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ABSTRACT

A modified version (mBIC) of the Bayesian Information Criterion (BIC) has been previously proposed
for backcross designs to locate multiple interacting quantitative trait loci. In this article, we extend the
method to intercross designs. We also propose two modifications of the mBIC. First we investigate a two-
stage procedure in the spirit of empirical Bayes methods involving an adaptive (i.e., data-based) choice of
the penalty. The purpose of the second modification is to increase the power of detecting epistasis effects
at loci where main effects have already been detected. We investigate the proposed methods by computer
simulations under a wide range of realistic genetic models, with nonequidistant marker spacings and
missing data. In the case of large intermarker distances we use imputations according to Haley and Knott
regression to reduce the distance between searched positions to not more than 10 cM. Haley and Knott
regression is also used to handle missing data. The simulation study as well as real data analyses dem-
onstrates good properties of the proposed method of QTL detection.

CONSIDER a situation where we have a fairly densely
spaced molecular marker map and our goal is to

locate multiple interacting quantitative trait loci (QTL)
influencing the trait of interest. We assume that marker
genotype and quantitative trait value data are obtained
by carrying out an intercross experiment using two
inbred lines.

Classical methods of QTL mapping based on one-
dimensional genome searches like interval mapping
(Lander and Botstein 1989), composite-interval map-
ping (CIM) (Zeng 1993, 1994), and multiple-QTL map-
ping (MQM) ( Jansen 1993; Jansen and Stam 1994)
aim at locating QTL with significant main effects. The
common practice of estimating epistatic effects only at
those positions for which main effects have been found
causes an underestimation of the frequency and impor-
tance of epistasis (Wolf et al. 2000) and fails to identify
interesting regions of the genome. Epistatic effects are a
common phenomenon, however, which is supposed to
play an important role in the genetic determination of
complex traits (see, e.g., Doerge 2002; Carlborg and
Haley 2004 and references therein) as well as in the
evolution process (see, e.g., Wolf et al. 2000). Neglect-
ing these effects may lead to oversimplified models
describing the inheritance of complex traits and as
noted by Carlborg and Haley (2004) may result in a
relatively low economic gain if such models are used

for marker-assisted selection. Also, ‘‘in cases in which the
epistasis is ignored . . . the estimated effects of detected
QTLs could be severely biased’’ (Carlborg and Haley

2004, p. 624). The growing awareness of the importance
of epistasis led to the development of new methods of
QTL mapping that allow us to detect epistatic QTL (see,
e.g., Kao et al. 1999; Carlborg et al. 2000; Jannink
and Jansen 2001; Boer et al. 2002; Carlborg and
Andersson 2002; Yi and Xu 2002; Yi et al. 2003; Bogdan
et al. 2004; Narita and Sasaki 2004; Zhang and Xu

2005; Yi et al. 2005).
Taking into account epistatic effects usually relies on

using more complicated ANOVA or regression models,
allowing to take into account the joint influence of
many genes. In the context of multiple regression, the
identification of QTL requires the identification of
nonzero coefficients. In the context of classical statistics
on the other hand, one usually performs a sequence of
statistical tests to estimate the number and positions
of QTL as suggested, e.g., in Doerge and Churchill
(1996), Kao et al. (1999), and Carlborg and Andersson
(2002). This approach, however, allows us to compare
only nested models. It is also unclear how to choose
significance levels for each consecutive test. Another
possibility is to choose variables for multiple regression
or ANOVA, using one of many model selection criteria,
like the Bayesian information criterion (BIC) (Schwarz

1978) or the Akaike information criterion (Akaike 1974).
In the context of QTL mapping, these criteria were used
or discussed, e.g., by Jansen (1993), Jansen and Stam
(1994), Broman (1997), Ball (2001), Nakamichi et al.
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(2001), Piepho and Gauch (2001), Broman and Speed
(2002), Silanpää and Corander (2002), and Bogdan
et al. (2004). In particular, Broman (1997) and Broman
and Speed (2002) report that the BIC, which is con-
sidered to be one of the most conservative model
selection criteria, has a strong tendency to overestimate
QTL number. These findings strongly undermine the
possibility of using other, more liberal, criteria in the
context of QTL mapping. Bogdan et al. (2004) explain
the phenomenon of overestimation and propose a new,
modified version of the BIC (mBIC), with an extra
penalty depending on the number of markers used in
the study and prior knowledge on the QTL number.
They investigate the performance of the mBIC in the
simple setting of a backcross design with equally spaced
markers.

In this article we extend the method and propose a
modified version of the Bayesian information criterion
for the intercross design. Due to the increased number
of genotypes for the intercross design, the correspond-
ing number of potential regressor variables describing
additive and epistatic QTL effects is much larger than
that for the backcross design. We thus adapt the ap-
proach of Bogdan et al. (2004) and construct a modified
version mBIC of the BIC for the intercross design. Ad-
ditionally, we propose two new modifications of the
BIC. The first of them is in the spirit of empirical Bayes
approaches and is based on a two-step procedure. In
the first step, the proposed mBIC is used for an initial
estimation of the number of QTL and interactions. In
the second step, QTL are located using the mBIC with
the penalty modified according to the estimates ob-
tained in step one. The second modification relies on
extending the search procedure and is aimed at in-
creasing the power of detection of interaction effects.
We propose to consider an additional search for inter-
actions that are related to at least one of the additive
effects found in the original scan based on the mBIC.
Restricting our attention to a limited set of interactions
reduces the multiplicity of the testing problem and al-
lows us to use a smaller penalty for including interactions.

