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ABSTRACT

We develop methods for exploiting ‘‘single-feature polymorphism’’ data, generated by hybridizing
genomic DNA to oligonucleotide expression arrays. Our methods enable the use of such data, which can
be regarded as very high density, but imperfect, polymorphism data, for genomewide association or
linkage disequilibrium mapping. We use a simulation-based power study to conclude that our methods
should have good power for organisms like Arabidopsis thaliana, in which linkage disequilibrium is ex-
tensive, the reason being that the noisiness of single-feature polymorphism data is more than com-
pensated for by their great number. Finally, we show how power depends on the accuracy with which
single-feature polymorphisms are called.

IN this article we aim to demonstrate that single-
feature polymorphisms (SFPs) are a viable alter-

native to single-nucleotide polymorphisms (SNPs) for
genomewide association studies, at least in organisms
such as Arabidopsis thaliana where extensive linkage dis-
equilibrium (LD) means that noisiness of individual
markers can be compensated for by using a higher
marker density.

SFPs were first identified in yeast as significant differ-
ences in hybridization intensity between strains when
genomic DNA was hybridized to high-density oligonu-
cleotide expression arrays (Winzeler et al. 1998). Subse-
quently, the method was used in the considerably more
complex context of the A. thaliana genome (Borevitz

et al. 2003). The two main advantages of SFPs are that
standard expression arrays are used in lieu of specialized
genotyping technology and that no prior knowledge of
SNPs is required. SFP typing is currently being applied
to a wide range of organisms such as mosquito (Turner

et al. 2005) and barley (Rostoks et al. 2005), with some
decrease in the signal-to-noise ratio as genome size in-
creases. Replicating the arrays improves the accuracy
with which polymorphisms are detected, but with a
consequent trade-off in terms of cost.

In our application, each SFP probe corresponds to a
25-bp oligonucleotide on the basis of the published A.
thaliana reference genome [from the accession (inbred
line) Col-0]. The distance between probes was�10 bp on
average. Data for each 25-bp probe region are in the

form of relative strengths of hybridization for the in-
dividual to be genotyped and Col-0 (the reference).
We use a false discovery rate (FDR) threshold of a test
statistic to convert the relative hybridization intensities
to 0’s and 1’s, where 0 means ‘‘matches the reference
genome’’ and 1 means ‘‘does not match the reference
genome’’ (Borevitz et al. 2003). Note that our data
consist of inbred lines of a selfing organism. Thus, it is
overwhelmingly likely that only two genotypes will be
observed at any given site, 00 and 11, and this is used as
an assumption throughout this article.

There are several interesting asymmetries to the data.
First, two individuals that differ from the reference
genome at a given probe position, and thus report a 1,
may not carry the same mutations. However, unless poly-
morphisms occur very densely in the genome, we do not
expect this to be a major problem. More important is
the difference in error rates between 0’s and 1’s, i.e.,
sensitivity and specificity. If we want high specificity, i.e.,
we want to be reasonably certain that a 1 really is a 1,
then we are likely to miss several true positives, falsely
declaring some 1’s as 0’s (i.e., we will have low sensitivity).

Thus, SFP data are dense but noisy and character-
ized by highly asymmetric errors. Indeed, one of the
main rationales for our work, and its application to
A. thaliana, is that the extensive LD in A. thaliana not
only facilitates LD mapping (Nordborg et al. 2005), but
it also helps overcome the noise in SFP data because
haplotypes can be inferred using multiple, albeit noisy,
markers. Although SFP data are much noisier than SNP
data, they are also cheaper to generate per genotype,
and the extensive LD in A. thaliana ensures that lack of
quality is compensated by much greater quantity.
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Our goal here is to explore the properties of A. thaliana
SFP data with respect to LD mapping by combining SFPs
from a pilot study ( J. O. Borevitz and J. R. Ecker,
unpublished data) with direct sequencing data from
another study (Nordborg et al. 2005). In other work, we
have also explored algorithms for estimating standard
population genetics parameters such as the mutation
and recombination rates from SFP data (R. Jiang, P.
Marjoram, J. O. Borevitz and S. Tavaré, unpublished
results). Our methods exploit the LD within the data.

