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ABSTRACT

RNA–protein interactions are vitally important in a wide range of biological processes, including regulation of gene
expression, protein synthesis, and replication and assembly of many viruses. We have developed a computational tool for
predicting which amino acids of an RNA binding protein participate in RNA–protein interactions, using only the protein
sequence as input. RNABindR was developed using machine learning on a validated nonredundant data set of interfaces
from known RNA–protein complexes in the Protein Data Bank. It generates a classifier that captures primary sequence
signals sufficient for predicting which amino acids in a given protein are located in the RNA–protein interface. In leave-one-
out cross-validation experiments, RNABindR identifies interface residues with >85% overall accuracy. It can be calibrated by
the user to obtain either high specificity or high sensitivity for interface residues. RNABindR, implementing a Naive Bayes
classifier, performs as well as a more complex neural network classifier (to our knowledge, the only previously published
sequence-based method for RNA binding site prediction) and offers the advantages of speed, simplicity and interpretability
of results. RNABindR predictions on the human telomerase protein hTERT are in good agreement with experimental data.
The availability of computational tools for predicting which residues in an RNA binding protein are likely to contact RNA
should facilitate design of experiments to directly test RNA binding function and contribute to our understanding of the
diversity, mechanisms, and regulation of RNA–protein complexes in biological systems. (RNABindR is available as a Web tool
from http://bindr.gdcb.iastate.edu.)
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INTRODUCTION

Understanding the molecular mechanisms by which pro-
teins recognize and discriminate between specific RNA
molecules is critical for comprehending the functional
implications of these interactions in cells. RNA–protein
interactions, in addition to their importance in protein
synthesis, mRNA processing, and viral replication, have
recently been shown to play critical roles in cellular defense

and developmental regulation (Hall 2002; Tian et al. 2004),
underscoring the importance of understanding the molec-
ular determinants of RNA–protein interactions.

At least nine families of RNA binding proteins have been
identified using sequence-based analyses of RNA binding
proteins, together with functional characterization of
mutations that affect the specificity or affinity of RNA
binding (for review, see Chen and Varani 2005). In
contrast, the number of experimentally determined struc-
tures for RNA–protein complexes is still relatively small
and heavily biased (ribosomal proteins represent z50% of
all RNA binding proteins in the Protein Data Bank [PDB]).
Nevertheless, several computational analyses of RNA–pro-
tein complexes have generated databases of RNA–protein
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contacts and provided valuable insights into the biophysical
basis of interaction patterns between ribonucleotides and
amino acids (Cusack 1999; Draper 1999; Jones et al. 2001;
Kim et al. 2003; Hoffman et al. 2004; Jeong et al. 2004;
Jeong and Miyano 2006).

Because of the importance of RNA–protein interactions
in biological regulation and the considerable effort required
to identify RNA binding residues through biophysical
analyses of RNA–protein complexes or in vitro binding
studies, there is an urgent need for computational methods
to identify RNA binding sites based on primary amino acid
sequence alone. Machine learning techniques offer an
attractive approach to construction of classifiers for this
task, using data sets of experimentally well-characterized
RNA–protein complexes. Three recent studies have
reported the use of support vector machines (SVMs) to
identify RNA binding proteins and assign them to func-
tional classes (e.g., rRNA binding, mRNA binding, tRNA
binding, viral RNA binding, etc.) using only the amino acid
sequence (Han et al. 2004), a combination of sequence
and pseudo-amino acid composition as input (Cai and
Lin 2003), or a variety of sequence-based information,
including predicted solvent accessibility and predicted
secondary structure (Yu et al. 2006). Our previous work
(Yan et al. 2004a,b, 2006) has demonstrated the feasibility
of constructing classifiers for protein–protein and protein–
DNA binding site identification using machine learning
approaches. However, there has been little work using
machine learning approaches to construct classifiers for
identifying RNA binding sites from primary amino acid
sequence.

In this article, we present RNABindR, a fast and simple
tool for predicting RNA binding sites. In its current
implementation, RNABindR requires only protein se-
quence information as input; no information regarding
the structure of the protein or the sequence or structure
of the RNA is required. Although inclusion of structure-
derived information, when available, can improve predic-
tions, we focus here on sequence-based prediction to
provide a broadly applicable tool. To demonstrate the
utility of RNABindR, we make predictions on the telomer-
ase protein TERT, for which the structure of the protein–
RNA complex has not been determined. The predictions
are in good agreement with the experimentally character-
ized RNA binding regions of TERT.

The only previously published sequence-based method
for predicting interface residues, to our knowledge, is
a neural network classifier reported by Miyano’s group
(Jeong et al. 2004; Jeong and Miyano 2006). The results
of our experiments demonstrate that the performance of
RNABindR, using a Naive Bayes classifier trained and
tested on the same data set, is comparable to that of the
neural network classifier. Unlike the neural network clas-
sifier, which requires multiple passes through the data
during training, the Naive Bayes classifier requires only one

pass through the training data, is easily updatable, and is
rather straightforward to interpret.

RESULTS

Sequence characteristics of RNA binding sites

Arginine-rich motifs (Weiss and Narayana 1998) are
abundant in RNA binding sites, and other strong biases
in the types of amino acids present in RNA–protein
interfaces have been reported in several previous studies
(Lustig et al. 1997; Jones et al. 2001; Kim et al. 2003; Jeong
et al. 2004; Jeong and Miyano 2006). To evaluate whether
these primary sequence biases can be effectively exploited in
a machine learning approach to identify amino acid
sequence correlates of RNA binding sites, we generated
a nonredundant data set of 109 RNA binding proteins (see
Materials and Methods) to estimate the interface pro-
pensity for each amino acid type as follows:

Interface PropensityðxÞ

¼ log 2
percentage of residues of type x in the interfaces

percentage of residues of type x in the entire dataset

� �

An interface propensity value greater than 0 indicates
that an amino acid is overrepresented in RNA–protein
interfaces relative to the protein sequence as a whole.
Figure 1 shows the interface propensity (solid bars) for
each of the 20 amino acids, as well as the frequency with
which that amino acid occurs in each of the two positions
immediately flanking a known interface residue (cross-
hatched bars). Interface propensities, estimated from
a smaller data set of 55 ribosomal protein chains (data not
shown) did not differ significantly from those estimated
using the larger data set of 109 RNA binding proteins, and
our results using both data sets are consistent with pre-
viously published data (Jones et al. 2001).