We perform an extensive simulation study verifying
the performance of our method. To account for the
more complicated model structure in the intercross
design, the range of models considered in the simu-
lations is substantially larger than that in Bogdan et al.
(2004). We also include models with nonequidistant
and missing marker data. In situations when the dis-
tance between markers is large, we use imputations
according to Haley and Knott regression to keep the
distance between searched positions #10 cM. We also
investigate the use of Haley and Knott regression to
handle missing data. Additionally, we apply our pro-
cedure to real data sets and compare the results to
standard QTL mapping techniques. Our simulations as
well as the analysis of real data suggest good properties
of the proposed method and demonstrate that the

proposed modifications of the mBIC may help to in-
crease the power of QTL detection while keeping the
proportion of false discoveries at a relatively low level.

METHODS

Statistical model: To model the dependence between
QTL genotypes and trait values, we use a multiple-
regression model with regressors coded as described in
Kao and Zeng (2002). This method of coding effects is
known as Cockerham’s model and involves an additive
and a dominance effect for each QTL locus as well as
effects modeling epistasis between two loci. With r QTL
this leads to the linear model

y ¼ m1
Xr
i¼1

ai xi 1
Xr
i¼1

di zi

1
X

1#i,j#r

g
ðxxÞ
i;j w

ðxxÞ
i;j 1

X
i 6¼j

g
ðxzÞ
i;j w

ðxzÞ
i;j 1

X
1#i,j#r

g
ðzzÞ
i;j w

ðzzÞ
i;j 1 e;

ð1Þ
where y is the trait value, and e � N(0, s) summarizes
environmental effects. The variables are coded as speci-
fied below:

Additive effects:

xi ¼ xðgiÞ ¼
1 if ith QTL has genotype gi ¼ AiAi ;
0 if ith QTL has genotype gi ¼ aiAi ;

�1 if ith QTL has genotype gi ¼ aiai :

8<
:

Dominance effects:

zi ¼ zðgiÞ ¼
1
2 if ith QTL has genotype gi ¼ Aiai ;

�1
2 else:

�

Epistatic effects:

w
ðxxÞ
i;j ¼ wðxxÞðgi ; gjÞ ¼ xi 3 xj ;

w
ðxzÞ
i;j ¼ wðxzÞðgi ; gjÞ ¼ xi 3 zj ;

w
ðzzÞ
i;j ¼ wðzzÞðgi ; gjÞ ¼ zi 3 zj :

The advantage of the Cockerham parameterization is
that under linkage equilibrium, the effects are orthog-
onal and the coefficients ai, di, and gi,j have a natural
genetic interpretation (see Kao and Zeng 2002). The
formulation of the model allows some of the coefficients
to be zero to accommodate cases when there are either
QTL that are not involved in epistatic effects or QTL
that do not have their own main effects yet influence the
quantitative trait by interacting with other genes, i.e.,
epistatic effects.

If the experiment is based on a relatively dense set of
markers, the first step in QTL localization could rely on
identifying markers that are closest to a QTL. Thus our
task reduces to choosing the best model of the form
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y ¼ m1
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aixi 1
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where I1 and I2 are certain subsets of the set N ¼
f1; . . . ;mg; m is the number of available markers; and
U1, U2, and U3 are certain subsets of N 3N . Analogous
to the formulas given above, the values of the regressor
variables xi, zi, w

ðxxÞ
i;j , wðxzÞ

i;j , and wðzzÞ
i;j are defined accord-

ing to the genotypes of the ith and jth markers. Simi-
larly to Bogdan et al. (2004), we allow interaction terms
to appear in our model even when the related main
effects are not included.

A modified version of the BIC: Many variable selec-
tion techniques are available in the statistical literature.
One of the most popular tools for choosing important
regressor variables is the BIC. The BIC belongs to the
class of penalized likelihood methods and recommends
choosing the simplest model for which

n log RSS1 k log n

obtains a minimal value. Here RSS is the residual sum of
squares from regression, k is the number of regressor
variables, and n is the sample size (number of consid-
ered individuals).

While generally considered to be conservative, the
BIC has a strong tendency to overestimate the QTL
number when used in the context of QTL mapping
(see, e.g., Broman 1997; Broman and Speed 2002).
Bogdan et al. (2004) explain the phenomenon of
overfitting and propose a new, modified version of the
BIC (mBIC), with an extra penalty depending on the
number of markers used in the study as well as on the
prior knowledge on the QTL number. This proposed
criterion recommends choosing the model that mini-
mizes the quantity

mBIC ¼ n log RSS1 ðp1 qÞlog n

1 2p logðl � 1Þ1 2q logðu � 1Þ;

where p is the number of main effects in the model and q
is the number of epistatic terms. The additional penalty
coefficients l :¼mv/ENv and u :¼me/ENe depend on the
number of possible regressors mv and me (correspond-
ing to main and epistatic effects, respectively), as well as
the expected number of main and epistatic QTL effects
ENv and ENe, with the expectation chosen according to
some prior.

Note that for the backcross design mv ¼ m and me ¼
m(m� 1)/2. In the absence of prior information,
Bogdan et al. (2004) propose to use ENv ¼ ENe ¼ 2.2.
In the context of the backcross design, this choice guar-
antees that for sample sizes n $ 200 and a moderate
number of markers (M . 30), the probability of the
type I error of the resulting procedure (i.e., probability

of detecting at least one QTL when there are none) is
,7%.

In this article, we construct a version of mBIC suitable
for intercross design. Note that in this designmv¼ 2m (m
possible additive and m possible dominance terms), and
me ¼ 2m(m � 1). Choosing again ENv ¼ ENe ¼ 2.2, the
resulting modified version of the BIC recommends the
model for which

mBIC ¼ n log RSS1 ðp1 qÞlog n1 2p logðm=1:1 � 1Þ
1 2q logðmðm � 1Þ=1:1 � 1Þ ð3Þ

obtains a minimum. Here p is equal to the sum of the
number of additive and dominance effects present in
the model and q is the number of epistatic terms.

