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Major experimental and computational efforts are targeted at the characterization of transcriptional networks on a
genomic scale. The ultimate goal of many of these studies is to construct networks associating transcription factors
with genes via well-defined binding sites. Weaker regulatory interactions other than those occurring at high-affinity
binding sites are largely ignored and are not well understood. Here I show that low-affinity interactions are
abundant in vivo and quantifiable from current high-throughput ChIP experiments. I develop algorithms that predict
DNA-binding energies from sequences and ChIP data across a wide dynamic range of affinities and use them to
reveal widespread functionality of low-affinity transcription factor binding. Evolutionary analysis suggests that
binding energies of many transcription factors are conserved even in promoters lacking classical binding sites. Gene
expression analysis shows that such promoters can generate significant expression. I estimate that while only a small
percentage of the genome is strongly regulated by a typical transcription factor, up to an order of magnitude more
may be involved in weaker interactions. Low-affinity transcription factor–DNA interaction may therefore be
important both evolutionarily and functionally.

[Supplemental material is available online at www.genome.org and at http://uqbar.rockefeller.edu/∼atanay/prego.]

Transcriptional programs are commonly described via the iden-
tification of cis-elements in gene regulatory regions and their
association with sequence-specific transcription factors (TFs).
The highly prevalent working hypothesis, here denoted the
“digital” model for transcriptional networks (Fig. 1A), is that TFs
either bind perfectly to a sequence motif, or cannot bind it at all.
The complexity of transcriptional regulation is therefore implic-
itly assumed to be originating from a combinatorial code associ-
ating several well-defined binding sites, and not from a more
loose integrated contribution of many potential binding sites
and many candidate TFs. It is clear that the reactions underlying
transcriptional regulation are much more complicated than the
simple logic used to describe it. For example, characterization of
mechanisms that control stochastic and noisy gene expression
(Elowitz et al. 2002; Paulsson 2004; Raser and O’Shea 2005) or
accurate quantitative analysis of transcriptional switches (Ronen
et al. 2002; Bintu et al. 2005) requires an “analog” framework.
Still, in most genome-wide studies it is assumed that the digital
model is a reasonable compromise, in particular given the quality
of the data. With the advent of genomic technology, we may
revisit this basic assumption of our approach to describing large-
scale transcriptional regulation.

Recently, the combination of Chromatin Immunoprecipita-
tion (ChIP) and microarray technologies (ChIP on chip) opened
the way for genome-wide localization of transcription factor
binding (Ren et al. 2000; Iyer et al. 2001). In an extensive set of
experiments, a comprehensive repertoire of 200 budding yeast
TFs were profiled for binding in standard growth conditions and
several additional environments (Lee et al. 2002; Harbison et al.
2004). A similar approach is now being applied to human sys-
tems, with hopes for deeper understanding of transcriptional

regulation and mis-regulation in disease (Li et al. 2003; Cawley et
al. 2004; Odom et al. 2004). Although the ChIP-on-chip technol-
ogy generates quantitative readouts, the current analysis proto-
cols (Harbison et al. 2004) conform to the digital paradigm: The
data are analyzed such that a P-value threshold transforms the
measurements into a set of binary TF–gene interactions. The cur-
rent scheme is therefore assuming that ChIP experiments cannot
be interpreted quantitatively, and that the functional essence of
the interaction between TFs and genes can be described by means
of a parameter-less network.

Here I show that an analog model for transcriptional
switches (Fig. 1B) is a practical and advantageous alternative to
the digital model, particularly when analyzing complex regula-
tory networks using ChIP experiments. Instead of focusing on a
set of a few dozens of high-specificity hits for each TF, ChIP
experiments are analyzed quantitatively, using (possibly noisy)
estimates on TF-binding affinities for thousands of promoters. It
is shown that the quantitative approach greatly enhances the
characterization of binding preferences for many TFs and outper-
forms current analysis methods. Importantly, the results suggest
that binding of TFs to low-affinity promoters occurs abundantly
in vivo, is determined by promoter sequences, and constitutes a
substantial fraction of the interaction between TFs and DNA
(thereby making it widely detectable in ChIP experiments). Fur-
thermore, the analysis indicates that low-affinity TF binding may
be functionally important: The predicted TF binding energies of
orthologous promoters from different yeast species are shown to
be more conserved than expected by neutrality. Conservation
analysis suggests that selection due to a single TF may affect
significant parts of the genome (10%–20%), much more than
expected by purifying selection on strict binding sites. This find-
ing is supported by analysis of gene expression. In conditions
that activate a TF, one may associate the TF-binding affinity with
a measurable change in gene expression for a large part of the
genome (10% and more). According to these results, low-affinity
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TF–gene interactions are important features of genomic regula-
tory programs, with possible roles in fine-tuning the transcrip-
tional phenotype and in providing abundant evolutionary raw
material for its continuous modification.