As expected, the positively charged amino acids arginine
and lysine show the highest interface propensities, 1.29 and
1.17, respectively, consistent with their ability to participate
in interactions both with bases and with the negatively
charged phosphate backbone of RNA. Together, arginine
and lysine account for 32% of the interface residues in our
data set. While this is a significant fraction of interface
residues, it also shows that one cannot focus solely on posi-
tively charged amino acids to discover how RNA–protein
recognition occurs. Another favored residue, histidine (0.60),
also can be positively charged and can participate in
stacking interactions with RNA bases through its imidazole
ring. Tryptophan and tyrosine are slightly preferred, with
propensities of 0.21 and 0.18, respectively. In contrast,
phenylalanine (�0.60) and negatively charged amino acids
glutamate (�1.13) and aspartate (�0.62) are significantly
underrepresented in interfaces, as are hydrophobic residues
such as leucine, isoleucine, valine, and alanine (all below
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�0.84). Importantly, there are significant biases in the types
of amino acids that tend to be ‘‘sequence neighbors’’ of
interface residues. For instance, glycine is highly preferred
on either side of an interface residue (0.50 and 0.47); its
small size may enhance flexibility, allowing protein
domains to adopt conformations that
facilitate RNA binding.

If the biases in amino acid propen-
sities noted above are frequently ac-
companied by clustering of interface
residues within the primary sequence
of an RNA binding protein, a machine
learning algorithm should be able to
‘‘learn’’ sequence composition charac-
teristics or other signals in the neighbor-
hood surrounding interface residues,
based on a validated training data set,
and generate a classifier for predicting
likely interface residues in test sequen-
ces. The tendency of protein–protein
interface residues to be clustered along
the primary sequence of proteins has
been noted previously (Jones et al. 2001;
Ofran and Rost 2003; Yan et al. 2004b).
We examined the tendency of RNA–
protein interface residues to be similarly
clustered in our data set of RNA binding
proteins by calculating the log-likelihood
that a residue is an interface residue,
given that it is at a certain distance from
another interface residue (Fig. 2). The

log-likelihood is given by log2(Pobserved/
Pbackground) where Pobserved is the ob-
served probability that a given neighbor
of an interface residue is also an in-
terface residue and Pbackground is the
probability that the position is an in-
terface residue by chance (z0.14 for our
data set, because z14% of the residues
in our data set are interface residues).

This analysis revealed that 95% of
interface residues in the data set of 109
RNA binding proteins have at least one
additional interface residue among the
four amino acids on either side, and
49% have at least four. The tendency of
interface residues to be clustered within
the primary sequence is more pro-
nounced in the subset of 55 ribosomal
proteins: 97% of interface residues in
the ribosomal data set have at least one
additional interface residue within four
amino acids on either side and 63% have
at least four neighboring interface resi-
dues. For the data set of 54 nonriboso-

mal proteins, the corresponding values are 90% and 23%,
respectively. Thus, this tendency of interface residues to
cluster in primary sequence, together with the distinct
interface propensities of individual amino acids, suggests
that it should be possible to capture functionally relevant

FIGURE 1. Certain amino acids are highly favored in RNA–protein interfaces. Interface
propensities for the indicated amino acids are shown as solid bars; the hatched bars to the left
and right of the solid bar are the propensities for the amino acid to occur in the position
immediately before or after an interface residue, respectively. The residues are placed in the
order of increasing hydrophobicity based on the (Kyte and Doolittle 1982) hydropathy index.

FIGURE 2. RNA binding residues tend to occur in clusters within primary sequence. The log
likelihood that a position neighboring an interface residue also contains an interface residue
based on the nonredundant data set of 109 RNA binding proteins. The hatched portion of the
bars represents the log likelihood for the entire data set of 109 proteins. The solid portion
of the bars represents the log likelihood for the ribosomal protein subset of 55 proteins.
Likelihood values >0 mean that the position has higher probability than random of also being
an interface residue.
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sequence signals in the neighborhood of interface residues
and to exploit these using a machine learning approach to
predict RNA binding sites in proteins.

Using a Naive Bayes classifier, RNABindR, reliably
predicts RNA–protein interface residues using only
amino acid sequence information

The performance of RNABindR, using a Naive Bayes
classifier, was evaluated in leave-one-out cross-validation
experiments as described in Materials and Methods. Table 1
summarizes an example of the results obtained using four
different input window sizes and a threshold, u, that was
empirically determined to provide an optimal correlation
coefficient on the training set. Using an input window
of 25 amino acids, the classifier achieved an overall accuracy
of 85% with a correlation coefficient of 0.35, specificity+ of
0.51 and sensitivity+ of 0.38 (see Materials and Methods
for definitions). Adding information such as secondary
structure, relative accessible surface area, sequence entropy,
hydrophobicity, and electrostatic potential to the amino
acid sequence inputs did not improve RNABindR perfor-
mance. Performance on the ribosomal subset was better
than the average performance over the entire data set (data
not shown). However, performance on the ribosomal
subset was the same whether the training set used was the
ribosomal subset or the entire data set.

In specific biological applications, such as identifying
critical residues for site-specific mutagenesis, it may be
more important to predict interface residues with high
specificity (i.e., to produce a smaller number of ‘‘positive’’
interface residue predictions with high confidence) than to
obtain a high correlation coefficient. We report results
obtained with classifiers trained to obtain an optimal
correlation coefficient (CC) because CC is a more mean-
ingful measure than specificity or sensitivity for comparing
different classifiers (see Materials and Methods; Baldi et al.
2000). With a Naive Bayes classifier, it is straightforward to
vary the threshold u to increase specificity+ at the expense of
a decrease in sensitivity+. This is illustrated in Figure 3,
which shows a receiver operating characteristic (ROC)

plot of sensitivity+ against false positive rate, defined as
(1-specificity�). At the expense of lower sensitivity, a very
low false positive rate can be achieved.

