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We propose MOTIF REGRESSOR for discovering sequence motifs up-
stream of genes that undergo expression changes in a given
condition. The method combines the advantages of matrix-based
motif finding and oligomer motif-expression regression analysis,
resulting in high sensitivity and specificity. MOTIF REGRESSOR is par-
ticularly effective in discovering expression-mediating motifs of
medium to long width with multiple degenerate positions. When
applied to Saccharomyces cerevisiae, MOTIF REGRESSOR identified the
ROX1 and YAP1 motifs from Rox1p and Yap1p overexpression
experiments, respectively; predicted that Gcn4p may have in-
creased activity in YAP1 deletion mutants; reported a group of
motifs (including GCN4, PHO4, MET4, STRE, USR1, RAP1, M3A, and
M3B) that may mediate the transcriptional response to amino acid
starvation; and found all of the known cell-cycle regulation motifs
from 18 expression microarrays over two cell cycles.

sequence motif discovery � microarray data � correlation �
transcription regulation

D irect experimental determination of transcription factor
DNA-binding motifs (TFBM) is not practical or efficient in

many biological systems. Therefore, computational algorithms
such as the word-enumeration (1–4), the position-specific matrix
update (5–7), and the dictionary (8) methods have been devel-
oped to identify putative motifs and guide experimentation. One
of the most successful computational tactics for TFBM discovery
is to cluster genes based on their expression profiles, and then
search for motifs in the sequences upstream of tightly clustered
genes (9). When noise is introduced into the cluster through
spurious correlations, however, such an approach may result in
false positives. A filtering method (10) based on the specificity
of the motif occurrences has been shown to effectively eliminate
false positives, but the sensitivity of the algorithm is still low in
some cases. An iterative procedure for simultaneous clustering
and motif finding has been suggested (11), but no effective
algorithm has been implemented to demonstrate its advantage in
biological data. Two novel methods for TFBM discovery via the
association of gene expression values with oligomer motif abun-
dances have been proposed (12, 13). They first conduct word
enumeration and then use regression to check whether the genes
whose upstream sequences contain a set of words have signifi-
cant changes in their expression. These methods are effective for
discovering conserved short motifs and sometimes interactions
among them, but are not effective with longer motifs and may
lose sensitivity in cases where TFBMs have multiple degenerate
positions.�

We present an alternative approach operating under the
explicit assumption that, in response to a given biological
condition, the effect of a TFBM is strongest among genes with
the most dramatic increase or decrease in mRNA expression. We
first use a fast and sensitive motif-finding method, MDSCAN (14),
to generate a large set of motif candidates that are enriched in
the DNA sequence upstream of genes with the highest fold
change in mRNA level relative to a control condition. Then we
verify each candidate motif by associating every gene’s upstream
sequence motif-matching score with its downstream expression

measure (Fig. 1). In the motif-matching score, both the number
of sites and the strength of matching are incorporated by using
a third-order Markov background model and a position-specific
motif matrix, thereby increasing both the sensitivity of the
method and the specificity of the reported motifs.

Methods
Microarray and Sequence Data. Saccharomyces cerevisiae microar-
ray experiments in our study include Rox1p (15) and Yap1p (16)
overexpression, YAP1 deletion (17), amino acid starvation re-
sponse (16), �-factor synchronized cell-cycle progression (18),
and chromatin immunoprecipitation (ChIP)-array experiments
on Gcn4p (19), Rpd3p, Ume1p, and Ume6p (20). Yeast ORFs
were ranked according to their relative change in mRNA level
under each condition. We extracted up to 800 bp upstream of
each ORF that was nonoverlapping with the adjacent ORF.
Single repeats (e.g., AAAA. . .) of �10 bases and double repeats
(e.g., ACACAC. . .) of �16 bases were removed.

Motif Discovery by MDSCAN. Using every occurring w-mer (5 � w �
15 in our studies) in the top k (default as 100) sequences as a
seed, MDSCAN (14) finds all w-mers in the top sequences that are
similar to the seed and constructs from them a motif matrix. A
pair of w-mers is said to be ‘‘similar’’ if they share at least m
matched positions, where the probability for two random w-mers
to share �m matched positions is � (default as 0.0015). All of the
motif matrices are evaluated by a semi-Bayesian scoring func-
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Fig. 1. MOTIF REGRESSOR strategy diagram.
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tion, and the 50 highest-scoring motifs are saved. Each retained
motif matrix is refined by adding or removing w-mers in the top
K (default as 500, this includes the original k) sequences to
increase the motif score. Motifs with average frequency of the
consensus bases �0.7 are eliminated. If several motifs of the
same width share similar consensus, the one with the highest
score is retained. Here, two consensuses are said to be ‘‘similar’’
if they share �m matched positions, allowing frame shifts and
considering both forward and reverse-complements. MDSCAN
reports up to 30 distinct motifs.

