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ABSTRACT

DNA pooling is a cost-effective approach for collecting information on marker allele frequency in
genetic studies. It is often suggested as a screening tool to identify a subset of candidate markers from a
very large number of markers to be followed up by more accurate and informative individual genotyping.
In this article, we investigate several statistical properties and design issues related to this two-stage design,
including the selection of the candidate markers for second-stage analysis, statistical power of this design,
and the probability that truly disease-associated markers are ranked among the top after second-stage
analysis. We have derived analytical results on the proportion of markers to be selected for second-stage
analysis. For example, to detect disease-associated markers with an allele frequency difference of 0.05
between the cases and controls through an initial sample of 1000 cases and 1000 controls, our results
suggest that when the measurement errors are small (0.005), �3% of the markers should be selected. For
the statistical power to identify disease-associated markers, we find that the measurement errors associated
with DNA pooling have little effect on its power. This is in contrast to the one-stage pooling scheme where
measurement errors may have large effect on statistical power. As for the probability that the disease-
associated markers are ranked among the top in the second stage, we show that there is a high probability
that at least one disease-associated marker is ranked among the top when the allele frequency differences
between the cases and controls are not ,0.05 for reasonably large sample sizes, even though the errors
associated with DNA pooling in the first stage are not small. Therefore, the two-stage design with DNA
pooling as a screening tool offers an efficient strategy in genomewide association studies, even when the
measurement errors associated with DNA pooling are nonnegligible. For any disease model, we find that
all the statistical results essentially depend on the population allele frequency and the allele frequency
differences between the cases and controls at the disease-associated markers. The general conclusions
hold whether the second stage uses an entirely independent sample or includes both the samples used in
the first stage and an independent set of samples.

GENOMEWIDE case–control association study is a
promising approach to identifying disease genes

(Risch 2000). For a specific marker, allele frequency
difference between cases and controls may indicate
potential association between this marker and disease,
although other factors (e.g., population stratification)
may account for the observed difference. Allele fre-
quencies among the cases and controls can be obtained
either through individual genotyping or through DNA
pooling. Although individual genotyping provides more
accurate estimates of allele frequencies and allows for
the inference of haplotypes and the study of genetic
interactions, DNA pooling can be more cost effective in
genomewide association studies as individual genotyp-
ing needs to collect data from hundreds of thousands
of markers for each person.

In the absence of measurement errors associated with
DNA pooling, there would be no difference between
using DNA pooling or individual genotyping for the
estimation of allele frequency. However, one major
limitation of the current DNA pooling technologies is
indeed the errors associated with measuring allele fre-
quencies in the pooled samples. Recent research sug-
gests that for a given pooled DNA sample, the standard
deviation of the estimated allele frequency is between
1 and 4% (cf. Buetow et al. 2001; Grupe et al. 2001; Le
Hellard et al. 2002; Sham et al. 2002). Le Hellard et al.
(2002) reported that using the SNaPshot method, which
is based on allele-specific extension or minisequenc-
ing from a primer adjacent to the site of the SNP, the
standard deviation ranged from 1 to 4%, depending on
the specific markers being tested. Our recent studies
have found that the errors of this magnitude may have
a large effect on the power of case–control association
studies using DNA pooling as the sole source for genotyp-
ing (see Zou and Zhao 2004 for unrelated population
samples and Zou and Zhao 2005 for family samples).
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Therefore, a two-stage design where DNA pooling is
used as a screening tool followed by individual genotyp-
ing for validation in an expanded or independent sample
may offer an attractive strategy to balance power and
cost (Barcellos et al. 1997; Bansal et al. 2002; Barratt
et al. 2002; Sham et al. 2002). In such a design, the first
stage evaluates a very large number (e.g., 1 million) of
markers using DNA pooling, and only the most prom-
ising ones are selected and studied in the second stage
through individual genotyping. Similar two-stage designs
have been considered by Elston (1994) and Elston
et al. (1996) in the context of linkage analysis and by
Satagopan and Elston (2003) and Satagopan et al.
(2002, 2004) in the context of association studies. How-
ever, these studies primarily assumed that individual
genotyping is used in both stages, which may not be as
cost effective as using DNA pooling in the first stage.
Moreover, errors associated with genotyping have never
been considered in the literature.

When DNA pooling is used as a screening tool in the
first stage, the following issues need to be addressed:

i. How many markers should be chosen after the first
stage so that there is a high probability that all or
some of the disease-associated markers are included
in the individual genotyping (second) stage?

ii. What is the statistical power that a disease-associated
marker is identified when the overall false positive
rate is appropriately controlled for?

iii. When the primary goal is to ensure that some of the
disease-associated markers are ranked among the top
L markers after the two-stage analysis, what is the
probability that at least one of the disease-associated
markers is ranked among the top?

The objective of this article is to provide answers to
these practical questions to facilitate the most efficient
use of the two-stage design strategy where DNA pool-
ing is used. In genetic studies, the sample in the first
stage can be expanded with a set of new samples in the
second-stage analysis, or the second stage may involve
only a new set of samples for individual genotyping,
so both these strategies are considered in our article. We
hope that the principles thus learned will provide
an effective and practical guide to genetic-association
studies.

This article is organized as follows. We first present
our analytical results to treat the above three problems
and then conduct numerical calculations under various
scenarios to gain an overview and insights on these
design issues. Finally, some future research directions
are discussed.

METHODS

Genetic models: We consider two alleles, A and a, at
a candidate marker, whose frequencies are p and

q ¼ 1 � p, respectively. For simplicity, we consider a
case–control study with n cases and n controls. Let Xi

denote the number of allele A carried by the ith in-
dividual in the case group, and Yi is similarly defined
for the ith individual in the control group. Assuming
Hardy–Weinberg equilibrium, each Xi or Yi has a value
of 2, 1, 0 with respective probabilities p2, 2pq, and q2

under the null hypothesis of no association between the
candidate marker and disease. When the candidate
marker is associated with disease, we assume that the
penetrance is f2 for genotypeAA, f1 for genotypeAa, and
f0 for genotype aa. Note that these two alleles may be
true functional alleles or may be in linkage disequilib-
rium with true functional alleles. Under this genetic
model, the probabilities of having k copies of A among
the cases, mk ¼ PðXi ¼ kÞ, and those among the con-
trols, m9k ¼ PðYi ¼ kÞ, are

m0 ¼ q2f0
p2f2 1 2pqf1 1 q2f0

;

m1 ¼ 2pqf1
p2f2 1 2pqf1 1 q2f0

;

m2 ¼ p2f2
p2f2 1 2pqf1 1 q2f0

;

m90 ¼ q2ð1 � f0Þ
p2ð1 � f2Þ1 2pqð1 � f1Þ1 q2ð1 � f0Þ

;

m91 ¼ 2pqð1 � f1Þ
p2ð1 � f2Þ1 2pqð1 � f1Þ1 q2ð1 � f0Þ

;

m92 ¼ p2ð1 � f2Þ
p2ð1 � f2Þ1 2pqð1 � f1Þ1 q2ð1 � f0Þ

:

One-stage designs: For useful reference, we first for-
mulate the test statistics and derive statistical power on
the basis of a one-stage design using either individual
genotyping or DNA pooling. These can be considered as
special cases or direct extensions of the results in Zou
and Zhao (2004).

Individual genotyping: For individual genotyping, let
nA and nU denote the observed numbers of allele A
in the case group and the control group, respectively,
pA and pU denote the population allele frequencies of
allele A in these two groups, and p̂A and p̂U denote their
maximum-likelihood estimates, where p̂A ¼ nA=ð2nÞ
and p̂U ¼ nU =ð2nÞ.

