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ABSTRACT

Determining the dimensionality of G provides an important perspective on the genetic basis of a
multivariate suite of traits. Since the introduction of Fisher’s geometric model, the number of genetically
independent traits underlying a set of functionally related phenotypic traits has been recognized as an
important factor influencing the response to selection. Here, we show how the effective dimensionality of
G can be established, using a method for the determination of the dimensionality of the effect space from
a multivariate general linear model introduced by Amemiya (1985). We compare this approach with two
other available methods, factor-analytic modeling and bootstrapping, using a half-sib experiment that
estimated G for eight cuticular hydrocarbons of Drosophila serrata. In our example, eight pheromone traits
were shown to be adequately represented by only two underlying genetic dimensions by Amemiya’s
approach and factor-analytic modeling of the covariance structure at the sire level. In contrast, boot-
strapping identified four dimensions with significant genetic variance. A simulation study indicated that
while the performance of Amemiya’s method was more sensitive to power constraints, it performed as well
or better than factor-analytic modeling in correctly identifying the original genetic dimensions at mod-
erate to high levels of heritability. The bootstrap approach consistently overestimated the number of
dimensions in all cases and performed less well than Amemiya’s method at subspace recovery.

GENETIC variance–covariance (G) matrices conve-
niently summarize the genetic relationships among

a suite of traits and are a central parameter in the
determination of the multivariate response to selection
(Lande 1979). Although individual elements of G,
single-trait genetic variances along the diagonal and
bivariate genetic covariances off the diagonal, are fre-
quently the subject of hypothesis testing and biological
interpretation, such a compartmentalized approach to
the analysis of a set of functionally related traits is of
limited value (Pease and Bull 1988; Charlesworth

1990; Blows and Hoffmann 2005). The multivariate
pattern of genetic covariance represented by G can be
analyzed by determining the eigenstructure of this sym-
metrical matrix and, subsequently, how the genetic
variance is partitioned among genetically independent
traits. Of particular importance is the rank of G, that is,
how many genetically independent traits are repre-
sented by a set of functionally related phenotypic traits,
a question that can be traced back to Fisher’s (1930)
geometric model (Orr 2000).

The distribution of the eigenvalues of G (the genetic
variances of the genetically independent traits defined
by the eigenvectors) allows an unambiguous definition
of a genetic constraint. A singular G matrix (one or

more of the eigenvalues are zero) suggests that an abso-
lute genetic constraint exists (Pease and Bull 1988;
Blows and Hoffmann 2005; Mezey and Houle 2005)
and the effective dimensionality of G may be less than
the number of traits measured. In turn, the eigenvectors
of G have become important components of a number
of approaches to the study of multivariate genetic con-
straints (Schluter 1996; Blows et al. 2004; McGuigan

et al. 2005) and investigations of how selection may
change the genetic variance (Blows et al. 2004; Hine

et al. 2004).
Importantly, the singular nature (or otherwise) of G

cannot be determined from a cursory viewing of the
elements of G; G may be still be singular in the presence
of genetic variance in all individual traits, for instance
(Dickerson 1955; Charlesworth 1990). Determining
the dimensionality of a covariance matrix, and the sub-
sequent estimation of nonnegative definite covariance
matrices, has received considerable attention in the statis-
tical literature (Amemiya 1985; Anderson and Amemiya
1991; Calvin and Dykstra 1991; Mathew et al. 1994;
Sun et al. 2003). However, the effective dimensionality of
G has been addressed only on a few occasions, primarily
using resampling approaches to generate confidence
intervals for the eigenvalues of G (Kirkpatrick et al.
1990; Mezey and Houle 2005) and to find whether one
or more eigenvalues of G were significantly different
from zero (Kirkpatrick et al. 1990). In a recent de-
parture from this approach, factor-analytic modeling has
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been adopted as a way of fitting genetic principal com-
ponents in a framework that will also allow direct hy-
pothesis tests of the number of genetic dimensions
required to explain genetic covariation among environ-
ment and traits (Thompson et al. 2003; Kirkpatrick
and Meyer 2004).

Here, we assess the utility of three methods for deter-
mining the dimensionality of G. First, we introduce how
the effective dimensionality of G can be established,
using a method for the determination of the dimen-
sionality of the effect space from a multivariate general
linear model (Amemiya 1985; Amemiya et al. 1990;
Anderson and Amemiya 1991). We outline how the
effective number of dimensions of a genetic covariance
matrix obtained from either one or two random factor
experimental designs commonly used in evolutionary
studies can be determined. We then show how the
original genetic covariance matrix can be partitioned so
that a new, nonnegative definite covariance matrix can
be constructed that contains only those genetic dimen-
sions that have strong statistical support. Conveniently,
this method requires calculating only the eigenvectors
and eigenvalues of a symmetrical matrix without itera-
tion, an approach that can be implemented in many
commonly used software packages. Second, factor-
analytic modeling in a restricted maximum-likelihood
framework is utilized to demonstrate how dimensional-
ity may be determined in many genetic experimental
designs using a mixed-model approach, again resulting
in a guaranteed positive semidefinite estimate of G.
Finally, the bootstrap approach, recently used to estab-
lish full rank in Drosophila melanogaster wing shape by
Mezey and Houle (2005), is implemented.