Sequence Motif-Matching Scoring. We determine how well the
upstream sequence of a gene g matches a motif m, in terms of
both degree of matching and number of sites, by the following
function:

Smg � log2� �
x�Xwg

Pr�x from �m��Pr�x from �0�� [1]

where �m is the probability matrix of motif m of width w, �0 is the
third-order Markov model estimated from all of the yeast

Table 1. Motifs discovered from Rox1p and Yap1p overexpression experiments

Method Rox1p overexpression Yap1p overexpression

ALIGNACE AAAAAAAAAAAAAAAAAAAAAAAA AAGAAGAAAA

Best 10 motifs (10 input sequences) AAAAAAAAAAAG GAAGAGAAGAA

AAGGAAAAAAAGAAAAAAAAA AAAGAAGAAA

AAAAAAAAGAAAAGAAAAAAA CATTTCTAATCT

AAGGAAAAAAGAAA GAAAAGCG

AAGAAAAAAA AAGAGGAG

GCGCCCCGGA AAAAAAAGAAG

GAGCGCTCATGCCGCTGTTTT GAAAAAAAAG

AAAATAAAAAAAAAAAAA AAAAAAAGAAA

CTGCGGAAAA AAAATGAAAAATG

MEME TTTTTTTCTTTT CATTACTAATCA

All motifs (10 input sequences) TTCCGCGGA AAAGAGGTG

MDSCAN TTGTT (w � 5) TTACT (w � 5)

Best motif at each width
(10 input sequences)

TATTGT (w � 6) GAAGAA (w � 6)

CTATTGT (w � 7) TTACTAA (w � 7)

CTATTGTT (w � 8) TTACTAAT (w � 8)

ATCTATTGT (w � 9) GATTACTAA (w � 9)

TATGTACGTA (w � 10) GATTACTAAT (w � 10)

GTACGTATGTA (w � 11) GATTACTAATC (w � 11)

TCTCTTGCCTTT (w � 12) TCATTACTAAGC (w � 12)

AGGACAAAAGGAA (w � 13) GATTACTAATCAC (w � 13)

TATATACATATATA (w � 14) ATTATTAATCAAAT (w � 14)

ATATATACGTATATA (w � 15) GATTACTAATCACAT (w � 15)

MDSCAN GTTTG (w � 5) AAGGG (w � 5)

Best motif at each width
(100 input sequences)

CTATTG (w � 6) CCGCGG (w � 6)

TATTGTT (w � 7) AAGGGGA (w � 7)

CTATTGTT (w � 8) GTTACCCG (w � 8)

GCGATGAGC (w � 9) CACACACCA (w � 9)

GCGATGAGCT (w � 10) CTTACTAATCCA (w � 10)

TGCGATGAGCT (w � 11) ACACATATATATA (w � 11)

ATGCGATGAGCT (w � 12) CACACACACACACA (w � 12)

GCGATGAGCTGAG (w � 13) ATATATATATATATA (w � 13)

ACACACACACACAC (w � 14) CACACACACACACACAC (w � 14)

CACACACACACACAC (w � 15) TATATATATATATATATA (w � 15)

MOTIF REGRESSOR TCTATTGTT (0) ATGATTACTAATCA (5.58e-11)

Top 10 motifs (regression P value)
(100 input sequences)

TTTCTATTGT (0) TGCTTACTAATC (1.39e-10)

CTATTGTTTTC (0) GATTACTAATC (3.30e-10)

ACTTCTATTGT (0) GTGATTACTAATC (3.26e-9)

TTTCTATTGTTTT (0) CTTACTAATC (1.48e-7)

TTTCTATTGTTTTT (0) TTACTAATC (4.23e-6)

CTATTGTT (1.11e-16) TCCTGCCCCTT (5.55e-6)

ATTGT (1.20e-14) TCCCATTAC (4.80e-5)

GGTGGC (1.38e-11) GCGCCCCTTAC (1.68e-4)

TATTGTT (1.04e-10) TCCCTCTCCCTT (1.92e-4)

Motifs reported by ALIGNACE, MEME, MDSCAN, and MOTIF REGRESSOR for two microarray experiments. Both ALIGNACE and MEME used only
the top 10 genes, and incorporating more genes led to worse results. MDSCAN ranked the correct motifs as the best in several widths when
the top 10 sequences were used, but failed when 100 sequences were used. MOTIF REGRESSOR ranked the correct motifs as number 1 for
all settings. The most difficult case, using the top 100 genes to find motifs and the top 500 genes to refine them, is reported. Boldface
indicates agreement between a discovered motif and the known motif consensus.
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intergenic sequences, and Xwg is the set of all w-mers in the
upstream sequence of gene g. Using a motif matrix and a
background with Markov dependency greatly improves the
sensitivity and specificity of the scoring function (14).

