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ABSTRACT

There are a number of polymorphism-based statistical tests of neutrality, but most of them focus on either
the amount or the pattern of polymorphism. In this article, a new test called the two-dimensional (2D) test is
developed. This test evaluates a pair of summary statistics in a two-dimentional field. One statistic should
summarize the pattern of polymorphism, while the other could be a measure of the level of polymorphism.
For the latter summary statistic, the polymorphism-divergence ratio is used following the idea of the
Hudson–Kreitman–Aguadé (HKA) test. To incorporate the HKA test in the 2D test, a summary statistic-
based version of the HKA test is developed such that the polymorphism–divergence ratio at a particular
region of interest is examined if it is consistent with the average of those in other independent regions.

SINCE the development of the coalescent theory
(Kingman 1982; Hudson 1983; Tajima 1983), a

number of polymorphism-based statistical tests have
been developed to examine a neutral null model (i.e.,
neutrality tests). With increasing intraspecific variation
data in various species, these tests have been ubiquitous
tools inmolecular population genetic analysis (Kreitman

2000).
Neutrality tests include the following two major cate-

gories, although there are other types of tests available
such as haplotype tests (Hudson et al. 1994; Fu 1996;
Sabeti et al. 2002) (see Innan et al. 2005, for a recent
review of haplotype tests). The first category focuses
on the amount of polymorphism. Balancing selection
increases the level of polymorphism because multiple
alleles are likely maintained for a long time (Hudson

and Kaplan 1988), while the level of polymorphism is
reduced shortly after a fixation of adaptive mutation.
This event is called a selective sweep because the fixation
of a beneficial allele could sweep out the variation in the
surrounding region of the selection target site by the
hitchhiking effect (Kaplan et al. 1989). The Hudson–
Kreitman–Aguadé (HKA) test (Hudson et al. 1987) fo-
cuses on this effect of selection by comparing the levels
of polymorphism and divergence from an outgroup
(see also Wright and Charlesworth 2004).

The second major category of neutrality tests ex-
amines whether the observed frequency spectrum of
nucleotide polymorphism is consistent with the neu-
tral expectation. Tajima (1989) has devised a simple
method that compares ûp and ûS , two unbiased estima-

tors of u, the population mutation rate. ûp is identical to
the average number of pairwise nucleotide differences,
which can be a direct estimator of u (Tajima 1983). ûS
is an estimator based on the number of segregating sites,
S (Watterson 1975). Tajima’sD is defined as ðûp � ûSÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðûp � ûSÞ

r
, and its expectationunder the standardneu-

tralmodel of a constant-size population is�0. Balancing
selection creates an excess of alleles in intermediate
frequencies so that Tajima’s D is likely positive, while
Tajima’s D tends to be negative in a region shortly after
a selective sweep or under the pressure of purifying
selection due to an excess of variation in low frequen-
cies. A number of tests similar to Tajima’s D have been
developed (Fu and Li 1993; Simonsen et al. 1995; Fay

and Wu 2000).
Thus, most neutrality tests use either the amount or

the allele frequency spectrum of polymorphism. That is,
those tests do not use part of the important information,
which could result in a loss of power to detect selection.
For example, consider a gene that experienced a recent
selective sweep so that no polymorphism is observed.
The HKA test could work, but the second category of
tests cannot be performed when the number of segre-
gating sites is zero. This article introduces a simple al-
gorithm to examine both the amount and the freqeuncy
spectrum of polymorphism simultaneously, which is
referred to as the two-dimensional (2D) test because it
examines a pair of test statistics in a two-dimensional
field.
To incorporate the first category of tests into the 2D

test, the HKA test is modified. The original HKA test
examines the null hypothesis that the ratio of the level
of polymorphism to divergence is the same for multiple
regions (Hudson et al. 1987). The most common ap-
plication of the HKA test is to a pair of regions. The test
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examines whether the ratios of polymorphism to diver-
gence in the two regions are consistent with each other.
A possible understanding of the rejection of the neutral
hypothesis is that one region might be subject to selec-
tion, but it is difficult to determine which one is under
selection. The application of the HKA test to more than
two regions has a similar problem. Here, the HKA test is
modified to test only a particular region of interest using
information from other multiple reference regions as a
control, which are supposed to be neutral. Therefore,
one can test whether the ratio of polymorphism to di-
vergence in a region of interest is consistent with
the average of other reference regions. This design of
the HKA test may be useful when polymorphism data
from multiple regions are becoming available in many
species.

