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We study the nonequilibrium statistical mechanics of a finite
classical system subjected to nongradient forces � and maintained
at fixed kinetic energy (Hoover–Evans isokinetic thermostat).
We assume that the microscopic dynamics is sufficiently chaotic
(Gallavotti–Cohen chaotic hypothesis) and that there is a natural
nonequilibrium steady-state ��. When � is replaced by � � ��, one
can compute the change �� of �� (linear response) and define an
entropy change �S based on energy considerations. When � is
varied around a loop, the total change of S need not vanish:
Outside of equilibrium the entropy has curvature. However, at
equilibrium (i.e., if � is a gradient) we show that the curvature is
zero, and that the entropy S(� � ��) near equilibrium is well defined
to second order in ��.

statistical mechanics � chaotic dynamics � chaotic hypothesis � isokinetic
thermostat � linear response

The purpose of this article is to discuss the statistical mechan-
ics of a finite physical system maintained in a nonequilibrium

steady state at a constant temperature. In such a system, entropy
is produced at some constant rate � 0. Here we investigate the
possibility of also associating a finite entropy S with our non-
equilibrium system, extending the definition of equilibrium
entropy. We restrict our discussion to the case of a classical
system with an isokinetic thermostat [as defined by Hoover (1)
and Evans and Morriss (2), see below].

If �(dx) � g(x)dx is the probability measure in phase space
corresponding to an equilibrium state, the corresponding Gibbs
entropy is

S��� � ��dx g�x� log g�x�.

The probability measure �(dx) describing a nonequilibrium
steady state is in general singular with respect to dx, and the
corresponding Gibbs entropy thus is ��. To extend the defini-
tion of entropy outside of equilibrium we shall use another idea,
based on the thermodynamic relation �S � �Q�T, where �Q is
energy-exchanged, and T is the absolute temperature.

We consider a finite mechanical system in a nonequilibrium (in
general) steady-state �� under the effect of a nongradient (in
general) force � and an isokinetic thermostat at temperature ��1.
We give below a definition of the entropy increment S(�3 � � ��)
corresponding to a small increment �� of �. Our definition is based
on energy exchanged, uses the microscopic dynamics of the system,
and agrees with the equilibrium statistical mechanics definition
when � and �� are gradient forces, i.e., for equilibrium situations.
Outside of equilibrium, for a loop �3 � � �3 �, the sum S(loop) of
the entropy increments in not expected to vanish in general. This
means that the ‘‘entropy connection’’ has a curvature. Because
S(loop) is of second order in the size of the loop, the increment S(�
3 � � ��) is well defined to first order in ��. If � is a gradient the
curvature vanishes, and therefore the entropy close to equilibrium

S�� � ��� � S��� � S�� 3 � � ���

is well defined to second order in ��.
Systems outside of equilibrium exhibit a variety of phenomena

such as metastability and hysteresis, which we want to exclude
here. We assume that a nonequilibrium steady state is naturally
defined, and we study its variations under parameter changes by
using the techniques of the ergodic theory of differentiable
dynamical systems. Basically we assume that the microscopic
dynamics is sufficiently chaotic [this is the content of the chaotic
hypothesis of Gallavotti and Cohen (3)]. Our nonequilibrium
steady-state �� is then a natural or Sinai–Ruelle–Bowen (SRB)
measure, and we apply linear response theory (4) to determine
changes of �� for variations � 3 � � ��. The linear response is
given by integrals over time which generalize those appearing in
the fluctuation–dissipation theorem.

Mathematical proofs of the linear response formulas are within
reach under suitable assumptions of uniform hyperbolicity. (A
hyperbolic system with singularities and isokinetic thermostat close
to equilibrium has been rigorously studied in ref. 5). But in general,
uniform hyperbolicity assumptions are unrealistically strong from a
physical point of view. This article is thus meant as theoretical
physics rather than mathematical physics. There is a leap of faith in
believing that our linear response formulas apply to any given
physical setup, but the situation is not worse than for applications
of the fluctuation–dissipation theorem.