We compare the performance of all three methods in
a simulation study conducted on 100 simulated data sets
of known dimensionality, as well as applying them to a
multivariate set of contact pheromones (cuticular hy-
drocarbons) from a standard half-sib breeding design
using D. serrata. We have been investigating the effect of
directional selection on the genetic variance in male
sexually selected display traits of D. serrata (Blows et al.
2004; Hine et al. 2004). In this system, multiple male
cuticular hydrocarbons act as contact pheromones and
are under linear sexual selection. The vast majority of
genetic variance in these male traits was found to be
orientated in such a way that it was almost orthogonal to
the direction of sexual selection in both a laboratory-
adapted (Blows et al. 2004) and a field (Hine et al.
2004) population. These results suggested that sexual
selection might have depleted genetic variance, result-
ing in an ill-conditioned G matrix that was effectively
not of full rank.

MATERIALS AND METHODS

Method I: the dimensionality of the effect space from a
linear model: The dimensionality of a covariance matrix: To

begin, consider the simple case of an experimental design that
could be analyzed appropriately by a one-way multivariate
analysis of variance; for example, multiple traits are measured
on a number of individuals from a set of families. In this case,
extraction of the between- and within-mean square matrices
(mbb and mww , respectively) is the first step in the estimation of
the between-source (family) variance–covariance matrix (Sbb),
using

Sbb ¼ r�1ðmbb � mwwÞ; ð1Þ

where r is the coefficient of the variance components at the
between-source level. The characteristic roots (li) of mbb in the
metric of mww can be found by solving

jmbb � limww j ¼ 0 ð2Þ

(Amemiya 1985). If li $ 1 for all i ¼ 1, 2, . . . , p, then the
covariance matrix Sbb is nonnegative definite. If any li , 1,
then Sbb is indefinite as will often be the case with estimates of
G (Hill and Thompson 1978). Solving the polynomial in l
represented by (2) requires specialized software. Instead, one
can use linear algebra to find the character roots of mbb in the
metric of mww as defined by the eigenvalues (li) of

LmbbL
T;

where L is a lower triangular matrix and defined as the
transpose inverse of U (upper triangular), which in turn is the
Cholesky root of mww (i.e., mww ¼ UTU, LT ¼ U�1). Note that
the notation here differs from that of Amemiya (1985) to avoid
confusion with lower (L) and upper (U) matrix notation. The
classical Cholesky decomposition is a lower triangular matrix
(A ¼ LLT), but many common mathematical and statistical
programs (such as Matlab and SAS IML) use the upper
triangular matrix convention (A ¼ UTU). Be aware of which
convention your program of choice uses and ensure that the
inverse of the Cholesky root is arranged in lower triangular
form to define L.

When the existence of genetic constraints is of interest, the
initial null hypothesis will be full rank (p) as a G matrix of full
rank indicates there are no genetic constraints on the evo-
lution of the set of traits. Let k be the number of characteristic
roots such that li $ 1. Amemiya et al. (1990; Anderson and
Amemiya 1991) provide a way of determining how many of
the k dimensions are supported statistically to determine the
effective number of dimensions (m). As a first step, the null
hypothesis thatm# k can be accepted immediately, because, at
most, there is evidence for the same number of dimensions as
there are li$ 1. Next, we test the new null hypothesis that m#
k � 1. If this null hypothesis is accepted, as outlined below, we
continue to test m# k � 2 and so on until one in the series of
null hypotheses is rejected or the null hypothesis that m# 0 is
accepted, indicating a lack of support for any effect.

To test the null hypothesis that m# b (0 , b, k� 1), order
the li$ 1 from greatest to smallest (l1$l2$ � � �$lk$ 1) and
to each apply the equation

f ðlÞ ¼ �M log l1 ðM 1N Þlog
Ml1N

M 1N

� �
;

where M and N are the degrees of freedom at the effect
(between) and error (within) levels, respectively. The test
statistic for the current null hypothesis is then

Y ¼
Xk
i¼b11

f ðliÞ: ð3Þ
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To determine whether to reject the null hypothesis, the test
statistic can be compared to the distribution of Y for q ¼ p � m
in Table 1 of Amemiya et al. (1990). Rejecting the null
hypothesis m # b indicates that there is evidence for b 1 1
dimensions.

Constructing a nonnegative estimate of a covariance matrix: It is
possible to construct a nonnegative matrix of rank k from the
eigenvectors corresponding to those li $ 1 (Amemiya 1985).
Let the characteristic vectors of mbb in the metric of mww from
(2) form the columns of a matrix T. Define the p3 p matrix
P as

P ¼ ðTTÞ�1

(Amemiya 1985). Using P we can now express the original
difference mbb � mww as

mbb � mww ¼ PðL� IppÞPT;

where L ¼ diagfl1; l2; . . . ; lpg and Ipp is the p3 p identity
matrix. The characteristic roots (li) of mbb in the metric of mww

can be used to partition mbb � mww into a nonnegative definite
matrix and a negative definite matrix,

mbb � mww ¼ PkðLk � IkkÞPT
k 1Pl ðLl � Ill ÞPT

l ; ð4Þ

where Pk is a p3 k matrix containing the first k columns of
P, Pl contains the remaining p � k columns of P, Lk ¼
diagfl1; l2; . . . ; lkg, and Ll ¼ diagflk11; lk12; . . . ; lpg.
The first term on the right-hand side of (4) then represents
the nonnegative definite portion of mbb � mww and the second
term represents the negative definite portion. By dropping the
second term representing the negative definite portion, the
negative eigenvalues are set to zero. The remaining term is
then the projection of mbb �mww in the metric of mww onto the
set of all nonnegative definite matrices (Amemiya 1985).