Observe that the proposed penalty for including in-
dividual terms is larger in the intercross design than in
the backcross design. This is a result of a larger number
of possible terms in the regression model, which forces
us to increase the threshold for adding an additional
term to keep control of the overall type I error. An upper
bound for the type I error of the search procedure is
derived using the Bonferroni inequality (see appendix

for details). Simulations show that the upper bound is
close to the observed type I error for markers that are
not closer than 5 cM.

Figure 1 compares the upper bound on the type I
error of the mBIC when the penalty is adjusted for
intercross designs (see Equation 3) with the related
type I error when the penalty designed for backcross
(2p log(m/2.2 � 1) 1 2q log(m(m � 1)/2.2 � 1)) is
used. The results are for m ¼ 132 markers. The graph
clearly shows that for common sample sizes adjusting
the penalty is necessary to control the type I error at a
5% level.

Figure 1.—Comparison of the Bonferroni type I error
bounds under the null model (no effects) for the intercross
design when the same penalty as in backcross is used and
when the penalty is adjusted accordingly.
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Apart from using mBIC in its standard form (Equa-
tion 3), we developed adaptive strategies to modify the
size of the penalty on the basis of the data. In general,
available prior information on the number of main and
epistatic effects may be used to adjust the criterion in
the following way,

mBIC1 ¼ n log RSS1 ðp1 qÞlog n1 2p logð2m=ENv � 1Þ
1 2q logð2mðm � 1Þ=ENe � 1Þ; ð4Þ

where ENe and ENv denote the expected values of Ne

and Nv under the prior distribution. If we have no
knowledge on the number of QTL, an obvious option is
to use the data to obtain an initial estimation of Ne and
Nv. Such estimates for Ne and Nv could in principle be
obtained using standard methods for QTL localization,
e.g., interval mapping. However, due to the known prob-
lems related to interval mapping (many local maxima
between markers, difficulties with separating linked
QTL, and ‘‘ghost’’ effects) we recommend the applica-
tion of the standard version of mBIC (3) for an initial
search. We denote the number of additive and epistatic
effects found in this initial search by N̂ v and N̂ m . In the
second step, the final localization of QTL is based on
version (4) of the criterion, with ENv replaced by
maxð2:2; N̂ vÞ and ENe replaced by maxð2:2; N̂ eÞ.

In the case of a large number of underlying QTL, the
reduced penalty in the second search step increases the
power of QTL detection. If in the first search step two or
fewer main and epistatic effects are found, the penalty is
not decreased. Thus in particular under the null model
of no effects, the type I error will still be close to 5%.

We also consider a second extension to the search
strategy to increase the power of detecting epistatic
effects. The described application of the mBIC takes
into account epistatic effects regardless of whether the
corresponding main effects were included in the model
or not. Therefore, epistasis can be detected in cases
where main effects are weak or not present at all. Wolf

et al. (2000) list the common practice of fitting epi-
static terms after main effects have been included in the
model as a main reason why in many QTL studies,
epistasis has not been detected. However, the price for
the possibility of detecting epistasis even if main effects
are not detectable is a relatively large penalty for in-
teraction terms. In particular for small sample sizes,
this results in low detection rates (see Figure 2). This
observation confirms the statement of Carlborg and
Haley (2004, p. 620) that epistatic studies ‘‘are at their
most powerful if they use good quality data for 500 or
more F2 individuals.’’

For the above reasons, we deploy a third search step
that increases the power of detection for epistatic terms
by considering a restricted set of potential terms on
the basis of prior analysis. Specifically, we restrict our
attention to those epistatic effects related to at least one
of the main effects detected by an initial search based

on (4). Thus the set of epistatic effects to be searched
through in this third step consists of not more than
4p(m � 1) elements, where p is the number of main
effects detected in the two-step procedure. This allows
us to decrease the penalty for interactions accordingly.
The mBIC version used in this last step chooses the
model that minimizes the quantity

mBIC2 ¼n log RSS1 ðp1 q1 qaÞlogn1 2p logð2m=ENv � 1Þ
1 2q logð2mðm � 1Þ=ENe � 1Þ
1 2qa logð4pðm � 1Þ=ENe � 1Þ; ð5Þ

where q is the number of epistatic effects found in the
two-step procedure and qa is the number of extra epis-
tatic terms considered in the additional search for
epistasis.

The penalty for the extra interaction terms in (5) is
now of the same order as the penalty for additive terms
and thus the power for detecting such epistatic effects
should be comparable to the power of detecting main
effects with the same heritability.

The identification of the model minimizing (3), (4),
or (5) within the huge class of potential models is by no
means trivial. Our approach is to use a forward selection
procedure with the following stopping rule: if a local
minimum of the modified BIC is reached, we still pro-
ceed with forward selection, trying to include (one-by-
one) five additional terms. If, at some point, this leads
to a new minimum, we temporarily accept this ‘‘best’’
model and continue again with forward selection. Other-
wise none of the additional five effects are added. This
approach helps to avoid premature stopping of the
search algorithm at a local minimum. This can be the
case when including two additional regressors improves

Figure 2.—The solid curves show the percentage of cor-
rectly identified additive, dominance, and epistatic effects
depending on the heritability. The shaded curves display
the expected number of incorrectly selected (linked and un-
linked) markers (n ¼ 200).
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the model even if each single one of them does not. The
maximum number of additional regressors is set to five
because it is very unlikely that five additional regressors
improve the model while each of them alone does not or
only marginally improves it.

Finally, backward elimination is tried; i.e., it is checked
whether mBIC can still be improved by deleting some of
the previously added variables.