Results
ChIP binding ratios are informative over the entire specificity
range

The yeast transcriptional network was mapped extensively using
ChIP-on-chip experiments quantifying the genome-wide bind-
ing profiles of 200 TFs in rich media and several other conditions
(Harbison et al. 2004). To roughly determine how much infor-
mation exists in low-affinity TF–gene interactions, and to visu-
alize possible global patterns in this extensive data set, two-way
clustering of the intergenic regions and TFs was performed given

the ChIP TF-binding ratios (Methods).
Clusters represent groups of genes with
similar ChIP binding ratios across doz-
ens of TFs. Only a tiny fraction of the
genes are considered as high-specificity
targets (hits) for each TF, thus the cluster
pattern is a result of similarities over
ChIP values that refer to nonspecific
binding. Functional enrichment
strongly associates specific biological
functions with some of the clusters
(Methods; Suppplemental Table 1). For
example, genes in cluster 7 consist
mainly of ribosomal proteins (P < 10�66)
and exhibit remarkably similar binding
ratios across all of the 200 TFs, although
only a few TFs (e.g., Fhl1, Ifh1, Rap1,
Sfp1) (Schawalder et al. 2004; Wade et al.
2004) are associated with high-affinity
ribosomal protein regulation. The simi-
larity holds even when TFs have nega-
tive binding ratios for genes from the
cluster. Such high information content
in nonspecific binding profiles could be
a result of experimental or normaliza-
tion artifacts, or it may indicate that TF–
DNA interactions are functionally orga-
nized even when not reflecting highly
specific interaction over well-defined
binding sites.

ChIP data and PWM predictions
correlate over a wide dynamic range

By comparing sequence-based predic-
tion of TF affinities to ChIP binding ra-
tios, we can test if low-specificity bind-
ing detected by ChIP provides quantita-
tive indication to variability in in vivo
binding strengths or is by and large a
noisy indication to biological cases of
high-specificity targets. The common
method for predicting TF–DNA interac-
tion from sequences is based on Position
Weight Matrices (PWMs) (Stormo and
Hartzell III 1989), which are known to
provide reasonable energetic approxi-

mation for the binding interaction in vitro (Liu and Clarke 2002).
According to our results (see Supplemental Table 2), PWM pre-
dictions and ChIP binding ratios are highly correlated. The
analysis first used PWMs that were taken from the Harbison et al.
(2004) study and were generated using only qualitative partition
of the genes into hits (P < 0.001) and non-hits (P > 0.001). Al-
though no quantitative information was used to infer the PWMs,
the ChIP-to-PWM correlation is strong even when restricting to
the set of promoters with ChIP P-values higher than the common
0.001 threshold or even a more permissive 0.01 threshold. Figure
2A shows that, in fact, no threshold can induce a partitioning of
the genes into two groups in which sequences do not predict
ChIP, and that typically, correlation exists for both genes above
and below the threshold. For example, for MBP1, a highly sig-
nificant dependency between ChIP values and the sequence is
observed even for the genes with ChIP binding P-values exceed-

Figure 1. The transcriptional program in yeast: digital or analog? According to the prevalent “digi-
tal” hypothesis for transcriptional regulation (A), complex regulatory programs are described using
wiring diagrams that associate TFs to genes deterministically. In the alternative “analog” model (B),
many TFs may affect each gene at drastically different levels of specificity. Two-way clustering of 200
ChIP binding profiles and 6000 yeast genes (C) reveals groups of genes with remarkably similar binding
ratios in all 200 ChIP experiments. Few of the entries in the homogeneous submatrices represent
high-specificity TF–gene associations. The clusters and their association with biological functions
(Supplemental Table 1) suggest that ChIP experiments may reflect complex and functionally mean-
ingful organization of low-affinity TF–gene interactions.
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Figure 2. Quantitative ChIP to sequence correlation. (A) ChIP and PWM correlation above and below a P-value threshold. Shown are log P-values of
the Spearman correlation between ChIP binding ratios and PWM energy predictions (y-axis). Using a range of possible thresholds (x-axis), correlations
were computed separately for genes with ChIP values below (red) and above (black) the threshold. In all cases, a significant correlation is observed in
both sets of genes, and for all selections of thresholds. (B) Sequence–ChIP correlation reveals in vivo low-specificity binding. Shown are averages and
cumulative probability distributions (CPDs) of PWM binding energies for groups of genes with ChIP values within certain intervals. Remarkable
monotonicity is observed in all cases, with predicted energies of groups with higher-significance P-values (left) consistently higher than those of groups
with less-significant P-values (right). The monotonicity is holding for very low specificity ranges, suggesting ChIP profiles are informative over a wide
dynamic range of specificities.
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ing 0.2, a value that is currently not considered to indicate any
binding is occurring.