While these statistics allow evaluation of the perfor-
mance of RNABindR in identifying RNA–protein interface
amino acids on a per residue basis, an important criterion
for evaluating its utility in practice is whether it correctly
identifies a significant fraction of the total interface residues
in individual RNA binding proteins. For the complete data
set, RNABindR effectively recognized binding sites in
59% of proteins by correctly identifying at least 20% of
the interface residues (Fig. 5A, see below).

Evaluating RNABindR predictions in the context of
three-dimensional structures

In developing RNABindR, we have not taken advantage of
available structural information regarding the target pro-
tein or its cognate RNA because it is much more common
to have the sequence of a protein without a structure.
Nevertheless, it is informative to evaluate RNABindR results
by visualizing them in the context of three-dimensional
structures of known RNA–protein complexes. Figure 4
shows examples in which RNABindR was tested on one
protein chosen from each of the four different categories of
complexes in the complete data set (see Table 2): (1) rRNA;
(2) mRNA, snRNA, dsRNA, and siRNA; (3) tRNA; and (4)
viral RNA. For each protein, the predicted versus actual
interface residues, shown in red, are mapped onto surface
plots of PDB structures (Fig. 4, cf. left and middle panels).
In the panels on the far right, a different coloring scheme
is used to illustrate the performance of RNABindR on
individual residues in each protein (see below).

Results obtained for ribosomal protein L15 (PDB
1JJ2:K), a structural component of the large ribosomal
subunit from the archaebacterium Haloarcula marismortui
(Klein et al. 2001) are shown in Figure 4A. This was the
‘‘best’’ prediction (ranked #1 out of 109) based on
correlation coefficient (0.63). For clarity and because of
its large size, the RNA partner is not included in this
example. In L15, one of the two RNA binding sites was

detected with very high specificity (Fig.
4A, cf. red residues representing the
predicted interface in the left panel and
the actual interface in the middle panel).
In the rightmost panel (Fig. 4A), in-
terface residues of L15 that were cor-
rectly identified as such (true positives,
TPs) are shown in red: 40 out of 42
predicted interface residues are, in fact,
interface residues (specificity+ = 95%).
There were only two false positive (FP)
predictions, shown in blue. True neg-
atives (TNs), in gray, and false negatives
(FNs), in yellow, are also shown. Note

TABLE 1. Interface residue prediction performance of RNABindR

Window size
(nt)

Accuracy
(%) CC

Specificity+

(%)
Sensitivity+

(%)
Specificity�

(%)
Sensitivity�

(%)

5 80.7 0.26 37 37 89 88
15 85.6 0.33 55 37 88 91
25 84.8 0.35 51 38 89 93
27 84.5 0.33 46 37 90 93

Examples of average results for 109 leave-one-out experiments using different input window
sizes and optimizing the threshold, u, to maximize the correlation coefficient (CC) on the
training set. The best performance, based on estimated CC, was obtained using an input
window size of 25 and u = 0.5.
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that although the specificity for interface residues in this
example is high (95%), the accuracy is relatively low (80%)
compared with the average over the complete data set (85%),
largely due to failure of RNABindR to detect any interface
residues in one of two RNA binding sites on the L15
protein. As described below, sensitivity (for the training
data set) can be enhanced by choosing a lower value for u.
In the case of L15, this results in better coverage (i.e., higher
sensitivity), allowing the second RNA binding domain to
be detected, but at the loss of specificity (data not shown).

Results of similar analyses for a protein from each of the
other three classes of RNA–protein complexes are shown
in Figure 4B–D. Figure 4B shows results for the double-
stranded RNA binding motif (dsRBM) domain of the
Xenopus dsRNA binding protein A bound to RNA (in
green wire frame). The prediction for this protein ranked
23rd (CC = 0.38) with an overall accuracy of 83%. A simple
search for RNA binding motifs on this protein reveals that
the entire 69 amino acid sequence included in the crystal
structure is the canonical dsRBM. However, there are only
13 actual interface residues within this motif, all clustered
on one face of the protein shown. RNABindR correctly
identified 5 of these 13 interface residues. Figure 5
illustrates how lowering the threshold u significantly
improves identification of the interface residue class. The
interface residue predictions for the dsRNA binding protein
shown in Figure 4 are shown for three different values of u.
In Figure 5A when u is relatively high, a small number of
interface residues are predicted with high specificity. Figure
5B shows the predictions using the value of u obtained by
optimizing RNABindR on the training set. In Figure 5C
when u is low, many more interface residues are predicted,
but we sacrifice specificity to do so.

The Ebola virus matrix protein, Vp40, bound to a 3-nt
RNA ligand (accuracy 95%) is shown in Figure 4C, and

a tRNA pseudouridine synthase bound to a tRNA ligand
(51 nt) is shown in Figure 4D. These predictions were
ranked 19th (CC = 0.42) and 34th (CC = 0.29) out of 109,
respectively. Performance statistics provided in the figure
captions illustrate that the specificity and sensitivity for
noninterface residues are much higher than for interface
residues in both cases.

Comparison of RNABindR predictions with mapped
RNA binding sites in the telomerase protein, TERT

The primary motivation for developing RNABindR (which
does not require structural information) was to provide
a tool for identifying potential RNA binding sites in pro-
teins when information regarding the RNA–protein com-
plex or its interface is not available. To demonstrate the
utility of RNABindR in such cases, we have applied it to
the prediction of RNA binding residues in the human
telomerase protein hTERT. Telomerase is the ribonucleo-
protein complex responsible for maintaining telomere
length by adding short repeated sequences to the ends of
chromosomes (for reviews, see Blackburn 2005; Autexier
and Lue 2006). TERT is the reverse transcriptase compo-
nent of telomerase and binds to the essential telomerase
RNA subunit (TR), which serves as the template for
synthesis of telomeric DNA repeats. The C-terminal half
of hTERT contains the reverse transcriptase domain (RT),
and two RNA interaction domains (RIDs) have been
mapped to the N-terminal half of the protein (Bachand
and Autexier 2001; Lai et al. 2001; Moriarty et al. 2002,
2005). RID2 is a relatively high affinity RNA binding
domain and RID1 is a lower affinity RNA binding domain
(for review, see Autexier and Lue 2006). RID1 and RID2
each contain several elements that are conserved at the
primary sequence level and, in some cases, have been
shown to be important for RNA binding based on
mutagenesis and in vitro binding experiments (Bachand
and Autexier 2001; Lai et al. 2001; Moriarty et al. 2002,
2005).