Under the null hypothesis of no association between
the candidate marker and disease status, Eðp̂A � p̂U Þ ¼ 0,
and V ðp̂A � p̂U Þ ¼ pq=n. On the other hand, under the
genetic model introduced above,

Eðp̂A � p̂U Þ ¼ m2 1
1

2
m1 � m92 �

1

2
m91[m;
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and

V ðp̂A � p̂U Þ ¼
1

4n
½4m2 1m1 � ð2m2 1m1Þ2 1 4m92

1m91 � ð2m92 1m91Þ2�[ s2

n
:

The statistic to test genetic association between the
candidate marker and disease is

tind ¼ p̂A � p̂Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 � p̂Þ=n

p ;

where p̂ ¼ ðnA 1nU Þ=ð4nÞ.
Considering a one-sided test and using a significance

level of a, the power of the test statistic tind is

F
�za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃ð1 � p̃Þ

p
1

ffiffiffi
n

p
m

s

� �
;

where p̃ ¼ m=21m92 1m91=2 is the expected frequency
of allele A under the genetic model, F is the cumula-
tive standard normal distribution function, and za is
the upper 100ath percentile of the standard normal
distribution.

DNA pooling: For DNA pooling, we consider m pools
of cases and m pools of controls each having size s such
that n¼ms. We assume the following model relating the
observed allele frequencies estimated from the pooled
samples to the true frequencies of allele A in the
samples,

p̂
pool
Ai ¼ Xi1 1 � � � 1Xis

2s
1ui ;

p̂
pool
Ui ¼ Yi1 1 � � � 1Yis

2s
1 vi ;

where Xij denotes the number of allele A carried by the
jth individual in the ith case group, and Yij is defined
similarly (i ¼ 1, . . . ,m; j ¼ 1, . . . , s), and ui and vi are
disturbances with mean 0 and variance e2 and are
assumed to be independent and normally distributed.
Define

p̂
pool
A ¼ 1

m

Xm
i¼1

p̂
pool
Ai

and

p̂
pool
U ¼ 1

m

Xm
i¼1

p̂
pool
Ui :

Under the null hypothesis of no association, Eðp̂pool
A �

p̂
pool
U Þ ¼ 0, and V ðp̂pool

A � p̂
pool
U Þ ¼ pq=n1 2e2=m. On the

other hand, under the genetic model introduced above,

Eðp̂pool
A � p̂

pool
U Þ ¼ m;

and

V p̂
pool
A � p̂

pool
U

� �
¼ s2

n
1

2e2

m
:

We can use the following test statistic to test genetic
association based on DNA pooling data,

tpool ¼
p̂

pool
A � p̂

pool
Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂poolð1 � p̂poolÞ=n1 2e2=m
q ;

where p̂pool ¼ 1
2ðp̂

pool
A 1 p̂

pool
U Þ.

If we use a one-sided test and a significance level of a,
the power of the test statistic tpool is

F
�za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃ð1 � p̃Þ=n1 2e2=m

q
1mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2=n1 2e2=m
p

0
@

1
A:

Two-stage designs: How many markers should be selected
after the pooling stage? In the first stage, i.e., the DNA
pooling stage, we consider m pools of cases and m pools
of controls each having size s such that n¼ms. The main
objective for the first stage is to select the most prom-
ising markers on the basis of pooled DNA data to follow
up in the second stage to reduce the overall cost.
Therefore, the following problem should be addressed:
How many of theMmarkers initially screened should be
selected for second-stage analysis so that the probability
that the disease-associated markers are selected is high,
e.g., 90%? For simplicity, we assume that the associated
markers are independent. Let the desired number of
markers be M1. As in Satagopan et al. (2002, 2004), we
choose those markers that have the largest test statistic.

For markers not associated with disease, the test
statistic can be approximated by

tpool ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpq=nÞ

p
j0 1wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pq=n1 2e2=m
q ;

where j0 � N ð0; 1Þ, w ¼ �u � �v � N ð0; ð2e2=mÞÞ, �u ¼
ð1=mÞ

Pm
i¼1 ui , �v ¼ ð1=mÞ

Pm
i¼1 vi , and j0 and w are

mutually independent. Whereas for markers associated
with disease through the genetic model introduced
above, the test statistic can be approximated by

tpool ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2=nÞ

p
j1 1wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̃ð1 � p̃Þ=n1 2e2=m
q ;

where j1 � N ð ffiffiffi
n

p
m=s; 1Þ, and j1 and w are mutually

independent.
Let tðTÞpool;1; . . . ; t

ðTÞ
pool;K be the test statistics corresponding

to theK disease-associated markers, tðNÞ
pool;1; . . . ; t

ðNÞ
pool;M�K

be those corresponding to the M � K null markers, and
tðNÞ
pool;ð1Þ $ � � � $ tðNÞ

pool;ðM�K Þ are the corresponding ordered
test statistics. Let Pi1;���;iK1

denote the probability that the
specifiedK1 of theK truly associated markers are among
the top M1 markers. Furthermore, denote
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Z0 ¼ min t
ðTÞ
pool;i1 ; . . . ; t

ðTÞ
pool;iK1

n o
and

Z* ¼ max t
ðTÞ
pool;j ; j 2 E [ f1; . . . ;Kgnfi1; . . . ; iK1g

�
:

�

Note that tðTÞpool;j �N upool;j ; l
2
pool;j

� �
; j ¼ 1; . . . ;K , where

upool;j ¼
mjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̃jð1 � p̃jÞ=n1 2e2=m
q ;

l2
pool;j ¼

s2
j =n1 2e2=m

p̃jð1 � p̃jÞ=n1 2e2=m
;

and p̃j , mj , and s2
j are defined as p̃, m, and s2 with allele

frequency pj and penetrances f2;j , f1;j , and f0;j at the truly
associated marker j in place of p, f2, f1, and f0, re-
spectively, j ¼ 1; . . . ;K . In addition, tðNÞ

pool;j � N ð0; 1Þ,
j ¼ 1; . . . ;M � K . For convenience, we denote the
distribution and density functions of tðTÞpool;j by FjðxÞ and
fjðxÞ and the distribution and density functions of tðNÞ

pool;j

byFðxÞ andfðxÞ, respectively. Then it can be shown that
the joint density function of Z0;Z*ð Þ is

g ðz0; z*Þ ¼ gZ0ðz0Þ � gZ*ðz*Þ;

where

gZ0ðz0Þ ¼
YK1

j¼1

1 � Fij ðz0Þ
h i

�
XK1

j¼1

fij ðz0Þ
1 � Fij ðz0Þ

and

gZ*ðz*Þ ¼
Y
j2E

Fjðz*Þ �
X
j2E

fjðz*Þ
Fjðz*Þ

:

Moreover, the joint density of ðtðNÞ
pool;ðM1�K111Þ; t

ðNÞ
pool;ðM1�K1ÞÞ

is

g0ðu; vÞ ¼
ðM � K Þ!

½ðM � K Þ � ðM1 � K1Þ � 1�!ðM1 � K1 � 1Þ!