Linear Regression. For each motif reported by MDSCAN, we first fit
the simple linear regression:

Yg � � � �mSmg � �g [2]

where Yg is the log2-expression value of gene g, Smg is defined in
(1), and �g is the gene-specific error term. The baseline expres-
sion � and the regression coefficient �m will be estimated from
the data. A significantly positive or negative �m indicates that
upstream sequences containing motif m are correlated with
enhanced or inhibited downstream gene expression, respectively.

The candidate motifs with a significant P value (P � 0.01) for
the simple linear regression coefficient �m are retained and used
by the stepwise regression procedure to fit a multiple regression
model:

Yg � � � �
m�1

M

�mSmg � �g. [3]

Stepwise regression begins with Model (3) with only the inter-
cept term, and adds at each step the motif that gives the largest
reduction in residual error. After adding each new motif mi, the
model is checked to remove the ones whose effects have been
sufficiently explained by mi. The final model is reached when no
motif can be added with a statistically significant coefficient.

Results
The Discovery of Single Motifs That Influence Gene Expression. To test
the validity of MOTIF REGRESSOR, we sought to identify the
TFBMs of Rox1p and Yap1p by examining the upstream regions
of genes with highest fold change in expression upon the
overexpression of Rox1p (15) and Yap1p (16) (Table 1). Rox1p
is a heme-induced TF that recognizes YYNATTGTTY (21) and
represses genes normally expressed in hypoxic conditions. We
used MDSCAN to search the upstream sequences of the 10, 25, 50,
and 100 most repressed genes ranked by fold change, respec-
tively, to generate up to 30 candidate motifs for each width from
5 to 15 bases. We used five times the number of input sequences
for refinement. The correct motif, as defined by previous studies
(21), was the top-ranked motif discovered for input sequence
sizes 10, 25, and 50, but was not top-ranked when using 100
sequences. In contrast, the top-ranked motifs found by MOTIF
REGRESSOR for all input sequence sizes (10, 25, 50, 100) had
consensuses that matched the known ROX1-binding consensus.
For all input sequence sizes, at least 8 of the top 10 motifs had
a motif consensus that matched perfectly with the known ROX1
consensus, all with very low (�10�9) regression P values (un-
adjusted for multiple testing). These results (Table 1) were then
compared with those obtained by other motif-finding algorithms.
We applied ALIGNACE (9) to search the upstream sequences of
10, 25, 50, and 100 most repressed genes ranked by fold change,
respectively, specifying the correct motif width and using all
other default parameters. We failed to find any motifs resem-
bling the known ROX1-binding consensus for any input se-
quence size. Similarly, we ran MEME (6) for input of 10, 25, 50,
and 100 sequences, respectively, allowing motif width to vary
between 5 and 15 and each sequence to contain 0-n repetitions
of a motif. Again, MEME did not report any motifs with consensus
similar to the known ROX1-binding consensus.

Yap1p is a transcriptional activator required for oxidative
stress tolerance, and is known to recognize the DNA sequence
TTACTAA (22). Genes induced by Yap1p overexpression pre-

sented another interesting case for comparing motif-finding
methods. ALIGNACE reported a motif ranked fourth with a
consensus that differs from the reported YAP1 consensus (22)
by one base for input sequence sizes 10 and 25, but did not find
any motifs resembling the YAP1 motif for input sequence sizes
50 and 100. MEME ranked the correct YAP1 motif first for input
sequence size 10, and third for input sequence sizes 25 and 50,
but failed to find the YAP1 motif for input sequence size 100
(Table 1). MDSCAN outperformed both ALIGNACE and MEME,
finding and ranking the correct motif first over a range of motif
widths when using 10, 25, and 50 input sequences, respectively.
With 100 input sequences, MDSCAN found and ranked the correct
motif first at motif width w � 10. MOTIF REGRESSOR also
performed strongly, with at least the top 6 of the top 10 motifs
containing motif consensuses that matched the known YAP1
consensus for all input sequence sizes.