MODIFIED HKA TEST: A FOCAL REGION VS.
MULTIPLE REFERENCE REGIONS

While the original version of the HKA test uses a con-
tingency table of polymorphismanddivergence (Hudson

et al. 1987), the modified version of the HKA test uses a
summary statistic, r, which is the ratio of the amount of
polymorphism to the level of divergence. Suppose we are
interested in a particular region, for which polymorphism
data of species A and a sequence from outgroup species B
are available. Let Lf be the nucleotide length of this focal
region. Assume that the sample size of the polymorphism
data is nf. The observed levels of polymorphism and diver-
gence are denoted by pf and df, respectively. There are also
polymorphism data of species A and outgroup sequences
of species B for m independent reference regions avail-
able. We want to know whether the ratio of the level of
polymorphism todivergence in the focal region(rf¼ pf/df)
is consistent with rave, the average r of the reference
regions. This modified version of the HKA test con-
sists of two steps:

1. The divergence time (T ) between species A and B is
estimated from the m reference regions.

2. The null distribution of r is obtained conditional on
the estimated T, from which the statistical signifi-
cance of rf is evaluated.

For step I, a rejection-sampling method (e.g., Tavaré

et al. 1997; Pritchard et al. 1999; Beaumont et al. 2002;
Marjoram et al. 2003) can be useful, which produces a
sample from the posterior distribution of T conditional
on rave. Following the standard framework of the HKA
test (Hudson et al. 1987), it is assumed that the present
population of species A and the ancestral population
have the same constant diploid effective population
size,N, and that the two species split T3 2N generations
ago. The population mutation and recombination rates
are assumed to be u¼ 4Nm and r ¼ 4Ng, where m and g

are the mutation and recombination rates per site per

generation. It is assumed that u and r are constant across
loci.

LetDref ¼ fd1; d2; d3; . . . ; dmg be the polymorphism
and divergence data for the m independent reference
regions. di consists of the sample size (ni), the nucleo-
tide length (Li), the level of polymorphism (pi), and the
divergence from an outgroup sequence (di) for the ith
regions. From Dref , rave can be calculated as

rave ¼
P

m
i¼1 piP
m
i¼1 di

: ð1Þ

Then, the posterior distribution of T conditional on
rave is obtained by a rejection-sampling method (e.g.,
Marjoram et al. 2003), which is implemented basically
as follows.

1. Generate a random value of T from its prior
distribution.

2. Simulate polymorphism and divergence data for m
independent regions using a coalescent simulation
(e.g., Hudson 2002). The nucleotide length and sam-
ple size for the ith region are Li and ni, respectively.
Estimates of u and r from the m reference regions
may be used in the coalescent simulation.

3. Calculate rave using (1) in the simulated data, which is
denoted by r9ave. Accept T if |rave� r9ave|, d, where d is
a constant; otherwise, discard T and go to step 1.

This process is continued until a sufficient number of
accepted values of T are obtained. The choice of d

involves a tradeoff between computational time and
accuracy (see below). The prior distribution of T can be
determined according to the prior knowledge of the
divergence time. One of the possible prior distributions
is a uniform distribution from 0 to a sufficiently large
value, Tmax. Tmax is set such that the acceptance prob-
ability is nearly zero for T . Tmax. When a uniform dis-
tribution is used as the prior distribution, the posterior
distribution is approximately proportional to the likeli-
hood distribution. Another possible choice would be a
normal distribution, which could reduce the computa-
tional effort. The mean and variance of the normal
distribution could be determined according to the ob-
served distribution of r across the reference regions. For
example, Tcan be roughly estimated as 1/r� 1 for each
reference region. Then, the mean and variance of the
estimated T may be plugged in the prior distribution.
Although this is a biased estimate, it might serve as an
efficient prior distribution for T. The posterior distri-
bution would be much narrower than the prior distri-
bution because the acceptance of T is based on rave.