LD is the pattern of nonrandom association between
loci. Observed patterns of polymorphism in molecular
data reflect the ancestral history of the sample and the
effects of mutation on that ancestry. Furthermore, the
presence of mutations that affect phenotypes of in-
terest, referred to as functional mutations from here
onward, implies increased similarity among individuals
with similar phenotypic values in the regions surround-
ing those mutations. This effect is degraded by the
action of recombination over time, the existence of mul-
tiple functional mutations, and the existence of other
factors that are likely to influence the phenotype of
interest (e.g., the environment). Nonetheless, LD has
been used as the successful basis for a variety of methods
that map functional mutations.

However, the use of LD is complicated by its variability
along the genome. The possible block structure of the
human genome has been the subject of a growing
number of articles (e.g., Daly et al. 2001; Patil et al.
2001; Stephens et al. 2001; Gabriel et al. 2002; Phillips

et al. 2003; Stumpf and Goldstein 2003; Marchini

et al. 2004; Jeffreys et al. 2005; Hinds et al. 2005;
International HapMap Consortium 2005; Myers

et al. 2005). Furthermore, a fundamental property of
LD is that it is highly variable. This variability reflects the
randomness inherent in the underlying evolutionary
processes that gave rise to the data. This observed pat-
tern of LD is but a snapshot of a rapidly evolving pattern.
The high level of variability means that it is not uncom-
mon, in fact it is usual, to see nearby loci with completely
different patterns of LD. We also sometimes observe a
high degree of LD between loci that are far apart, even
though intermediate loci show little LD. Thus, it is
highly likely that some degree of modeling or smooth-
ing will be required to extract the underlying signal
from the superficial noise. To some extent, the variabil-
ity is due to the pairwise nature of many common
measures of LD. If we smooth the measure of LD over
more loci we expect the level of variability to decrease.
This, in part, motivates other LD measures based upon
haplotype structure (e.g., Maniatis et al. 2004, 2005;
Rinaldo et al. 2005).

As we have discussed, the pattern of LD is the result of
the action of evolutionary events such as recombination
and mutation over the ancestral history of the sample.
In principle this ancestral history can be described by a
stochastic process known as the coalescent (Kingman

1982). Coalescent models have proven to be extremely
powerful in many applications; however, these have
primarily been in contexts in which recombination is
absent and where the data can be assumed to have
evolved without selective pressure (see Tavaré 1984;
Hudson 1990; Nordborg 2001, for reviews). Although
it is possible to develop appropriate coalescent models
in the presence of almost any complicating factor, the
complexity of such models is enormous, and it is there-
fore entirely plausible that it is counterproductive to
include these details in analyses. The vast increase in
computational effort required to include the model can
substantially outweigh the theoretical gain in power.

Given the complexity of full evolutionary models such
as the coalescent, there has recently been a move to
consider fine-mapping approaches that approximate
key features of such models while avoiding most of
the computational complexity. Some of these methods
attempt explicitly to approximate aspects of the under-
lying coalescent process (e.g., Graham and Thompson

1998; Morris et al. 2000, 2002; Liu et al. 2001; Roeder

et al. 2005; Zollner and Pritchard 2005), while others
use an approach that is more abstract in nature, in
which the coalescent process is replaced by some other
method of clustering of the data into clades (e.g.,
Templetonet al. 1987, 2005; Templeton 1995; Molitor

et al. 2003a,b; Durrant et al. 2004; Sillanpaa and
Bhattacharjee 2005; Tzeng 2005). Analyses of the
latter type are less complex in nature than those of the
former type. Thus, while they might lose some power
due to the use of a more abstract approximation to the
underlying ancestry of the sample, they gain by impos-
ing a smaller computational burden and are therefore
likely to be able to analyze larger data sets. Many of
these methods are discussed in Molitor et al. (2004).

We believe that both mapping methods based on
explicit evolutionary models and those based upon more
abstract summaries of those models are valid, but that
the greater computational complexity of the former
approaches will often make them intractable for the
analysis of genomewide data. Thus, our approach here
is to focus on the more abstract methods.