Figure 3, B and C, further exemplifies broad ChIP-to-
sequence correlation. It is shown how the PWM predictions are

monotonically decreasing as the ChIP values decrease, even for
ChIP ranges way below the high-significance levels. The distri-
bution for the Mbp1 profile shows, for example, that PWM pre-
dictions for genes with ChIP P-values in the 0.3–0.5 range are

Figure 3. Motif regression reveals known and novel binding sites. (A) The PREGO algorithm. The PREGO algorithm was developed to fit PWM models
to raw ChIP-on-chip profiles. The algorithm combines ChIP and sequence data and builds PWM models with optimal prediction accuracy over the entire
affinity spectrum. (B) Robustness of PWM energy predictions. Applying the PREGO algorithm independently to individual experiments demonstrates the
robustness of the derived energy models. Shown here is the correlation between two Aft2 experiments (left), the two PWM models derived from them
(middle), and the correlation of the energy predictions for these two PWMs. The remarkable reproducibility suggests that PREGO-derived PWMs may
be used quantitatively. (C) Using low-affinity promoters improves motif-finding sensitivity. Shown are examples of PWMs inferred by the PREGO
algorithm from ChIP profiles in which the motif-finding approach failed to find motifs. All the cases shown are confirmed by additional evidence from
the literature. See Methods for definition of the PWMs score. “Models rs” represents the Spearman correlation of energy predictions from PWMs
generated using two different arrays. “Data rs” represents the Spearman correlation of the two raw ChIP profiles used to construct the two PWMs.
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significantly higher than those of genes with ChIP P-values in the
0.5–0.75 range (P < 10�10; KS test).

Using quantitative ChIP profiles for PWM regression

Motivated by the above results on the magnitude of correlation
between PWM predictions and ChIP measurements, an algo-
rithm to perform regression of a PWM model to an entire ChIP
binding profile was developed. The PREGO algorithm exploits
information from the full spectrum of binding energies, and dif-
fers substantially from extant motif-finding algorithms that
search for a PWM model that discriminate “hits” from “non-
hits.” In order to use ChIP data as a quantitative proxy to TF-
binding energy, extensive low-level analysis of 775 raw ChIP pro-
files was performed (Supplemental note 1). Significant experi-
mental biases that were previously not taken into account were
eliminated. These included mainly effects related to variable
probes’ GC content (Supplemental Fig. 1), but also systematic
effects of low-complexity sequences [like poly(A/T) tracts]. The
PREGO algorithm inherently controls for such effects: It reports
PWM models that are significant given a normalized profile lack-
ing correlation to nucleotide composition or low-complexity se-
quence motifs (Methods). The entire algorithmic pipeline (Fig.
3A; Supplemental Fig. 2) is applied separately to individual ar-
rays, to allow comparison of the results on raw data from tripli-
cate experiments and to ensure the quality of the inferred models
(Fig. 3B).

The PREGO algorithm was applied to the 775 available raw
ChIP profiles from the Harbison et al. (2004) study. All known
PWMs that were detected in these data before using the motif-
finding approach were also detected using PREGO, and in many
cases the algorithm detected PWMs that match literature evi-
dence but could not be detected in the ChIP data before. Figure
4C provides several examples to demonstrate the potency of the
approach (additional information is available on my Web site,
http://uqbar.rockefeller.edu/∼atanay/prego).

Discovery of known and novel PWMs using motif regression

Gat1 is a GATA factor with known function in the regulation of
nitrogen catabolism (Kuruvilla et al. 2001). The known binding
motif of this factor (GATAAG) could not be found using any of
the motif-finding algorithms used by Harbison et al. (2004). The
motif was detected successfully only using comparative analysis
of Saccharomyces species. PREGO was applied to three raw Gat1
ChIP profiles (measured after treatment with Rapamycin) and
successfully recovered the known motif in all cases, without us-
ing additional data and with excellent reproducibility (rs of the
binding energy predictions from two different arrays = 0.99).
Analysis of three Dal82 binding profiles under Rapamycin illus-
trates a different important advantage of PREGO. Dal82 is known
to be involved in the regulation of DAL genes, and was associated
with UISALL elements using standard reporter analysis (Dorring-
ton and Cooper 1993). Since the UISALL elements are quite long,
Dal82 exact binding preferences are not known in detail. Previ-
ously, applying motif finding to the set of 62 Dal82 ChIP hits
yielded the GATAAG motif (Harbison et al. 2004). However,
PREGO analysis indicates that GATAAG is not correlated with
Dal82 binding and suggests AANNTGCG as the functional motif.
Interestingly, the known UISALL sequences do not include GATA
elements, but all of them contain a copy of AANNTGCG, sug-
gesting that the identification of GATAAG as a Dal82-associated
motif was a consequence of the co-occurrence of GATA boxes

and UISALL in DAL promoters and that Dal82 binding preferences
may be modeled more accurately using the motif reported here.
PREGO is therefore shown to be effective in controlling for co-
occurrence artifacts that can bias the results of standard motif
finders.