The modified HKA test uses this posterior distribu-
tion of T to determine the null distribution of rf in step
II. In practice, a coalescent simulation under the stan-
dard framework of the HKA test (see above) is per-
formed, in which T is a randomly chosen value from the
list of the accepted T in step I. From this simulation, the
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null distribution of rf is obtained conditional on rave,
making it possible to test whether rf is consistent with
the average of the reference regions.

This process of the modified HKA test is demon-
strated under a simple condition: all reference regions
have the same sample sizes and nucleotide lengths, and
the average r in the reference regions is rave ¼ 0.1. u ¼
r ¼ 0.01, n ¼ 50, and L ¼ 1 kb are assumed for all
reference regions. To investigate the effect of m on the
posterior distribution of T, m ¼ 3, 5, 10, 20, 50, and 100
are considered. For step I, the prior distribution of T
is set to a uniform distribution from 0 to 30, and the
average number of pairwise nucleotide differences, pi,
is used as a measure of the level of polymorphism, pi. d
is set to 0.01 because preliminary simulations demon-
strated that d¼ 0.01 is sufficiently small so that d, 0.01
only slightly improved the accuracy. Polymorphism
and divergence are simulated using the ‘‘ms’’ software
(Hudson 2002). It is found that the variance of the
estimate of T decreases as m increases, making the
posterior distribution of T narrower. To visualize this ef-
fect, Figure 1 shows the three posterior distributions of
T (m ¼ 5, 20, and 100). Almost the same results are
obtained for (n,L)¼ (20, 1 kb), (20, 5 kb), and (50, 1 kb)
(results not shown).

The computation time for step I increases with m.
However, if m is sufficiently large, the posterior distribu-
tion of T can be approximately obtained by a bootstrap
method (Efron 1982). That is, choose a random set ofm
regions with replacement and calculate rave, from which
an estimate of T is approximately given by 1/rave � 1.
Although this estimate is biased asmentioned above, the
bias is negligible when m is very large. Repeating this
process produces an approximate posterior distribution
of T in significantly less computational time.

As the null distribution of rf is conditional on the
posterior distribution of T, it is expected that more
reliable estimates of T (i.e., narrower posterior distribu-
tion ofT ) couldmake the testmore accurate and power-
ful. This effect of the posterior distribution of T on

the power of the modified HKA test is investigated by
coalescent simulations. u ¼ r ¼ 0.01 is assumed for the
focal region, as well as for the reference regions. It is also
assumed that n andL for the focal region are the same as
those for the reference regions. The null distribution of
r for the focal region (rf) for each parameter set is
determined as described above. Then, the effect of m
on the power to detect selection is investigated for two
modes of selection: biallelic symmetric balancing selec-
tion and recent selective sweep.
The power is evaluated by simulating a number of

patterns of polymorphism under selection models. For
balancing selection, the ‘‘sarg’’ software (Nordborg

and Innan 2003) is used. The backward mutation rate
between two alleles is set to be a ¼ 0.01 and 0.02 (for
details, see Nordborg and Innan 2003), which deter-
mines the expectation of the age of the alleles. Table 1
summarizes the results, where the power is measured as
the number of replications of simulation that reject the
null neutral model at the 5% level. As expected, the
power to reject the null model increases with increasing
m, the number of reference regions. It seems that the
power is nearly saturated for large m. The results for the
two sample sizes (n¼ 20 and 50) are similar. The power
is higher for the smaller region (1 kb) because the
signature of balancing selection does not likely extend
far from the target site (Hudson and Kaplan 1988;
Schierup et al. 2001; Navarro and Barton 2002;
Nordborg and Innan 2003).
For recent selective sweeps, patterns of polymor-