�FðM�K Þ�ðM1�K1Þ�1ðuÞ½1 �FðvÞ�M1�K1�1fðuÞfðvÞ;

u, v:

Hence,

Pi1;���;iK1
¼ P Z0 . t

ðNÞ
pool;ðM1�K111Þ;Z*,Z0;Z*, t

ðNÞ
pool;ðM1�K1Þ

� �
¼
ðð

u, v

PðZ0 .u;Z*,Z0;Z*, vÞ � g0ðu; vÞdudv;
ð1Þ

where

PðZ0 .u;Z*,Z0;Z*, vÞ
¼ Pðu,Z0 , v;Z*,Z0Þ1PðZ0 $ v;Z*, vÞ

¼
ðv
u
dz0

ðz0

�‘

g ðz0; z*Þdz*1
ð‘
v
gZ0ðz0Þdz0 �

ðv
�‘

gZ*ðz*Þdz*:

Therefore, the probability that K1 of the K disease-
associated markers are among the top M1 markers is
given by

P1ðK1Þ ¼
X

i1,���,iK1

Pi1;...;iK1
: ð2Þ

From this expression, we can determine the value of
M1 such that P1ðK1Þ is higher than or equal to a given
level, e.g., 90%.

For a given M1, let z denote the number of disease-
associated markers included in the top M1 markers; then
its expectation is EðzÞ ¼

PK
l¼0 l � Pðz ¼ lÞ ¼

PK
l¼0 l �

P1ðlÞ. Therefore, we can determine the value of M1

through this formula such that the average number of
disease-associated markers included in the topM1 mark-
ers isK1; i.e., K1 disease-associated markers are selected
on average.

The above Equations 1 and 2 are exact but somewhat
complicated. In the following, we derive their asymp-
totic expressions so that we can obtain simpler analytical
results. It is easy to see that we need only to consider
Equation 1.

For a fixed proportion p0, let l0 denote the normal
distribution quantile corresponding to p0, that is,Ð l0

�‘
fðxÞdx ¼ p0. Then from the asymptotic property of

order statistics, we have

t
ðNÞ
pool;ððM�K Þ�½ðM�K Þp0�11Þ /

a:s:
l0; ð3Þ

and

t
ðNÞ
pool;ððM�K Þ�½ðM�K Þp0�Þ /

a:s:
l0; ð4Þ

when M � K tends to infinity, where ½t� denotes the inte-
ger part of t, and /

a:s:
denotes convergence almost sure.

If we write M1 ¼ K1 1 ðM � K Þ � ½ðM � K Þp0�, then
we have

Pi1;���;iK1
¼P Z0. t

ðNÞ
pool;ðM1�K111Þ;Z*, Z0;Z*, t

ðNÞ
pool;ðM1�K1Þ

� �
/PðZ0.l0;Z*,Z0;Z*,l0Þ

¼PðZ0.l0Þ �PðZ*,l0Þ; ð5Þ

where

PðZ0 . z0Þ ¼
YK1

j¼1

1 � Fij ðz0Þ
h i

; ð6Þ

and

PðZ*, z*Þ ¼
Y
j2E

Fjðz*Þ:

Note that the total number of markers M is usually
extremely large, the number of disease-associated
markers K is extremely small compared to M, and
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ð1 � p0Þ1 ðK1 � K ð1 � p0ÞÞ=M #M1=M

, ð1 � p0Þ1 ðK1 � K ð1 � p0Þ1 1Þ=M :

Therefore, takingM1 top markers is equivalent to taking
the top markers in the proportion of q0 ¼ 1 � p0.

In particular, when the number of disease-associated
markers is K ¼ 1, we can obtain an analytical expression
for the selected proportion q0 necessary to attain the
desired probability that the disease-associated marker is
selected. In fact, when K ¼ 1, from Equations 5 and 6,
we have

P1 ¼ PðZ0 . l0Þ ¼ 1 � F1ðl0Þ

¼ 1 �F
l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃1ð1 � p̃1Þ=n1 2e2=m

q
� m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1=n1 2e2=m

q
0
B@

1
CA:

Therefore, if we require the probability that the truly
associated marker is included in the selected subset
from the first stage is at least p0

*, i.e., P1 $ p0
*, then

F
l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃1ð1 � p̃1Þ=n12e2=m

q
�m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1=n12e2=m

q
0
B@

1
CA#1 � p0* ¼ Fðl0*Þ;

where l0* is the normal distribution quantile correspond-
ing to 1 � p0*. Clearly, the above formula is equivalent to

l0 #
l0*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1=n1 2e2=m
q

1m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃1ð1 � p̃1Þ=n1 2e2=m

q [U0*:

So the proportion q0 should satisfy q0 $Fð�U0*Þ. There-
fore, a conservative selection of the proportion q0 is the
maximum of Fð�U0*Þ over various genetic models and
allele frequencies.

It should be noted that the above selection approach
for markers is through comparing the values of the test
statistics at all the markers and no statistical inference
is conducted. If statistical tests are performed to select
thepromising markers, thenonewouldkeep thosemark-
ers showing stronger statistical significance in the first
stage. However, the two methods are actually asymptot-
ically equivalent. This is because, if we take l0 ¼ za1

(where za1
is the upper 100a1th percentile of the stan-

dard normal distribution corresponding to the signifi-
cance level a1 for each marker tested in the first stage),
that is, q0 ¼ a1, which means that the selected propor-
tion of markers is the same as the significance level for
testing each marker in the first stage, then the asymp-
totic probability of the specified K1 of K truly associated
markers being selected given in Equation 5 is in fact the
statistical power of detecting the specified K1 of K truly
associated markers. So for the case of independent mark-
ers, selecting the markers through comparing the values
of their test statistics is asymptotically equivalent to

selecting the markers through statistical tests, a conclu-
sion similar to that of Satagopan et al. (2004) who
considered individual genotyping in the first stage. In
other words, the selection approach based on statistical
tests is the limiting case of that based on comparing the
values of test statistics at the markers when the number
of total markers is very large.
The statistical power of the two-stage design: After a set of

promising markers is identified through DNA pooling,
these markers will be individually genotyped in the second
stage. In this subsection, we first derive the statistical
power of the two-stage design to detect the disease-
associated markers. In the next subsection, we investi-
gate the possibility of at least one disease-associated
marker being ranked among the top after the second
stage. In addition to the 2n individuals used in the
pooling stage, we also consider an additional sample of
size 2na. Under the null hypothesis H0, i.e., the marker is
not associated with disease, the test statistic for markers
tested in the second stage can be written approximately as

tind ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn1naÞ

p
� j0 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
na=ðn1naÞ

p
� h0;

where h0 � N ð0; 1Þ and h0 is independent of j0 and w,
which were defined above in the discussion of pooled
DNA analysis.

Similarly, for markers associated with disease under
the genetic model introduced above, the test statistic for
markers tested in the second stage can be written ap-
proximately as

tind ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn1naÞ

p
s � j1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
na=ðn1naÞ

p
s � h1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̃ð1 � p̃Þ
p ;

where h1 � N ð ffiffiffiffiffi
na

p
m=s; 1Þ, and h1 is independent of j1

and w, which were defined above in the discussion of
pooled DNA analysis.

Under the null hypothesis of no association, tpool; tind

� 	
has a joint bivariate normal distribution N ð0;

P
0Þ, where

X
0

¼

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pq=ðn1naÞ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pq=n1 2e2=m

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pq=ðn1naÞ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pq=n1 2e2=m

q 1

0
BBBBB@

1
CCCCCA:

Under the alternative hypothesis H1, tpool; tind

� 	
has a

joint bivariate normal distribution N ðm̃;
P

1Þ, where

m̃ ¼
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̃ð1 � p̃Þ=n1 2e2=m
q mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̃ð1 � p̃Þ=ðn1naÞ
p !