METHODS

SFP data, because of their imperfect sensitivity, sn, and
specificity, sp, can be viewed as SNP data to which noise
has been added. Given that an individual chromosome
i differs from the recognition pattern for probe j, at
$1 bp within that probe, the SFP data report a 1 with
probability sn; otherwise they report a 0. Given that
the individual matches the recognition pattern, a 0 is
reported with probability sp; otherwise a 1 is reported.
(Note that, for convenience we assume that sn and sp

are constant across SFPs and chromosomes.) We have
developed a range of methods for fine mapping using
SNP data in the context of A. thaliana or the human
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genome (Molitor et al. 2003a,b, 2005; Hagenblad

et al. 2004). These methods rely upon the concept of
haplotype sharing. Intuitively speaking, if individuals
share a mutation at a location x, they are also expected
to share mutations near to x, this effect being broken
down over time, by recombination, as we move away
from x. While there is an established theory for the
sharing of SNPs in regions local to functional mutations,
it is less clear how strong this signal remains when one is
looking at SFP rather than SNP data. We now elaborate
on why this is so.

Assume that a given sample of individuals have SFP
data constructed by comparison to an external refer-
ence sequence. For convenience we make the approx-
imating assumption that there is no recurrent mutation,
so that each SNP in the (unknown) underlying data is
the result of a unique mutational event (this assumption
is easy to relax). We further assume that at most one base
will have mutated within each SFP probe. Empirical
results for A. thaliana show less than one in six SFPs have
multiple alleles ( J. O. Borevitz and J. R. Ecker, un-
published results). Allowing for the case in which more
than one mutation might occur results in nontractable
mathematical derivation in the results that follow. Fur-
thermore, in this article we simulate test data using evo-
lutionary parameters appropriate for A. thaliana. In
these simulated data, the proportion of probes con-
taining more than one mutation is 18% (comparable to
the results of one in six above). Thus, we believe that
the results in this article show that our methods work
despite these simplifying assumptions. Informally speak-
ing, as long as enough of the SFPs are giving a clean
signal, the presence of LD allows us to overcome the
effects of SFPs that do not accurately reflect the state of
the underlying sequence data.

SFP data give imperfect information: even if the SFP
information for two ‘‘haplotypes’’ is identical, the un-
derlying sequences may be different (due to imperfect
sensitivity and specificity of the probes). Using our FDR
threshold for SFP detection results in the following
values for these parameters: sn ¼ 0.5 and sp ¼ 0.98
(Borevitz et al. 2003). These values may alter if the FDR
threshold or sample size is changed. This introduces
considerable noise into the analysis. In the next section
we derive specific results used to conduct our fine-
mapping analysis of SFP data. In particular, we derive
the probability that each possible configuration of pair-
wise SFP data corresponds to an identity of the under-
lying sequence data (given the simplifying assumptions
above). We then use these probabilities as the basis of
a similarity measure that is analogous to haplotype shar-
ing and that reflects the likely sharing in the unobserved
underlying sequence information.

Measuring similarity between SFP haplotypes: We
measure similarity between SFP haplotypes using a win-
dow containing 2k SFPs centered around a particular
location of interest. Denote the two SFP sequences by

h1 ¼ fh1;�k ; . . . ; h1;�1; h1;0; h1;1; . . . ; h1;kg

and

h2 ¼ fh2;�k ; . . . ; h2;�1; h2;0; h2;1; . . . ; h2;kg;

respectively, where h1,0 and h2,0 are the SFP status at the
position x of interest. Suppose we are considering the
SFP configuration at position i. Let p(( j1, j2), (h1,i, h2,i))
denote the probability of obtaining (unordered) SFP
pair (h1,i, h2,i) from (unordered) SNP pair ( j1, j2) at
position i, (i ¼ �k, . . . , 0, . . . , k). We can write the tran-
sition probability p(( j1, j2), (h1,i, h2,i)) in terms of
sensitivity and specificity as shown in Table 1.

