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In multicellular organisms, changes in the DNA replication
programme could act to integrate differentiation with cell division
in various developmental and transcriptional contexts. Here,
we have addressed the use of DNA replication origins during
differentiation in the HoxB domain—a cluster of nine genes
developmentally regulated in a collinear manner. In undifferen-
tiated mouse P19 cells, we detected several DNA replication
origins in the 100 kb HoxB locus, indicating a relaxed origin use
when the locus is transcriptionally silent. By contrast, in retinoic-
acid-induced differentiated cells, when HoxB transcription is
activated, a general silencing of DNA replication origins occurs
in the locus except one located downstream of Hoxb1, at the 30

boundary of the HoxB domain. Silencing of the replication origins
is associated with histone hyperacetylation, whereas the active
Hoxb1 origin persists as a hypoacetylated island. These findings
provide direct evidence for the differentiated use of origins in
HoxB genes, and we suggest that this regulation might contribute
to the regulated expression of HoxB genes during development.
Keywords: chromatin; homeobox; DNA replication; P19 cells;
retinoic acid
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INTRODUCTION
How particular sites in the genome are selected to initiate DNA
replication in multicellular eukaryotes is poorly understood.
Although sequence features such as AþT richness or the presence
of CpG islands seem to be involved, they do not seem to be
as stringent as those acting in prokaryotes or in unicellular
Saccharomyces cerevisiae. Epigenetic modifications, such as
alterations of chromatin structure, DNA methylation and changes
in transcription factor activity, might select particular initiation
sites from several potential origins of replication (for reviews, see

DePamphilis, 1993; Aladjem & Fanning, 2004). Nevertheless, few
metazoan origins have been mapped so far, and most of them
have been studied in short regions that do not reach the average
size of a replicon (100–120 kb). These results do not exclude
other possible initiation sites and potential variations in the use
of the origin. Therefore, the question of the existence of a single
specified origin for a given chromosomal domain and the
specification of replication origin in relation to different transcrip-
tional programmes or cell fates remains unclear.

Here, we report a differentiation-regulated specification of DNA
replication origins in the HoxB domain, a locus that is essential for
embryonic development from Drosophila to humans, notably in
patterning and determining anteroposterior identity (Krumlauf,
1994). The organization and regulation of the HoxB locus is
remarkable, as it contains nine genes, spread over 100 kb, that are
activated with temporal and spatial collinearity in embryos. Both
the timing of activation of the genes and their anterior boundaries of
expression follow the order of the genes in the locus (for reviews,
see Duboule & Morata, 1994; Krumlauf, 1994). A connection
between transcription and the replication programme has been
proposed to contribute to the temporal and spatial collinearity of
the HoxB gene domain during embryonic development (Duboule
& Morata, 1994; Fisher & Méchali, 2003), but no DNA replication
origin has yet been identified in this domain. The transcription of
the HoxB domain can be induced by retinoic acid (RA; Simeone
et al, 1990), and the mouse embryonic carcinoma P19 cell line
recapitulates RA-regulated gene expression and neuroectodermal
cell differentiation in vitro (McBurney, 1993), including the
temporal collinearity of HoxB transcription (Jones-Villeneuve
et al, 1982; Fisher & Méchali, 2003). Here, we show that several
origins of replication can be used along the 120 kb domain in
pluripotent undifferentiated cells. However, differentiation and
activation of the locus for transcription leads to the silencing of
replication origins in the locus and the establishment of a site-
specific DNA replication origin at the 30 boundary of the locus.

RESULTS AND DISCUSSION
Multiple replication origins at the silent HoxB locus
We used the nascent strand relative abundance measurement as
a robust assay for mapping replication origins (Giacca et al, 1994;
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Danis et al, 2004; Wang et al, 2004). DNA nascent strands were
first prepared from asynchronous undifferentiated P19 cells, which
do not express HoxB genes (Fisher & Méchali, 2003). In each
preparation, we assessed the quality of the nascent strand
purification by looking at the DNA replication origin previously
defined in the c-myc gene promoter (McWhinney & Leffak, 1990;
Vassilev & Johnson, 1990; Girard-Reydet et al, 2004). As shown in
Fig 1A, a clear peak of tenfold nascent strand enrichment, which
was indicative of a DNA replication origin, was detected upstream
of the c-myc promoter.

Quantification of nascent strand abundance was then carried
out using primer pairs designed along the 100 kb of the HoxB
locus. Fig 1B shows that, in undifferentiated P19 cells, several sites
showed a high frequency of DNA replication initiation. Data
obtained from three independent nascent strand preparations,
each showing a clear enrichment for the c-myc promoter as an
internal control, demonstrated that at least five DNA replication
origins (close to Hoxb1, Hoxb3, Hoxb4, between b5 and b6, and
close to b9) were four- to sixfold higher than the background level
(Fig 1B). Other positions along the locus showed intermediate
levels of enrichment that were significantly above the background
level, and such sites were close to Hoxb2.