In ref. 6 another approach to the definition of entropy outside
of equilibrium was proposed (Lyapunov entropy) replacing
phase space volume by volume in a suitable (Kaplan–Yorke)
reduced dimension. This idea was taken up in ref. 7, where an
attempt is made at defining the entropy in the large system limit.
We do not investigate here this limit. Physically, the entropy is
defined best in the large system limit as the Boltzmann entropy,
a concept based on the phase space volume associated with a
given macrostate and vigorously defended by Lebowitz (8). It
remains to be verified whether the definition of entropy given in
this article can be related to the Boltzmann entropy. One would
also like to check that our results are not tied to the use of the
isokinetic thermostat but extend to more general situations.
(The isokinetic thermostat is very convenient for calculations
but does not quite reproduce the Hamiltonian time evolution at
equilibrium.)

Isokinetic Time Evolution
We consider the classical time evolution

d
dt �p

q� � �� � 	p
p�m � , [1]

where p, q � RN. We shall also use the notation x � (q
p) � R2N

and rewrite Eq. 1 as

Abbreviation: SRB, Sinai–Ruelle–Bowen.
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dx
dt

� F��x�. [2]

The Euclidean scalar product of vectors a, b in RN or R2N will be
denoted by a�b. The force � � �(q) is not necessarily a gradient,
and we take

	 � 	�x� �
p���q�

p�p

so that

d
dt� p�p

2m� � 0.

The term �	p in Eq. 1 corresponds to the much-discussed
isokinetic thermostat (a special case of the Gaussian thermostat
of refs. 1, 2, and 9). We shall denote by ( f�

t)t�R the flow defined
by Eq. 2, i.e. f�

t x is the solution at time t corresponding to the
initial condition x.

Entropy Changes
The local rate e�(x) of volume contraction corresponding to the
vector field F� is minus its divergence and easily computed to be
�(x) � (N � 1)	(x). This is identified with the local rate of
entropy production (see refs. 10 and 11). When integrated over
a nonequilibrium steady-state ��(dx), it gives the corresponding
global rate of entropy production. It is natural to define the
change of entropy S(� 3 � � ��) to be the entropy released in
the time interval [0, ��) when the force � � �� acting during the
interval (��, 0) is replaced by � in the interval [0, ��). At time
t � 0 our system is in a state �� � �t�, which reduces to ����� at
t � 0 and tends to �� when t 3 � (an expression for �t� will be
given below). We have thus to first order in ��

S�� 3 � � ��� � �
0

�

dt��t��dx�e��x�. [3]

Dynamical Assumptions
In order to proceed we need now to make some assumptions on
the dynamics defined by Eq. 1 and on the measure ��. As we have
said, we want the time evolution to be sufficiently chaotic, i.e.,
the flow ( f�

t) to be hyperbolic in some mathematical sense and
the nonequilibrium steady-state �� to be an SRB measure.
For our purposes we can define an SRB measure as a limit
limt3�� ( f�

t)*
 where 
 is absolutely continuous with respect to
dp dq conditioned to {(p, q) : p�p�2m � K}. An SRB measure is
usually singular, but ‘‘smooth along unstable directions.’’ For a
physical discussion of the present setup see ref. 6. We shall also
assume exponential decay of correlations (see refs. 12 and 13).
As a consequence of these assumptions we have the following
linear response formula (see ref. 4):

�t���� � �
��

t

d� ����x�� X f�
t������ F�x��, [4]

where �tF is a time-dependent small perturbation of the right-
hand side F� of Eq. 2, and �t� is the corresponding perturbation
of �� at time t. The integral over � converges exponentially. The
test function � is assumed to be differentiable, because �t� is in
general a distribution rather than a measure. We have written

��(�) � 	 ��(dx)�(x) and similarly for ��. Note that for time-
independent �F the time-independent �� is given by

����� � �
0

�

ds����dx��x�� X f�
s���F�x�.

Notation
We have defined

F��x� � �� � 	p
p�m � , 	 � 	�x� � p���q��p�p

e��x� � ��x� � �N � 1�	�x�.
[5]

We shall use infinitesimal perturbations �� � � i, �F � Fi (no time
dependence, i � 1, 2) and let

Fi � ��i � 	ip
0 � , G � �0

�� , Gi � � 0
�i�

	i � p��i�p�p, �i�x� � �N � 1�	i.
[6]

We also denote by K the kinetic energy (conserved by Eq. 1), and
let ��1 be the corresponding temperature:

K �
p�p
2m

, � �
N � 1

2K
.

We shall from now on write f�
t � f t and �� � �.