It is then natural to define a similarity measure s(h1,i,
h2,i) between SFP haplotypes h1 and h2 at locus i as

sðh1;i ; h2;iÞ ¼
X

j1¼j2

mð j1; j2Þpðð j1; j2Þ; ðh1;i ; h2;iÞÞ;

where m(�, �) is a prior distribution for the unordered
SNP status. We use a naive prior of m(0, 0) ¼ m(1, 1) ¼
0.25 and m(0, 1) ¼ 0.5. Note that the underlying SNP
state contributes to the similarity score only when both
haplotypes have the same SNP status. In intuitive terms,
the score is the probability that the unobserved under-
lying sequence data match at this locus. The total score
for the comparison of these two haplotypes at x is then
given by

Sðx; kÞ ¼
Xk

i¼�k

sðh1;i ; h2;iÞwðdð0; iÞÞ; ð1Þ

where d(0, i) is the distance between x and the ith SFP
and w(d(0, i)) is a weight function. A natural choice for
the weight function is w(x) ¼ exp(�Rx), where R is a
parameter chosen to reflect the recombination rate.
Thus the score is a weighted average of the probabilities
that the underlying sequence data match for these two
individuals, where the weights decrease as we move away
from the location of interest.

We must also define k, the point at which we stop
considering SFPs. While it is possible to include the param-
eter as part of the state space and mix over it within the
algorithm, we choose to use a k-value corresponding to
50 kb, which is expected to take us past the limits of LD.
Thus, we include on the order of 1000 SFPs. As the value
of k increases, we increase the computational burden of

TABLE 1

Transition probabilities for SFP data

(h1,i, h2,i) ¼
(0, 0) (0, 1) (1, 1)

( j1, j2) ¼ (0, 0) sp
2 2sp(1 – sp) (1 – sp)2

(0, 1) sp(1 – sn) spsn 1 (1 – sp)(1 – sn) (1 – sp)sn

(1, 1) (1 – sn)2 2sn(1 – sn) sn
2
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the algorithm. Smaller values of k will improve compu-
tational efficiency, at the expense of loss of some signal.

Are SFPs called in a dependent way? While we as-
sume that, conditional on the SNP information, calling
of SFPs is independent across probe positions, the
degree of dependency across individuals at any given
probe position is less clear. The best-case scenario is that
SFPs are called completely dependently. As we argue
below, the result of errors when SFPs are called completely
dependently across individuals is akin to thinning the
SNP data (removing those SNPs at which no polymor-
phism is detected by the SFP-calling procedure). Since
the mapping methods we exploit here are based on
sharing in a local region, it is intuitively clear that methods
that work on SNP data should also have the potential
work on SFP data called dependently (assuming a suffi-
cient density of probes). We have confirmed this using
simulation (see results). We now give a detailed argu-
ment for this view.

Assume for convenience of explanation that the refer-
ence individual contains the ‘‘wild-type’’ allele for a SNP
at a probe position. When SFPs are called completely
dependently, if a SNP is detected on one individual (an
event with probability sn) it will also (with probability 1)
be detected on all other individuals that also contain the
polymorphism. Alternatively, if the SNP is not detected
on an individual [an event with probability (1 � sn)]
it will also fail to be detected on all other individuals
at that location (and all individuals will therefore be
assumed to be wild type). In this situation, the SFPs
report accurately on the underlying SNP status with
probability snsp since the polymorphism is detected, in
all individuals that carry it, with probability sn, and all
individuals that do not carry the polymorphism are cor-
rectly indicated as not containing the polymorphism
with probability sp. This represents a case in which we
have perfect information (assuming there is only one
SNP within the probe region). It is also possible that
the SFP data indicate no polymorphism, an event that
occurs with probability sn(1 � sp) 1 (1 � sn)sp [using a
similar argument to that given above and allowing for
the somewhat less likely additional case in which indi-
viduals with the mutation are correctly called (an event
with probability sn), while those that are wild type are
incorrectly called as being mutant (an event with prob-
ability 1� sp)]. Note that there is one other case, in-
volving a situation in which we get a false-positive call,
but this occurs with low probability (the false-positive
rate being of the order of 0.02) and so we omit details
for the sake of simplicity of exposition.

Assuming that a high degree of dependency in SFP
calling across individuals is sensible as each probe has an
innate hybridization affinity, good detectors will have
high sensitivity across all strains, while poor probes will
generally miss the call. SNPs suffer from a similar fate as
some are more error prone than others in a dependent
fashion across individuals. However, it is also instructive

to consider the worst-case scenario in which SFPs are
called independently across individuals at each locus.
Given the high specificity and the relatively low sensi-
tivity, to a first order of approximation this is conceptu-
ally similar to taking the SNP data and randomly (and
independently) switching a proportion of the 1’s into
0’s. It is intuitively clear that this will lead to potentially
damaging loss of signal. However, our simulation studies
(see results) indicate that the problem is not as severe
as one might expect. Furthermore, we now show that
SFPs do appear to be called with a high degree of
dependency, as expected.