Frequently in the yeast data set, ChIP analysis generated few
or no high-specificity hits for a certain TF. Using the entire range
of specificities, PREGO could characterize TFs’ binding prefer-
ences even in such circumstances. The Opi1 factor is known to be
involved in phospholipid genes regulation. Its ChIP profile
yielded only three high significance hits, preventing motif find-
ers from detecting any PWM. PREGO analysis revealed the motif
CCGGTTCG in two of the triplicates and a shorter version of it
(GGTTC) in the third one. This motif is similar to a previously
identified Opi1-bound element (in reverse complement,
TCGAAyC). Xbp1 is a known stress regulator, with possible roles
in the regulation of cell cycle and cell size (Mai and Breeden
1997; Miled et al. 2001). Although 76 significant Xbp1 targets
were identified in ChIP profiling under mild H2O2 treatment, no
motif could be found in them before, even when using compara-
tive genomics. The PREGO algorithm was able to very strongly
associate the motif CTCGAG with each of the three available
Xbp1 profiles, confirming a previous report on Xbp1’s binding
consensus GCCTCGARGMGR (Mai and Breeden 1997). Interest-
ingly, in a previous work (Tanay et al. 2004a), we have identified
CTCGAG as a possible motif using evolutionary analysis, but
could not associate it with a TF. The Rtg3 factor was shown before
to bind a GGTCAC motif, using mutational analysis of CIT2 UASr

(Jia et al. 1997). PREGO analysis reveals the motif GTCAT as
remarkably correlative to the Rtg3 affinity profiles under both
Rapamycin and H2O2. The motif GTCACG, which is more similar
to UASr, is also associated with the Rapamycin profile, but more
weakly than GTCAT. As in the previous cases, motif-finding al-
gorithms fail to find any significant motif enriched in the set of
52 genes associated with Rtg3.

Quantifying the magnitude of low-specificity
TF–DNA binding

Using the entire range of ChIP values to infer PWMs was dem-
onstrated above to be of considerable utility. The nature of cor-
relation between low-specificity ChIP values and the sequence
remained unclear, however. Importantly, such correlation is un-
likely to be an experimental artifact resulting from systematic
bias toward certain nucleotides, dinucleotides, or any other low-
complexity sequence feature, since these features are normalized
by the PREGO algorithm (see Fig. 4A for an example).

One possible reason for the puzzling ChIP-to-sequence cor-
relation over low-specificity targets may be the imperfect nature
of ChIP experiments. It could be argued that the targets of a TF
are essentially “digital” (hits or non-hits), but that owing to ex-
perimental noise, as ChIP values decrease they reflect a smaller
probability of observing a hit, therefore correlating positively
with the (also imperfect) sequence-based predictions. If this is the
case (Fig. 4B), then some (unknown) partition of the genes to hits
and non-hits would eliminate the ChIP-to-sequence correlation:
If, for example, we could know exactly the set of non-hits, we
should observe zero correlation between ChIP and PWM predic-
tions inside it. Based on this intuition, we can estimate the extent
of quantitative information in the ChIP data by fitting the ChIP–
PWM two-dimensional distribution as a mixture of two distribu-
tions: one representing the typical ChIP and PWM values of
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“hits” and the other representing these for “non-hits” (Methods).
We can then test the relative weights of these distributions (in-
dicating how many genes may be classified as “hits”) and the
distributions’ covariances (indicating how much quantitative in-
formation exists in the data).

Figure 4D shows the results of such analysis for three TFs,
making it clear that the data is strikingly non-“digital”—it is im-
possible to explain the correlation of ChIP and PWMs using two
distributions with zero covariance, and in fact, in each of the
three cases, ∼20% of the promoters are inferred to be interacting
with the TF, and a highly significant ChIP–sequence correlation
is observed. Binding to very weak sites may therefore occur suf-

ficiently often to allow detection in ChIP experiments. Indi-
vidual low-affinity promoters cannot be identified as determin-
istic TF targets, because binding occurs probabilistically in vivo,
but we can still roughly predict the level of such binding
from the sequence.