SIMULATIONS

Simulations are carried out to investigate the perfor-
mance of our proposed method of QTL detection in the
intercross design under a variety of parameter settings.
We consider several scenarios involving equidistant mark-
ers that are relatively easy to analyze and three realistic
scenarios designed according to an actual QTL exper-
iment described in Huttunen et al. (2004).

In our equidistant scenarios, we simulate QTL and
marker genotypes on 12 chromosomes, each of length
100 cM. Markers are equally spaced at a distance of
10 cM with the first marker at position 0 and the 11th
marker at position 100 of each chromosome. This leads
to a total number of available markers m of 132 and the
standard version of mBIC (3) becomes

mBIC ¼ n log RSS1 ðp1 qÞlog n1 9:56p1 19:33q:

Genome length and marker density are kept constant
in all simulations and are in accordance with previous
simulation studies (Piepho and Gauch 2001; Bogdan
et al. 2004) to increase comparability.

Further details for the equidistant (both simple and
more complex) scenarios and the realistic scenarios are
provided below. We simulated the trait data under dif-
ferent models of the form (1). In all simulations the
overall mean m and the standard deviation of the error
term s were set to be 0 and 1, respectively. For each sce-
nario and parameter setting, the simulation results are
based on 500 replications.

Among the simulation results we include are the
average number of correctly identified effects, which we
denote by cadd, cdom, and cepi for additive, dominance,
and epistatic effects, respectively. In the case of simple
models with just one effect, these quantities are esti-
mates of the power. A main effect is classified to be
correctly identified if the regression model chosen by
mBIC includes the corresponding effect related to a
marker within 15 cM of QTL. An epistatic effect is
classified as correctly identified when the mBIC finds a
corresponding effect with both markers falling within
15 cM of the corresponding QTL. If more than one
effect is detected in such a window, only one of them
is classified as true positive. All the other effects are
considered to be false positives.

In our simulation study of more complex equidistant
scenarios, we simulated many QTL with weak effects. In

this situation, the confidence intervals for the estimates
of QTL location are often much wider than 30 cM (see,
e.g., Bogdan and Doerge 2005). Thus each of such
weak effects will bring a certain proportion of ‘‘false’’
positives related to a weak precision of QTL localization,
while still providing an approximation to the best reg-
ression model. As a result of this phenomenon, the
total number of false positives typically increases with
the size of the model used in the simulation. Therefore,
additionally to the average number of false positives fp,
we report the estimated proportion of false positives
within the total number of identified effects, pfp ¼ fp/
(cadd 1 cdom 1 cepi 1 fp).

Simple equidistant scenarios: We first consider the
null model, i.e., the situation where there are no QTL at
all. As shown in Figure 1, the probability that at least one
effect is incorrectly selected should be ,0.05 when the
sample size is at least 200. Our simulations lead to a
percentage of 0.038 of such (familywise) type I errors
when n ¼ 200, thus confirming the theoretical results.
The percentage of errors should decrease with increas-
ing sample size, and indeed for a sample size of n¼ 500,
the number goes down to 0.02.

Next we consider two experiments to investigate the
detectability of QTL effects depending on their strength,
their effect type (additive, dominance, or epistatic), and
the total number of QTL. In these experiments we use a
sample size of n ¼ 200.

For the first experiment, we generate the data ac-
cording to three simple models of the form (1). In the
first two models (scenarios 1 and 2), one QTL is located
at the fifth marker on the first chromosome. In scenario
1 the QTL has only an additive effect with the effect size
a ranging from 0.2 to 0.6. In scenario 2, the additive
effect is constant (a ¼ 0.7) and a dominance effect d
with values in the interval between 0.4 and 1.2 is added.
For scenario 3 only one epistatic effect (gðxxÞ1;2 ) between
marker numbers five of chromosome 5 and six, re-
spectively, is considered. The effect size of (gðxxÞ1;2 ) ranges
between 0.4 and 1.6.

In the context of scenarios 1 and 3, we investigate
the power of detection in dependence on the classical
heritability

s2
*

11s2
*

; ð6Þ

with 1 being the environmental variance, and s2
* de-

noting the variance due to the single genetic effect
present (i.e., s2

* ¼ s2
add in the case of an additive effect,

and s2
* ¼ s2

epi in the case of epistasis between two loci).
In scenario 2, the power of detection of the domi-

nance effect should also depend on whether the cor-
responding additive effect can be detected, since the
error variance gets smaller, if the additive effect is in-
cluded into the regression model. In our experiment
the additive effect was almost always detected (power
99%) and we observed that a good indicator for the
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power of detection of the dominance term is its heri-
tability in the model without the additive term:

h2
dom ¼ s2

dom

11s2
dom

¼ 0:25d

11 0:25d
: ð7Þ

A comparison of detection rates of additive, domi-
nance, and epistatic effects in dependence on the
heritability [as defined in (6) for additive and epistatic
effects, respectively, and in (7) for the dominance ef-
fect] is given in Figure 2. The relationship can be seen
to be S-shaped and nearly identical for additive and
dominance effects. Although dominance and additive
effects are detected with the same power at a fixed heri-
tability, the actual size of the dominance effects has to
be larger (by

ffiffiffi
2

p
) than the additive effects (s2

add ¼ a2=2
and s2

dom ¼ d2=4 for an additive effect of size a and
dominance effect of size d. Hence if s2

add ¼ s2
dom, d has

to be a
ffiffiffi
2

p
). For epistatic effects, the power of detection

is lower. This can be explained by the increased penalty
of the model selection criterion.

The shaded curves in Figure 2 display the average
number of falsely detected effects, which can be used as
an estimate of the expected number of false positives.
This quantity is an upper bound to the probability of
having at least one incorrect effect in the model. The
displayed error rates are fairly constant over the range of
heritabilities considered. They vary between 0.05 (the
value achieved by the model with no effects) and 0.11.

