 6). There were no prolifer-
ative changes in terminal ducts.

Mammary glands from female rats
treated with o,p'-DDT as compared to
sesame oil-treated females had increased
total PCNA-stained cells in terminal ducts
and lobules (Fig. 5) and in S-phase cells
(Fig. 6). While the increase of total PCNA-
stained cells in terminal end buds was not
statistically significant, the number of cells
in S-phase was increased.
TCDD treatment resulted in fewer

total PCNA-stained cells in terminal end
buds, terminal ducts, and lobules (Fig. 5).
The mammary glands of the TCDD-treat-
ed females also had fewer terminal end bud
and terminal duct cells in S-phase, whereas
S-phase cell numbers were unchanged in
the lobules (Fig. 6).

Discussion
Body and Uterine-Ovarian Weights
and Mammary Gland Sizes
We selected xenobiotic doses that have
been reported to exert estrogenlike actions
but yet would not cause overt toxicity.
However, DES at 50 ng/g body weight,
when injected on alternate days for 1 week
to pubertal animals, had an adverse effect
on body weight. As expected, DES also
exerted a uterotropic effect. The lack of
effect of DES on the mammary gland size
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Figure 3. Cell proliferation in terminal end buds as quantitated by proliferating cell nuclear antigen staining. (A) Longitudinal section from a control rat treated
with sesame oil; (B) longitudinal section from a genistein-treated rat; (C) cross-section from an op'-DDT-treated rat; (D) cross-section from a TCDD-treated rat.
(A-D) 171x, bar = 64.3 pm.
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Figure 4. Cell proliferation as represented by the labeling index of cells in mammary terminal ductal struc-
tures of pubertal female rats exposed to xenoestrogens. The labeling index represents S-phase of prolifer-
ating cell nuclear antigen-stained cells. Values represent means + SEM of six animals. Proliferation was
determined in two structures from each gland, ap<O.05, bp<O 01, Cp<0.001 compared to vehicle-treated ani-
mals.

may be due to a balance between its estro-
genic properties and its suppressive effect
on growth at these high concentrations.
Genistein treatment resulted in significant-
ly increased uterine-ovarian weights, con-
firming reports of its properties as a weak
estrogen (9,21,22). There was also a signif-
icant increase in the size of mammary

glands from genistein-treated animals. This
is consistent with our previous report of
early gland maturation in neonates treated
with genistein (23).
TCDD treatment resulted in signifi-

cantly reduced uterine-ovarian weights and
mammary gland sizes. This could be a con-
sequence of the antiestrogenic properties of

TCDD (12) or extreme toxicity (24).
Treatment with op'-DDT, Aroclor 1221,
and Aroclor 1254 had no significant effects
on body weights, uterine-ovarian weights,
or mammary gland sizes. The slight but not
statistically significant changes in these end-
points between experiments I and II may
be due to the fact that animals in experi-
ment 2 were slightly older (2 days).

Mammary Gland Development
Since terminal ductal structures of the
mammary gland are sensitive to hormonal
influence (13,25-27), we investigated the
potential of these xenoestrogens to alter
gland differentiation. DES treatment
reduced the numbers of terminal end buds
and terminal ducts and concomitantly
increased lobules. This phenomenon
appears to be due to accelerated matura-
tion of terminal ductal structures (i.e., pro-
gression of terminal end buds and terminal
ducts to lobules). Genistein and op'-DDT
also appeared to act in a similar manner,
even though the progressive changes in ter-
minal ductal structures after treatment
with these two compounds were not as
profound.
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Figure 5. Cell proliferation as represented by the total number of cycling cells per gland in mammary ter-
minal ductal structures of pubertal female rats treated with xenoestrogens. Values represent means ±
SEM of cells in the cell cycle per terminal ductal structure multiplied by the numbers of terminal ductal
structures per gland; ap<0.05, p<O.01, cp<0.001 compared to vehicle-treated animals.
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Figure 6. Cell proliferation as represented by the total number of cells per gland in S-phase in mammary
terminal ductal structures of pubertal female rats treated with xenoestrogens. Values represent means +
SEM of cells in S phase per terminal ductal structure per gland; 8p<.05, bp<0*01, Cp<O001~ compared to
vehicle-treated animals.

The overall decrease in numbers of ter-
minal ductal structures and gland size from
TCDD treatment may be due to its bio-
logical actions on estrogen metabolism
(28) and the estrogen receptor (29), or as a
consequence of overt toxicity (24). Aroclor
1221 and Aroclor 1254 caused slight but
not statistically significant effects on the
development of terminal ductal structures.