phism are simulated by using the ‘‘sw’’ software (Kim

and Stephan 2002). The parameters to determine the
selection intensity (2Ns) are assumed to be 100 and 1000
(for details, see Kim and Stephan 2002). t is the time to
the completion of the selective sweep in units of 2N
generations. The results are similar to those of balanc-
ing selection: the power increases with increasing m
(Table 1). When 2Ns¼ 1000, the power is higher for the
wider region (5 kb) because the signature of a strong
selective sweep extends much longer than that of bal-
ancing selection, although the relationship between the
power and the region length may be complicated
when selection is relatively weak (Kaplan et al. 1989;
Braverman et al. 1995; Kim and Stephan 2002;
Przeworski 2002).

2D TEST

The modified HKA test using a summary statistic r is
ready to be incorporated in the 2D test. The 2D test
requires another summary statistic, which should use
information that the HKA test does not use, such as
Tajima’s D (Tajima 1989) and Fu and Li’s D* (Fu and Li

1993). The basic idea is that a pair of summary statistics
is evaluated in a two-dimensional field. As an example,
the two-dimensional density distribution of Tajima’s D

Figure 1.—The posterior distributions of T from m refer-
ence regions when rave ¼ 0.1. n ¼ 50 and u ¼ r ¼ 0.01 and
L ¼ 1 kb are assumed.
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and r (rf) is considered when u ¼ r ¼ 0.01, n ¼ 50, and
L¼ 1 kb. For reference regions, it is assumed thatm¼ 5,
n ¼ 50, and L ¼ 1 kb. Suppose rave ¼ 0.1; therefore, the
posterior distribution of T is that shown with solid
squares in Figure 1. Under the standardHKAmodel of a
constant population size, the two-dimensional density
distribution of Tajima’s D and r is obtained from 106

replications of a coalescent simulation (Figure 2). In
the simulation, the posterior distribution of T is in-
corporated in the same way as the modified HKA test: in
each replication, one of the accepted T is randomly
picked up.

From the two-dimensional distribution of D and r, the
95% confidence region can be determined as follows.
The number of replications of simulation is denoted by
U. The simulation results (U ¼ 106 pairs of D and r) are
binned into two-dimensional grids. Let a and b be the
grid sizes for D and r, respectively. For this example, a
and b are set to be 0.01 and 0.001. This binned two-
dimensional density distribution is denoted by G(x, y),
which represents the number of pairs of D and r in the
grid x � a/2 , D# x 1 a/2 and y � b/2 , r # y 1 b/2.

Then, the 95% confidence region of D and r may be
defined as the region with

Gðx; yÞ. p; ð2Þ

where p is defined such that p satisfiesX
i;j

wGði; jÞ ¼ 0:95U ; ð3Þ

and

w ¼ 1 if Gði; jÞ. p
0 if Gði; jÞ# p:

�
ð4Þ

Note that this method produces a somewhat discrete
confidence region unless the number of replications of
a coalescent simulation is extremely large. Therefore,
in practice, it is recommended that G(x, y) is first
smoothed, which is denoted by G9(x, y). For example,
G9(x, y) could be the average over (2xs 1 1)3 (2ys 1 1)
neighbor grids:

G9ðx; yÞ ¼
Px1xs

x9¼x�xs

Py1ys
y9¼y�ys

Gðx9; y9Þ
ð2xs 1 1Þð2ys 1 1Þ : ð5Þ

Then, the 95% confidence region may be approxi-
mately obtained from (2)–(4) by replacing G(x, y) with