We explore the issue of dependency informally by
examining data for which we have SFP calls as well as the
underlying SNP information (from direct sequencing,
see Nordborg et al. 2005). We have data for 406 such
probes at which an SFP has been detected (i.e., evidence
of a polymorphism is detected). We consider each SFP
position and calculate the correlation coefficient be-
tween the true underlying SNP state and the observed
SFP calls. We then plot a histogram of these correlation
coefficients calculated across all 406 SFPs. The results
are shown in Figure 1a. Analogous plots are then con-
structed from simulated data in which SFPs are called
either completely dependently or completely indepen-
dently (Figure 1, b and c). These plots indicate that
SFPs are clearly not called independently and, in fact,
appear to be called with a high degree of dependence.

Mapping via spatial clustering algorithms: Our meth-
ods aim to cluster haplotypes into groups that are con-
sistent with the genealogical relationship at each point
along the chromosome. In a classic article, Templeton

et al. (1987) noted that if the relationship between a set
of haplotypes could be described via a genealogical tree,
then it would make sense to incorporate that tree

Figure 1.—Correlations between SFPs and SNPs in (a) real
data, (b) simulated data with completely dependent errors
across polymorphisms, and (c) simulated data with indepen-
dent errors across polymorphisms.
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when testing for phenotypic associations. One could,
for instance, successively test more inclusive clades. This
idea is not directly helpful for LD mapping because the
effects of recombination mean that the relationship
between haplotypes is not tree-like (it might be used to
test for phenotypic associations in nonrecombining
data such as Y chromosomes, for example; see Kittles

et al. 1999). We require methods for estimating the tree-
like relationship at each point in a set of haplotypes (i.e.,
along the genome). In this article we use two simple
methods introduced in Aranzana et al. (2005), which
we describe here for completeness.

The simplest possible approach for incorporating
haplotype structure is to consider windows that are nar-
row enough for recombination to be rare. Given that
the polymorphism data generated by Nordborg et al.
(2005) were in the form of short sequence fragments, it
was natural to treat the resulting short multi-SNP (and
indel) haplotypes as multiallelic markers at a single
locus. When doing so we always removed singleton
polymorphisms, which causes singleton haplotypes to
become identical to more common ones. One reason
for this procedure is to reduce the degrees of freedom;
another is the logic used by Templeton et al. (1987)
because the procedure effectively collapses singleton
branches of the haplotype tree into larger clades. To en-
sure robustness we analyzed the data using the Kruskal–
Wallis nonparametric test (Siegel and Castellan 1988),
but one could also use a regular ANOVA with the hap-
lotype clusters as factors. We refer to this method as
fragment-based Kruskal–Wallis (or simply Kruskal–Wallis)
in what follows.

A more sophisticated approach is to compute a mea-
sure of relatedness between all pairs of haplotypes, with
respect to a particular point or marker in the haplo-
types. These distances can then be used in standard
clustering algorithms and the resulting clusters can be
used when testing for associations. We have termed
this approach cladistic association (CLASS). Using the
haplotype-sharing metric described earlier, we can gen-
erate a ‘‘cladistic’’ representation of the derived distance
matrix at every marker position through a standard
hierarchical clustering algorithm, such as neighbor join-
ing, using a distance metric defined as inversely pro-
portional to the score function given in Equation 1.
We then heuristically search for the clades (cluster of
individuals) that are most strongly associated with the
phenotype. We again used the Kruskal–Wallis test to
measure strength of association. Approaches similar to
ours have recently been proposed by several researchers
(Durrant et al. 2004; Templeton et al. 2005; Tzeng

2005). Our algorithm finds clades as follows. First search
all clades and choose the one that gives the lowest P-value
in a Kruskal–Wallis test with 1 d.f. Then search the tree
obtained by removing this clade for the clade that gives
the lowest P-value in a Kruskal–Wallis test with three
factors (and 2 d.f.): the target clade, the clade identified

in the previous step, and the remaining individuals. We
repeat this step, increasing the degrees of freedom by 1
each step, until the P-values no longer decrease.