;

and

X
1

¼

s2=n1 2e2=m

p̃ð1 � p̃Þ=n1 2e2=m

s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1na Þp̃ð1 � p̃Þ

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃ð1 � p̃Þ=n1 2e2=m

q
s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1naÞp̃ð1 � p̃Þ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃ð1 � p̃Þ=n1 2e2=m

q s2

p̃ð1 � p̃Þ

0
BBBBBB@

1
CCCCCCA
:
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For a given sample size n and significance level a1 or
power 1 � b1 in the first stage (or a given proportion of
markers to be selected for second-stage analysis), we can de-
termine a critical value k1 by solvinga1 ¼ P tpool . k1 jH0

� 	
or 1 � b1 ¼ P tpool . k1 jH1

� 	
. Then for the overall sig-

nificance level a for testing M markers and an addi-
tional sample of size na, we can determine the critical
value k2 in the second stage by solving

a=M ¼ Pððtpool . k1Þ \ ðtind . k2Þ jH0Þ

¼
ð‘
k1

ð‘
k2

h0ðx; yÞdxdy;

where h0ðx; yÞ is the density function of tpool; tind

� 	
under

H0, which is given by

h0ðx; yÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffi
j
P

0j
p exp �1

2
ðx yÞ

X�1

0

x
y

� �( )
;

where j
P

0j is the determinant of the matrix
P

0, andP�1
0 is the inverse of

P
0.

The probability that a disease-associated marker is
identified by the two-stage design is then given by

1 � b ¼ P ðtpool . k1Þ \ ðtind . k2Þ jH1

� 	
¼
ð‘
k1

ð‘
k2

h1ðx; yÞdxdy;

where h1ðx; yÞ is the density function of tpool; tind

� 	
under

H1, which is given by

h1ðx; yÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffi
j
P

1j
p

� exp �1

2
ððx; yÞ � m̃Þ

X�1

1

x

y

� �
� m̃9

� �( )
:

In the above two-stage design, the sample in the first
stage is reused in the second stage, and this introduces
correlation between the two test statistics, tpool and tind.
Therefore, we call this two-stage scheme the two-stage
dependent design in the following discussion. On the
other hand, we may use two separate samples in the two
stages with one sample used for screening and another
independent sample used for individual genotyping. In
this scenario, the two test statistics, tpool and tind, are
independent. Hereafter we call such a two-stage scheme
the two-stage independent design. For the two-stage in-
dependent design, the type I error rate and power are
simply the products of those in both stages. That is,

P ðtpool . k1Þ \ ðtind . k2Þ jH0

� 	
¼ Pðtpool . k1 jH0Þ � Pðtind . k2 jH0Þ;

and

P ðtpool . k1Þ \ ðtind . k2Þ jH1

� 	
¼ Pðtpool . k1 jH1Þ � Pðtind . k2 jH1Þ:

The chance of at least one marker associated with disease
being ranked among the top L markers after individual
genotyping: We suppose that, among the M1 markers
selected from the first stage, there are K1 markers as-
sociated with disease and M1 � K1 null markers.
Without loss of generality, we assume that they are
tðTÞpool;1; . . . ; t

ðTÞ
pool;K1

and tðNÞ
pool;1; . . . ; t

ðNÞ
pool;M1�K1

, respectively.

In this case, let Z0 and Z* denote min tðTÞpool;1; . . . ;
n

tðTÞpool;K1
g and max tðTÞpool;K1 1 1; . . . ;

n
tðTÞpool;Kg, respectively.

Let tðTÞind;j ð j ¼ 1; . . . ;K1Þ be the test statistic for the jth
truly associated marker, tðNÞ

ind;j ð j ¼ 1; . . . ;M1 � K1Þ be
the test statistic for the jth null marker in the second stage,

and tðTÞind;ð1Þ $ � � � $ tðTÞind;ðK1Þ and tðNÞ
ind;ð1Þ $ � � � $ tðNÞ

ind;ðM1�K1Þ
be their order statistics. Then in the second stage, the
probability that none of the truly associated markers are
ranked among the top L markers is

P 92 ¼ PðX ,Y jZ0 .U ;Z*,Z0;Z*,V ;V .U Þ; ð7Þ

where

X ¼ max t
ðTÞ
ind;1; . . . ; t

ðTÞ
ind;K1

n o
;

Y ¼ t
ðNÞ
ind;ðLÞ;

U ¼ max t
ðNÞ
pool;M1�K111; . . . ; t

ðNÞ
pool;M�K

n o
;

and

V ¼ min t
ðNÞ
pool;1; . . . ; t

ðNÞ
pool;M1�K1

n o
:

Like Equation 1, an exact expression for calculating
the probability P 92 can be derived (appendix). There-
fore, the probability that at least one truly associated
marker is ranked among the top L markers is obtained
by P2 ¼ 1 � P 92. Because the exact formula is quite
complicated, we provide an approximate one below to
simplify the calculation of this probability. First note
that tðTÞind;j � N ðuind;j ; l

2
ind;jÞ, where

uind;j ¼
mjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̃jð1 � p̃jÞ=ðn1naÞ
p ;

and

l2
ind;j ¼

s2
j

p̃jð1 � p̃jÞ
;

j ¼ 1; . . . ;K1. We denote the distribution function of

tðTÞind;j by GjðxÞ. Also, let H ðTÞ
j ðx; yÞ denote the joint dis-

tribution function of ðtðTÞpool;j ; t
ðTÞ
ind;jÞ, j ¼ 1; . . . ;K1.

Now for a fixed proportion p90, we have

t
ðNÞ
ind;ððM1�K1Þ�½ðM1�K1Þp90�Þ � l90;

when M1 � K1 is large, where l90 is a normal distribution
quantile corresponding to p90; that is,

Ð l90
�‘

fðxÞdx ¼ p90,
and ½t� denotes the integer part of t as before. Denote
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L ¼ M1 � K1 � ½ðM1 � K1Þp90� and then tðNÞ
ind;ðLÞ � l90.

Therefore, we substitute l90 for Y ¼ tðNÞ
ind;ðLÞ in Equation

7. This means that as long as X , l90, we think that no
truly associated markers are ranked among the top L
markers, regardless of the null markers chosen from the
first stage. On the other hand, we have demonstrated
that in the first stage, selecting a proportion q0 of the
markers through comparing the values of the test
statistics is asymptotically equivalent to selecting the
significant markers through statistical tests with signif-
icance level a1ð¼ q0Þ; that is, the critical value can be
taken as l0. Therefore, we obtain

P 92 � P X , l90 jZ0 . l0;Z*, l0;V . l0;U , l0ð Þ

¼ PðZ0 . l0;X , l90Þ
PðZ0 . l0Þ

; ð8Þ

where P Z0 . z0ð Þ is given in Equation 6, and

PðZ0 . z0;X , xÞ ¼
YK1

j¼1

GjðxÞ �H
ðTÞ
j ðz0; xÞ

h i
:

For the two-stage independent design, the probability
of at least one truly associated marker being ranked
among the top L markers after the second stage can be
easily obtained as

P2* ¼ 1 � PðX ,Y Þ ¼ 1 �
ð‘
�‘

PðX , yÞ � g*ðyÞdy;

where

PðX , yÞ ¼
YK1

j¼1

GjðyÞ;

and

g*ðyÞ ¼ ðM1 � K1Þ!
ðM1 � K1 � LÞ!ðL � 1Þ!F

M1�K1�LðyÞ½1 �FðyÞ�L�1fðyÞ:

An approximation to P2* is

P2* � 1 � PðX , l90Þ ¼ 1 �
YK1

j¼1

Gjðl90Þ: ð9Þ

RESULTS

To see how many markers should be chosen from
the pooling stage, we conduct some calculations using
Equation 5 first under various genetic models and allele
frequencies. The following four genetic models are con-
sidered: a dominant model with f2 ¼ f1 ¼ 0:04, f0 ¼ 0:01;
a recessive model with f2 ¼ 0:04, f1 ¼ f0 ¼ 0:01; a mul-
tiplicative model with f2 ¼ 0:04, f1 ¼ 0:02, f0 ¼ 0:01; and
an additive model with f2 ¼ 0:04, f1 ¼ 0:025, and
f0 ¼ 0:01 (Risch and Teng 1998; Zou and Zhao 2004).