TABLE 1

Power of the modified HKA test with m reference regions

L ¼ 1 kb L ¼ 5 kb

Selectiona \m 3 5 10 20 50 100 3 5 10 20 50 100

n ¼ 20
BS (a ¼ 0.01) 4501 5208 5759 6189 6068 6301 1704 2292 2372 2440 2664 2692
BS (a ¼ 0.02) 3751 4500 4958 5311 5122 5472 1459 1944 2050 2118 2261 2331
SW1 (t ¼ 0) 8798 8937 9029 9103 9151 9136 8168 8204 8339 8471 8547 8441
SW1 (t ¼ 0.1) 7805 8069 8253 8316 8419 8398 7388 7443 7569 7765 7826 7747
SW1 (t ¼ 0.2) 6298 6557 6846 6935 7158 7129 6531 6530 6730 6918 6972 6861
SW1 (t ¼ 0.5) 2383 2521 2651 2559 2702 2612 3968 3905 4016 4321 4288 4148
SW2 (t ¼ 0) 9967 9970 9977 9980 9984 9978 9996 9994 9995 9997 9997 9998
SW2 (t ¼ 0.1) 9839 9866 9892 9909 9907 9907 9956 9963 9972 9982 9978 9982
SW2 (t ¼ 0.2) 9228 9423 9567 9617 9682 9676 9879 9896 9918 9930 9927 9926
SW2 (t ¼ 0.5) 4219 4500 4732 4742 4966 4878 8818 9010 9169 9286 9313 9292

n ¼ 50
BS (a ¼ 0.01) 4453 5247 5338 5996 6079 6180 1756 1985 2272 2744 2676 2989
BS (a ¼ 0.02) 3727 4455 4572 5223 5248 5395 1487 1789 1935 2355 2277 2549
SW1 (t ¼ 0) 9070 9219 9338 9324 9357 9378 8192 8376 8552 8692 8678 8730
SW1 (t ¼ 0.1) 8139 8359 8608 8566 8705 8755 7404 7684 7980 7996 7962 8100
SW1 (t ¼ 0.2) 6801 7113 7450 7377 7681 7673 6562 6872 7124 7280 7166 7366
SW1 (t ¼ 0.5) 2790 2880 3101 2911 3134 3096 3898 4182 4320 4556 4380 4642
SW2 (t ¼ 0) 9975 9973 9983 9980 9984 9987 9994 9994 9994 9994 9992 9998
SW2 (t ¼ 0.1) 9906 9921 9942 9940 9954 9954 9964 9978 9990 9994 9990 9988
SW2 (t ¼ 0.2) 9466 9639 9752 9731 9803 9811 9924 9944 9960 9956 9958 9968
SW2 (t ¼ 0.5) 4762 4915 5370 5119 5474 5539 8926 9206 9348 9478 9434 9474

The power of the modified HKA test given m is shown as the numbers of replications of coalescent simulations that reject the
null hypothesis. The total number of replications for each parameter set is 10,000, except that 5000 replications of simulation are
performed for n ¼ 50 and L ¼ 5 kb and the numbers are doubled.

a The mode of selection with the selection parameter in parentheses. BS, balancing selection with the backward mutation rate at
the selection target site (a). SW1 and SW2, selective sweep with 2Ns ¼ 100 and 1000, respectively. t, the time to the sweep event in
units of 2N generations, is in parentheses.
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G9(x, y). However, this method with a smoothed distri-
bution may sometimes produce a biased confidence
region when xs and ys are not very small. This biasmay be
corrected if the shape of the 95% confidence region is
determined by G9(x, y) and the bias is adjusted by using
G(x, y). That is, the 95% confidence region is approx-
imately given as the region with G9(x, y) . p9, where p9
satisfies

X
i;j

w9Gði; jÞ ¼ 0:95U ; ð6Þ

and

w9 ¼ 1 whenG9ði; jÞ. p9
0 whenG9ði; jÞ# p9:

�
ð7Þ

AC-program to determine the 95% confidence region is
available on request. This procedure with xs ¼ ys ¼ 5 is
applied to the distribution in Figure 2, and the obtained
95% confidence region is shown in Figure 3A.