Again, in practice it is easier not to deal with estimating the
characteristic vectors of mbb in the metric of mww using (2).
Alternatively, let Q be the matrix containing the eigenvectors
of LmbbL

T as columns (Amemiya 1985). Define the p3 p
matrix P (Amemiya 1985):

P ¼ L�1Q:

Having established the effective number of dimensions, we
can construct a new covariance matrix of rank m that is
nonnegative definite and contains only the dimensions
supported by the hypothesis-testing procedure, rather than
of rank k from the eigenvectors corresponding to those li$ 1.
The first m columns of P (forming the p3m matrix Pm) are
associated with the characteristic roots of mbb in the metric of
mww that are statistically supported. Pm is used to construct a
nonnegative definite covariance matrix of rank m by

Ŝbb ¼ r�1PmðLm � ImmÞPT
m ; ð5Þ

where Lm ¼ diagfl1; l2; . . . ; lmg and Imm is the m3m iden-
tity matrix. The first m eigenvectors of Ŝbb represent the
dimensions of the original covariance matrix that have strong
statistical support as defined by the hypothesis-testing pro-
cedure outlined above. The remaining eigenvectors will
have eigenvalues equal to zero. Amemiya (1985, appendix)
goes on to show that (5) is equivalent to the restricted maximum-
likelihood estimator of Ŝbb for balanced experimental designs.

Method II: factor-analytic modeling: The dimensionality of a
covariance matrix: Although Amemiya’s approach allows the
determination of the number of dimensions of a G matrix, it is
restricted in the experimental designs that can be accommo-

dated by the approach. Factor-analytic modeling is commonly
used to determine the minimum number of factors (dimen-
sions) required to explain the pattern of covariation among a
set of variables (Krzanowski and Lai 1988). Although not
explicitly the goal of their development of factor-analytic
modeling for fitting genetic principal components (Kirkpatrick
and Meyer 2004; Meyer and Kirkpatrick 2005), factor-
analytic modeling provides an alternative way to determine
the dimensionality of G matrices because likelihood-ratio tests
can be made of the improvement in fit as each principal com-
ponent is added (or subtracted) from the model (Kirkpatrick
and Meyer 2004; Meyer and Kirkpatrick 2005). This ap-
proach displays great promise as it allows for almost any
experimental design to be used, and tests of dimensionality
can be conducted within a restricted maximum-likelihood
framework.

Kirkpatrick and Meyer (2004) introduced a new algo-
rithm to fit genetic principal components that we do not
attempt to implement here. Rather, as suggested by these
authors, alternative algorithms are available, and here we out-
line a readily available approach using standard statistical soft-
ware (Proc Mixed in SAS). In particular, the reduced-rank
model in which the specific variances are assumed to be zero
can be specified in Proc Mixed for the level of interest that
contains the additive genetic variance components (the sire
level in a half-sib design, for example), using the factor-
analytic model [FA0(m)] covariance structure. At the genetic
level of interest then, a reduced-rank covariance matrix Ŝ is
given by

Ŝ ¼ LLT; ð6Þ

where L(p3m) is a lower triangular matrix of constants that
represent the factor loadings of the m latent variables. A series
of nested hypothesis tests may be conducted to determine how
many genetic dimensions are required to explain the observed
patterns of genetic covariance. A full model is first fit (m ¼ p),
and factors are sequentially dropped until the model achieves
a significantly worse fit compared to the previous model (in
which it is nested), indicating that the amount of variation
accounted for by the tested factor is sufficient for the factor
to be retained. Since L is a lower triangular matrix, one less
parameter is estimated in each subsequent column. Therefore,
the degrees of freedom associated with each log-likelihood-
ratio test are determined by the change in the number of pa-
rameters required in L given by p � m 1 1.
Constructing a nonnegative estimate of a covariance matrix:

Conveniently, fitting the reduced model will guarantee a non-
negative definite variance–covariance matrix with the desired
number of dimensions. For example, fitting m# p factors will
result in a G matrix that is positive semidefinite with m di-
mensions, even if a number of the eigenvalues of the original
G matrix were negative. Once the number of factors to be
retained is established, the reduced-rank covariance matrix, Ŝ,
is obtained by multiplying the matrix of factor loadings by its
transpose as in (6).

Method III: bootstrapping of the eigenvalues of G: Mezey

and Houle (2005) attempted to determine the dimensionality
of G by generating a bootstrapped sample of the eigenvalues
of the original G matrix. Here, we implement this bootstrap
procedure to enable a comparison with the other two methods
we present. Bootstrapping was conducted by sampling sires
(and all their progeny as blocks) with replacement, generat-
ing 1000 estimates of G. The eigenvalues of each G were then
calculated and mean eigenvalues and their 95% confidence
intervals are presented. Constructing a nonnegative defi-
nite matrix from this approach is not possible as it does not
allow a determination of the exact dimensions that have
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received statistical support, a limitation that we discuss in
detail below.