Binding energies are evolutionarily conserved even
when strong binding sites are lacking

The remarkable correlation between promoter sequences and
low-affinity ChIP values, and the success of the regression ap-
proach in detecting PWM models that could not be detected in

Figure 4. Testing the digital model. (A) Normalizing ChIP data. PREGO performs internal normalization of the ChIP data to eliminate any correlation
of the binding ratios to single or dinucleotide composition or to low complexity sequences [typically poly(A) or poly(T) tracts]. Shown are the scatter
and trend of the raw Mbp1 ChIP binding ratio versus the inferred correction, involving contribution from several dinucleotides and an AAAA/TTTT motif.
The Spearman correlation of each of the sequence features used in the normalization and the ChIP data is also shown (right). (B,C) Discrete versus analog
models. If TF–gene interactions can be reasonably approximated as either occurring or not occurring (hits or non-hits), then the joint distribution of ChIP
and PWM predictions should reflect zero covariance inside such two ideal subsets of the genome (left). If ChIP and PWM provide quantitative estimations
on in vivo binding affinity, then no partition of the genome can eliminate their correlation (right). It is therefore possible to test the validity of the digital
assumption by fitting two distributions to the data and analyzing their parameters. (D) ChIP-sequence correlation reflects an analog behavior. Analysis
of the ChIP/PWM joint distributions for three TFs reveals that their quantitative correlation cannot be explained as a consequence of the mixture of two
distributions (Methods). Shown are inferred maximum likelihood distributions for hits (darker) and non-hits (brighter). The mixture coefficients (�) and
correlation coefficients (r) are indicated. The analysis suggests that about one-fifth of the genome is influenced by each of the TFs, and that for at least
one-fifth of the genome, ChIP- and sequence-based estimations of affinity are correlated in a quantitative fashion.
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the ChIP data before, suggest that (1) probabilistic or transient
binding of TFs to low-affinity binding sites occurs sufficiently
often to be quantified in ChIP experiments and (2) the magni-
tude of such binding is determined by the promoter sequence
(and is therefore predictable by PWMs). One way to test whether
these abundant weak TF–gene interactions carry functional rel-
evance is to estimate their level of evolutionary conservation.
Comparative genomics is used extensively to characterize TF-
binding sites as conserved loci (Cliften et al. 2003; Kellis et al.
2003), and several models were suggested to describe the selective
pressures affecting them (Moses et al. 2003; Tanay et al. 2004a).
If binding of a TF to low-affinity promoters is functionally im-
portant, one would expect to observe selection operating not
only on individual binding sites, but also on the total affinity of
each promoter to that TF. A gene weakly regulated by a TF may be
pushed to remain so in the course of evolution, but the pressure
would not be focused on a specific locus but would be dispersed
over the entire promoter, selecting for the integrated binding
energy over many possible weak loci. To test if such selection
exists, I used orthologous yeast promoters and developed a con-
servation score that compares the observed evolutionary changes
in the total predicted promoter binding energy to those expected
under a neutral model (Methods). The analysis therefore tested if
the integrated interaction energy of a TF and an entire promoter
is more conserved than expected by chance. Conservation analy-

sis was performed on groups of promoters with similar Sac-
charomyces cerevisiae binding energies, allowing the charac-
terization of the relations between affinity and conservation.
The analysis shown in Figure 5 indicates that energy conserva-
tion goes beyond the well-documented conservation of binding
sites.

According to the results, conservation of energy is detect-
able in a large number of promoters, greatly exceeding the
top few affinity percentiles predicted to have significant binding
sites. For example, Gcn4 and Cbf1 are estimated to affect roughly
10% of the genome (Gcn4 may affect more weakly an additional
10%). The conservation of energies predicted for other TFs
may be even broader. Mbp1 and Ume6 conservation peak at
the top 5%, but remain significant on up to half of the affinity
spectrum. Mbp1 binds the cell cycle box ACGCGT (with addi-
tional factors) (Simon et al. 2001). It is possible that its role in
regulating the cell cycle is dependent on the exact quantitative
properties of the binding interaction, therefore increasing the
selective pressure. For Ume6, a key regulator of meiosis (Strich et
al. 1994) and additional processes, the broad conservation of
binding energies may be related to the role of this factor in wide-
spread Rpd3–Sin3-based chromatin modification (Kadosh and
Struhl 1997).