The effect of selection on D and r is also visually
demonstrated in Figure 3A. The shaded circles and solid
squares represent simulated pairs of D and r in a region
under balancing selection (a ¼ 0.01) and after a recent
selective sweep (2Ns ¼ 1000 and t ¼ 0.2), respectively.
Most shaded circles are in a region of high D and r, while
the solid squares make a cluster in a region of low val-
ues of D and r. In addition to Tajima’s D, it is possible to
use other summary statistics such as Fu and Li’s D*
(Figure 3B).

The power of the two 2D tests (r vs. Tajima’s D and Fu
and Li’s D*) is quantitatively evaluated by coalescent
simulations as described above. For balancing selection,
it is demonstrated that the power of the 2D tests is
generally higher than that of the three single tests
(modifiedHKA, Tajima’s D, and Fu and Li’s D*) (Figure
4) and that the 2D test with r and Tajima’s Dmay be the

most powerful. For a selective sweep, the modified HKA
test may be the most powerful. The 2D tests are not as
powerful as the modified HKA test especially when L is
short, probably because the 2D test might share the
weakness of Tajima’s D and Fu and Li’s D* tests, that is,
low power when the number of segregating sites is small.
The 2D test with Tajima’s D and r is applied to the

GD2-A and GD2-B genes in Arabidopsis thaliana. It is
considered that these two genes were duplicated re-
cently. Moore and Purugganan (2003) showed that
the levels of polymorphism in these duplicated genes
are generally lower than those in six single-copy loci,
suggesting the fixation processes of duplicated genes
might have occurred in a short time, likely by adaptive
selection. Here, these six single-copy loci are used as
reference regions and the 2D test is applied to each of
the duplicated genes. Note that interlocus gene conver-
sion might be active in young duplicated genes, which
could elevate the level of polymorphism (Innan 2003).
However, because the maximum-parsimony haplotype
network of this pair of genes exhibits no evidence

Figure 3.—The 95% confidence regions of the 2D tests
when n ¼ 50, u ¼ r ¼ 0.01, and L ¼ 1 kb. (A) Tajima’s D
vs. rf. The 95% confidence intervals of D and rf are the in-
tervals between the vertical and horizontal dashed lines, re-
spectively. The shaded circles and solid squares represent
simulated pairs of D and rf in a region under balancing selec-
tion (a ¼ 0.01) and recent selective sweep (2Ns ¼ 1000 and
t ¼ 0.2), respectively. (B) Fu and Li’s D* vs. rf.

Figure 2.—The two-dimensional density distribution of
Tajima’s D and rf. The density is scaled between 0 and 1, where
1 represents �8000 counts of 106 replications.
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for gene conversion (see Figure 3B of Moore and
Purugganan 2003), the standard coalescent model for
a single-copy gene is employed (see Innan 2003 for a
coalescent simulation of duplicated genes). First, the
posterior distribution of T is obtained from the six
reference genes assuming u ¼ 0.02, which is roughly in
agreement with the average of estimates of u over the
reference genes. It is important to note that the regions
of interest (i.e., GD2-A and GD2-B) should not be in-
cluded in the estimation of u. The population recom-
bination parameter is assumed to be 1

3 3 u according to
Hagenblad andNordborg (2002). Then, the 2D test is
performed for the focal regions (L � 500 bp) and the
result is shown in Figure 5. The 95% confidence region
is smoothed with xs ¼ ys ¼ 5. The two observed pairs of
D and r are within the 95% confidence region, although
they are close to the 95% boundary.

Note that the boundary of the 95% confidence re-
gion is not as smooth as those in Figure 3 because of the
low uL used to determine the 2D null distribution.
Finite numbers of polymorphic sites and sampled se-
quences make the distributions of D and rf somewhat
discrete, and this effect may not be negligible when
uL and n are not sufficiently large, suggesting some lim-
itation of the application of the 2D test to data in a short
region.