The population frequency of alleleA is varied from 0.05,
0.2, to 0.7. We take the sample size to be n ¼ 1000 and
assume that the number of the disease-associated mark-
ers is K ¼ 5.

Table 1 provides the probabilities of i ði ¼ 1; . . . ; 5Þ
truly associated markers being among the top 1/1000
markers when we assume the same genetic model and
allele frequency at each disease-associated marker and
no measurement errors. It is clear from Table 1 that
for most cases, the probability that all truly associated
markers are among the top 1/1000 markers is high. The
probability that these top markers include only some of
the truly associated markers is often very low. An expla-
nation is that when there is a signal that the marker is
associated with disease, the corresponding test statistic
should often be large when the sample size is reasonably
large. So the chance for such a marker to be ranked low
is rather small. The exceptional cases are the recessive
models with small allele frequencies or dominant models
with large allele frequencies. This is because the allele
frequency difference between the cases and controls is
often small in these scenarios and the sample sizes are
not large enough to distinguish the signals from noises.
However, we can observe from the table that the
probability of at least one truly associated marker being
among the top 1/1000 markers is uniformly very large

TABLE 1

The probability of iði ¼ 1; . . . ; 5Þ disease-associated markers
ranked among the top 1/1000 markers for the case of the

same genetic model and allele frequency at each truly
associated marker

i ¼ 5 i ¼ 4 i ¼ 3 i ¼ 2 i ¼ 1 i$ 1

Dominant
p ¼ 0.05 1.000 0.000 0.000 0.000 0.000 1.000
p ¼ 0.20 1.000 0.000 0.000 0.000 0.000 1.000
p ¼ 0.70 0.234 0.394 0.266 0.090 0.015 0.999

Recessive
p ¼ 0.05 0.000 0.000 0.000 0.004 0.099 0.103
p ¼ 0.20 0.995 0.005 0.000 0.000 0.000 1.000
p ¼ 0.70 1.000 0.000 0.000 0.000 0.000 1.000

Multiplicative
p ¼ 0.05 0.970 0.030 0.000 0.000 0.000 1.000
p ¼ 0.20 1.000 0.000 0.000 0.000 0.000 1.000
p ¼ 0.70 0.999 0.001 0.000 0.000 0.000 1.000

Additive
p ¼ 0.05 1.000 0.000 0.000 0.000 0.000 1.000
p ¼ 0.20 1.000 0.000 0.000 0.000 0.000 1.000
p ¼ 0.70 1.000 0.000 0.000 0.000 0.000 1.000

Dominant model, f2 ¼ f1 ¼ 0:04, f0 ¼ 0:01; recessive model,
f2 ¼ 0:04, f1 ¼ f0 ¼ 0:01; multiplicative model, f2 ¼ 0:04, f1 ¼
0:02, f0 ¼ 0:01; additive model, f2 ¼ 0:04, f1 ¼ 0:025, f0 ¼
0:01. The sample size is n ¼ 1000, and no measurement errors
are assumed with the number of disease-associated markers
being K ¼ 5.
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except for the recessive models with small allele fre-
quencies. The conclusion still holds for the case in which
genetic models and allele frequencies are different at
each truly associated marker or the case of different
sample sizes (data not shown). So in the following anal-
ysis, we consider the chance that at least one truly associ-
ated marker is among the top 100q0% of the markers.

Figure 1 presents the probability of at least one truly
associated marker being included among the top
100q0% of the markers for a fixed population allele fre-
quency, p and allele frequency difference between the
case and control groups, pA � pU [where f0 is taken as
0.01; when f0 is taken to be other values, the results are
similar (data not shown)]. It can be observed from
Figure 1 that for given p and pA � pU , the probabilities
are almost the same under different genetic models.
This shows that the probability that at least one truly
associated marker is included among the top markers
depends on the genetic model and allele frequency
mostly through the population allele frequency and
allele frequency difference between the case and
control groups. Because the exact genetic model is
often unavailable to researchers, this fact makes it
possible to select the proportion q0 on the basis of the
assumed population allele frequency and allele fre-
quency difference between the cases and controls at
the candidate marker. Note that the effect of the
number of truly disease-associated markers on the
probability that at least one such marker is included is
not very small (data not shown). So we require that the
value of q0 is chosen so that the probability is .80% for
the case of having only one truly associated marker and
not ,99% for the case of five truly associated markers.
For the case of five truly associated markers, the allele
frequency differences at four markers are assumed to

be at least 0.03. Note that when the number of truly
associated markers K is greater than five, the probability
that at least one truly associated marker is included is
larger.

Figure 2 gives the probability that the disease-asso-
ciated marker is included among the top q0 ¼ 6.7% of
the markers for various population allele frequencies
and allele frequency differences between the cases and
controls when there is only one truly associated marker.
Figure 2 shows that when the error rate is 0.01, choosing
q0 ¼ 6:7% can detect the truly associated marker with an
allele frequency difference of 0.05 with .80% chance.
Furthermore, when there are five disease-associated
markers, to detect at least one such marker with
.99% chance, the selection proportion should be 7%
(data not shown). Therefore, to detect the disease
markers with an allele frequency difference of 0.05 at
one marker, the selection proportion of 7% is recom-
mended when the error rate is 0.01 and the sample
consists of 1000 cases and 1000 controls. To select the
truly associated markers with an allele frequency differ-
ence of 0.03 at one marker, the proportion q0 should
be �29% (data not shown). If the error rate is reduced
to 0.005, the proportion q0 can be reduced to 3 or 19%
to select the truly associated markers with an allele
frequency difference of 0.05 or 0.03 at one marker,
respectively. The required proportions for including
at least one truly associated marker with an allele
frequency difference of pA � pU ¼ 0:03, 0.05, 0.07, or
0.10 are summarized in Table 2 when the sample size
is n ¼ 1000. Generally, the effect of sample size on
selecting the disease-associated markers is not very
large, especially for the extreme allele frequencies (data
not shown). However, it can be seen from Table 2 that
reducing the measurement errors can greatly reduce
the required proportion q0. Therefore, it is important to
reduce the measurement errors in the first stage.

Figure 1.—The probability of the truly associated marker
being included among the top 100q0% of the markers under
different genetic models for the same population allele fre-
quency (0.20) and allele frequency difference between the
case and control groups (0.05). From top to bottom, the
curves correspond to the dominant model, additive model,
multiplicative model, and recessive model, respectively. The
sample size is n ¼ 1000, the error rate is e ¼ 0:01, and the
number of pools formed for either the cases or the controls
is m ¼ 1. We assume that the number of disease-associated
markers is K ¼ 1.