Simulation: To assess the relative effectiveness of the three
methods, we conducted a simulation using 100 data sets.
For simplicity and to reduce computational times we did not
simulate a hierarchical data structure as in the half-sib ex-
periment, but rather each data set consisted of 100 ‘‘sires,’’
each with 6 ‘‘offspring,’’ resulting in 600 offspring for which
eight traits were generated. To generate data with known
dimensionality at the sire level for each data set, we first
generated an 8 3 2 factor matrix, L, to represent the factor
loadings of two latent variables, with randomly drawn con-
stants in all elements except L1;2, which was set to zero as the
pivot. We then multiplied L by its transpose (as in factor-
analytic modeling, Equation 6) to construct the 83 8 ‘‘genetic’’
covariance matrix. One hundred random linear combinations
of the first 2 eigenvectors of G, where the random multipliers
were drawn from distributions of mean zero and variance
equal to the corresponding eigenvalue, were produced to
represent 100 sire ‘‘breeding values.’’ One hundred simulated
sets of breeding values for eight traits that could be completely
described by two different latent variables were generated
using this process.

We conducted the simulation on four different approx-
imate levels of heritability: 0.75, 0.50, 0.25, and 0.10. To
generate offspring phenotypes with an average heritability of
�0.75, we generated for each simulated data set 600 (100 sires
by six offspring) rows and eight columns of random numbers
independently distributed with mean 0 and variance 1.5. The
breeding value of each sire was added to six of these random
numbers to create six offspring values for that sire. To ob-
tain heritabilities of �0.50, 0.25, and 0.10, the diagonals of
the ‘‘error’’ covariance matrix were set at 10, 30, and 100,
respectively.

We applied Amemiya’s method and factor analytic model-
ing to the same 100 data sets for each heritability level. Boot-
strapping was initially applied to the 10 and 75% heritability
treatments, and because the results differed little between the
two extreme treatments, and to save on computational time,
we did not proceed to apply this method to the intermediate
heritability treatments. For Amemiya’s method, variance com-
ponents were estimated using least-squares, using Proc GLM
in SAS as the data sets were balanced. Factor-analytic modeling
was conducted using Proc Mixed in SAS, with an uncon-
strained covariance structure modeled at the ‘‘within-sire’’
level and the factor-analytic structure at the sire level. Boot-
strapping of each data set was conducted by sampling sires with
replacement, and 1000 bootstrap replicates of each of the 100
data sets were generated.

RESULTS

Here, we have reanalyzed the data from the half-sib
experiment described in Blows et al. (2004). In this ex-
periment 66 sires were each mated to up to three dams,
resulting in 367 offspring for which eight contact phero-
mones were analyzed. To this data set we have applied
each of the three methods for determining the dimen-
sionality of the additive genetic variance–covariance
matrix. Although this experiment has not been de-
signed to allow an exhaustive search for the presence of
very small levels of genetic variance (Mezey and Houle

2005), it serves to illustrate the implementation and rela-
tive performance of the three methods in an experi-
ment of a size commonly found in evolutionary studies.

Method I: the dimensionality of the effect space
from a linear model: The model for this experimental
design was the standard nested MANOVA model, with
dams nested within sires. The mean square matrices
msire (r¼ 5.4218), mdam (r¼ 1.8326), and mwithin can be
found in Table 1. The approach outlined by Amemiya
(1985) for such a model differed in one aspect from that
presented above for the one-way model. Here, the ap-
proach was applied in a two-step process, by first finding
that part of the dam-level covariance matrix (Sdam) that
was nonnegative definite and had strong statistical sup-
port. By using mdam and mwithin in the above procedure,
the ordered eigenvalues of LmdamLT were 3.260, 2.464,
2.115, 1.913, 1.726, 1.277, 1.164, and 1.003. Since all
li. 1,Sdam is nonnegative definite, although a number of
the eigenvalues are quite small. We began the hypothesis-
testing procedure by accepting the null hypothesis that
m # 8, and each subsequent null hypothesis was
accepted until m # 2, which was rejected (Y ¼ 22.032,
P, 0.05), suggesting that Sdam has three dimensions
that have statistical support. A new dam-level covariance
matrix Ŝdam was constructed with a rank of 3, which
allowed the construction of m̂dam by rearranging (1) to
m̂dam ¼ r Ŝdam 1Sww , where Sww ¼ mwithin.

The dimensionality of Ssire (Table 2) was determined
by following the same procedure, now using msire and
the Cholesky decomposition of m̂dam. The ordered eigen-
values of LmsireLT were 3.542, 3.001, 2.580, 1.506, 1.436,
1.046, 0.941, and 0.638. Since two roots were ,1, the
null hypothesis that m # 6 was accepted. Each sub-
sequent null hypothesis was accepted until m# 1, which
was marginally nonsignificant (Y ¼ 24.410, P ¼ 0.059),
where the exact probability level was derived from
Equation 4 in Amemiya et al. (1990), suggesting that
there was evidence for two dimensions of genetic var-
iance in the set of eight pheromones.