We also analyzed the expression data from YAP1 deletion
mutants (17), expecting to find the YAP1 motif among the
sequences upstream of down-regulated genes. To our surprise,
MOTIF REGRESSOR found only one significant motif (P � 0.0075)
partially matching the YAP1 motif, with a consensus CGTTAC-
CCTCC. Using the sequences upstream of induced genes, how-

Fig. 2. Motifs discovered from the amino acid starvation microarray exper-
iment. The MOTIF REGRESSOR multiple regression model reported a total 25
significant motifs active in amino acid starvation response. The 25 motifs can
be organized into 15 groups, 8 of which represent previously known TF motifs.
The identity of the known motifs reflects how the cell responds to amino acid
starvation: slowing cell growth (M3A, M3B, and RAP1), responding to general
environmental stress (STRE and URS1), and initiating phosphate (PHO4), sulfur
(MET4), and amino acid (GCN4) biogenesis and metabolism. Motif matrices are
represented as sequence logos (23).
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ever, MOTIF REGRESSOR found many significant motifs matching
the GCN4 consensus TGACTCA (21). It has been previously
shown that Gcn4p can bind efficiently to YAP1 sites TTACTAA
(22), so it is possible that the activity of Gcn4p is increased in
YAP1 mutants to partially compensate for the lack of Yap1p.
Increased Gcn4p activity would then lead to the induced ex-
pression of many Gcn4p targets, and our discovery of the GCN4
motif. Among the 135 Gcn4p intergenic targets identified by
Gcn4p ChIP-array experiments (19), 95 showed increased down-
stream expression in YAP1 mutants (P � 10�6). Furthermore,
among the 118 up-regulated genes with �1.5-fold change in
YAP1 mutants, 20 were identified as Gcn4p target downstream
genes by genome-wide ChIP assays (19) (P � 10�12).

The Discovery of Multiple Motifs That Influence Gene Expression.
MOTIF REGRESSOR was applied to the sequences upstream of
yeast genes whose expression changed after 30 min of amino acid
starvation (16). MDSCAN found 414 motifs of width 5–15 from the
most induced genes and most repressed genes, respectively. The
simple linear regression step screened out 179 insignificant
motifs (P � 0.01). The stepwise regression on the remaining 235
motifs yielded 25 that were significant. The resulting model had
an R-square of 19.8%, implying that together the 25 motifs might
account for 19.8% of the variation in genomic expression.
Stepwise regression overestimates the true R-square due to its

selective use of explanatory variables (www.stata.com�support�
faqs�stat�stepwise.html). However, we performed a simulation
study by using 6,000 genes and 400 independent motifs, which
found the overestimation of R-square under these conditions to
be small, �1%.

The 25 motifs can be classified into 15 different DNA patterns
(Fig. 2). Eight of these patterns (STRE, GCN4, M3A, M3B,
MET4, PHO4, RAP1, and URS1) were previously known, and
together they have an R-square of 17.6%. The stress response
element STRE and the GCN4 motif, which regulates amino acid
biosynthesis, are known to positively regulate transcription dur-
ing amino acid starvation. Two patterns involved in RNA
processing (M3A and M3B; ref. 24) have been previously found
in genes repressed under environmental stress (web supplement
to ref. 16; http:��genome-www.stanford.edu�yeast�stress�images�
sfigure0.html). Met4p, with its auxiliary factors Cbf1p, Met28p,
Met31p, and Met32p, regulates the transcriptional activation of
genes involved in sulfur metabolism, especially the sulfur amino
acid pathway (25). Pho4p, together with Pho2p, are the master
transcription regulators of the PHO genes responsible for the
scavenging and uptake of inorganic phosphate under phosphate-
limiting conditions (26). Rap1p is the primary regulator of the yeast
ribosomal protein genes (RPGs), and the RAP1 motif occurs in
most of the RPG promoters (27). Rap1p is required for the heavy
transcription of RPGs under favorable growth conditions, and for