The purpose of the second experiment is to inves-
tigate to what extent the power of detection of individ-
ual signals is affected by the amount of QTL influencing
the trait. The number of QTL varies between 1 and
10, and all QTL are on different chromosomes and
therefore unlinked and have only additive effects with
ai ¼ 0.5.

Figure 3 shows that the probability of detection using
the standard version of mBIC (3) decreases with the
number of effects present. This can be explained by the
fact that criterion (3) is based on the assumption that
the expected number of effects is 2.2. If the correct (but
in practice unknown) number of effects were used
instead of 2.2, the percentage of correctly identified
additive terms would increase from 0.543 to 0.761 for 10
underlying effects, from 0.672 to 0.781 for 7, and from
0.763 to 0.7995 for 4 underlying effects. We can obtain a
comparable improvement by applying the two-step pro-
cedure defined in Equation 4 that involves an estima-
tion of the number of expected effects in the first search
step. The dotted line in Figure 3 shows that the power of
detection increases while the proportion of false pos-
itives remains stable.

Complex equidistant scenarios: Here, we consider
nine more complex models that involve several effects
of different size and type.

For all models, the overall broad sense heritability
h2

b ¼ s2
G=ðs2

e 1s2
GÞ is kept at 0.7; i.e., 70% of the phe-

notypic variance is explained by genotypic variation s2
G.

Fixing the variance caused by environmental effects
s2
e to 1 leads to a genotypic variation of 2: _3, which is then

distributed among additive effects (45%), dominance
effects (25%), and epistatic effects (30%). The result-
ing narrow sense heritability has an expected value of
0.315. All simulations are done both with sample sizes
200 and 500.

We consider all combinations of situations involving
two, four, and eight additive and epistatic effects. Dom-
inance effects are assigned to half of the loci where
additive effects occur. The epistatic QTL are taken
both from the additive effect positions and from other
genome locations. If p additive effects are present, the
relative size of effect i is chosen to yield 100ði=p �
ðp1 1Þ=2Þ% of the additive heritability. For dominance
and epistatic effects the relative strengths are chosen
analogously. We consider the worst-case situation where
the QTL positions are always exactly in the middle of
two markers. Table 1 contains a brief summary of the
resulting nine scenarios. A detailed description of all
effect positions and strengths can be found on our web
page, http://homepage.univie.ac.at/andreas.baierl/
pub.html.

Results for simulations with sample sizes of 200 and
500 are described in the following. Table 2 summarizes
the average number of correctly identified effects as well
as the average number of false positives and the pro-
portion of false positives for the standard version of the
mBIC (3). Table 3 gives the corresponding statistics for

Figure 3.—Percentage of correctly identified additive ef-
fects vs. number of additive effects. The QTL are unlinked,
i.e., located on different chromosomes, and have effect sizes
of 0.5. The solid line is based on simulations where no prior
information is used to derive the penalty terms of the modi-
fied BIC. The dashed line represents simulations with the cor-
rect number of underlying effects (1, 2, 4, 7, and 10) assumed
known. The dotted line corresponds to the two-step search
procedure based on formula (4).
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modifications based on the two-step procedure (see
Equation 4) as well as for the additional search for
epistatic terms with reduced penalty based on Equation
5. Table 3 demonstrates that the two-step procedure has
the potential to increase the detection power while
keeping the observed proportion of false positives at a
level similar to the standard version of the mBIC. The
increase in detection rates gained by this procedure is
apparent for models with a larger number of underlying
QTL (scenarios 7–9). The performance of the addi-
tional search for epistasis based on (5) depends on the
actual model. In some cases the corresponding increase
in the number of false positives is larger than the in-
crease in the average number of correctly identified
effects. We observed this situation to occur under sce-
narios 1, 4, and 7 (one relatively weak epistatic effect
related to one of the main effects) and the sample size
n ¼ 200. Note, however, that under all these scenarios
the gain in the detection rate was decisively larger than

the increase in false positives when the sample size was
n ¼ 500. The additional search for epistatic effects is es-
pecially successful for scenario 9 with a large number of
underlying main and epistatic effects.

Figures 4 and 5 are based on the final search results
described in Table 3. They indicate that the ability to
detect an effect of a given size depends mainly on the
individual effect heritability h2 ¼ s2

eff=ðs2
e 1s2

GÞ.
For the sample size n ¼ 200, the majority of large

additive effects (h2 . 0.07) is detected with a high power
(.0.8). While only some fraction of moderate effects
(h2 2 (0.04, 0.07)) is detected for n ¼ 200, moderate
additive and dominance effects are almost always detected
when n ¼ 500. Epistasis effects are somewhat harder to
detect; the type of epistasis, however, does not influence
the detectability. The observed proportion of false posi-
tives never exceeds 9% for n ¼ 200 and 4% for n ¼ 500.

Realistic scenarios: As an alternative model, we take
the marker setup from a Drosophila experiment by
Huttunen et al. (2004) and also include missing data.
To obtain a more densely spaced set of genome loca-
tions, genotype values were imputed at 35 positions
chosen equidistantly between adjacent markers, keep-
ing the maximum distance between the considered
genome locations at not more than 10 cM. Haley–Knott
regression (Haley and Knott 1992) was used to impute
values. See Figure 6 for the marker locations.

Our three scenarios permit for different expected
proportions (0, 5, and 10%, resp.) of marker locations
per chromosome where the genotype information is
missing. To permit for comparison, both heritabilities
and QTL characteristics are chosen as in the above-
mentioned complex equidistant scenario 4 involving
four additive, two dominance, and two epistatic effects,
and furthermore the QTL effects have again been
positioned in a distance of 5 cM to the closest marker.
For this experiment we use the sample size n ¼ 200.

