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ABSTRACT

A variety of estimators have been developed to use genetic marker information in inferring the admixture
proportions (parental contributions) of a hybrid population. The majority of these estimators used allele
frequency data, ignoredmolecular information that is available in markers such as microsatellites and DNA
sequences, and assumed that mutations are absent since the admixture event. As a result, these estimators
may fail to deliver an estimate or give rather poor estimates when admixture is ancient and thus mutations
are not negligible. A previous molecular estimator based its inference of admixture proportions on the
average coalescent times between pairs of genes taken from within and between populations. In this article
I propose an estimator that considers the entire genealogy of all of the sampled genes and infers admixture
proportions from the numbers of segregating sites in DNA sequence samples. By considering the genealogy
of all sequences rather than pairs of sequences, this new estimator also allows the joint estimation of other
interesting parameters in the admixture model, such as admixture time, divergence time, population size,
and mutation rate. Comparative analyses of simulated data indicate that the new coalescent estimator
generally yields better estimates of admixture proportions than the previous molecular estimator, especially
when the parental populations are not highly differentiated. It also gives reasonably accurate estimates of
other admixture parameters. A humanmtDNA sequence data set was analyzed to demonstrate the method,
and the analysis results are discussed and compared with those from previous studies.

OVER the past 70 years, many statistical methods
have been developed and applied to estimating

the genetic compositions of admixed/hybrid popula-
tions, using genetic marker data (for recent reviews see
Beaumont 2003; Choisy et al. 2004; Excoffier et al.
2005). The primary interest is to infer, from the amount
and pattern of genetic variation revealed by markers,
the proportional contributions of two or more potential
parental populations to the gene pool of an admixed
population (Chakraborty 1986). Estimating such ad-
mixture proportions helps in understanding the evolu-
tionary history of populations (e.g., Chikhi et al. 2002;
Wen et al. 2004), in genetic epidemiological investiga-
tions (Chakraborty and Weiss 1986, 1988), and in
assessing the risk of diseases in human populations. In
conservation biology, knowledge of admixture propor-
tions helps in making informed management of en-
dangered species in the wild.

Most methods available use allele frequency data to
estimate admixture proportions, exploiting the genetic
characteristic of an admixed population that its al-
lele frequencies should be intermediate between those
of the parental populations (Cavalli-Sforza and
Bodmer 1971; Bertorelle and Excoffier 1998). The
main differences among these methods are whether

or not to take genetic drift into account and how to
select (e.g., Chakraborty et al. 1992) and treat allele
frequency data statistically. Traditional methods are
usually moment estimators that ignore the genetic drift
that occurred to the parental and hybrid populations
since the admixture event (e.g., Glass and Li 1953;
Roberts and Hiorns 1965; Elston 1971; Long 1991;
Chakraborty et al. 1992), while recent ones are usually
likelihood or Baysian estimators (e.g., Thompson 1973;
Chikhi et al. 2001; Wang 2003), allowing the joint
estimation of admixture proportions and genetic drift.
A flexiblemethod based on some summary statistics and
approximate Bayesian computation (Beaumont et al.
2002; Marjoram et al. 2003) has been proposed re-
cently, which estimates admixture proportion, genetic
drift, and mutation parameters simultaneously from
linked or unlinked microsatellite markers (Excoffier

et al. 2005).
Molecular markers, such as DNA sequences and mi-

crosatellites that are now used widely, provide us not
only allele frequency information, but also deep gene-
alogical information revealed by the molecular diversity
of sampled genes.Most of the abovemethods do not use
such molecular information and assume that mutations
are absent since the admixture event, causing two po-
tential problems. One is that discarding molecular in-
formation may result in a loss of estimation precision,
especially when the mutation rate is high for markers
such as large DNA sequences. The other is that when
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admixture is ancient and thus mutations are not neg-
ligible, these methods may fail to deliver an estimate or
give rather poor estimates. Realizing these problems,
Bertorelle and Excoffier (1998) developed a novel
estimator that uses both allele frequency and molecular
information and explicitly takes mutations into account
in estimating admixture proportions. The estimator
was shown to be less biased and, in some situations, to
yield more precise estimates of admixture proportions
(Bertorelle and Excoffier 1998; Wang 2003). Later
on, the estimator was extended by Dupanloup and
Bertorelle (2001) to allow three ormoreparental pop-
ulations contributing to the admixture.

In this article I develop a new molecular estimator
under a well-defined admixture model (Bertorelle
andExcoffier 1998;Wang 2003; Excoffier et al. 2005)
and compare it with the previousmolecular estimator by
using both simulated and real data. While the previous
molecular estimator bases its inference on the average
coalescent times between two genes taken from within
and between populations, the current one considers the
entire genealogy of the sampled genes and infers ad-
mixture from the numbers of segregating sites in DNA
sequence samples. By considering the genealogy of all
sequences rather than pairs of sequences, this new esti-
mator also allows the joint estimation of other interest-
ing parameters such as admixture time, divergence
time, population size, and mutation rate as well as ad-
mixture proportions.