The analysis of Figure 5 is based on many simplifying as-
sumptions (e.g., summing PWM probabilities to estimate bind-

Figure 5. Evolutionary conservation of predicted binding energies. Plotted are the conservation scores of genes with low (left) to high (right)
TF-binding energies. (x-axis) S. cerevisiae binding energy percentile. (y-axis) Conservation score (Methods). In all cases, the binding energies of
higher-affinity promoters are conserved. For several of the TFs, conservation is observed on a significant fraction of the genome (10%–20%), reflecting
widespread selection on the binding energy of promoters lacking high-affinity binding sites.
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ing energies, simulating a neutral model, ignoring combinatorial
interaction between TFs). Still there is evidence that the observed
conservation of weak interaction energies reflects genuine
selection. The neutral model used in the simulations is based on
the evolutionary dynamics at the exact regions analyzed, mod-
eling context-dependent mutations and using parameters esti-
mated directly from the data (Methods). The observed conserva-
tion is therefore unlikely to be a consequence of GC content
conservation or other simple background effects. Similar results
were obtained when analyzing sequences from several yeast spe-
cies (see the supporting Web site, http://uqbar.rockefeller.edu/
∼atanay/prego, for details). As an additional control, the conser-
vation analysis was repeated on parts of the promoters that are
less likely to be active (�600 to �350) and parts of the promoter
that are usually highly active (�350 to �100). Indeed, signifi-
cantly less conservation of binding energy is observed for se-
quences in the less active ranges (see the supporting Web site,
http://uqbar.rockefeller.edu/∼atanay/prego). One should note
that in some of the cases, the conservation observed when ana-
lyzing weak binding energies for one TF could be a byproduct of
the selection on optimal binding sites of another TF. Since the
observed conservation is consistently biased to the upper affinity
percentiles, such indirect effects are likely to hold mostly for TFs
that bind very similar PWMs. An additional support for the sur-
prising estimates on the breadth of selective pressure on weak

binding energies comes from analysis of gene expression (see
below).

Low-affinity promoters may generate weak gene expression

One possible explanation for the broad conservation of TF-
binding energies may be the ability of low-affinity promoters to
generate gene expression. Weak TF–gene interactions are un-
likely to drive a major effect at the expression level. Still, it is
possible that subtle TF binding preferences can modulate the
level of expression noise or have other mild effects on transcrip-
tional switches. One may observe small changes in expression by
grouping together genes with similar predicted binding energies
and analyzing their behavior at appropriate conditions. Figure 6
shows the results of such analysis for three TFs. For Gcn4, the
expression measurements were taken from two mutants (data
from Hughes et al. 2000). Since Gcn4 is a positive regulator of
many genes, the gcn4� strain is showing repressed gene expres-
sion for Gcn4-associated genes in general. The effect is strongest
for genes in the top five affinity percentiles, but significance re-
pression is observed for genes in the 90–95 percentiles and even
the 85–90 percentiles (compare to Gcn4 evolutionary conserva-
tion profile, Fig. 5). The reciprocal effect is observed in the swi4�

strain, in which Gcn4 genes are induced. Analysis of Mbp1 tar-
gets in cells induced by �-factor (data from Roberts et al. 2000) or
in the cln3� strain (data from Spellman et al. 1998) similarly

Figure 6. Low-affinity promoters generate gene expression. Shown is the gene expression generated by promoters with low (left) to high (right)
predicted TF-binding energies. (x-axis) Percentile of predicted TF-binding energy. (y-axis) Median of log fold expression changes in bins of 5 affinity
percentiles. The experimental condition is different for each plot and is noted on the graph. Bins that represent significant up- or down-regulation
(Methods) are labeled in circles. The plots suggest that some TFs (e.g., Gcn4, Mbp1) may weakly affect the expression of a substantial number of genes
even when clear binding sites are lacking.
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confirms the ability of promoters not at the top five affinity
percentiles to generate observable expression. A similar effect is
observed for Ume6 (expression in a ume6 strain) (data from Wil-
liams et al. 2002). Analysis of a large collection of gene expression
profiles (see the supporting Web site, http://uqbar.rockefeller.
edu/∼atanay/prego) reveals many more cases of significant cor-
relation between expression profiles and weak predicted binding
energies, thereby showing that the examples in Figure 6 are prob-
ably not anecdotal.

Discussion

Low-affinity TF–DNA interactions are shown here to be surpris-
ingly widespread in vivo, with possible functional and evolution-
ary implications. Transcription factors bind DNA stochastically,
and it is therefore expected that they would be interacting with
promoters at different levels of specificity, depending on an af-
finity that is determined (at least partially) by the DNA sequence.
Several models were developed before to describe the interaction
between TFs and DNA at variable affinities (Gerland et al. 2002;
Rajewsky et al. 2002; Brown and Callan Jr. 2004; Mustonen and
Lassig 2005). It is still not understood, however, to what extant
various cellular mechanisms modulate the levels of specific ver-
sus nonspecific TF binding, and how accurate and deterministic
are different parts of the transcriptional network in vivo. The
present study demonstrates that we can use ChIP experiments, so
far considered to indicate only high-affinity TF targets, to quan-
tify weak transcriptional interactions and combine them with
promoter sequence analysis. One can therefore exploit compre-
hensive ChIP experiments to outline an “analog” model for tran-
scriptional networks, and to explore the role of low-specificity,
probabilistic TF–DNA interactions in genomic regulatory pro-
grams. The present work should motivate further adaptation of
mechanistic models for TF–DNA interaction to the analysis of
genome-wide data sets going beyond the simple PWMs used
here.