Figure 6A shows the RNA interface residues predicted
by RNABindR mapped onto functional domains of hTERT
defined by in vitro catalytic activity and/or RNA binding
assays (Bachand and Autexier 2001; Lai et al. 2001;
Moriarty et al. 2002, 2005). The prediction that most
residues involved in hTERT RNA binding lie outside the
RT domain is in agreement with experimental results that
have demonstrated that the RT and RNA binding domains
of hTERT are separable (Lai et al. 2001; Moriarty et al.
2004). Most clusters of predicted RNA binding residues are
located within the experimentally mapped RNA binding
domains, RID1 and RID2, or correspond to arginine-rich
portions of the variable ‘‘linker’’ region between them,
which has been shown to contribute to hTERT RNA
binding in vitro (Moriarty et al. 2002).

FIGURE 3. Receiver operating characteristic (ROC) curve for RNA-
BindR predictions. The ROC curve illustrates how varying the cutoff
threshold u determines the trade-off between sensitivity+ and false
positive rate (1-specificity�), where specificity� is defined as FP/(FP +
TN). Results shown are for an input window of 25 amino acids.
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The amino acid sequence of a conserved portion of RID2
containing a cluster of predicted RNA binding residues is
shown in the lower portion of Figure 6A. This predicted
cluster lies within the ‘‘QFP’’ motif in RID2 and encompasses

amino acids whose deletion results in a 60% reduction in
RNA binding (amino acids 481–490, in box) (Moriarty
et al. 2002). Another cluster of interface residues within
RID2 (but outside the region whose sequence is shown) also

FIGURE 4. Predictions mapped onto three-dimensional structures of RNA binding proteins. Examples of RNABindR results for four different
types of RNA–protein complexes are shown: (A) ribosomal protein L15, PDB 1JJ2:K (Klein et al. 2001); (B) Xenopus dsRNA binding protein, PDB
1DI2:A (Ryter and Schultz 1998); (C) Ebola virus Vp40, PDB 1H2C:A (Gomis-Ruth et al. 2003); (D) tRNA pseudouridine synthase, PDB 1R3E:A
(Pan et al. 2003). Predicted RNA binding sites, with predicted interface residues shown in red and predicted noninterface residues in gray (left
panels). Actual RNA binding sites, with actual interface residues in red and actual noninterface residues in gray (middle panels). The performance
of RNABindR for individual residues, with true positives (TPs) shown in red, false positives (FPs) in blue, false negatives (FNs) in yellow, and true
negatives (TNs) in gray (right panels). Thus, in this representation, red + yellow residues correspond to the actual interface (derived from the PDB
structure), red + gray residues correspond to correctly predicted residues (both interface and noninterface), and blue + yellow residues
correspond to misclassified residues. Results shown were predicted with RNABindR using an input window of 25 amino acids and u = 0.5. All
structure diagrams were generated using PyMol (http://www.pymol.org).
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overlaps with sequences within the ‘‘T’’ motif required for
full RNA binding activity based on deletion studies (Lai
et al. 2001). Three clusters of predicted interface residues lie
within or overlap the boundaries of RID1, which appears to
comprise a lower affinity binding domain that contributes
to, but is not absolutely required for, RNA binding
(Moriarty et al. 2002). An example of a case in which
RNABindR does not predict interface residues correspond-
ing to amino acids whose deletion results in reduced RNA
binding activity is also shown in the lower portion of Figure
6A (amino acids 508–517, in box). It is important to note,
however, that loss of RNA binding activity in these experi-
ments could be due either to deletion of residues that di-
rectly contact RNA or to loss of binding due to an indirect
effect on the overall structure or stability of hTERT. More-
over, experimental data that provide evidence for or against
the role of specific amino acids in the hTERT–TR inter-
action are not available for most residues within the
mapped RNA binding domains. Overall, the RNABindR
predictions are in very good agreement with currently
available experimental data and identify several additional
amino acids that could potentially contribute to hTERT
RNA binding activity.

Tetrahymena TERT also has two RNA
binding domains. The higher affinity do-
main, residues 195–516, is essential for
telomerase RNA binding (Lai et al. 2001),
and mutagenesis experiments have dem-
onstrated that specific residues within the
CP and T motifs are important for RNA
binding (Bryan et al. 2000; Lai et al. 2002).
Figure 6B shows RNABindR predictions
mapped onto the functional regions of
Tetrahymena TERT. RNABindR predicts
two clusters of interface residues, one near
the T motif, but none in the CP motif. A
lower affinity RNA binding domain, re-
ferred to as the TEN domain, contributes
to telomerase RNA binding (O’Connor

et al. 2005). Residues 1–12 and 182–191 within this domain
are especially important for RNA binding; they are suscep-
tible to digestion by Lys-C in the absence of RNA and
protected in the presence of RNA (Jacobs et al. 2005, 2006).
Also, the deletion of these two short segments abolishes RNA
binding (Jacobs et al. 2006). Notably, the only interface
residues predicted by RNABindR in this domain are a cluster
from 185–191. Thus, RNABindR predictions for Tetrahy-
mena TERT agree well with the available experimental data.

The performance of RNABindR, implementing
a Naive Bayes classifier, is comparable to that of
a more complex neural network classifier

To our knowledge, there is only one other published success-
ful application of a machine learning approach to sequence-
based prediction of interface residues in RNA–protein
complexes. Using a data set of 96 chains from RNA–protein
complexes and a total of 4782 interface residues, Miyano’s
group (Jeong et al. 2004) used a neural network to predict
interface residues in RNA binding proteins. Miyano’s
group reported a CC = 0.59 obtained using filtering and

FIGURE 5. RNABindR sensitivity and specificity trade-off. Changing the value of the
threshold parameter u causes a trade-off between specificity and sensitivity in predicting
RNA binding residues. The example shown here is the double-stranded RNA binding protein
from Xenopus, PDB ID 1DI2:A, also shown in Figure 4B. The color scheme in this figure is the
same as in Figure 4.