The two genetic dimensions supported by the analysis
are the first two principal components of the con-
structed nonnegative definite matrix Ŝsire (Table 2)
and are displayed in Table 3. The original G matrix
presented in Blows et al. (2004) was indefinite with
three negative eigenvalues. Here, it can be seen that the
two dimensions supported by the current analysis are
very similar to the first two principal components of the
original G matrix (Table 3). A more formal subspace
comparison (Krzanowski 1979; Blows et al. 2004)
indicated the two two-dimensional subspaces in Table 3
are indeed very similar. The comparison yields a value of
1.76 for the sum of the eigenvalues of the S matrix
(hereon represented as

P
lsi) defined in Equation 3 in

Blows et al. (2004), which in this case ranges from 0 for
orthogonal subspaces to 2 for coincident subspaces.

Method II: factor-analytic modeling: Factor-analytic
models were run constraining the covariance matrix
at the sire level to be from a single dimension to full
rank (eight dimensions), and model fitting statistics
are displayed in Table 4. Of the eight models, the

1138 E. Hine and M. W. Blows



two-dimensional model, FA0(2), displayed the lowest
value of the Akaike information criterion (AIC), sug-
gesting that overall, this was the model of best fit. The
series of nested hypothesis tests indicated that moving
from two dimensions to one resulted in the first
significant increase in the log likelihood (x2 ¼ 17.4,
d.f. ¼ 7, P ¼ 0.015), again suggesting that the two-
dimensional model was the favored model. Eigenanalysis
of the resulting covariance matrix constrained to be two-
dimensional revealed that the two significant genetic
dimensions were almost identical to the two dimensions
found to have statistical support by Amemiya’s approach
(Table 3). A formal subspace comparison indicated that
the two dimensions from each of these covariance ma-
trices described almost coincident subspaces (

P
lsi ¼

1.93 of 2).
Method III: bootstrapping of the eigenvalues of G:

Mean eigenvalues from the bootstrapped sample of
each of the eigenvectors are presented in Table 5, along
with the fifth percentile value that represents the lower
95% confidence interval in this circumstance as the sig-
nificance of a variance component from zero is a one-
tailed hypothesis. The lower 95% confidence interval
does not overlap zero for the first four eigenvectors,
indicating that significant genetic variance is present in

these four dimensions. The next eigenvector, g5, has a
positive mean eigenvalue, but the lower 95% confidence
interval overlaps zero and equates to a significance level
of P ¼ 0.187, indicating that there is no evidence for
genetic variance in this dimension.

Simulation: Amemiya’s method successfully identi-
fied two dimensions at the sire level in 99 of the 100 data
sets in the 75% heritability treatment. The sole remain-
ing case was identified as having only a single dimension
and was the data set that displayed the most extreme
condition index (here defined as the ratio of the first
to the second eigenvalue). This method was less effec-
tive at lower heritability, with only 22 cases correctly iden-
tified as two-dimensional in the 10% heritability treatment.
All other cases were identified as one-dimensional,
indicating Amemiya’s approach consistently underesti-
mated the number of dimensions when heritability
was low.

In contrast, factor-analytic modeling was relatively
consistent in its ability to identify the correct number of
dimensions across heritability treatments (Figure 1),
although rejection of the two-dimensional model oc-
curred in at least 30% of cases in each heritability
treatment. The behavior of factor-analytic modeling
with a change in heritability was more complex than

TABLE 1

Mean squares matrices for the sire, dam, and error levels (msire, mdam, and mwithin) of the genetic example

Z,Z-5,9-C25:2 Z-9-C25:1 Z-9-C26:1 2-Me-C26 Z,Z-5,9-C27:2 2-Me-C28 Z,Z-5,9-C29:2 2-Me-C30

msire

Z,Z-5,9-C25:2 1.42485
Z-9-C25:1 1.17053 1.72790
Z-9-C26:1 1.04237 1.06351 1.50895
2-Me-C26 0.97056 0.77925 0.83568 1.87726
Z,Z-5,9-C27:2 1.29040 1.16890 1.24746 1.09149 1.94400
2-Me-C28 1.07244 1.01256 1.00965 1.47972 1.20990 1.58924
Z,Z-5,9-C29:2 0.96852 0.82302 0.88823 1.10838 1.25591 1.12072 1.43868
2-Me-C30 1.00050 0.98903 0.95456 1.13624 1.12015 1.45576 0.99213 1.47852

mdam

Z,Z-5,9-C25:2 1.22593
Z-9-C25:1 0.87826 1.09057
Z-9-C26:1 0.86307 0.74886 1.24298
2-Me-C26 0.79774 0.56762 0.62148 1.11744
Z,Z-5,9-C27:2 0.88252 0.71058 0.84255 0.69857 1.15926
2-Me-C28 0.99639 0.79044 0.86157 0.98433 0.97022 1.25831
Z,Z-5,9-C29:2 0.68691 0.64920 0.58280 0.49107 0.76609 0.73672 1.19128
2-Me-C30 0.95055 0.76700 0.86477 0.75362 0.96116 1.19387 0.75942 1.27590

mwithin

Z,Z-5,9-C25:2 0.61504
Z-9-C25:1 0.50150 0.62708
Z-9-C26:1 0.44486 0.37147 0.61021
2-Me-C26 0.27630 0.23740 0.24827 0.55274
Z,Z-5,9-C27:2 0.36139 0.32113 0.35733 0.29132 0.51862
2-Me-C28 0.39277 0.36746 0.37803 0.43972 0.37528 0.56743
Z,Z-5,9-C29:2 0.25354 0.22090 0.20932 0.18974 0.29587 0.27775 0.67254
2-Me-C30 0.39763 0.36972 0.39217 0.33342 0.37951 0.55363 0.30152 0.60817
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Amemiya’s approach, with overestimation of the num-
ber of dimensions at high heritability, with increasing
underestimation of dimensionality at lower heritabil-
ities (Table 6). One possible explanation for the failure
of factor-analytic modeling to identify the correct
number of dimensions was if the search algorithm had
been captured by a local peak on the likelihood surface.
To test this, we reran a subset of cases using the correct
factor-analytic structure as the starting values. REML it-
erated to the same solution as when the default MIVQUE
starting values were used, suggesting that the global
maximum likelihood had been found in these cases.