TABLE 1

Description of scenarios 1–9

Scenario nadd ndom naa
epi ndd

epi nad
epi

1 2 1 1 1 0
2 2 1 3 0 1
3 2 1 7 1 0
4 4 2 1 1 0
5 4 2 3 0 1
6 4 2 7 1 0
7 8 4 1 1 0
8 8 4 3 0 1
9 8 4 7 1 0

Columns contain numbers of additive (nadd), dominance
(ndom), and epistatic QTL for each scenario. Epistatic effects
can be of additive–additive (naa

epi), dominance–dominance (ndd
epi)

or additive–dominance (nad
epi) type.

TABLE 2

Simulation results for sample sizes 200 and 500 (initial penalty)

Scenario

1 2 3 4 5 6 7 8 9

cadd
a 1.818 1.712 1.668 2.424 2.334 2.182 2.950 2.676 2.478

cadd
b 1.994 1.988 1.982 3.180 3.166 3.158 4.982 4.976 4.874

cdom
a 0.966 0.968 0.978 1.296 1.204 1.064 1.348 1.164 0.972

cdom
b 0.932 0.962 0.958 1.814 1.870 1.840 2.626 2.260 2.530

cepi
a 1.040 0.860 0.470 1.020 0.830 0.390 0.900 0.650 0.250

cepi
b 1.730 2.350 3.690 1.730 2.260 3.280 1.630 1.990 3.110

pfpa 0.040 0.053 0.063 0.050 0.044 0.059 0.061 0.065 0.080
pfpb 0.027 0.024 0.024 0.020 0.023 0.026 0.023 0.019 0.029
fpa 0.160 0.200 0.210 0.250 0.200 0.230 0.340 0.310 0.320
fpb 0.130 0.130 0.160 0.140 0.170 0.220 0.220 0.180 0.310

Columns contain the average numbers of correctly identified additive (cadd), dominance (cdom), and epistatic (cepi) effects.
‘‘pfp’’ denotes the proportion of false positives and ‘‘fp’’ the average number of falsely detected effects, respectively.

a Results are for a sample size of 200.
b Results for a sample of size 500.
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According to Table 4, the obtained results are similar
to those obtained for the complex equidistant scenario
4 that has the same number and relative strength of
effects. This suggests that our approach does not rely
on the somewhat unrealistic assumption of equidistant
markers and no missing data.

Not surprisingly, the average number of correctly
identified markers decreases slightly when the propor-
tion of missing data increases. The proportion of false
positives on the other hand somewhat increases. This
results from a loss of power as well as a loss of precision
in localizing QTL.

TABLE 3

Simulation results for sample sizes 200 and 500 (adjusted penalty)

Scenario

1 2 3 4 5 6 7 8 9

cadd
a 1.822 1.700 1.694 2.494 2.456 2.353 3.086 3.014 2.600

cadd
b 1.993 1.990 1.995 3.280 3.238 3.218 5.200 5.163 5.140

cdom
a 0.978 0.987 0.966 1.302 1.240 1.180 1.504 1.280 1.032

cdom
b 0.938 0.945 0.943 1.865 1.848 1.865 2.833 2.390 2.755

cepi
a 1.064 0.940 0.482 1.016 0.806 0.380 0.962 0.630 0.252

cepi
b 1.745 2.365 3.780 1.685 2.220 3.410 1.625 1.963 3.278

fpa 0.156 0.200 0.228 0.260 0.262 0.280 0.370 0.336 0.346
fpb 0.125 0.150 0.230 0.205 0.205 0.260 0.233 0.218 0.270
pfpa 0.039 0.052 0.068 0.051 0.055 0.067 0.062 0.064 0.082
pfpb 0.026 0.028 0.033 0.029 0.027 0.030 0.024 0.022 0.024

Dca.epi
a 0.018 0.130 0.158 0.046 0.112 0.100 0.058 0.128 0.100

Dca.epi
b 0.150 0.040 0.070 0.185 0.035 0.085 0.145 0.110 0.395

Dfpa
a 0.07 0.11 0.104 0.082 0.09 0.08 0.066 0.086 0.084

Dfpa
b 0.065 0.04 0.065 0.035 0.025 0.055 0.05 0.027 0.048

pfpa
a 0.055 0.074 0.088 0.065 0.069 0.080 0.071 0.075 0.095

pfpa
b 0.038 0.034 0.042 0.033 0.030 0.035 0.028 0.025 0.027

Simulation results for the two-step procedure based on formula (4) and the three-step procedure based on formula (5) are
shown. Columns contain the average numbers of correctly identified additive (cadd), dominance (cdom), and epistatic (cepi) effects
as well as the average number of falsely detected effects (fp) and the proportion of false positives (pfp) for the two-step procedure.
Dca.epi and Dfpa display average numbers of correctly identified and false-positive epistatic effects that were detected additionally in
the third search step on the basis of formula (5); ‘‘pfpa’’ on the other hand denotes the total proportion of false positives based on
the finally selected model at the end of the third search step.

a Results are for a sample size of 200.
b Results for a sample of size 500.

Figure 4.—Percentage of correctly identified additive, dom-
inance, and epistatic effects vs. individual effect heritabilities
h2 ¼ s2

eff=ðs2
e 1s2

GÞ. Detection rates are taken from simula-
tions of scenarios 1–9 (see Table 3) for n ¼ 200.

Figure 5.—Percentage of correctly identified additive, dom-
inance, and epistatic effects vs. individual effect heritabilities
h2 ¼ s2

eff=ðs2
e 1s2

GÞ. Detection rates are taken from simula-
tions of scenarios 1–9 (see Table 3) for n ¼ 500.