Figure 2.—The probability of the truly associated marker
being included among the top 6.7% of the markers when
the number of disease-associated markers is K ¼ 1. The sam-
ple size is n ¼ 1000, the error rate is e ¼ 0:01, and the number
of pools formed for either the cases or the controls is m ¼ 1.
From top to bottom, the curves correspond to allele frequency
differences of 0.10, 0.07, 0.05, 0.03, and 0.01, respectively.
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To investigate the statistical power of the two-stage
design, we set the sample size in the first stage to be
n ¼ 500 and the supplemental sample size in the second
stage to be na ¼ 500. Note that the main purpose in the
first stage is to screen for those truly associated markers.
Therefore, we hope that the probability of the truly
associated markers being included is large. Thus, we
set the power to be 95% in the pooling stage. The
significance level of the two-stage design for a single-
marker test is taken to bea ¼ 53 10�8, a level suggested
by Risch and Merikangas (1996) for genomewide
association studies. The results for the two-stage depen-
dent design under the previous four genetic models are
presented in Table 3. Clearly, the power depends on the
genetic model and allele frequency. In general, the
power is very high for the sample sizes we consider here.
The exceptions are the recessive models with a small
allele frequency or dominant models with a large allele
frequency. From Table 3, we can see that the measure-
ment errors in DNA pooling have little impact on the
statistical power of the two-stage design. Our previous
studies showed that such an effect can be large for a one-
stage design, especially when the error rates are not
small (Zou and Zhao 2004). Our finding shows that the
impact of measurement errors on the case–control
association studies can almost be neglected by using
the two-step design, although a larger measurement
error will lead to more markers to be selected in the first
stage. Compared to the one-stage design, the two-stage
strategy has slightly smaller power due to the selection
in the first stage (data not shown). When the two-stage
independent design is used, the power is higher than
that of the two-stage dependent design (Table 4). In our
calculation, we assume that the same numbers of the
cases and the controls are typed at the second stage for
both designs, which implies that more efforts are
needed for the two-stage independent design to collect
additional cases and controls compared to the two-stage
dependent design. Our calculation shows that if we
ignore the correlation between the two stages for a two-
stage dependent design, then we will slightly overesti-

mate the power. On the other hand, from Table 4, the
two-stage independent design is more affected by the
measurement errors than the two-stage dependent
design but less affected than the one-stage pooling
scheme.

Table 5 gives the statistical power of the two-stage
dependent design for the fixed allele frequency and
allele frequency difference between the cases and
controls (where f0 is still taken as 0.01). It can be
observed from Table 5 that for given p and pA � pU , the
power is almost the same under different genetic mod-
els. This shows that the power of the two-stage design
depends on the genetic model and allele frequency
almost only through the population allele frequency
and allele frequency difference between the case and
control groups. As before, this observation is useful
in practice because, although the genetic models are
often unknown to us, we can estimate the sample size
to attain the desired significance level and power un-
der different genetic models as long as the allele
frequencies in the general population and the allele
frequency differences between the cases and controls
can be assumed.

We use the approximate Equation 8 to calculate the
probability of at least one truly associated marker be-
ing ranked among the top L markers after the second
stage for the two-stage dependent design. Likewise,

TABLE 2

The recommended proportion q0 of markers selected from
the first stage for including at least one truly associated

marker with an allele frequency difference of
pA � pU at one marker

pA � pU e ¼ 0 e ¼ 0.005 (%) e ¼ 0.01 (%) e ¼ 0.03 (%)

0.03 15% 19 29 58
0.05 2% 3 7 40
0.07 0.4% 0.9 3 25
0.10 5 3 10�5 0.02 0.4 18

The sample size in the first stage is n ¼ 1000, and the num-
ber of pools formed for either the cases or the controls is
m ¼ 1.

TABLE 3

The power of the two-stage dependent design for the sample
sizes of n ¼ 500 and na ¼ 500

e ¼ 0 e ¼ 0.005 e ¼ 0.01 e ¼ 0.03

Dominant
p ¼ 0.05 0.950 0.950 0.950 0.950
p ¼ 0.20 0.950 0.950 0.950 0.950
p ¼ 0.70 0.046 0.046 0.046 0.046

Recessive
p ¼ 0.05 0.000 0.000 0.000 0.000
p ¼ 0.20 0.829 0.827 0.824 0.817
p ¼ 0.70 0.950 0.950 0.950 0.950

Multiplicative
p ¼ 0.05 0.600 0.599 0.595 0.584
p ¼ 0.20 0.950 0.950 0.950 0.950
p ¼ 0.70 0.950 0.950 0.950 0.950

Additive
p ¼ 0.05 0.941 0.939 0.936 0.931
p ¼ 0.20 0.950 0.950 0.950 0.950
p ¼ 0.70 0.948 0.947 0.946 0.943

The significance level for the two-stage design isa¼ 53 10�8,
and the power in the pooling stage is 1 � b1 ¼ 95%. Dominant
model, f2 ¼ f1 ¼ 0:04, f0 ¼ 0:01; recessive model, f2 ¼ 0:04, f1 ¼
f0 ¼ 0:01; multiplicative model, f2 ¼ 0:04, f1 ¼ 0:02, f0 ¼ 0:01;
additive model, f2 ¼ 0:04, f1 ¼ 0:025, f0 ¼ 0:01. The number
of pools formed for either the cases or the controls is m ¼ 1.
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the probabilities are almost the same under different
genetic models for the same population allele fre-
quency and allele frequency difference between the
case and control groups (data not shown). As an ex-
ample, we consider a recessive model with a population
allele frequency of 0.2 and allele frequency difference of
0.05. The results are presented in Figure 3. It can be
seen that there is a high probability for the top 50
markers to include at least one truly associated marker
when 1% of the markers are selected from the first stage,
even though the measurement errors are not small.
However, this probability may not be high for detecting
disease-associated markers with small allele frequency
differences, e.g., 0.03 (data not shown). Essentially, the
chance that at least one truly associated marker is
ranked among the top L markers after the second stage
is higher for markers with larger allele frequency
differences. The conclusion is similar for the two-stage
independent design (data not shown). In general, the
probabilities are not larger for the two-stage indepen-
dent design than those for the two-stage dependent
design. This can be understood by noting the positive
correlation between the two stages for the two-stage
dependent design that leads to the smaller value of the
right-hand side of Equation 8 than PðX , l90Þ.

DISCUSSION

In this article, we have investigated the two-stage
design with DNA pooling used in the first-stage screen-
ing. Three related problems have been considered: (i)
How many markers should be chosen from the first
stage?, (ii) What is the overall statistical power when the
two-stage design is used?, and (iii) What is the proba-
bility that at least one of the disease-associated markers
is ranked among the top after the second stage? Our
analyses show that the answers to these questions are
dependent on the genetic models and allele frequen-
cies essentially through the population allele frequen-
cies and allele frequency differences between the case
and the control groups at the candidate markers. For
the first problem, we have derived the proportion of
markers that needs to be selected to include the truly
associated markers. For instance, when the measure-
ment errors are small (0.005), 3% of the markers need
to be selected to include a disease-associated marker
with an allele frequency difference of 0.05 between the
case and control groups for a sample consisting of 1000
cases and 1000 controls. When the measurement errors
are not small, multiple pools can be formed to reduce
measurement errors. For the second problem, we have
derived the formula for calculating the statistical power
of a two-stage strategy. We find that the measurement
errors in pooled DNA have little effect on the power
when the two-stage design, especially the two-stage
dependent design, is used, contrary to the single-stage
pooling scheme. Recalling our conclusion that reduc-
ing measurement errors can greatly reduce the selec-
tion proportion of markers in the pooling stage, we see
that for a two-stage design, measurement errors have a
large impact only on the first stage. Once the markers
are selected, the effect of measurement errors can be
very small. Three strategies, the two-stage dependent
design, the two-stage independent design, and the one-
stage design, have been compared. Overall, the two-
stage independent design has the highest power, and
the one-stage design with individual genotyping has
slightly higher power than the two-stage dependent
design. However, their difference in power is not large.
On the other hand, the one-stage design will be either
too expensive (for individual genotyping) in genome-
wide search or seriously affected by measurement errors
(for DNA pooling). Furthermore, for the two-stage in-
dependent design, extra sample collection is needed,
although the genotyping cost is the same as in the two-
stage dependent design. In fact, if in our calculations,
we use exactly the same number of individuals as that in
the two-stage dependent design with 500 used to screen
and the other 500 for follow-up analyses, the statistical
power for such a two-stage independent design can be
much lower than that of the two-stage dependent
design. For example, the power under the multiplicative
model with a population allele frequency of 0.05 and a