Fig. 3. Motif clusters from cell cycle expression time series experiments. The 273 significant motifs reported by MOTIF REGRESSOR over two cell cycles are clustered
by motif coefficients over the 18 time points. Motif coefficients can be interpreted as the putative influence a particular motif has on the expression of
downstream genes. The 20 resulting clusters include the known cell cycle-related TF motifs MCB, SCB, SFF, MCM1, and SWI5. Other motif clusters also have
coefficients that fluctuate with the cell cycle, such as STE12, STRE, groups of motifs that resemble MCB and SCB, and some novel G1 motifs. Five motif clusters
have coefficients that do not fluctuate with the cell cycle, including M3B and some motifs of unknown function. The clusters were ordered by first appearance
of their cell-cycle influence. This figure was produced using TREEVIEW software (30).
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the repression of these genes under unfavorable conditions (28).
Finally, the URS1 site is known to be present in the promoters of
many yeast genes induced under stress conditions (29). From the
eight discovered known motifs, we gain insight to the cell’s amino
acid starvation response: slowing cell growth (M3A, M3B, and
RAP1), responding to general environmental stress (STRE and
URS1), initiating nutrient scavenging and production as evidenced
by the phosphate and sulfur regulatory pathways (PHO4 and
MET4), and promoting amino acid biogenesis (GCN4). Although
the remaining seven unknown patterns (9 discovered motifs) ac-
counted for only 2.2% additional variation, the two most significant
motifs from simple linear regression (motif 19 and 10) still have
simple regression R-square of 5% and 1.33%, respectively, suggest-
ing their biological relevance to the amino acid starvation response.

The M3B motif has been discovered by many computational
algorithms (4, 10, 12), and it was recently suggested to be bound
by the histone deacetylase and repressor Rpd3p and its associ-
ated proteins Ume1p and Ume6p (20). We applied MOTIF
REGRESSOR to targets separately selected by ChIP-array exper-
iments on Rpd3p, Ume1p, and Ume6p, respectively (20). MOTIF
REGRESSOR found URS1 to be the most significant motif for
Ume6p, RAP1 for Ume1p, and M3B for Rpd3p. Because targets
of Rpd3p and Ume1p overlap by �50%, M3B and RAP1 motifs
are found significant for both Ume1p and Rpd3p. This finding
suggests that Rpd3p and Ume1p might have cooperative binding
interactions, and that Rpd3p, Ume1p, and Ume6p might be
involved in regulating transcription during amino acid starvation.

To determine the false-positive rate of MOTIF REGRESSOR, we
assigned randomly the observed expression fold changes to yeast
genes, ran MDSCAN to find motifs of width 5–15, and screened the
results by simple linear regressions. This process was repeated
100 times, giving a total of 40,324 motifs, among which 1,398
(3.5%) had regression P values �0.01. This number is slightly
higher than the expected 1% because the genes used to find
candidate motifs are also used to fit the regression. By compar-
ison, 235 of the 414 candidate motifs (56.8%) from the amino
acid starvation had regression P values �0.01, among which we
expect �15 (3.5% of 414) to occur by chance.

The Discovery of Multiple Motifs That Influence Gene Expression over
Many Time Points. We ran MOTIF REGRESSOR on expression data
from 18 time points over two complete yeast cell cycles, starting
from release from alpha-factor arrest in M�G1 (18), and ob-
tained a total of 273 significant motifs (including overlapping
motifs). Many motifs are found at the time points at which they
are known to have the strongest effects. For example, MBF
motifs are found during G1 with a strong inducing effect, and
during G2 with a strong repressing effect, but are not found in
M or S phases. To examine these motifs’ effects over all time
points, we regressed for each motif at each time point the gene
expression values against the upstream sequence motif-matching
scores. With each motif represented by a vector of 18 simple
regression coefficients, we hierarchically clustered the 273 motifs
into 20 groups based on their Euclidean distances (Fig. 3).

Fifteen of the 20 motif clusters have putative influences that
fluctuate with the cell cycle. Among them are the binding motifs
of well-known cell-cycle regulators MCM1, SWI5, MCB, SCB,
and SFF (Fig. 4a). Our findings that SWI5 promotes expression
at M�G1, SCB promotes expression at G1, and MCB promotes
expression at G1 agree well with established data (29). MCM1
was known to promote expression in both G2�M and M�G1, and
our findings are consistent with the latter. SFF is thought to
function throughout cell cycle, but has been demonstrated to
have an inductive influence in S�G2, which our observations
support. A number of clusters contain motifs such as ACGCGC
and GACGC that resemble both MCB (consensus ACGCGT)
and SCB (consensus CGCGAAA). One possibility is that these
variant sites match the real MCB or SBF targets well enough to

score highly, causing these motifs counted as significant in
regression by the MCB�SCB targets. Another explanation is that
Mbp1p and Swi4p, which recognize MCB and SCB respectively,
are partially redundant regulators and the two proteins recog-
nize each other’s binding sites (31). Mbp1p and Swi4p could
indeed bind sequences resembling MCB and SCB (although
perhaps not optimally) and induce transcription enough to make
regression significant.