Low-specificity TF–DNA interactions may be functional or
nonfunctional. Nonfunctional interactions are unlikely to affect
gene expression, and would be occurring transiently with mar-
ginal effects on the transcriptional program. Functional interac-
tions may spuriously affect gene expression, either adding up
with other mechanisms to form a significant effect on the tran-
scriptional program, or modulating the level of gene expression
stochasticity by increasing or decreasing the level of sporadic
binding to the promoter (Raser and O’Shea 2005). According to
the evolutionary and gene expression analysis reported here, it is
likely that many of the low-specificity transcriptional interac-
tions in yeast are weakly functional. It is shown that for substan-
tial parts of the genome, the total binding energy (and not just
the existence of a binding site) is conserved and that on average,
promoters with low predicted binding affinities can still generate
gene expression. The discrete deterministic view on transcrip-
tional networks may still be a reasonable compromise when
studying major regulatory effects using limited experimental re-
sources, but regulatory programs may actually feature a more
complex combination of stochastic interactions at different lev-
els of specificity. Evolutionarily, transcriptional programs in
which a discrete logic is softened by a combination of low-
affinity interactions may be more flexible. Such programs can
allow changes to be gradually accumulated, therefore alleviating
selective pressure on specific loci (e.g., classical binding sites) and
increasing their ability to evolve.

At the technical level, this work suggests a new framework
for the analysis ChIP experiments. The approach presented here
is relatively direct, attempting the inference of standard models
for TF binding energy and ignoring important aspects of the
binding process (e.g., competition, saturation) (Nachman et al.
2004; Tanay and Shamir 2004; Bintu et al. 2005; Granek and
Clarke 2005). Still, the application of the new techniques on a
genomic scale is proven to be more effective than the combined
results of several mature and fine-tuned algorithms that were
used before (Harbison et al. 2004). The new PREGO algorithm
outperforms extant methods simply because it uses much more
information in a biologically justifiable way. Extensive mapping
of regulatory networks is well under way in several model sys-
tems other than yeast, with high hopes for revolutionizing the
study of transcriptional regulation in mammals and disease.
Many of these efforts are based on the ChIP-on-chip technology,
using increasingly better coverage of complex genomes (Cawley
et al. 2004; Odom et al. 2004; Ren and Dynlacht 2004). Applying
a quantitative approach to the analysis of these studies and care-
fully evaluating the role of TF–DNA interactions beyond well-
characterized binding sites may be highly beneficial for these
studies. The results on yeast here (and see Supplemental Fig. 3 for
analysis of a small human ChIP data set) suggest that such a
quantitative approach may be practical sooner than expected.

Methods

Data processing
Raw ChIP GenePix files were downloaded from the ArrayExpress
site (accession W-MIT-10). Annotations of several array types
were changed to assign the probes correctly (these were updated
in ArrayExpress). When referring to binding P-values, the P-
values reported in Harbison et al. (2004) are used (taken from the
paper’s supporting Web site). When referring to raw values, the
binding ratios originally computed by the GenePix software were
used. Yeast promoters sequences were downloaded from SGD
(http://www.yeastgenome.org), with corrected Saccharomyces mi-
katae gene start annotation as in Tanay et al. (2005). SGD GO
annotations were downloaded from (http://www.geneontology.
org). A yeast gene expression compendium collected from more
than 60 publications was used as in Tanay et al. (2004b; refer-
ences are available in the supporting Web site). Clustering was
performed using standard two-way k-means. Functional enrich-
ment was performed using the TANGO program (available from
the supporting Web site).

ChIP normalization
All ChIP profiles were normalized as part of the PREGO prepro-
cess (Supplemental Fig. 2). The normalization ensures that single
and dinucleotide probe frequencies, as well as sequences longer
than 5 of the form Poly-X or Poly-XY, are not correlated with the
normalized ChIP profiles.