TABLE 2. RNA binding proteins in the nonredundant training data set

Chains Type PDB IDs

55 rRNA 1DFU:P, 1FEU:A, 1FJG:B, 1FJG:C, 1FJG:D, 1FJG:E, 1FJG:G, 1FJG:I, 1FJG:J, 1FJG:K, 1FJG:L, 1FJG:M, 1FJG:N,
1FJG:P, 1FJG:Q, 1FJG:S, 1FJG:T, 1FJG:V, 1G1X:A, 1G1X:B, 1G1X:C, 1G1X:G, 1HRO:W, 1I6U:A, 1JBR:A,
1JJ2:1, 1JJ2:2, 1JJ2:A, 1JJ2:B, 1JJ2:C, 1JJ2:D, 1JJ2:E, 1JJ2:F, 1JJ2:G, 1JJ2:H, 1JJ2:G, 1JJ2:H, 1JJ2:I, 1JJ2:J,
1JJ2:K, 1JJ2:L, 1JJ2:M, 1JJ2:O, 1JJ2:P, 1JJ2:Q, 1JJ2:R, 1JJ2:S, 1JJ2:T, 1JJ2:U, 1JJ2:V, 1JJ2:W, 1JJ2:X, 1JJ2:Y,
1JJ2:Z, 1MMS:A, 1MZP:A, 1UN6:B

23 mRNA, snRNA,
dsRNA, siRNA

1A9N:A, 1AV6:A, 1DI2:A, 1E7K:A, 1E80:A, 1E80:B, 1EC6:A, 1FXL:A, 1GTF:Q, 1JID:A, 1KNZ:A, 1KQ2:A,
1LNG:A, 1M8V:A, 1MFQ:C, 1OOA:A, 1RC7:A, 1RPU:A, 1SI3:A, 1SO3:G, 1URN:A, 1UVJ:A, 2A8V:A

19 tRNA 1ASY:A, 1B23:P, 1COA:A, 1EIY:A, 1EIY:B, 1F7U:A, 1FFY:A, 1GAX:A, 1H3E:A, 1J1U:A, 1J2B:A, 1K8W:A,
1N78:A, 1Q2R:A, 1QF6:A, 1QTQ:A, 1R3E:A, 1SER:A, 2FMT:A

12 viral 1A34:A, 1DDL:A, 1E6T:A, 1F8V:A, 1H2C:A, 1LAJ:A, 1N34:A, 1NB7:A, 1PGL:2, 1RMV:A, 2BBV:C, 2BBV:F

RNA binding proteins corresponding to each of four major RNA classes are shown along with their PDB identifiers. The complete non-
redundant data set contains all 109 protein chains. Protein names and additional details are provided online at http://bindr.gdcb.iastate.
edu/RNABindR/datasetSummaryTable.htm.
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state-shifting. Both filtering and state-shifting take advantage
of the fact that interface residues are clustered along the
primary sequence. Filtering removes incorrect interface
predictions that are isolated, i.e., if a residue is predicted to
be an interface residue, but no neighboring residues are
predicted as interface residues, the prediction is changed to
noninterface. State-shifting corrects predictions for residues
that were misclassified as noninterface residues by changing
the prediction to interface if a neighboring residue is
predicted to be an interface residue. Both filtering and
state-shifting use information that is generally unavailable
to the classifier, i.e., there is no a priori way to determine the
false positive and false negative predictions in a test sequence
that is not part of the training set. Hence, we do not attempt
a comparison of results obtained by filtering and state-

shifting with our results. To facilitate
direct comparison of RNABindR with
the published neural network classifier,
we trained and tested RNABindR using
a Naive Bayes classifier on the same data
set used in Miyano’s study. Table 3 shows
the best results reported by Miyano’s
group (Jeong et al. 2004) using a neural
network, without filtering and state-
shifting, compared with the best results
(in terms of correlation coefficient)
obtained using RNABindR. Notably, the
overall results are comparable, but the
Naive Bayes method is considerably
faster and easier to implement.

RNABindR detects known PROSITE
RNA binding motifs

To compare the motifs picked out by
RNABindR with known RNA binding
motifs, we identified all PROSITE
motifs (Hulo et al. 2004) annotated as
nucleic acid binding in the proteins
from our data set. PROSITE contains
a collection of sequence patterns that are
known to be associated with a particular
protein family or function. By identify-
ing all of the PROSITE motifs that are
involved in nucleic acid binding in our
nonredundant data set, we can compare
RNABindR performance with simply
searching for known RNA binding se-
quence motifs. RNABindR identified
104 out of 109 proteins (95%) in the
nonredundant data set as RNA binding
proteins, whereas PROSITE identified
RNA binding motifs in only 17 out of
109 chains (15.6%). The interface resi-
dues predicted by RNABindR lie within

the boundaries of the PROSITE motifs for 16 out of these
17 chains, demonstrating that RNABindR does identify

FIGURE 6. RNABindR predictions on telomerase reverse transcriptase (TERT). Mapped
functional domains and conserved motifs of TERT are shown at the top. Shaded boxes on lines
labeled ‘‘Predictions’’ show clusters of predicted RNA interface residues. (A) Human
telomerase reverse transcriptase (hTERT). Boundaries of two major RNA interaction domains
(RIDs) indicated by open boxes (Moriarty et al. 2005). The amino acid sequence that includes
one of the clusters of predicted RNA-interface residues, located in RID2, is shown at the
bottom. Two boxed regions, amino acids 481–490 and amino acids 508–517, correspond to
deletion mutations that have been shown to decrease hTERT RNA binding activity by 60% and
70%, respectively (Moriarty et al. 2002). Individual interface residues predicted by RNABindR
are indicated by + below the sequence. (B) Tetrahymena thermophila telomerase reverse
transcriptase (tTERT). The two RNA binding domains are indicated by open boxes. The amino
acid sequence of the C-terminal end of the TEN RNA binding domain is shown, with
individual interface residues predicted by RNABindR indicated by + below the sequence.
Removing residues 1–12 and 182–191 (boxed in the sequence view) abolished RNA binding of
the TEN domain construct (Jacobs et al. 2005, 2006). RNABindR predicts a cluster of interface
residues in residues 182–191, but no interface residues are predicted in residues 1–12. (N) N
terminus, (TEN) telomerase essential N-terminal domain, (GQ, CP, QFP, and T) conserved
sequence motifs, (RT) reverse transcriptase domain.