We found the STE12 motif, which was correlated with an
inductive effect, in the earliest time points. This result is expected
because release from mating pheromone was used to synchro-
nize the cells in this experiment and Ste12p is the key transcrip-
tional activator for pheromone-induced transcription. We also
found that STE12 retained its putative inductive effect in the
second G1 cycle, which is not likely to be explained by the
synchronization method, but is consistent with its reported joint
role with MCM1 to activate a subset of G1-induced genes (32).
The putative strong inductive effect of STRE observed imme-
diately after cell-cycle arrest can be explained as a stress response
to the centrifugation and handling required for the release from
cell-cycle arrest. A milder inductive effect of STRE is also seen
in the following cell cycle throughout G1 and S phases (Fig. 4b).
Although �50% of yeast genes contain the STRE motif in their
promoters (16) and many STRE genes are also regulated by a
host of other TFs, this result suggests further experiments to

Fig. 4. Motif effects (coefficients) during the cell cycle. (a) Known cell-
cycle-related motifs MCM1, SWI5, MCB, SCB, and SFF have coefficients that
fluctuate with the cell cycle. (b) Other cell cycle motifs (STE12, STRE, and motifs
in Cluster4 and Cluster6) influence expression through the cell cycle, but to a
lesser extent than the known cell cycle regulators. (c) Non-cell-cycle motifs,
M3B, and motifs in Cluster18, Cluster19, and Cluster20 showed sharp, low-
amplitude fluctuations that correlate to a known experimental artifact that
resulted from differential processing of odd- and even-numbered time points
(G. Sherlock, personal communication).
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determine whether STRE indeed induces gene expression dur-
ing G1�S.

Influences of five motif clusters do not vary with the cell cycle.
They include two clusters for the M3B motif, which was also
found in the amino acid starvation experiment and is present in
upstream of genes involved in RNA processing. The variation in
the coefficient of the other three motif clusters, especially cluster
19, seemed to correlate with a known experimental artifact (G.
Sherlock, personal communication; Fig. 4c). The biological
significance of these motifs is thus difficult to interpret.

Discussion
Previously described approaches for regulatory motif discovery
either extract the motif features from the upstream sequences
with little help from microarray-derived expression values (9,
10), or conduct feature selection based solely on the correlation
between short oligomer motif occurrences and expression values
(12, 13). MOTIF REGRESSOR uses MDSCAN as a feature extraction
tool to find candidate motif matrices and then uses correlation
analysis to select motifs relevant to changes in gene expression.
Although our feature selection step resembles REDUCER (12)
and the filtering method (10), our adoption of matrix-based
motif finding and linear regression enhances both the sensitivity
and the specificity. Microarray data from a single experiment can
be rapidly analyzed to determine what motifs might be influ-
encing the changes observed. For experiments with multiple
time point measurements, the clustering of motif regression
coefficients over time course provides a method to quickly
recognize the effects of different TFs on the process being
studied. With minor modifications, MOTIF REGRESSOR can also
be applied to ChIP-array experiments.

For experimental biologists, MOTIF REGRESSOR is a useful
catalyst for planning insightful and directed biological experi-

ments. For example, an experiment is suggested by the analysis
of the YAP1 deletion experiment, in which the GCN4 motif was
found upstream of up-regulated genes. One possible explanation
for this result is that Gcn4p activity is increased in the absence
of Yap1p, and the natural targets of Gcn4p are expressed at
relatively higher levels. Alternatively, a subset of Gcn4p targets
could be induced indirectly through a secondary pathway initi-
ated by YAP1 deletion not dependent on Gcn4p. A ChIP array
experiment may determine whether in YAP1 mutants Gcn4
protein actually binds to targets normally bound by Yap1p.
Indeed, results obtained through computational approaches
must always be tested for biological and mechanistic relevance
in vivo.

The method described here assumes that the most interesting
motifs are those that cause the most dramatic changes in gene
expression under a given condition. Therefore, it may not be
ideal for discovering motifs that specify consistent, but subtle,
changes in expression. Another assumption is that a given motif
can specify only one type of regulation at a given time point,
either induction or repression. To detect motifs that may facil-
itate the binding of both activators and repressors, we may need
to use the absolute value of the log-expression values as the
dependent variable in the regression, or conduct regression for
induced or repressed genes separately.
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