Testing quantitative ChIP–sequence correlation
ChIP data and PWM predictions for each TF were combined to
generate a two-dimensional joint distribution. An EM algorithm
was implemented to detect the maximum likelihood mixture of
two binormal distributions given the data. The mixture model is
parameterized by the means and covariance matrices of two dis-
tributions (one representing “hits” and the other “non-hits”),
and by a mixture coefficient that determines the relative weights
of the two distributions. EM was performed from multiple start-
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ing points with perfect convergence coherence suggesting that
the global optimum was discovered. Performing EM on a model
that assumes the covariance in each of the two distributions was
zero (as suggested by the digital hypothesis) generated signifi-
cantly lower likelihood. Moreover, re-estimating the posterior
distributions from such null-covariance models yielded signifi-
cant covariance in all cases, reconfirming that the correlation
between ChIP and sequence is, indeed, quantitative and cannot
be explained by a noisy approximation of a digital phenomenon.

Predicting binding energies
A PWM P of length l is defining a probability distribution over
l-mer sequences by setting Pr(s1. . .sl) to �ip(i, si). Given a pro-
moter sequence s, we define the PWM predicted binding energy
to s as E(P, s) = ∑j �ip(i, si + j) (summing up contributions from all
possible positions). The results in this study were derived using
promoter positions �600 to 0, unless otherwise stated.

Energy regression algorithm
Given a chip profile Rg, specifying the binding ratio for each
promoter g ∈ G, and a set of promoter sequences sg, we wish to
search for a PWM model P such that E(P, sg) optimally predicts Rg.
Prediction accuracy is quantified using the Spearman correlation
of E(P, sg) and Rg. Fitting a PWM to a raw ChIP profile was per-
formed using the newly developed PREGO program. The PREGO
algorithm consists of two phases. In the first phase (analogously
to the REDUCE algorithm [Bussemaker et al. 2001], but using
nonparametric rank correlation statistics), PREGO screens a very
large repertoire of combinatorial motifs (all k-mers with one gap,
here k < 9). For each combinatorial motif, the algorithm rapidly
approximates the Spearman correlation between the number of
k-mer appearances in the promoter and the ChIP binding ratio.
The algorithm computes the P-value of the independence hy-
pothesis based on the correlation coefficient and corrects it for
multiple testing using Bonferroni’s factor. Whenever it finds a
k-mer with P-value exceeding the significance threshold
(P < 0.01), it continues to the second phase. In its second phase,
PREGO uses correlative k-mers to initiate a PWM regression al-
gorithm. PWMs are nonlinear, thus exact linear regression is not
possible. Instead, an efficient local optimization procedure that
maximizes the correlation of the model was developed. The al-
gorithm pseudo-code is given in Supplemental Figure 1.

Evolutionary analysis
The simulation of neutral evolution on the yeast promoter re-
gions under study was performed using a model that takes into
account the context of mutations (Siepel and Haussler 2004). The
model was used to simulate the promoter sequence of, for ex-
ample, S. mikatae, given the sequence of an orthologous S. cere-
visiae promoter. To simulate the S. mikatae nucleotide at position
i, the model looks up a probability table using the cerevisiae di-
nucleotide at position i � 1, i and the simulated mikatae nucleo-
tide at position i � 1. The model parameters were estimated by
counting dinucleotide alignments in multiple alignments of
sensu stricto promoters (Cliften et al. 2003). Denote the number
of aligned cerevisiae–mikatae dinucleotides ab and cd by nabcd.
Then define Pr(d | abc) = nabcd/∑x(nabcx). To test the conservation
of the binding affinities predicted by a PWM p, 2500 genes for
which the orthologous S. mikatae promoter contained at least
400 bp were identified. The promoters were then divided into 20
groups, each with a specific range of PWM energies in S. cerevisiae
(so that each group consists of five energy percentiles). Using the
neutral model, 10 simulated genome-wide collections of ortholo-
gous promoters were then generated (10 were enough for obtain-

ing statistically significant results, since pooling of the genes in
each group was used). The binding energy changes between each
S. cerevisiae promoter and its true and randomized S. mikatae
orthologs were computed, and the absolute values of energy
changes for each of the 20 groups were collected. Using Kol-
mogorov-Smirnov statistics, the distributions of real and ran-
domized energy changes were compared and a P-value was com-
puted to reject the neutrality assumption in each bin. The con-
servation score of each group of genes was defined as �log10(P),
where P is the KS P-value.

Gene expression analysis
To test the effect of binding affinities on gene expression, experi-
ments in which the TF of interest is active were selected from a
large compendium. Using the TF’s PWM, the genes were parti-
tioned into 20 groups of increasing predicted binding energies.
The distribution of gene expressions in each group and its me-
dian were then computed. In addition, the distribution of gene
expression in each group was compared to the combined distri-
bution of all sets with smaller affinities (thus, e.g., the expression
of genes with affinities in the 85–90 percentiles was compared to
expression of genes with affinities in the 0–85 percentiles). The
P-values reported in Figure 6 were generated using KS tests on
these two sets.
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