1700 A. Baierl et al.



ILLUSTRATIONS

We apply our proposed method to data sets from QTL
experiments on Drosophila virilis and mice, respectively.
Huttunen et al. (2004) analyzed the variation in male
courtship song characters in D. virilis. We considered
their intercross data set obtained from 520 males and
the quantitative trait PN (number of pulses in a pulse
train). Figure 6 shows the positions of the markers used
in this experiment (solid lines). Depending on the chro-
mosome, between 2 and 5% of the marker data were
missing. We used the same imputation strategy as for
our considered realistic scenarios, both for the missing
data and for the additional genome positions.

Huttunen et al. (2004) used single-marker analysis
as well as composite-interval mapping. They found one
QTL on chromosome 2, five QTL on chromosome 3,
and another QTL on chromosome 4. As they note, four
of the five positions found on chromosome 3 are close

together and may well correspond to only one single
underlying QTL.

With our approach and the penalization based on 59
search positions, we found the same QTL positions on
chromosomes 2 (at 53.7 cM) and 4 (at 100.2 cM), but
only two positions (at 25.4 and 108.25 cM) on chromo-
some 3. All QTL found were classified as additive. The
QTL locations pointed out by our method as well as
intervals suggested by Huttunen et al. (2004) are pre-
sented in Figure 6. In the results of the additional re-
gression analysis we observed that none of the putative
QTL suggested by Huttunen et al. (2004) on chromo-
some 3 that were not found by our method significantly
improves our model (corresponding P-values for adding
these QTL were 0.85, 0.34, 0.06, and 0.32). Given these
results and the above remark by Huttunen et al. (2004),
our method might have led to a more precise localiza-
tion of the respective QTL on chromosome 3.

Shimomura et al. (2001) investigated the circadian
rhythm amplitude in mice on 192 F2 individuals. Geno-
types were observed on 121 markers spread across the 19
autosomal chromosomes with 0–5% of the data missing
for most markers. Again, the same imputation strategy
as described in the section on realistic scenarios was
used.

The analysis presented in Shimomura et al. (2001)
consists of single and pairwise marker genome scans
with permutation tests for assessing statistical signifi-
cance. They identified one main effect on chromosome
4 at 42.5 cM and one epistatic term between the previous
position and a marker on chromosome 1 at 81.6 cM.

Both QTL were detected by our method, one additive
main effect on chromosome 4 and one dominant 3 ad-
ditive epistatic effect between the QTL on chromosomes
4 and 1. The epistatic term was found in an additional
search step based on the mBIC described in Equation 5.

DISCUSSION

In this article we use a modification of the Bayesian
information criterion (mBIC) to locate multiple inter-
acting quantitative trait loci in intercross designs. The
proposed procedure allows us to detect multiple inter-
acting QTL while controlling the probability of the type
I error at a level close to 0.05 for sample sizes n $ 200.
The main advantages of this procedure include that it is
straightforward to apply and computationally efficient,
which makes an extensive search for epistatic QTL prac-
tically feasible.

We presented results from simulations with single
effects (additive, dominance, and epistatic) of different
magnitude and for complex scenarios to investigate
detection thresholds. We applied our proposed pro-
cedure to realistic parameter settings including non-
equidistant marker positions and different proportions
of missing values. To demonstrate the applicability of
our proposed method when applied to real data, we

Figure 6.—Genetic map for the D. virilis experiment by
Huttunen et al. (2004). Solid horizontal lines indicate ob-
served marker positions, and dotted lines show imputed posi-
tions. QTL localized by our proposed method are symbolized
by diamonds. Intervals with significant additive and/or dom-
inance effects found by Huttunen et al. (2004) applying com-
posite interval mapping are indicated by solid vertical lines.

TABLE 4

Simulation results for different percentages of missing data

% missing cadd cdom cepi pfp

0 2.486 1.302 1.290 0.043
5 2.362 1.264 1.140 0.054
10 2.262 1.160 0.980 0.070

Results of simulations for the realistic scenario with 0, 5,
and 10 of missing marker data. Columns contain the average
number of correctly identified additive (cadd), dominance
(cdom), and epistatic effects (cepi) and the proportion of false
positives (pfp) derived with the two-step search strategy on the
basis of formula (4).
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analyzed two sets of QTL experiments from the genetic
literature, namely one dealing withD. virilis and another
one with mice. Both our simulation results and our real
data analysis confirm good properties of the proposed
modifications to the BIC.

Compared to the original BIC (see Schwarz 1978),
the mBIC contains an extra penalty term that accounts
for the large number of markers included in typical
genome scans and the resulting multiple-testing prob-
lem. While a modification of the BIC is already required
when only main effects are considered (see, e.g., Broman
and Speed 2002 and theoretical calculations in Bogdan
et al. 2004), the multiple-testing problem becomes even
more important when epistatic effects can enter the
model regardless of the related main effects, as in our
approach.

The simulations reported in this article show that the
mBIC appropriately separates additive, dominant, and
epistatic effects. In the case of closely linked markers,
however, our approach sometimes leads to a misclassi-
fication of the effect type, while still correctly identifying
the presence of an effect. Hence, we suggest using the
mBIC rather to locate QTL than to identify the specific
effect type. The procedure should also not be extended
to estimate the magnitude of QTL effects or heritabil-
ities. Estimating parameters after model selection leads
to upward-biased estimators of the effect sizes. This is
true for any method leading to the choice of a single set
of regressors, i.e., also in the case of the widespread
methods based on multiple tests or interval mapping
(see, e.g., Bogdan and Doerge 2005).