DISCUSSION

The HKA test (Hudson et al. 1987) examines the null
hypothesis that the polymorphism–divergence ratio is
constant across regions. When neutrality is rejected,
however, the test does not determine which region is
likely under selection. This article introduces a new
design of the HKA test such that it tests whether the
polymorphism–divergence ratio in a region of interest
(rf) is consistent with the average over multiple reference

Figure 4.—Power of the 2D tests (open bars)
compared with single tests (solid bars).

Figure 5.—Application of the 2D test with Tajima’s D and rf
to the GD2-A and GD2-B genes in A. thaliana. The observed
values are shown by the two solid circles together with the
95% confidence regions.
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regions (rave). This design of themodifiedHKA test may
be useful when polymorphism data from multiple
regions are becoming available in many species. Co-
alescent simulations show that the power of the test
increases with increasing the number of reference
regions (see Table 1).

There are a number of polymorphism-based statisti-
cal tests of neutrality, but most of them focus on either
the amount or the pattern (e.g., allele frequency spec-
trum) of polymorphism. Because selection affects both,
it may be more powerful to detect selection if informa-
tion from both is used. This article introduces the 2D
test, which evaluates a pair of statistics that summarize
the amount and the pattern of polymorphism in a two-
dimensional field. Following the original idea of the
HKA test (Hudson et al. 1987), the polymorphism–
divergence ratio is used for the one that summarizes the
amount of polymorphism. There might be several can-
didates for a statistic that summarizes the pattern of
polymorphism such as Tajima’s D (Tajima 1989) and Fu
and Li’s D* (Fu and Li 1993). As shown in Figure 4, the
2D tests are generally more powerful than the com-
monly used single tests for detecting balancing selec-
tion, while the modified HKA may be more powerful
than the 2D tests for detecting selective sweeps.

Using the 2D test might be one of the solutions to a
multiple-testing problem. Suppose that two statistical
tests of neutrality (e.g., theHKA andTajima’sD tests) are
applied to a single-polymorphism data set and that one
rejects neutrality but the other does not. As these two
tests are not independent because they are applied to
the same data, it may be difficult to evaluate the joint
result of the two tests. For the 2D test, such a problem
could be somewhat relaxed although similar problems
could arise whenmore than two tests are used. It may be
possible to evaluate more than two summary statistics in
a multidimensional field, but the computational effort
would be huge.

There are many difficulties in testing neutrality from
polymorphism data (e.g., Kreitman 2000; Nielsen 2005)
and the 2D and modified HKA tests are not excep-
tions. The most serious one could be that demography
also affects the amount and the pattern of polymor-
phism. In other words, the effects of selection and de-
mography are confounded. To demonstrate the effect
of demography, the 95% confidence region of the 2D
test is investigated under two demographic models,
recent expansion following a bottleneck event and struc-
tured population. The demographic parameters are
adjusted such that the expectation of r � 0.1. In the
bottleneck-expansion model, in which the expectation
of Tajima’s D is negative, the 95% confidence region
shifts left (Figure 6). On the other hand, the 95% con-
fidence region shifts right in the structured population,
in which Tajima’s D tends to be positive. Demography
also plays an important role to determine the variance of
the coalescent time. This directly affects the 95% con-

fidence interval of the modified HKA test as shown in
Figure 6. In the bottleneck-expansion model, in which
the variance of the coalescent time is smaller than that
in the standard constant-size population model, the
95% confidence region is narrower, while in the struc-
tured population model, the 95% confidence region is
(slightly) wider because of large variance of the coales-
cent time. A similar effect is also seen in the 95% con-
fidence regions of the 2D test (Figure 6).
To evaluate the effect of selection alone, coalescent

simulations to determine the null distribution of a test
statistic should be carried out under a demographic
model that is consistent with the history of the popula-
tion (e.g., Innan and Stephan 2000), rather than using
the standard constant-size populationmodel. Reference
regions required by the two tests are useful to obtain in-
formation on the demographic history of the popula-
tion (e.g., Weiss and von Haeseler 1998; Pritchard

et al. 2000; Wakeley et al. 2001; Adams and Hudson

2004).
In a similar sense, one of the advantages of the 2D and

the modified HKA tests is that the null distribution is
determined with u and r, which could be estimated from
the reference regions. This strategy works as long as u
and r are constant across the genome. It is obvious that
more reference regions provide better estimates with
low variances and consequently better statistical results.
See Wall and Hudson (2001) and Innan et al. (2005)
for the effect of the uncertainty about u and r on neu-
trality tests, especially when these parameters are es-
timated from the region to which neutrality tests are
applied. In practice, however, the mutation and recom-
bination rates might be very difficult to estimate even
with large amounts of polymorphism data, because they
are not constant across the chromosome (Andolfatto