TABLE 3. Comparison of RNABindR (Naive Bayes classifier) with
a neural network classifier

Method RNABindR Neural Net

Correlation coefficient 0.30 0.29
Accuracy 76.6% 77.5%
Specificity 47% 47%
Sensitivity 43% 40%

Direct comparison of RNABindR Naive Bayes classifier with the
neural network method of Miyano, trained and tested on the
Miyano data set (Jeong et al. 2004). The data presented here
represent the average performance of the methods on the Miyano
data set.
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known RNA binding motifs. Furthermore, the fact that
RNABindR detected RNA binding sites in 88 proteins that
do not contain any PROSITE motif whose annotation
indicates a role in RNA binding suggests that RNABindR
could be used to identify novel RNA binding motifs.

The tRNA pseudouridine synthase protein shown in Fig-
ure 4D contains the PROSITE PUA domain (PS50890),
which is predicted to be an RNA binding domain. The
PROSITE PUA domain contains 77 amino acids, only six of
which contact RNA. RNABindR predicted a cluster of three
interface residues in this region, shifted relative to the
cluster of three actual interface residues in the complex
structure, but precisely overlapping one actual interface
residue. This example illustrates that RNABindR is able to
identify specific interface residues, while a search for
sequence motifs, such as a PROSITE search, may only
identify larger RNA binding domains.

DISCUSSION

In this article, we have presented RNABindR, a machine-
learning-based tool for identifying RNA binding sites in
proteins. To generate a widely applicable tool, we de-
veloped RNABindR to use only protein sequence informa-
tion as input. This achievement is significant because the
results presented here were obtained using a relatively small
training set of nonredundant RNA–protein complexes
chosen from the PDB to allow rigorous evaluation of clas-
sification performance. On this data set of 109 diverse pro-
teins (sequence identity below 30%), RNABindR performs
well enough to be useful, with 85% accuracy, 0.35 CC, 0.51
specificity+, and 0.38 sensitivity+. Higher specificity values
(with lower sensitivity) can be obtained in practice, if
required, because RNABindR uses a Naive Bayes classifier,
which allows the user to trade off sensitivity against spec-
ificity by tuning the classification threshold.

To evaluate RNABindR’s ability to identify potential
RNA binding sites in proteins for which structural in-
formation is not available, we predicted RNA binding
residues in the telomerase TERT protein. To date, there is
no high-resolution structure of the hTERT–TR complex,
primarily because it has not been possible to obtain
sufficient quantities of soluble full-length hTERT for
detailed biophysical studies (Jacobs et al. 2005). Thus,
we compared RNABindR predictions with available ex-
perimental data regarding conserved motifs and RNA
binding domains in hTERT. The fact that RNABindR
correctly predicted clusters of interface residues within
known RNA binding domains of hTERT and, in several
cases, precisely identified interface residues defined by
mutagenesis experiments for hTERT suggests that RNA-
BindR could be valuable in designing experiments to
identify RNA binding sites in other experimentally re-
calcitrant RNA–protein complexes (for an example of this,
see Terribilini et al. 2006). Although there is still no

experimental structure for any TERT–RNA complex, the
recent determination of the structure of a domain of
Tetrahymena TERT prompted us to evaluate RNABindR
predictions on Tetrahymena TERT. A cluster of predicted
interface residues from 185–191 in Tetrahymena TERT is
confirmed by the available experimental evidence for RNA
binding in this region of the protein. Several residues in
both hTERT and Tetrahymena TERT predicted by RNA-
BindR are located outside the boundaries of the essential
RNA binding and RT catalytic domains so far defined by
experiments. It will be interesting to determine whether
these predicted RNA binding residues may, in fact,
contact RNA to stabilize the complex or to assist in other
functions, such as subnuclear localization of TERT (Black-
burn 2005).

We found that the performance of RNABindR, using
a Naive Bayes classifier, was comparable to that of the only
previously published sequence-based tool for predicting
RNA binding sites, a neural network classifier developed
by Miyano’s group (Jeong et al. 2004). An advantage of
RNABindR over the neural network classifier is that the
latter method requires the exploration of several alternative
neural network architectures (number of layers between the
input and output layers, the number of neurons in such
intermediate layers, and the connectivity between layers)
before settling on an optimal network structure. In con-
trast, a Naive Bayes classifier does not require such hand-
tuning. A Naive Bayes classifier requires significantly less
computational effort (a single pass through the training
data) to train than a neural network classifier (which
requires multiple passes through the training data), making
it especially well suited for use with large data sets or in
settings that call for incremental update of the classifier
as new training data become available.

Several classes of RNA binding domains and motifs that
mediate the recognition of RNA by proteins have been very
well characterized (Draper 1999). Two abundant and
structurally defined RNA binding motifs are the RDB or
RNA-recognition motif (RRM), which is the most com-
mon single-stranded RNA binding motif, and the double-
stranded RNA binding motif (dsRBM) (Hall 2002), which
recently has been shown to play important roles in
regulatory interactions mediated by siRNAs and miRNAs
(Tian et al. 2004). Shorter sequence motifs, including the
arginine-rich-motif (ARM) motif and Arg-Gly-Gly (RGG)
box are also found in a large number of proteins (Mulder
et al. 2003). Within the nonredundant data set of 109
validated RNA binding proteins, only 17 PROSITE RNA
binding motifs were identified. RNABindR predicted RNA
binding residues in 104 of the 109 proteins and predicted
interface residues within 16 of the 17 PROSITE RNA
binding motifs. Additionally, most of the sequences ‘‘hit’’
by the 17 PROSITE motifs consist of relatively long
stretches of amino acids that contain very few actual
interface residues. Because the PROSITE motifs were not
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generated for the purpose of identifying interface residues,
this comparison is not intended to prove ‘‘better perfor-
mance’’ of RNABindR but instead to indicate that RNA-
BindR may also be valuable for identifying novel RNA
binding motifs.