These results show that, in undifferentiated P19 cells, in which
the HoxB genes are not transcribed, several positions along the
locus can be used as DNA replication origins. Several preferred
sites were detected in the hundred kilobases of the HoxB domain,
located in both intergenic and promoter regions. We conclude
that the domain shows relaxed origin selection when transcrip-
tionally silent. Large initiation zones have been described, such
as the dihydrofolate reductase locus, in which replication starts at
several positions along 55 kb (Dijkwel et al, 2002), and the
b-globin locus, which contains highly enriched regions spread
over 50 kb (Aladjem et al, 2002). The observed pattern might
reflect flexibility in the choice of origin between cell cycles in
the cell population.

HoxB induction silences the use of the origin in the locus
P19 cells were induced to differentiate and express HoxB genes
by RA treatment. The transcriptional level of Oct4, a marker
of the undifferentiated state that is negatively regulated by RA
(Schoorlemmer et al, 1994), is high in P19 cells but decreases to
undetectable levels on addition of RA (Fig 2A). The induction of
HoxB gene transcription was confirmed at the quantitative level
by real-time PCR (Fig 2A). In addition, Hoxb1 messenger RNA
in situ hybridization shows that all the cells respond to RA
(Fig 2B). We also showed that Hoxb1 shows a specific, transitory
pattern of induction (Fig 2A): Hoxb1 mRNA is abundant 24 h after
RA addition but is no longer detectable after 2 days, as previously
described (Simeone et al, 1990).

The use of a replication origin in the HoxB locus was
determined after RA-induced differentiation. Fig 2C confirms that
the c-myc origin of replication was still detected under these
conditions (Fig 2C). Three independent experiments were carried
out in differentiated cells, and the results showed a clear
restriction in origin use across the domain, with the Hoxb1 origin
becoming the predominant DNA replication initiation site
specified in the domain (compare Fig 2D with Fig 1B). We found
that the relative enrichment level around Hoxb1 was comparable
with that of the c-myc origin, whereas the other potential origins

that had been active in undifferentiated P19 cells were now
downregulated. Weak activity of replication initiation might
remain at the 50 border of the locus, upstream from the Hoxb9
gene. We conclude that a restriction in origin use occurs when
cell differentiation and transcription of the HoxB domain are
induced, resulting in the silencing of DNA replication origins
inside the HoxB domain, to the benefit of a replication origin at
the boundary of the domain.

Hoxb1 origin does not depend on Hoxb1 transcription
We analysed this origin more precisely, with a resolution of 1 kb,
using other primer pairs (Fig 3). Interestingly, the origin overlaps
with an enhancer that mediates the early expression pattern of
Hoxb1 and contains an RA response element (RARE; Marshall
et al, 1994), a sequence bound by RA receptors after RA treatment.
As Hoxb1 is transcriptionally active after 1 day of RA treatment
but is repressed after 3 days, we examined whether the origin was
linked to the transcriptional state of the gene. The use of this
Hoxb1 origin was therefore analysed in untreated P19 cells (P19),
P19 cells after 1 day of RA treatment (RA D1) and P19 cells after 3
days of treatment (RA D3; Fig 3). We found that the DNA
replication origin was present in all three cases. We conclude that
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Fig 1 | DNA replication initiates at several sites in the HoxB domain in

undifferentiated P19 cells. (A) Real-time quantitative PCR was performed

on P19 nascent strands, using primer pairs (filled squares) located along

the c-myc locus. Enrichment was calculated as fold enrichment over the

background level (grey box; see the supplementary information online).

The results shown are the average of three independent nascent strand

preparations that were quantified twice. Error bars indicate the standard

error of the mean. Genes are indicated by grey boxes. (B) Same as (A),

but for the HoxB locus. kb, kilobase; NS, nascent strands.
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the use of the Hoxb1 origin is not linked to the transcription of
the gene, but could be specified in relation to the co-regulated
expression of the whole HoxB domain.

The restriction of a single origin located at the border of the
HoxB domain is in agreement with modification in origin use,
which is observed during development in the Xenopus ribosomal
DNA domain, Drosophila DNA polymerase-a gene and Sciara
coprophila II/9A locus (Hyrien et al, 1995; Sasaki et al, 1999;
Lunyak et al, 2002). Recently, a global observation of the IgH
domain identified a mixed pattern of activation of origins during
B-cell development (Norio et al, 2005). Our results show that the
activation of a transcriptional programme in a co-regulated cluster
of developmental genes results in the silencing of the DNA
replication origin not only in the coding regions of the HoxB
domain but also in the intergenic regions. We conclude that the
regulation of DNA replication origin selection that we describe
here for the HoxB domain cannot be explained simply by the
interference between transcriptional and replication machineries,
as described for other domains (Saha et al, 2004).