To determine the effectiveness of Amemiya’s method
and factor-analytic modeling in identifying the correct
genetic dimensions, we investigated the ability of the
two approaches to identify the correct two-dimensional
subspace in the 75% heritability treatment in which
Amemiya’s approach had a 99% success rate. We com-
pared the two-dimensional subspaces of the estimated

positive semidefinite covariance matrices from the two
methods with the subspace defined by the first two
eigenvectors of the rescaled simulated genetic covari-
ance matrix (to account for orientation changes due to
the standardization of the traits) for each data set.
Both Amemiya’s method and factor-analytic modeling
were highly successful in uncovering the correct two-
dimensional genetic subspace, with the mean values ofP

lsi (6SD) being 1.982 6 0.102 and 1.944 6 0.106,
respectively. Figure 2 shows the relationship between
the two methods in their ability to estimate the correct
two-dimensional subspace. When factor-analytic model-
ing incorrectly indicated three dimensions, the two-
dimensional subspace recovered by this method was
consistently a poorer match to the correct subspace
(Figure 2A). Including the third dimension in the
subspace comparison (Figure 2B) improved the re-
covery of the correct subspace to a level comparable to
that in Amemiya’s method. Therefore, in the data sets in

TABLE 2

Original (italics, above diagonal) and reduced-rank (non-italics, below diagonal) estimates of the sire covariance matrix
(Ssire and Ŝsire, respectively)

Z,Z-5,9-C25:2 Z-9-C25:1 Z-9-C26:1 2-Me-C26 Z,Z-5,9-C27:2 2-Me-C28 Z,Z-5,9-C29:2 2-Me-C30

Z,Z-5,9-C25:2
0.06050

0.06847 0.04430 0.04326 0.07116 0.02292 0.05205 0.01543
0.07640

Z-9-C25:1 0.07032
0.12849

0.06608 0.04943 0.07991 0.04690 0.03170 0.04569
0.06584

Z-9-C26:1 0.06020 0.05558
0.05317

0.04265 0.07090 0.02855 0.05923 0.01684
0.04746

2-Me-C26 0.08862 0.09133 0.07138
0.14902

0.07267 0.09863 0.11609 0.07362
0.18794

Z,Z-5,9-C27:2 0.10189 0.09018 0.07971 0.08682
0.14225

0.04074 0.08510 0.02312
0.14744

2-Me-C28 0.05722 0.06034 0.04631 0.13323 0.05168
0.06544

0.07143 0.04935
0.09535

Z,Z-5,9-C29:2 0.07255 0.06940 0.05759 0.10705 0.08832 0.07231
0.05139

0.04071
0.07505

2-Me-C30 0.04187 0.04508 0.03403 0.10561 0.03482 0.07615 0.05510
0.03629
0.06117

TABLE 3

The first and second principal components (PC) of the original Ssire, the AMEMIYA (1985) reduced-rank estimate of Ŝsire,
and the factor-analytic model containing two genetic dimensions

Ssire Ŝsire FA0(2)

PC1 PC2 PC1 PC2 PC1 PC2

Z,Z-5,9-C25:2 0.27625 �0.29635 0.32778 0.26629 0.23243 0.31928
Z-9-C25:1 0.36458 �0.46562 0.31665 0.15944 0.13215 0.18153
Z-9-C26:1 0.27934 �0.24780 0.26066 0.19619 0.25510 0.21317
2-Me-C26 0.47941 0.53674 0.51058 �0.43718 0.53639 �0.43631
Z,Z-5,9-C27:2 0.43758 �0.37945 0.38912 0.62990 0.44929 0.64238
2-Me-C28 0.31447 0.33435 0.34787 �0.38635 0.36325 �0.36156
Z,Z-5,9-C29:2 0.37784 0.19407 0.34633 0.05226 0.42989 �0.01368
2-Me-C30 0.22311 0.22900 0.26698 �0.35395 0.23892 �0.29276
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which factor-analytic modeling incorrectly identified
three dimensions, the third dimension does in fact
contain some proportion of the originally defined two-
dimensional genetic subspace. Figure 2C shows that for
those cases where factor-analytic modeling correctly
indicated that two dimensions existed, there is an almost
perfect relationship between the two methods.