TABLE 4

The power of the two-stage independent design for the
sample sizes of 500 in the first stage and 1000

in the second stage

e ¼ 0 e ¼ 0.005 e ¼ 0.01 e ¼ 0.03

Dominant
p ¼ 0.05 0.950 0.950 0.950 0.950
p ¼ 0.20 0.950 0.950 0.950 0.950
p ¼ 0.70 0.092 0.084 0.071 0.051

Recessive
p ¼ 0.05 0.000 0.000 0.000 0.000
p ¼ 0.20 0.933 0.925 0.902 0.830
p ¼ 0.70 0.950 0.950 0.950 0.950

Multiplicative
p ¼ 0.05 0.833 0.767 0.678 0.593
p ¼ 0.20 0.950 0.950 0.950 0.950
p ¼ 0.70 0.950 0.950 0.950 0.950

Additive
p ¼ 0.05 0.950 0.949 0.946 0.933
p ¼ 0.20 0.950 0.950 0.950 0.950
p ¼ 0.70 0.950 0.950 0.950 0.946

The significance level for the two-stage design is a ¼ 5 3
10�8, and the power in the pooling stage is 1 � b1 ¼ 95%. Dom-
inant model, f2 ¼ f1 ¼ 0:04, f0 ¼ 0:01; recessive model, f2 ¼
0:04, f1 ¼ f0 ¼ 0:01; multiplicative model, f2 ¼ 0:04, f1 ¼ 0:02,
f0 ¼ 0:01; additive model, f2 ¼ 0:04, f1 ¼ 0:025, f0 ¼ 0:01.
The number of pools formed for either the cases or the controls
is m ¼ 1.
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measurement error rate of 0.005 is 0.209 for the above
two-stage independent design but 0.599 for the two-
stage dependent design. For the third problem, our
studies show that the chance that at least one truly
associated marker selected from the first stage is ranked
among the top markers after the second stage is high
when the allele frequency differences are not ,0.05 for

samples of reasonable sizes, even though the measure-
ment errors are not small.

It is of practical interest how to allocate the sample
sizes in the two stages to maximize the power (or
minimize the total cost) for a given cost (or given
power), as Satagopan et al. (2002), Satagopan and
Elston (2003), and Satagopan et al. (2004) have done.
For example, let C be the total cost, C1 be the cost of
recruiting an individual, Cpool be the cost of measuring
allele frequency at a single marker for a DNA pool, Cind

be the cost of genotyping a single marker for an in-
dividual, andC0 be the other cost such as administration.
Then we have

C ¼C01C1 �2ðn1naÞ1Cpool �2mM1Cind �2ðn1naÞM1

for the two-stage dependent design, and

C ¼ C0 1C1 � 2ðn1naÞ1Cpool � 2mM 1Cind � 2naM1

for the two-stage independent design. In particular, we
take the number of total markers to be M ¼ 106, the
number of the truly disease-associated markers to be
K ¼ 1, and the number of pool pairs to be m ¼ 1.
Further, we takeC ¼ 53 105 (unit: United States dollar),
C1 ¼ 200, Cind ¼ 0:02, Cpool ¼ 0:02, C0 ¼ 0, and e ¼
0:01. Then our preliminary calculation results showed
that for the given cost, the optimal design that leads to
highest power is to allocate exactly (nearly) the same
sample size to each stage for the two-stage depen-
dent (independent) design (Y. Zuo, J. Wang, G. Zou,
H. Zhao and H. Liang, unpublished results). For the

Figure 3.—The probability of at least one truly associated
marker being ranked among the top L markers after the sec-
ond stage for the two-stage dependent design where the sam-
ple sizes are n ¼ 500 and na ¼ 500, the error rate is e ¼ 0:01,
and the number of pools formed for the cases or the controls
is m ¼ 1. The allele frequency difference is 0.05, and the pop-
ulation allele frequency is p ¼ 0:2. From top to bottom, the
curves correspond to the cases of K1 ¼ 5, 2, and 1, respectively
(assume that the number of the whole markers is M ¼ 106

and the top 1% of markers are chosen from the first stage
in which K1 truly associated markers are included).

TABLE 5

The power of the two-stage dependent design for the fixed allele frequency and allele frequency difference
between the case and the control groups

pA � pU ¼ 0:03 pA � pU ¼ 0:05 pA � pU ¼ 0:07 pA � pU ¼ 0:10

p ¼ 0.05
Dominant 0.0685 0.748 0.949 0.950
Recessive 0.0915 0.717 0.944 0.950
Multiplicative 0.0704 0.744 0.948 0.950
Additive 0.0697 0.746 0.949 0.950

p ¼ 0.20
Dominant 0.00115 0.0585 0.457 0.941
Recessive 0.00174 0.0722 0.460 0.931
Multiplicative 0.00127 0.0618 0.458 0.938
Additive 0.00126 0.0612 0.458 0.939

p ¼ 0.70
Dominant 4.58 310�4 0.0301 0.352 0.926
Recessive 6.96 310�4 0.0389 0.376 0.934
Multiplicative 6.24 310�4 0.0366 0.374 0.936
Additive 6.16 310�4 0.0362 0.373 0.937

The significance level for the two-stage design is a ¼ 5 3 10�8, and the power in the pooling stage is 1 � b1 ¼
95%. The sample sizes are n ¼ 500 and na ¼ 500, the error rate is e ¼ 0.01, and the number of pools formed for
either the cases or the controls is m ¼ 1.
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two-stage dependent design, this means that all individ-
uals should be used at both stages and no additional
sample is needed at the second stage. This is similar to the
two-stage individual genotyping design with sample size
constraint (Satagopan et al. 2004) but is different from
the design with individual genotyping at both stages in
which the optimal design maximizing power is to allocate
�25% of the individuals to the first stage and the
remaining individuals to the second stage (Satagopan
et al. 2002; Satagopan and Elston 2003). Clearly, an
overall investigation is needed in this regard. This
warrants our further research.

To simplify our analyses, we have assumed indepen-
dence among the markers. This would be reasonable
when the marker density is low. However, for a genome-
wide association study, the marker density is high and
adjacent markers may be highly correlated. But it is not
evident how to model the correlation among markers.
One way to avoid this difficulty is to study many subsets
of the whole marker set such that they cover the entire
genome yet the markers are independent. However,
this is clearly less than satisfactory due to the loss of
information in the data. On the other hand, this ques-
tion can be examined empirically to assess the effect of
correlations among markers on our results. For exam-
ple, we have investigated the effect of correlation on the
selection of markers in the first stage through the
HapMap data. We considered the SNPs on the 500K
SNP Array and used the HapMap data to approximate
the level of correlations among SNPs. The HapMap data
consist of 270 individuals from four populations, and
the information for the 500K data can be downloaded
from http://www.affymetrix.com/support/downloads/
data/500K_HapMap270.zip (For the missing alleles, we
imputed them by the corresponding frequencies of the
existing alleles). For simplicity, we have considered only
the first 300 markers and let the 140th marker be disease
associated to illustrate the impact of marker dependence
and a more thorough investigation will be reported in
future articles. Assuming a dominant model with f2 ¼
f1 ¼ 0:4; f0 ¼ 0:1, the allele frequency difference be-
tween the case and control groups is pA � pU ¼ 0:088.
We considered the sample sizes of the two pools to be
n ¼ 100. Using the results established before under the
independence assumption, we found that if we took the
top q0 ¼ 18:3; 18:7; 20:0, and 30:9% of the markers
when e ¼ 0, 0:005, 0:01, and 0:03, respectively, then we
would have the chance of 80% to select the disease-
associated marker (i.e., 140th marker) in the first stage.
When we applied these q0’s obtained under the in-
dependence assumption to the HapMap data, we ob-
served that in 10,000 simulations, we had the chances
of 72, 72, 71, and 65% to include the disease-associated
marker when e ¼ 0, 0:005, 0:01, and 0:03, respectively.
This shows that the correlation among markers can re-
duce the chance that the truly disease-associated marker
is selected but such reduction is not large. Further, the

impact of correlation is larger (smaller) for less (more)
stringent requirement on the chance of including the
disease-associated marker under the independence as-
sumption (data not shown). Clearly, to eliminate the
effect of correlation, the best way is to develop similar
methods to those given in this article incorporating the
correlations among markers, and this will be addressed
in our future work.