2001; Daly et al. 2001; Jeffreys et al. 2001; Crawford

et al. 2004; McVean et al. 2004). Other independent
information could be helpful, such as recombination
rate estimates based on physical maps.

Figure 6.—The effect of demography on the 95% confi-
dence region and interval of the 2D and modified HKA tests,
respectively.
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Very important caveats must be taken into consider-
ation when applying the 2D and modified HKA tests to
data. First, reference regions have to be a random
independent sample from the genome. Currently, poly-
morphism data for multiple regions are being accumu-
lated in several model species such as humans (Hinds

et al. 2005; International HapMap Consortium 2005),
Drosophila melanogaster (Glinka et al. 2003), andA. thaliana
(Nordborg et al. 2005), and the genome projects of their
close relatives are underway. Such genomewide polymor-
phism data are suitable for reference regions. Although
there might be ascertainment bias due to nonrandom
sampling of investigated individuals and/or regions (es-
pecially in genotyping data in humans), simple bias may
be corrected as long as the sampling strategy is known(e.g.,
Nielsen and Signorovitch 2003). The 2D andmodified
HKA tests work best for such model species for which
genomewide data of polymorphism and divergence are
available. Once researchers find a region of their special
interest, the 2D and modified HKA tests can be readily
applied to the region of interest using the available
genomewide polymorphismdata as the reference regions.
The genomewide polymorphism data are also suitable for
estimating demographic parameters and mutation and
recombination rates, which can be incorporated to de-
termine the null distributions of the two tests.

A more important caveat is the choice of the focal
region, whichhas to be selectedwithout any prior knowl-
edge of polymorphism. That is, the focal region should
be chosen on the basis of information independent of
polymorphism such as phenotypes. It is not appropriate
to choose one region from a multilocus polymorphism
data set as the focal region after looking at its pattern of
polymorphism. Suppose that in such a multilocus data
set, one locus seems unusual in some way (e.g., very high
level of polymorphism). If this ‘‘unusual’’ locus is used as
the focal region and the rest are used for the reference
regions, then it is not surprising that the P-value for
the focal region is very low. In other words, this P-value
for the focal region is not the rejection probability of
neutrality because of the prior knowledge of polymor-
phism (i.e., ascertainment bias in the choice of the focal
region).

Then, can the 2D and modified HKA tests be applied
to such a multilocus polymorphism data set? I recom-
mend the following methods:

1. The focal and reference regions are chosen before
producing or looking at the polymorphism data. This
strategy is fair, but may not agree with the purpose of
multilocus polymorphism data, that is, to look for
outliers with unusual patterns of polymorphism,
which could be candidate regions for selection. In
such a case, the second approach should be used.

2. All regions are used as the reference regions, and the
P-value is determined for each region. The obtained
P-values can be used as a measure of the ‘‘unusual-

ness’’ (but cannot be considered as the rejection
probabilities of neutrality as mentioned above). To
understand how unusual they are statistically, the
q-values (Storey and Tibshirani 2003) could be
suitable, which is a modified version of the false
discovery rate (Benjamini and Hochberg 1995).
The q-value, which can be computed from the ob-
tained list of the P-values, represents the likelihood
for a significant test to be false positive; therefore, we
can measure the relative responsibilities of selection
to the unusualness.

The author thanks R. R. Hudson, Y. Kim, and M. Nordborg for
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University of Texas at Houston.
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