Bootstrapping did not recover the correct number of
dimensions in any of the 100 data sets, consistently
overestimating the number of dimensions with 21, 78,
and 1 cases having three, four, and five dimensions,
respectively, at the 75% heritability level (Table 6).
At the 10% heritability level bootstrapping again con-
sistently overestimated the rank of G, although the
number of dimensions identified decreased overall,
with 42 and 58 cases of three and four dimensions,
respectively. To assess the performance of bootstrap-
ping in recovering the correct subspace within the
dimensions identified as being significant, the mean
bootstrap estimate of G was compared to simulated
(rescaled, as above) G. Bootstrapping performed better
for the higher heritability level, with mean values of

P
lsi (6SD) being 1.994 6 .017 and 1.781 6 0.245 at

the 75 and 10% heritability levels, respectively.

DISCUSSION

Determining the dimensionality of G matrices: The
effective dimensionality of a set of traits plays a central
role in the genetics of adaptation (Fisher 1930; Orr

2000) and the definition of absolute multivariate ge-
netic constraints (Pease and Bull 1988; Blows and
Hoffmann 2005). Here, we have investigated three
methods for the determination of the effective dimen-
sionality of a G matrix. Of the three methods, the sim-
ulation study indicated that Amemiya’s approach
performed best at higher heritabilities, but consistently
underestimated dimensionality at lower heritabilities
and was particularly biased in the 10% heritability treat-
ment. Factor-analytic modeling tended to overestimate
the number of genetic dimensions by 1 at higher heri-
tabilities and underestimate at lower heritabilities by the
same magnitude in a substantial number of cases. Al-
though the performance of factor analysis in recovering
the original genetic dimensions dropped off at the low-
est heritability level, the two methods recovered the same
two-dimensional subspace when the correct number of
dimensions was indicated by factor-analytic modeling
for the 25, 50, and 75% heritability treatments, suggest-
ing a close mathematical association between the two
approaches. The precise mathematical relationship be-
tween the two methods deserves further attention.

The simulation study indicated that bootstrapping
will consistently overestimate the dimensionality of the

TABLE 4

Model fit statistics for the nested series of factor-analytic
models testing the dimensionality of the sire-level

covariance matrix using REML

Model fit

�2 LL AIC No. of parameters

FA0(8) 6296.3 6436.3 73
FA0(7) 6296.3 6436.3 72
FA0(6) 6296.3 6434.3 70
FA0(5) 6296.3 6430.3 67
FA0(4) 6296.5 6422.5 63
FA0(3) 6298.0 6414.0 58
FA0(2) 6308.1 6410.1 52
FA0(1) 6325.5 6415.5 45

LL, log likelihood.

TABLE 5

Mean bootstrap eigenvalue and 5th percentile bootstrap
eigenvalue for the half-sib genetic data

Bootstrapped sample statistics

Eigenvector Mean eigenvalue 5th percentile eigenvalue

gmax 0.523 0.209
g2 0.147 0.095
g3 0.069 0.038
g4 0.024 0.007
g5 0.006 �0.002
g6 �0.005 �0.020
g7 �0.032 �0.065
g8 �0.088 �0.200

Figure 1.—Relationship between heritability and the cor-
rect identification of a two-dimensional subspace in the sim-
ulation. Open circles, factor-analytic modeling; solid circles,
Amemiya’s approach.
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G matrix, which is likely to be a consequence of two
related limitations. First, each bootstrapped estimate of
the covariance matrix will have a unique set of eigen-
vectors. Although the first eigenvalue will always be the
largest in each replicate, the eigenvectors associated
with each of the eigenvalues will be different; how dif-
ferent will depend mainly on the sample size, but even
with very large samples the same trait combination
(eigenvector) is unlikely to be replicated exactly in any
of the bootstrapped samples. Since the eigenvalue is
simply an estimate of the genetic variance, this is analo-
gous to estimating the genetic variance of a different
trait in each of the bootstrapped replicates, but treating
the eigenvalues for hypothesis testing as if they esti-
mated the genetic variance in the same trait each time.
Second, if the eigenvalues of the original covariance
matrix are distributed in such a way that some are very
close in size, the order of the eigenvectors may change
in different bootstrapped replicates (Cohn 1999; Peres-
Neto et al. 2005), adding to the variation in the trait
combinations that will be associated with each ranked
eigenvalue. This is likely to be a particular problem with
eigenvectors associated with small eigenvalues.

Either of these problems will result in like-sized
eigenvalues of bootstrapped replicates being binned
together for the calculation of the confidence interval

for an estimate of an original eigenvalue, even though
each estimate reflects a different trait combination. In
this way, confidence intervals will be estimated as being
small as the variance in each bin (i.e., first eigenvalue,
second eigenvalue, etc.) is determined only by the rank
of the eigenvalue for each bootstrapped replicate, rather
than by how much genetic variance is present for a
particular trait combination in each bootstrapped repli-
cate. Such an approach will tend to uncover as many
statistically significant dimensions as there were positive
eigenvalues in the original estimate of the G matrix; in
our case, five positive eigenvalues were present in the
original G matrix, and four dimensions had nonzero
eigenvalues determined by bootstrapping. This pattern
was also present in the results from the simulation study;
in 63 (75% heritability treatment) and 70 (10% heri-
tability treatment) cases, one less dimension than the
number of positive eigenvalues was recovered.