Cell Proliferation
Increased cell proliferation may be a criti-
cal factor in chemical carcinogenesis. Russo
and Russo (13,14) and Nagasawa et al.
(30) have shown that in the rat mammary
gland there is a positive correlation be-
tween numbers of terminal end buds and
terminal ducts with susceptibility to
dimethylbenz[a]anthracene-induced ade-
nocarcinomas. As shown in Figures 2 and
4, the highest proliferative rates occurred
in the terminal end buds and terminal
ducts as compared to the lobules. Further-
more, when one considers total epithelial
cell proliferation in a gland (proliferation
per structure x total number of structures
per gland), the ratios of PCNA-stained
cells in terminal end buds, terminal ducts,

and lobules were 46:5:1, respectively (Fig.
5). The large proliferative compartment of
terminal end buds can account for the high
susceptibility of these undifferentiated
structures to carcinogenesis (13,14,23).

DES, genistein, and op'-DDT treat-
ments resulted in increased cellular prolifer-
ation in all terminal ductal structures. This
is the first report of the phytoestrogen
genistein increasing cell proliferation in an
in vivo system. In in vitro studies, Makela et
al. (31) recently reported that at low con-
centrations genistein functions as a tran-
scriptional activator and cell proliferator
through an estrogen receptor-mediated
mechanism. On the other hand, Peterson
and Barnes (32 demonstrated that at high-
er concentrations in vitro genistein inhibit-
ed the growth of estrogen-receptor positive
and negative breast cancer cell lines. Until
now, the in vitro inhibitory actions of
genistein were consistent with the chemo-
prevention actions of genistein in the
dimethylbenz[a]anthracene-rat mammary
model (23,33). However, our data suggest
that in vivo genistein acts as a morphogen
on the mammary gland. When given before
mammary gland maturation was complete

and before carcinogen exposure, genistein
promoted cell proliferation and hence dif-
ferentiation of immature terminal end
buds, causing them to evolve into mature
differentiated structures (i.e., lobules).
Lobules are less proliferative and less sus-
ceptible to the actions of carcinogens (23).

Consistent with genistein acting as an
estrogen to promote gland maturation and
thereby protecting against chemical carcino-
genesis (23) are reports that early estrogen
treatment also protected against carcinogen-
induced mammary tumors (26,27,34,35).
Furthermore, we have observed that neona-
tal DES treatment protects against sponta-
neously developing rat mammary tumors
(36). Accordingly, we would expect that
o,p'-DDT exposure before mammary gland
maturation and before exposure to a geno-
toxic carcinogen would also protect against
mammary tumors. On the other hand, our
finding that op'-DDT is a cell proliferator
in the mammary gland is consistent with
the action of this chemical as a cancer pro-
moter if given after a genotoxic carcinogen
(37,38).

Although many of the biological
actions of TCDD have been associated
with the Ah receptor, TCDD can also
inhibit a wide range of estrogen-induced
responses including cell proliferation in
human breast cancer cell lines (28,39).
Treatment of MCF7 cells with TCDD
also caused a decrease in nuclear estrogen
receptor levels (29). TCDD has been
shown to suppress estrogen-induced gene
transcription, which may lead to cell pro-
liferation (39-41). We are not aware of
other data concerning TCDD effects on
mammary cell proliferation, but inhibition
of dimethylbenz[a]anthracene-induced rat
mammary tumor growth by TCDD was
reported by Holcomb and Safe (42). Our
observation ofTCDD inhibiting mamma-
ry epithelial cell proliferation as well as
gland growth and differentiation in vivo is
consistent with their findings.

In summary, we have demonstrated
that acute exposure of rats during the
pubertal period to DES, genistein, and
o,p'-DDT increases mammary cell prolif-
eration and enhanced gland differentiation.
TCDD inhibited cell proliferation and
gland development. Aroclor 1221 and
Aroclor 1254 had a slight but not statisti-
cally significant effect on mammary gland
development. We speculate that genistein
and op'-DDT, like DES, act via estrogen
receptor-mediated mechanisms to promote
mammary epithelial cell proliferation and
enhance mammary gland maturation.
Exposure of the immature and undifferen-
tiated terminal end buds to estrogenically
active chemicals results in more differenti-
ated and less susceptible terminal ductal
structures (lobules). TCDD inhibition of
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cell proliferation and gland growth may be
a consequence of its extreme toxicity (24)
or antiestrogenic properties (12,29J. A lack
of effect on the mammary gland from
Aroclor 1221 and Aroclor 1254 exposure
may be due to inadequate dose or weak
estrogenic properties. In interpreting these
results, one must keep in mind the window
of exposure and the developmental matu-
ration of the mammary gland-these
chemicals administered perinatally or in
adulthood could yield significantly differ-
ent results in this same tissue.
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