A major challenge in post-genomics research is the
functional annotation of novel proteins of known sequence
(and, increasingly, known structure) but unknown function.
For example, ORFans, orphan open reading frames that share
no significant sequence similarity with any ORFs outside the
genome in which they reside, represent 20%–30% of genes in
sequenced genomes, but their origins and functions are
largely mysterious (Fischer and Eisenberg 1999; Siew and
Fischer 2004). Recently, several groups have demonstrated
success in automatic prediction of protein functional inter-
actions and intermolecular interfaces based on primary
sequence information (Rost et al. 2003; Pang et al. 2004).
However, when additional types of information are available
(e.g., structural motifs, physical interactions, expression
profiles, cellular localization, phylogenetic relationships), they
can be incorporated to improve the accuracy of functional
annotation. For example, for DNA binding proteins, the use
of structure-derived features such as small binding motifs,
solvent accessibility, and positive electrostatic potential
have been shown to improve detection of HTH, HhH, and
HLH DNA binding motifs (Shanahan et al. 2004). The
prediction of protein–protein interface residues is also
significantly improved by incorporating diverse types of
information (Bradford and Westhead 2004; Neuvirth et al.
2004; Nissink and Taylor 2004; Sen et al. 2004; de Vries
et al. 2006; Hoskins et al. 2006).

In experiments not reported here, we did not obtain
significant improvement in classifier performance by in-
corporating sequence conservation information derived from
multiple sequence alignments or residue solvent accessibil-
ity information derived from known structures of proteins
in the training data set (see Materials and Methods; data
not shown). This was unexpected because including se-
quence entropy or relative solvent accessibility of the target
residue along with the input of amino acid identities does,
in fact, enhance performance when a similar Naive Bayes
classifier is used to predict interface residues in DNA–
protein binding sites (Yan et al. 2006). Current experiments
are directed at investigating the basis for this difference
between DNA and RNA binding site classifiers. We are also
exploring different encodings that may result in classifiers
that more effectively exploit additional types of infor-
mation.

Even without using information derived from structure,
it should be possible to enhance prediction of RNA–protein
interface residues. Recent results from Jeong and Miyano
(2006) have shown that using position-specific scoring
matrices (PSSMs) derived from PSI-BLAST searches can
improve prediction performance of neural network classi-
fiers. Recent preliminary experiments using PSSMs as

inputs for RNABindR resulted in improved prediction
performance comparable with that of Jeong and Miyano
(data not shown). Other methods to improve prediction
of interface residues may include, for example, adding
‘‘filters’’ that eliminate false positives based on the esti-
mated probability that a particular interface residue should
be located near other interface residues within the primary
sequence, as has been done to improve performance of
classifiers for identifying protein–protein interface
residues (Ofran and Rost 2003; Yan et al. 2004b). Alterna-
tively, training on larger data sets of structurally or
functionally related RNA binding proteins, generated by
relaxing the redundancy criterion, may generate higher
accuracy predictions for specific subclasses of RNA binding
proteins.

The RNABindR results reported here, together with
results of previous studies published by Jeong and Miyano
(Jeong et al. 2004; Jeong and Miyano 2006), demonstrate
that computational approaches can successfully identify
RNA–protein interface residues using only amino acid
sequence as input. For many proteins—notably, the
ORFans, mentioned above—the deduced amino acid se-
quence is often the only information available. The ap-
proach we propose here requires only the primary sequence
of the protein partner, implying that many structural
determinants of RNA binding sites can be captured by
local sequence characteristics. The simplicity of RNABindR,
together with the fact that a relatively high level of accuracy
can be achieved using only protein sequence information
(and no information about the identity, sequence, or
structure of the RNA partner), suggests that it may prove
valuable for functional annotation of putative RNA bind-
ing proteins and for genomewide identification of RNA
binding residues in protein. RNABindR is available at
http://bindr.gdcb.iastate.edu.

MATERIALS AND METHODS

Data set

A data set of RNA–protein interactions was extracted from
structures of known RNA–protein complexes solved by X-ray
crystallography in the PDB (Berman et al. 2000). Proteins with
>30% sequence identity or structures with resolution worse
than 3.5Å were removed using PISCES (Wang and Dunbrack
2003). This resulted in a set of 109 nonredundant protein chains
containing a total of 25,118 amino acids. Amino acids in the
RNA–protein interface were identified using ENTANGLE (Allers
and Shamoo 2001). Using default parameters, 3518 (14%) of the
amino acids in the data set are defined as interface residues
(positive examples). Table 2 lists the PDB identifiers for all 109
proteins in the nonredundant data set, which includes four major
classes of RNA–protein complexes. A smaller data set extracted
from only ribosomal proteins (55 chains) was used in some
experiments. The ribosomal protein data set comprises a total of
7522 amino acids, 2363 (31%) of which are defined as interface
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residues. These data sets and others are available at http://bindr.
gdcb.iastate.edu.

Naive Bayes classifier using only amino acid sequence
information as input

The results reported in this article were obtained using RNA-
BindR implementing a Naive Bayes classifier (Mitchell 1997),
which was chosen based on exploration of several different
machine learning algorithms, including support vector
machines, decision trees, and Bayesian networks. The perfor-
mance of the Naive Bayes classifier was comparable to or better
than that of all other methods tested (data not shown). The
Naive Bayes classifier assumes the independence of attributes.
This assumption greatly reduces the complexity of the classifier
and improves the reliability of the estimated parameters when
the dimensionality of the input is high relative to the size of the
available training set. Despite its simplicity and the fact that the
independence assumption may not apply in certain cases, the
Naive Bayes classifier often performs at least as well as more
sophisticated methods for many problems (Buntine 1991). We
used the Naive Bayes classifier from the Weka package (Witten
and Frank 2005). In RNABindR, the input to a Naive Bayes
classifier is a window x ¼ x�n; x�nþ1; :::xT�1; xT ;ð
xTþ1; :::xn�1; xnÞ of 2nþ 1 contiguous amino acid identities,
with n amino acid sequence residues on either side of the target
residue xT . The output is an instance c 2 þ;�f g, where +
indicates that the target residue xT at the center of the window is
an interface residue and � indicates xT is a noninterface residue.
A training example is an ordered pair (x, c) where
x ¼ x�n; x�nþ1; :::xT�1; xT ; xTþ1; :::xn�1; xnð Þ and c is the corre-
sponding class label (interface or noninterface). A training data
set D is simply a collection of labeled training examples. In our
experiments, several values of n from 2 to 14 (corresponding to
windows of width 5–29) were tried.