Although the factor-analytic approach provides the
most flexibility for determining the dimensionality of
G from virtually any experimental design, Amemiya’s
approach may provide an important alternative under
some conditions. One such situation is that in practice
REML often does not converge with the inclusion of
a large number of traits. For laboratory-based quantita-
tive genetic or genomic experiments based on simple

TABLE 6

Summary of simulation results

Dimensions identified

h2 Method Statistic 0 1 2 3 4 5

0.1 A n 8 70 22 0 0 0P
lsi 0 0.98 1.95 — — —

FA n 0 28 61 11 0 0P
lsi — 0.94 1.76 1.93 — —

BS n 0 0 0 42 58 0P
lsi — — — 1.68 1.86 —

0.25 A n 0 29 71 0 0 0P
lsi — 0.98 1.96 — — —

FA n 0 12 70 18 0 0P
lsi — 0.99 1.92 1.98 — —

0.5 A n 0 11 89 0 0 0P
lsi — 0.99 1.98 — — —

FA n 0 3 70 27 0 0P
lsi — 0.99 1.94 1.99 — —

0.75 A n 0 1 99 0 0 0P
lsi — 0.999 1.99 — — —

FA n 0 1 67 32 0 0P
lsi — 0.999 1.988 1.84 — —

BS n 0 0 0 21 78 1P
lsi — — — 1.996 1.994 1.997

A, Amemiya’s method; FA, factor analytic modeling; BS, bootstrap method. The Krzanowski subspace comparison scores for
estimated vs. sampled G are denoted by

P
lsi. The number of simulated data sets for which the method of interest identified

a given number of dimensions is denoted by n. No method identified more than five dimensions out of the possible eight.
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breeding designs with relatively balanced data sets,
Amemiya’s approach supplies a noniterative alternative
to determining dimensionality. For example, micro-
array analysis tends to involve a very large number of
gene expression traits. One approach to future micro-
array experiments will be to conduct these experiments
within a breeding design. Such an experimental design
will allow the determination of the number of indepen-
dent genetic factors underlying the typically large
number of gene expression changes among treatment
groups. With so many traits to be included in a factor-
analytic model, convergence problems are likely to be
encountered and therefore these experiments may
benefit from applying Amemiya’s approach.

It is important to note that the approaches outlined
above are subject to the usual power constraints due to
small sample sizes. Genetic experiments conducted with
small sample sizes are likely to be capable of detecting
only one or two dimensions that explain a substantial
amount of genetic variance. The poor performance of
Amemiya’s approach at low heritability suggests that this
method will be particularly adversely affected by small
sample size. Factor-analytic modeling also underesti-
mated the number of dimensions as heritability drop-
ped, with a less dramatic loss of performance than
Amemiya’s approach as the information content of the
data was reduced. Consequently, we recommend these
approaches as objective aids in defining a genetic sub-
space, but they should not be applied as the sole deter-
mining factor in subspace selection. In particular, in
cases where fewer genetic dimensions included may
increase the likelihood of rejecting a null hypothesis of
interest (Blows et al. 2004 would be a good example),
these approaches should be used with caution.

Are G matrices of full rank? In our example, eight
pheromone traits were shown to be adequately repre-
sented by only two underlying genetic dimensions by
two of these methods: Amemiya’s approach and factor-
analytic modeling of the covariance structure at the sire
level. The bootstrap method identified four dimensions
that had eigenvalues significantly different from zero,
but as indicated by the simulation, this is likely to be an
overestimate. The sample size in this data set is not
sufficient to allow an exhaustive search for dimensions
describing small levels of genetic variance, so a defini-
tive conclusion that only two dimensions have genetic
variance would be premature. In the only other statistical

Figure 2.—Relationship between Amemiya’s method
and factor-analytic modeling in recovering the original ge-
netic subspace in the simulation. (A) Two-dimensional factor-
analytic model. (B) Three-dimensional factor-analytic model.
(C) Magnification of region of high subspace recovery scores
from A. Simulated data sets that factor-analytic modeling cor-
rectly identified as having two dimensions are indicated by
solid circles, and those data sets incorrectly identified as hav-
ing three dimensions are indicated by open circles.
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determination of the rank of G, Mezey and Houle

(2005) reported G matrices of full rank for wing shape
in D. melanogaster, using the bootstrap approach in an
experiment with a very large sample. Since the bootstrap
approach is likely to overestimate dimensionality, it is
uncertain if G matrices of full rank may be a feature of
multivariate descriptions of morphology.

A major advantage of Amemiya’s approach and factor-
analytic modeling is that both can result in the identi-
fication of the reduced subspace for which there is
strong statistical support for the presence of genetic
variance. It is important to note that in our example, the
two dimensions supported by these analyses were not
exactly the same as the first two eigenvectors of esti-
mated G, suggesting that directions in the space of G
that describe substantial amounts of the additive genetic
variance may also be associated with large nonadditive
or environmental sources of variance.

In conclusion, determining the dimensionality of
G provides an important perspective on the genetic
basis of a multivariate suite of traits. Understanding the
genetic basis of adaptation will require a multivariate
approach, as single traits are rarely under selection
in isolation (Lande and Arnold 1983; Schluter and
Nychka 1994; Blows and Brooks 2003). In combina-
tion with emerging genomic technologies, statistical
approaches to determining the number of genetically
independent traits may potentially allow an investiga-
tion of how many independent genetic changes underlie
a response to selection involving complex adaptations.
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reviewers for comments on previous drafts of this manuscript. M.W.B.
was supported by a grant from the Australian Research Council.
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