RESULTS

We demonstrate the potential of our approach using
a simple simulation-based power study. Our goal is to
compare the performance of analyses of SFP data with
that of corresponding tag SNPs (SNPs that capture the
variation in regions of high LD; Johnson et al. 2001) and
to further investigate how this comparison depends upon
the accuracy with which SFPs are detected. SFP data
represent an imperfect summary of the SNP data within
the corresponding probe region. The imperfect nature
of this summary (caused by less than optimal sensitivity
and specificity) leads to a degradation of the signal on a
per SNP basis. However, SFPs are more economical than
tag SNPs, which will typically allow the use of a much
higher density of SFP probes than would be possible
using SNP data. Thus, it is hoped that the increased
signal due to the higher density of SFP information
exceeds the loss of signal due to the imperfect nature
of each individual SFP, giving an SFP analysis the po-
tential to be more powerful than a comparable SNP-
based study.

We simulate the underlying SNP data using a coa-
lescent model. From each such data set we construct test
data according to three scenarios: first, we select tag
SNPs (Zhang et al. 2005); second, we construct SFP data
using a calling scheme that is completely dependent
across sequences; and third, we construct SFP data
under a calling scheme that is completely independent
across sequences. The latter two represent best- and
worst-case comparisons. As we have shown, SFPs appear
to be called with relatively strong (but clearly not com-
plete) dependence, so results for actual data are likely
to lie between these two extremes.

Using Hudson’s ms program (Hudson 2002), we
simulate 100 replicate data sets of a 1-Mb region with
constant mutation rate u ¼ 0.005/bp and recombina-
tion rate r ¼ 0.0002/bp (these numbers are chosen to
be appropriate for a 1-Mb region in the A. thaliana
genome; see Nordborg et al. 2005). Each replicate set
consists of 400 haploid individuals. To model the SFP
data, we select one accession at random as the reference
sequence and then ‘‘call’’ SFP genotypes (i.e., model the
process by which probes detect SNPs), using the em-
pirically derived estimates of specificity of sp ¼ 0.98 and
a deliberately conservative sensitivity of sn ¼ 0.5 (cf.
Borevitz et al. 2003). Our simulation leads to 18% of
the SFP probes containing multiple mutations, com-
pared to 16.7% in actual data. Two types of statistical
SFP calling were modeled: (1) independent calling,
which assumes that each probe is called independently
across haplotypes, and (2) dependent calling, which as-
sume that samples with the same true underlying SNP

Mapping With SFPs 1129



state will have the same call across sequences for the
given probe.

Phenotypes were generated to mimic a scheme
analogous to the effects of the vernalization locus FRI
(see Nordborg et al. 2005, for details) on flowering
time. We begin by selecting a single SNP. If an accession
contains the minor allele we sample from a ‘‘late-
flowering’’ phenotypic distribution of N(80, 462). If the
accession contains the major allele we sample from an
‘‘early-flowering’’ phenotypic distribution of N(32, 62)
with probability 1� p; otherwise we again sample from a
distribution of N(80, 462). We refer to p as the hetero-
geneity parameter. This construction reflects a situation
in which multiple other mutations (outside the region
of interest) or environmental effects are also influenc-
ing the phenotype. The causal SNP was chosen within a
specified range of allele frequencies and was required
to be located close to the center of the simulated geno-
mic region.

For each replicate set, tag SNPs were selected from a
randomly ascertained subsample of 20 individuals (this
number is based on an ongoing genomewide rese-
quencing study in A. thaliana that would have to serve
as source of SNPs for an actual SNP study). We utilize the
HapBlock program of Zhang et al. (2005) to identify
tag SNPs on the basis of ‘‘haplotype diversity’’ (Johnson

et al. 2001). We force the total number of tag SNPs to be
�50 to create a desired marker density of 1 every 20 kb,
which we have argued might give reasonable power
given the decay of LD in A. thaliana (Aranzana et al.
2005). The average numbers of markers across all 100
replicate sets with singletons removed were 49, 27,959
and 8127, for tag SNPs, independent SFPs, and de-
pendent SFPs, respectively. Tag SNPs gave an average
marker density of 1/20 kb while SFPs with independent
and dependent calling gave �1/35 bp and 1/120 bp,
respectively. Figure 2 shows the decay of LD measured
under the various scenarios.