The prior for the number of main and epistatic effects
in the standard version of the mBIC (with expected
values ENv ¼ 2.2 and ENe ¼ 2.2) allows us to control the
probability of the type I error. This is suggested for an
initial search in the case of no prior knowledge on the
number of effects. When reliable information on the
number of effects is available, we strongly recommend
using it for defining ENv and ENe. Our simulations also
show that modifying the prior choices of ENv and ENe in
Equation 4 using estimates of the QTL number from an
initial search based on the standard version of the mBIC
allows for some increase of power of QTL detection
while preserving the observed proportion of false posi-
tives at a level similar to the standard version of the
mBIC. The same holds for the additional search for
epistatic terms with modified penalties according to
Equation 5.

In this article we apply the mBIC to locate multiple
interacting QTL by choosing the best of competing
regression models. Our simulations as well as results re-
ported in Broman (1997), Broman and Speed (2002),
and Bogdan et al. (2004) show that the proposed for-
ward selection strategy performs very well in this con-
text. However, the mBIC has also great potential to be
used in a stricter Bayesian context. The majority of
currently used Bayesian Markov chain Monte Carlo

methods for QTL mapping require multiple genera-
tion of all regression parameters and multiple visits of
a given model to estimate its posterior probability by
the frequency of such visits (see, e.g., Yi et al. 2005 and
references therein). As a result, the proposed methods
are computationally intensive and are very rarely veri-
fied by thorough simulation studies, which could pro-
vide insight into the influence of the prior distributions.
The influence of the choice of priors on the outcome
of Bayesian model selection methods is discussed,
e.g., by Clyde (1999). Note that the mBIC provides a
method to estimate the posterior probability of a given
model by visiting this model just once. This is because
exp(�mBIC/2) is an asymptotic approximation for
P(Y | M) 3 P(M), where P(Y | M) stands for the like-
lihood of the data given model M (see Schwarz 1978)
and P(M) is the prior probability of a given model. Thus
the posterior probability of a given model Mi could be
estimated by

PðMi jY Þ �
expð�mBICi=2ÞP
k
j¼1 expð�mBICj=2Þ;

given that the k visited models contain all plausible
models. To reach all sufficiently plausible models, a
suitable search strategy needs to be designed. The con-
struction of such an efficient search strategy is difficult
due to the huge number of possible models (for 200
markers we potentially have 2638,800 models). However,
we believe that a numerically feasible procedure per-
mitting us to use mBIC in a Bayesian context might be
found by exploiting the specific structure of QTL map-
ping problems, restricting the search space, and apply-
ing a proper adaptation of an efficient Markov chain
Monte Carlo sampler (see, e.g., Broman and Speed 2002)
or a heuristic search strategy like genetic algorithms (see,
e.g., Goldberg 1989), simulated annealing (Kirkpatrick
et al. 1983), tabu search (Glover 1989a,b), or ant colony
optimization (see, e.g., Dorigo and DiCaro 1999). This
would allow us to estimate posterior probabilities of
different plausible models as well as to use model av-
eraging to estimate parameters like effect sizes and
heritabilities.

We thank Susanna Huttunen, Jouni Aspi, Anneli Hoikkala, Christian
Schlötterer, and Joseph S. Takahashi for providing us with data sets
from their QTL studies as well as Jayanta K. Ghosh and R. W. Doerge
for helpful discussions. We thank furthermore the associate editor and
two anonymous reviewers for comments and suggestions that led to a
substantial improvement of the manuscript.

LITERATURE CITED

Akaike, H., 1974 A new look at the statistical model identification.
IEEE Trans. Automat. Control AC-19: 716–723.

Ball, R., 2001 Bayesian methods for quantitative trait loci mapping
based on model selection: approximate analysis using the Bayesian
information criterion. Genetics 159: 1351–1364.

Boer, M. P., C. J. F. ter Braak and R. C. Jansen, 2002 A penalized
likelihood method for mapping epistatic quantitative trait loci
with one-dimensional genome searches. Genetics 162: 951–960.

1702 A. Baierl et al.



Bogdan, M., and R. W. Doerge, 2005 Biased estimators of quanti-
tative trait locus heritability and location in interval mapping.
Heredity 95: 476–484.

Bogdan, M., J. K. Ghosh and R. W. Doerge, 2004 Modifying the
Schwarz Bayesian information criterion to locate multiple inter-
acting quantitative trait loci. Genetics 167: 989–999.

Broman, K. W., 1997 Identifying quantitative trait loci in experi-
mental crosses. Ph.D. Dissertation, University of California,
Berkeley, CA.

Broman, K. W., and T. P. Speed, 2002 A model selection approach for
the identification of quantitative trait loci in experimental crosses.
J. R. Stat. Soc. B 64: 641–656.
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APPENDIX

The difference between the mBIC of the null model
(mBIC0) and the mBIC of any one-dimensional model
Mi (mBICMi

) is log n 1 2 log(l � 1) or log(u � 1), de-
pending on whether the effect included in the one-
dimensional model is a main or an epistatic effect. The
number of possible one-dimensional models Mi for
intercross designs is 2m 1 4m(m � 1)/2.

To derive a bound for the type I error under the null
model, we note that two times the difference of the
likelihoods of a one-dimensional model and the null
model is approximately x2-distributed with 1 d.f.

Applying the Bonferroni inequality gives

PðmBICMi .mBIC0; for any iÞ
# 4mP ðZ .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n1 2 logðl � 1Þ

p
Þ

1 4mðm � 1ÞPðZ .
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n1 2 logðu � 1Þ

p
Þ1 e

ðA1Þ

for the probability of choosing any one-dimensional
model, if the null model is true.

The curves shown in Figure 1 are derived by evaluat-
ing the right-hand side of equation A1 for values of n
between 100 and 500 and m ¼ 132. For the backcross
penalty, the parameters l and u are set to m/2.2 and
m(m � 1)/4.4, respectively, whereas for the intercross
penalty u ¼ m/1.1 and l ¼ m(m � 1)/1.1.
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