Proposition. With the above notation let

���1� � �
0

�

ds�
0

�

dt���dx��x�� X f s�t��F1�x� [7]

define a linear form in �1. Then, to first order in �1,

S�� 3 � � �1� � ���1�. [8]

Using Eqs. 3–6 we have indeed

S�� 3 � � �1� � �
0

�

dt��t��dx���x�

� �
0

�

dt�
��

0

d����x�� X f t����F1�x��,

and replacing t by s, � by �t gives Eq. 8.

Curvature
To second order in �1 we have

S�� 3 � � �1� � �
0

1

d�� � ��1��1� � ���1� �
1
2

�D�.��1����1�,

where D�.(�1) is the functional derivative of �(�1) with respect
to �. And an easy second order calculation gives

S�� 3 � � �1� � S�� � �1 3 � � �1 � �2�

� S�� � �1 � �2 3 � � �2� � S�� � �2 3 ��

� R���1, �2�,
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where the curvature form R� is defined by

R���1, �2� � �D�.��2����1� � �D�.��1����2�. [9]

If C is a closed curve in the space of force fields �, the change
of entropy corresponding to turning around the curve is

�
C

��d��.

It is of second order in the size of the curve if R� 
 0 and of higher
order if the curvature vanishes.

Proposition. Define a bilinear form in �1, �2 by

���1, �2� � �
0

�

ds�
0

�

dt���dx��x��
1 X f s�t��F2�x�.

[10]

Assume now that �̃ is locally gradient and write G̃ � (�̃
0). Then

(i) �(�1) � �(�, �1);

(ii) �(�̃, �1) � �� 	0
� ds 	 �(dx)G̃( f sx)�(Tx f s)F1 (x);

(iii) (D�.(�̃, �1))(�2) � �� 	0
� ds 	0

� dt 	 �(dx)
��x��̃

1s X f t��F2�x� � �x��̃
2s X f t��F1�x�,

where �̃is(x) � G̃( f sx) � (Tx f s)Fi(x);

(iv) (D��(�, �1))(�2) � �(�2, �1)

(v) If � is locally gradient, then

R���1, �2� � ���1, �2� � ���2, �1�.

i follows directly from Eqs. 7 and 10.
The assumption that �̃ is locally gradient means that we have

a configuration space D � RN which is not simply connected
and that �̃(q) � ��qṼ, where Ṽ is a ‘‘multivalued function’’
on D. Writing f tx � (q(t)

p(t)), �̃ � (N � 1)p��̃�p�p, we have

�
0

�

dt�̃ X f s�t � m
N � 1

p�p �
0

�

dt
d
dt

q�s � t���̃�q�s � t��

� � lim
T3 �

�Ṽ�q�s�� � Ṽ�q�s � T��,

and hence

�� �̃ , �1� � � lim
T3 �

�
0

�

ds���dx���xṼ�q�s�� � �xṼ�q�s � T���F1�x�

� � lim
T3 �

�
0

T

ds���dx��xṼ�q�s���F1�x�

� ��
0

�

ds���dx�� 0
�q�s�Ṽ

���Tx f s�F1�x�

� ���
0

�

ds���dx�G̃�f sx���Tx f s�F1�x�,

which proves ii.

We thus have

�� �̃ , �1� � ���
0

�

ds���dx��̃1s�x�

�̃1s�x� � G̃�f sx���Tx f s�F1�x� � ��xṼ�q�s���F1�x�.

Therefore, because � and f s both depend on �,

�D��.��̃, �1����2� � D� ���
0

�

ds���dx��̃1s�x����2� � I � II

I � ��
0

�

ds��
0

�

dt���dx��x��̃
1s X f t��F2�x��

II � ���
0

�

ds���dx��x�D�Ṽ�q�s����2���F1�x�

� ��
0

�

ds���dx��x�G̃�f sx���
0

s

dt�Tf tx f s�t�F2� f tx���F1�x�

� ��
0

�

ds�
0

s

dt���dx��x��̃
2�s�t� X f t��F1�x�

� ��
0

�

ds�
0

�

dt���dx��x��̃
2s X f t��F1�x�,

where we have renamed s the variable s � t in the last line. This
proves iii.

iv follows from Eq. 10.
v follows from Eq. 9, iii, and iv, where we take �̃ � � � �.

The Gradient Case
The situation where � is a global gradient, i.e., there is a potential
function V � V(q) such that �(q) � ��qV, is called equilibrium
in the present context. Let then

H�x� � h� p�p
2m�e��V�q�.