We then applied the fragment-based Kruskal–Wallis
and CLASS algorithms to these simulated data. We
examined the power to detect a causal variant for the
three different data types using both tests. In addition,
we examine the effects of the trait minor allele fre-
quency. We measure power as the probability that one of
the Y markers with the most extreme test statistic values
falls within a window of a given size centered around
the position of the true functional locus. Our definition
is, of course, completely arbitrary, but is sufficient for a
proof-of-principle analysis such as this, while also allow-
ing us to compare the relative performance of the dif-
ferent data types. We set Y ¼ 2, 5, and 10, and use a
window size of 25 kb for tag SNP data type and 10 kb for
SFP data types (note that this results in a more generous
criterion for the tag-SNP data). Simulations in which no
tag SNP, or SFP, is within an appropriate window of the
functional mutation are not included in the power
calculation for that data type. We restrict our attention
to markers with minor allele frequency .5%. Tables 2–4
present results of our power study for tag SNPs and for
independent and dependent SFP calling (respectively).
We give the power for each test statistic and data type
conditioned on minor allele frequency at the QTL. In
the row labeled ‘‘null rate’’ we show results from analyses
in which phenotypic values were randomly permuted
among the samples before analysis. This gives an in-
dication of a null or false-positive rate with which loci
with extreme P-values are found in a given window size
even if there is no QTL present.

We find that SFP data allow us to perform fine map-
ping successfully and that for our particular choice of
scenarios they typically give more power for both meth-
ods. It is striking that, despite the very substantial loss of
LD in independently called SFP data (see Figure 2), our
methods are still able to extract a signal from such data.
Given the current, somewhat simplistic forms of our
SFP mapping algorithms, these results give cause for some
optimism. The relative noisiness of each SFP (compared

Figure 2.—Decay of LD according to type of data. Crosses
are SNP data, solid symbols are independently called SFPs,
and open symbols are dependently called SFPs.

TABLE 2

Power (Y ¼ 2, 5, and 10) conditioned on trait minor allele
frequency (MAF) for tag-SNPs

Kruskal–Wallis CLASS

MAF 2 5 10 2 5 10

0.05–0.10 0.36 0.53 0.72 0.40 0.51 0.71
0.10–0.15 0.52 0.65 0.76 0.51 0.71 0.80
0.15–0.20 0.56 0.73 0.82 0.64 0.77 0.89
0.20–0.25 0.65 0.79 0.93 0.79 0.86 0.93
0.25–0.30 0.63 0.86 0.90 0.76 0.88 0.96
0.30–0.35 0.77 0.84 0.92 0.83 0.89 0.93
0.35–0.40 0.84 0.93 0.95 0.94 0.94 0.96
0.40–0.45 0.75 0.87 0.93 0.88 0.95 0.97
0.45–0.50 0.85 0.90 0.95 0.91 0.96 0.96
Null rate 0.11 0.25 0.37 0.12 0.28 0.49
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to SNPs) is more than compensated for by their greater
density.

As shown in Figure 3a, similar patterns of power are
observed when we vary the heterogeneity parameter p
(expressed as a percentage) for minor allele frequencies
in the range of 10–15% and Y ¼ 10 for all mapping
methods and marker types. Dependent SFPs show the
greatest power and SFPs consistently outperform tag
SNPs. We explore the power as a function of error rates
by setting Sn-values from 0.3 to 0.7 incremented by 0.2
for a putative trait minor allele frequency between 10
and 15% and Y ¼ 10. Increasing the sensitivity will
reduce the noise of the data and thus is expected to
provide more power. Figure 3b illustrates this.

Figure 4 shows representative output from a single
run using each algorithm and analyzing the data with
independently called SFPs and a minor allele frequency
of 0.10–0.15. In both cases we clearly see the signal
above the level of noise. As we have shown, in reality
SFPs are called with a good degree of dependence, so
the signal-to-noise ratio will be much higher for real
data.