Origin restriction correlates with histone acetylation
We analysed nucleosome density in the HoxB locus by chromatin
immunoprecipitation using an antibody against unmodified
histone H3. RA treatment induces a global decrease (two- to

threefold) in the amount of unmodified H3 in the central part of
the HoxB domain (Hoxb7–Hoxb3 genes; Fig 4A), which could
reflect decondensation and looping of the HoxB domain
(Chambeyron & Bickmore, 2004). We further analysed histone
acetylation throughout the HoxB domain. In undifferentiated cells,
a strong acetylation signal for H3 (K9 and K14) was detected at the
c-myc promoter, as expected (Gombert et al, 2003), whereas the
level of acetylation was low throughout the HoxB domain. By
contrast, a strong increase in histone H3 acetylation was detected
after RA induction, consistent with the transcriptional activation
of the domain. Interestingly, the acetylation was not restricted
to the promoter regions (Fig 4B). Nevertheless, the Hoxb1 region
containing the replication origin remained hypoacetylated. A
similar profile was detected for acetylated histone H4 (K5, K8,
K12, K16). RA treatment induces an increase in H4 acetylation
throughout the HoxB domain, except for the Hoxb1 region
(Fig 4C). We also noted that the Hoxb1 origin remains
hypoacetylated even when the gene is transcribed, after 1 day of
RA treatment (data not shown). We conclude that, in this large
cluster of coordinately activated genes, restriction in origin use is
associated with acetylation of histones.

This correlation might be surprising because histone acetyla-
tion was found to be associated with origin specification in some
cases, which was suggested to facilitate the access of replication
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Fig 2 | Retinoic-acid-triggered differentiation silences replication origins in the HoxB locus. (A) Total RNA was collected from retinoic-acid-treated P19

cells on the indicated days. Complementary DNA was generated by reverse transcription and quantified by real-time PCR to analyse transcription of
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detected with a sense Hoxb1 probe. (C) Real-time quantitative PCR was performed on nascent strands purified from P19 cells treated with retinoic

acid for 3 days, using primer pairs (filled squares) located along the c-myc locus. Enrichment was calculated as fold enrichment over the background

level (grey box; see the supplementary information online). The results are the average of three independent nascent strand preparations that were
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initiation proteins to DNA (Aggarwal & Calvi, 2004; Danis et al,
2004). Nevertheless, different DNA replication origins of the
chicken b-globin locus have been shown to have opposite
epigenetic modifications (Prioleau et al, 2003). The regulation of
origin use in the Hoxb domain might therefore not simply
be linked to an open or closed state of the chromatin
structure. Different mechanisms of regulation could have
evolved to select the position of a given DNA replication origin
in relation to specific developmental states or to the specific
organization of the chromatin domain for the regulation of its
transcription programme.

Replication origins and regulation of the HoxB domain
In conclusion, we have shown that DNA replication origins in the
HoxB locus are developmentally regulated and that induction of
the locus is associated with specification of an origin at its
boundary. The HoxB domain is unusual both in its high gene
density (nine genes over 100 kb) and in the collinear regulation of
its transcription. The selection of a DNA replication origin just at
the edge of this cluster of nine transcriptionally co-regulated genes
is particularly intriguing. Interestingly, the origin downstream from
Hoxb1, which is used in both undifferentiated and differentiating
P19 cells, colocalizes with an RARE. The presence of an origin of
replication at this site could be part of a pre-existing organization
of the chromatin domain for its developmental regulation and
might contribute to the regulation of transcription over this
domain (Fig 5). This possibility is strengthened by the observation
that passage through mitosis in the presence of RA is sufficient to
induce Hoxb1, whereas transcriptional induction of Hoxb2 to
Hoxb9 requires the S phase in a collinear manner (Fisher &
Méchali, 2003). We propose that the location of the replication
origin at the 30 boundary of the domain could act as a structural
element in the domain, preparing the chromatin to respond to RA
and to activate Hoxb1. The silencing of the other replication
origins in the domain during differentiation might therefore be
important for both preventing replication origin assembly from

interfering with transcription of the nine genes in the cluster and
also allowing the replication fork to move in a single direction
along the HoxB locus, a direction that follows the collinearity
of their expression.

METHODS
Purification of nascent DNA strands. Nascent strands were
purified from P19 or P19þRA cells as described in the
supplementary information online.
Crosslinking and chromatin immunoprecipitation. Formaldehyde
crosslinking was performed as described in Gombert et al (2003),
with modifications (see the supplementary information online).
Chromatin immunoprecipitation was performed as described
in Orlando et al (1997) with anti-H3 from Abcam (Cambridge,
UK; #ab1791) and anti-H3(acetyl K9,K14) and anti-H4(acetyl
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K5,K8,K12,K16) from Upstate (Dundee, UK; #06-599 and
#06-866, respectively).
Oligonucleotide primers and real-time quantitative PCR. Nas-
cent DNA strands and immunoprecipitated DNA were analysed
by quantitative real-time PCR using primers encompassing the
c-myc or HoxB loci. See the supplementary information online for
the sequences of the PCR primers, real-time PCR quantification
and normalization procedures.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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