The divergence of HF� is

�x��HF�� � h�� p�p
2m�e��V�q�

p
m

��� � 	p�

� H��p���	p� � ��qV�
p
m�

� H���N � 1�
p���q�

p�p
�

�

m
p���q��,

which vanishes if h(p�p�2m) � �(p�p�2m � K) and � � (N � 1)�2K.
Therefore the probability measure

��dx� � Z�1��p�p
2m

� K�e��V�q�dp dq [11]

(with normalizing factor Z�1) is invariant under ( f t) (see ref. 2)
and is the SRB measure � in the present case.
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Note that, using Eq. 11 and integrating by parts, we obtain

���dx��x��Fi�x�

� Z�1�dx�x����p�p
2m

� K�e��V�q��� i � 	ip
0 �

� Z�1�dx��x���p�p
2m

� K�e��V�q����x��� i � 	ip
0 ��

����dx���x��i�x�. [12]

Define

Q�V� � � e��V�q�dq.

Then the (configurational) Gibbs entropy associated with � is

S�V� � ��dq
e��V�q�

Q�V�
log

e��V�q�

Q�V�
� ���V� � log Q�V�.

If V1 is a small perturbation of V, we find to first order in V1

S�V � V1� � S�V� � ������V���V1�� � ���V����V1�. [13]

Using Eq. 8, i, and ii of the above proposition and Eq. 12, we
obtain

S�� 3 � � �1� � ��
0

�

ds���dx��xV�q�s���F1�x�

� ���
0

�

ds���dx�V�q�s���N � 1�
�qV1�p

p�p

� ��2 lim
T3 �

�
�T

0

ds���dx�V�q��q�s�V1 �
dq�s�

ds

� ��2 lim
T3 �

���dx�V�q��V1�q� � V1�q��T��

� ��2���VV1� � ��V���V1�.

Therefore the standard estimate (Eq. 13) from equilibrium
statistical mechanics agrees with the ‘‘nonequilibrium’’ predic-
tion based on Eq. 8.

Proposition. Assume that � is a global gradient, then

(i) �(�1, �2) � 	0
� ds 	0

� dt 	 �(dx)(�1 X f s�t)�2(x), and
(ii) R�(�1, �2) � 0.

From Eqs. 10 and 12, i directly follows. We use now the
involution I: (q

p) � ( q
�p), under which �i is odd, time is reversed,

and � is invariant (‘‘microscopic reversibility’’). Thus

���2, �1� � �
0

�

ds�
0

�

dt���dx��1�x��2� f s�tx�

��
0

�

ds�
0

�

dt���dx��1� f�s�tx��2�x�

��
0

�

ds�
0

�

dt���dx��1� f s � tIx��2�Ix�

��
0

�

ds�
0

�

dt���dx��1�f s � tx��2�x�

� ���
1, �2�,

and therefore R� � 0 by (V) of the previous proposition,
proving ii.

Second-Order Formula

From the above considerations it follows that if � is a gradient
(� � ��V), the entropy at temperature ��1 can be written
consistently to second order with respect to a (nongradient)
perturbation �1 of � as

S�� � �1� � S��� � ���1� �
1
2

�D�.��1����1�, [14]

where S(�) is the equilibrium entropy for �, and

���1� � ��
0

�

ds���dx�V�q�s���1�x�

1
2

�D�.��1����1� � ��
0

�

ds�
0

�

dt���dx�

� �1
2

�1� f s�tx��1�x� � ��1s X f t��1�x��
with �1s � ��xV(q(s))�F1(x) and other notations explained
earlier. We have not studied S(� � �1) from the point of view of
convexity.

Conclusion

In this article we have considered a classical system with
isokinetic time evolution defined by Eq. 1 corresponding to
a time-independent force � and temperature ��1. For such a
system we have defined an entropy increment S(� 3 � � ��)
corresponding to an increment �� of the force (see Eqs. 7
and 8). Our definition agrees with the equilibrium statis-
tical mechanics formula (for the Gibbs entropy) if �, �� are
gradient forces. If � is a gradient, but not necessarily ��, we
can write

S�� � ��� � S��� � S�� 3 � � ���,

where S(�) is the equilibrium entropy, and S(�3 � � ��) is well
defined by Eq. 14 to second order in ��.
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