DISCUSSION

Our goal here has been to demonstrate that SFPs are a
viable alternative to SNPs for genomewide associations
studies in A. thaliana. Our methodology might also be
applied to inbred lines for other organisms, such as yeast
or mouse. SFPs are less likely to be effective in organisms
like Drosophila melanogaster, where LD often decays over
hundreds of base pairs, although it should be noted that
the SFP data are sufficiently dense that the causal poly-
morphism itself will often be detected—the ideal situation
for association mapping (Risch and Merikangas 1996).

SFPs have several advantages over SNPs. Perhaps the
most important one is cost and/or convenience. No spe-
cialized genotyping equipment is required and no SNP
development is required. Individuals can be assayed
using a single high-density array (the cost per array is
currently �$425). However, in addition, SFPs are unbi-
ased (in the sense that no SNP ascertainment is involved,
other than for the reference sequence) and encompass

TABLE 3

Power (Y ¼ 2, 5, and 10) conditioned on trait minor allele
frequency (MAF) for independently called SFPs

Kruskal–Wallis CLASS

MAF 2 5 10 2 5 10

0.05–0.10 0.44 0.67 0.78 0.42 0.63 0.73
0.10–0.15 0.54 0.75 0.85 0.58 0.71 0.85
0.15–0.20 0.68 0.82 0.92 0.66 0.83 0.93
0.20–0.25 0.84 0.91 0.96 0.85 0.93 0.97
0.25–0.30 0.86 0.95 0.97 0.83 0.96 0.97
0.30–0.35 0.88 0.97 0.99 0.91 0.95 0.99
0.35–0.40 0.89 0.97 1.00 0.90 0.97 1.00
0.40–0.45 0.87 0.98 1.00 0.90 0.97 1.00
0.45–0.50 0.92 0.99 1.00 0.93 0.98 1.00
Null rate 0.05 0.10 0.18 0.09 0.19 0.33

TABLE 4

Power (Y ¼ 2, 5, and 10) conditioned on trait minor allele
frequency (MAF) for dependently called SFPs

Kruskal–Wallis CLASS

MAF 2 5 10 2 5 10

0.05–0.10 0.64 0.78 0.86 0.67 0.80 0.87
0.10–0.15 0.76 0.85 0.89 0.96 0.99 1.00
0.15–0.20 0.80 0.90 0.96 0.99 0.99 1.00
0.20–0.25 0.92 0.95 0.98 1.00 1.00 1.00
0.25–0.30 0.91 0.93 0.95 0.99 0.99 0.99
0.30–0.35 0.91 0.97 0.97 1.00 1.00 1.00
0.35–0.40 0.94 0.97 0.99 0.99 0.99 0.99
0.40–0.45 0.98 1.00 1.00 0.99 0.99 0.99
0.45–0.50 0.94 0.98 1.00 1.00 1.00 1.00
Null rate 0.04 0.08 0.12 0.02 0.05 0.07

Figure 3.—Power conditioned on the heterogeneity pa-
rameter p for minor allele frequency in the 10–15% range
and Y ¼ 10. (NULL indicates the false-positive rate.) (a)
Power shown for Kruskal–Wallis (KW) and CLASS methods
on tag SNPs, independent SFPs, and dependent SFPs. (b)
Power shown for KW and CLASS with varying sensitivity
(Sn) on independent SFPs.
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several different types of polymorphisms, including repeat-
length polymorphisms and larger insertion–deletions.
We recently showed how causative deletions can be re-
vealed by SFP analysis (Werner et al. 2005).

Clearly, the methods in this article, although success-
ful, are somewhat simplistic. For example, in the future,
it is also possible that one would have site- or sequence-
specific estimates of sensitivity and specificity from an
external data source, in which case it would then be a
simple matter to extend the methods we present here to
reflect those estimates. One might also explicitly allow
for the possibility of multiple SNPs occurring within a
single SFP probe, although our article suggests that this
is not a prerequisite for successful analysis.

The authors also gratefully acknowledge the comments of the
reviewers and their role in improving this manuscript. This work was
funded mainly by National Institutes of Health grants GM069890-01A1
and HG002790-01A1. The sequencing data were produced by National
Science Foundation grant DEB-0115062.
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