Let X ¼ X�n; :::XT ; :::Xnð Þ denote the random variable corre-
sponding to the input to the classifier and C denote the binary
random variable corresponding to the output of the classifier.
The Naive Bayes classifier assigns input x the class label +
(interface) if:

PðC ¼ þjX ¼ xÞ
PðC ¼ �jX ¼ xÞ $ u

and the class label � (noninterface) otherwise. The choice of u = 1
corresponds to assigning the most probable class label. The
desired trade-off of sensitivity against specificity can be achieved
by varying u.

Because the inputs are assumed to be independent given the
class, we have:

P C ¼ þjX ¼ xð Þ
P C ¼ �jX ¼ xð Þ ¼

P X ¼ xjC ¼ þð ÞP C ¼ þð Þ
P X ¼ xjC ¼ �ð ÞP C ¼ �ð Þ

¼
P C ¼ þð Þ

Qi¼n

i¼�n

P Xi ¼ xijC ¼ þð Þ

P C ¼ �ð Þ
Qi¼n

i¼�n

P Xi ¼ xijC ¼ �ð Þ

The relevant probabilities are estimated from the training set
using the Laplace estimator (Mitchell 1997). The resulting Naive
Bayes classifier classifies a target amino acid residue xT as an
interface residue or as a noninterface residue based on the
identities of the n amino acid residues on either side.

Naive Bayes classifiers using sequence plus
additional information

We experimented with adding relative accessible surface area
(rASA), sequence entropy, hydrophobicity, secondary structure,
or electrostatic potential to the sequence-based classifier de-
scribed above. rASA for each residue in the absence of RNA
was computed using the program Naccess (http://wolf.
bms.umist.ac.uk/naccess/). Each training and test example for
the Naive Bayes classifier with rASA added is as follows:
x ¼ x�n; x�nþ1; :::xT�1; xT ; xTþ1; :::xn�1; xn; rTð Þ, where xi is as
defined above and rT is the rASA of the target residue. Inputs
are encoded similarly for all features. Sequence entropy was
encoded using the relative entropy for each residue from the
HSSP database (http://www.cmbi.kun.nl/gv/hssp/). Hydrophobic-
ity of each residue was obtained from the consensus normalized
hydrophobicity scale derived by Eisenberg et al. (1984). The
secondary structure of each residue was extracted from the PDB
(http://www.rcsb.org/pdb/). Electrostatic potentials were calcu-
lated using the program APBS (http://agave.wustl.edu/apbs/). The
electrostatic potential for each residue is the average over all its
atoms.

Performance evaluation

The performance of RNABindR was evaluated using leave-one-
out cross-validation experiments. That is, in each of the 109
experiments, the Naive Bayes classifier was trained using data
from 108 chains and evaluated on the 109th chain. The threshold
u was chosen to maximize the correlation coefficient on the
training set. The performance measures reported represent aver-
ages over the 109 experiments. The performance of a classifier
designed to classify protein residues into interface and noninter-
face residues is completely summarized by TP (true positives), i.e.,
the number of interface residues correctly identified as such by the
classifier; FP (false positives), i.e., the number of noninterface
residues misclassified as interface residues by the classifier; FN
(false negatives), i.e., the number of interface residues that are
misclassified as noninterface residues by the classifier; and TN
(true negatives), i.e., the number of noninterface residues that are
correctly identified as such by the classifier. Note that N, the total
number of instances used for evaluation of the classifier is given
by N = TP + FP + FN + TN.

Commonly used performance measures include accuracy,
correlation coefficient (CC), specificity+, sensitivity+, specificity�,
and sensitivity� (Baldi et al. 2000). Specificity+ is the fraction of
positive predictions (residues predicted to be RNA binding
residues) that are actually RNA binding residues. For example,
if 100 interface residues are predicted to be RNA binding residues
by RNABindR and 50 of them are actually interface residues,
specificity+ is 0.5. Sensitivity+ is the fraction of RNA binding
residues that are predicted to be RNA binding residues by
RNABindR. For example, if a protein contains 20 actual interface
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residues and RNABindR predicts that 15 of these 20 are interface
residues, sensitivity+ is 0.75.

Accuracy ¼ TP þ TN

TP þ FP þ FN þ TN

Specificityþ ¼ TP

TP þ FP

Sensitivityþ ¼ TP

TP þ FN

Corr:Coeff : ¼ ðTPxTNÞ � ðFPxFNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞðTP þ FPÞðTN þ FPÞðTN þ FNÞ

p

Specificity� and Sensitivity� are similarly defined.
Each of these performance measures summarizes the informa-

tion contained in the four numbers (TP, FP, FN, TN) with a single
number (e.g., accuracy), with inevitable loss of information. In the
case of data sets in which there is a large difference between the
number of instances belonging to the two classes, using accuracy
alone to evaluate the classifier can be misleading (Baldi et al. 2000;
Yan et al. 2004a,b). The RNA binding site data set contains 14%
interface and 86% noninterface examples. A classifier that simply
predicts each residue to be noninterface would have an accuracy
of 0.86, but such a classifier would be completely useless in
correctly identifying the interface residues. Thus, it is desirable to
consider multiple performance measures collectively to evaluate
the performance of a classifier and compare its performance with
other classifiers (Baldi et al. 2000; Yan et al. 2004b).

As noted earlier, it is possible (and in many settings desirable),
to trade off the sensitivity of the classifier against its false positive
rate. The Receiver Operating Characteristic curve (ROC curve),
a plot of the sensitivity+ or the ‘‘hit rate’’ versus the false positive
rate (1-specificity�) characterizes such trade-off for a classifier. We
used the Weka package (Witten and Frank 2005) to obtain the
ROC plot for RNABindR.
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