Throughout this article, we have assumed that mea-
surement errors exist in the DNA pooling stage but not
in the individual genotyping stage. How genotyping
errors at both stages can affect the efficiency of the two-
stage scheme also warrants future research.

Note that family based data are often used in genetic
epidemiological studies in addition to population-based
data. Association studies using pooled DNA family data
have been considered for the one-stage scheme (e.g.,
Risch and Teng 1998; Zou and Zhao 2005). The re-
search on the two-stage designs using family data is no
doubt an interesting topic for future research.
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APPENDIX: THE CALCULATION OF THE PROBABILITY THAT NONE OF THE TRULY ASSOCIATED
MARKERS ARE RANKED AMONG THE TOP L MARKERS

Clearly, P 92 can be written as

P 92 ¼ PðX ,Y ;Z0 .U ;Z*,Z0;Z*,V ;V .U Þ
PðZ0 .U ;Z*,Z0;Z*,V ;V .U Þ

¼ PðX ,Y ;V .Z0 .U ;Z*,Z0;V .U Þ1PðX ,Y ;Z0 $V ;Z*,V ;V .U Þ
PðV .Z0 .U ;Z*,Z0;V .U Þ1PðZ0 $V ;Z*,V ;V .U Þ : ðA1Þ

We have known tðTÞind;j � N ðuind;j ; l
2
ind;jÞ, j ¼ 1; . . . ;K1, and tðNÞ

ind;j � N 0; 1ð Þ, j ¼ 1; . . . ;M1 � K1. We denote the
distribution and density functions of t ðTÞind;j by GjðxÞ and gjðxÞ, respectively. The distribution and density
functions of tðNÞ

ind;j are still denoted as FðxÞ and fðxÞ, respectively. Further, let H ðTÞ
j ðx; yÞ denote the joint distribution

of ðtðTÞpool;j ; t
ðTÞ
ind;jÞ, j ¼ 1; . . . ;K1, andH ðNÞ

j ðx; yÞ denote the joint distribution of ðtðNÞ
pool;j ; t

ðNÞ
ind;jÞ, j ¼ 1; . . . ;M1 � K1. Moreover,

hj
ðTÞðx; yÞ and hj

ðNÞðx; yÞ denote the corresponding density functions. Then it can be shown that

PðX ,Y ;V .Z0 .U ;Z*,Z0;V .U Þ ¼
ð‘
�‘

dy

ð ð
u,v

ðy
�‘

dx

ðv
u
PðZ*, z0Þ � pðx; z0Þdz0


 �
� pðy; vÞpðuÞdudv; ðA2Þ

PðX ,Y ;Z0 $V ;Z*,V ;V .U Þ ¼
ð‘
�‘

dy

ð‘
�‘

PðZ0 . v;X , yÞPðZ*, vÞPðU , vÞ � pðy; vÞdv; ðA3Þ

PðV .Z0 .U ;Z*,Z0;V .U Þ ¼
ð ð
u,v

ðv
u
PðZ*, z0Þpðz0Þdz0


 �
� pðuÞpðvÞdudv; ðA4Þ

and

PðZ0 $V ;Z*,V ;V .U Þ ¼
ð‘
�‘

PðZ0 . vÞPðZ*, vÞPðU , vÞ � pðvÞdv; ðA5Þ

where

PðU ,uÞ ¼ ½FðuÞ�ðM�K Þ�ðM1�K1Þ;

pðuÞ ¼ ½ðM � K Þ � ðM1 � K1Þ�½FðuÞ�ðM�K Þ�ðM1�K1Þ�1fðuÞ;

pðvÞ ¼ ðM1 � K1Þ½1 �FðvÞ�M1�K1�1fðvÞ;

pðz0; xÞ ¼
YK1

j¼1

½GjðxÞ �H
ðTÞ
j ðz0; xÞ�

�
(XK1

j¼1

gjðxÞ � cj

GjðxÞ �H
ðTÞ
j ðz0; xÞ

�
XK1

j¼1

bj

GjðxÞ �H
ðTÞ
j ðz0; xÞ

1
XK1

j¼1

h
ðTÞ
j ðz0; xÞ½GjðxÞ �H

ðTÞ
j ðz0; xÞ� � bj ½gjðxÞ � cj �

½GjðxÞ �H
ðTÞ
j ðz0; xÞ�2

)
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with bj ¼
Ð x
�‘

hðTÞj ðz0; tÞdt, and cj ¼
Ð z0

�‘
hðTÞj ðs; xÞds, and

pðy; vÞ ¼
XM1�K1

l¼M1�K1�L11

X
i1,���,il

uðv; yÞðD1D2 � D12Þ;

with i1; . . . ; il being some l numbers of 1; . . . ;M1 � K1, and

uðv; yÞ ¼
Yl
j¼1

½FðyÞ �H
ðNÞ
ij ðv; yÞ� �

YM1�K1

j¼l11

½1 �FðyÞ �FðvÞ1H
ðNÞ
ij ðv; yÞ�;

D1 ¼
Xl
j¼1

dij

FðyÞ �H
ðNÞ
ij ðv; yÞ

1
XM1�K1

j¼l11

fðvÞ � dij

1 �FðyÞ �FðvÞ1H
ðNÞ
ij ðv; yÞ

;

D2 ¼
Xl
j¼1

fðyÞ � eij

FðyÞ �H
ðNÞ
ij ðv; yÞ

1
XM1�K1

j¼l11

�fðyÞ1 eij

1 �FðyÞ �FðvÞ1H
ðNÞ
ij ðv; yÞ

;

D12 ¼
Xl
j¼1

�h
ðNÞ
ij ðv; yÞ½FðyÞ �H

ðNÞ
ij ðv; yÞ�1 dij ½fðyÞ � eij �

½FðyÞ �H
ðNÞ
ij ðv; yÞ�2

1
XM1�K1

j¼l11

h
ðNÞ
ij ðv; yÞ½1 �FðyÞ �FðvÞ1H

ðNÞ
ij ðv; yÞ� � ½fðvÞ � dij �½fðyÞ � eij �

½1 �FðyÞ �FðvÞ1H
ðNÞ
ij ðv; yÞ�2

;

and dij ¼
Ð y
�‘

hðNÞ
ij

ðv; tÞdt and eij ¼
Ð v
�‘

hðNÞ
ij

ðs; yÞds.
Combining (A1) and (A2)–(A5), we can obtain P 92. Thus, the probability that at least one truly associated marker is

ranked among the top L markers can be calculated by P2 ¼ 1 � P 92.
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