METHODS

The admixture model: Several recent studies adopt
the admixture model proposed by Bertorelle and
Excoffier (1998), with slight modifications (Chikhi
et al. 2001; Wang 2003; Choisy et al. 2004; Excoffier

et al. 2005). In this study, I use the admixture model of
Excoffier et al. (2005), as illustrated in Figure 1. I
assume an ancestral population, P0, splits into two pa-
rental populations, P1 and P2, which evolve separately
for TD generations. At that point of time, a hybrid pop-
ulation, Ph, is instantaneously created by combining
genes of proportions p1 and p2¼ 1� p1 taken at random
from parental populations P1 and P2, respectively. After
the admixture event, the three populations evolve in
isolation for a period of TA generations, when a sample
of individuals is taken from each population for ex-
amining somemarkers. I also assume, as is implicit in all
previous admixture models, that neither direct nor in-
direct selection is associated with the markers surveyed,
and the markers are from diploid and autosomal loci.
With 2N (N, the effective population size) replaced byN,
however, the method applies to haploid markers (such
as mtDNA) as well.

The above admixture model is characterized by seven
parameters, which are the effective sizes of the ancestral
(N0), parental (N1 and N2), and admixed (Nh) popula-

tions; the times (in the unit of generations) of di-
vergence (TD) and admixture (TA); and the admixture
proportion p1. The seven parameters are denoted by set
v ¼ {N0, N1, N2, Nh, TA, TD, p1}. Without an external
standard, however, it is impossible to estimate the ab-
solute values of population size and time. They are
therefore rescaled by the mutation rate (m) of markers
as uk ¼ 4Nkm (k¼ 0, 1, 2, h), tk¼ Tkm (k¼ A, D), and the
estimable parameters are denoted by V ¼ {u0, u1, u2, uh,
tA, tD, p1}.

The mutation model: To utilize molecular informa-
tion and account for mutations explicitly in estimating
admixture, a suitable mutation model must be specified
to describe the mutational process of markers. Herein I
use DNA sequences as markers, which are assumed to
follow the infinite-site model of mutations (Kimura
1969). Under this model, a locus is composed of so
many sites that nomore than onemutation occurs at any
site in the genealogy of the sampled sequences. I also
assume a constant-rate neutral mutation process, in
which each offspring sequence differs from its parental
one by an average of mmutations. Under these assump-
tions, the number of mutations in a sample of DNA
sequences is identical to the number of nucleotides that
are polymorphic (segregating) in the sample. There-
fore, the expected number of segregating sites in a sam-
ple is simply the product of m and the expected total
branch length of the genealogy of the sample (see, e.g.,
Tajima 1983; Hudson 1990).

Expected numbers of segregating sites: In this sec-
tion, I derive the expected total branch length of the
genealogy (ETBLG) (denoted by D) of a sample of
DNA sequences given parameter set v. The expected
number of segregating sites in a sample is simply the
product of D andmutation rate m under the infinite-site
model. In the next section, the observed numbers of
segregating sites are fitted to these expected values to
obtain least-squares estimates of V.

Suppose n1, n2, and nh sequences of a given locus are
sampled at random from the current P1, P2, and
Ph populations, respectively. The n ¼ n11n21nh se-
quences can be arranged to constitute seven composite
(artificial) samples. Samples 1, 2, and 3 contain sequen-
ces solely from populations P1, P2, and Ph, respectively.
Samples 4, 5, and 6 are obtained by merging samples 1
and 2, 1 and 3, and 2 and 3, respectively. Sample 7 con-
tains all of the n sequences. The sample sizes (number
of sequences) for samples 1, 2, . . . , 7 are therefore
n1, n2, nh, n11n2, n11nh, n21nh, and n11n21nh,
respectively.

Expected total branch length of a genealogy: For conve-
nience in deriving the ETBLG of a sample of sequences,
time is measured backward hereafter. The current time
when the sample was taken is designated as generation
zero and the time T generations ago is referred to as
generation T. Consider the ETBLG of sample 1, D1,
conditional on parameters v. The genealogy can be
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partitioned into two segments, the first being formed by
the coalescent process in population P1 during time
interval [0, TA 1TD], while the second is formed by the
coalescent process in population P0 during time interval
[TA 1 TD, ‘]. The expected total branch length of seg-
ment one can be derived, as shown in appendix a, as

d1ði;N ;T Þ ¼ 4N
Xi
k¼2

ð11 ð�1ÞkÞð2k � 1Þi½k�
kðk � 1ÞiðkÞ

ð1� e�kðk�1ÞT=ð4N ÞÞ;
ð1Þ

where i ¼ n1 is the initial number of sequences, N ¼ N1

is the effective population size, T ¼ TA 1 TD is the
time interval, and iðkÞ ¼ iði1 1Þ . . . ði1 k � 1Þ and i½k� ¼
iði � 1Þ . . . ði � k1 1Þ are the rising and falling factorial
functions, respectively.

For the second segment, the initial number of se-
quences, j (n1 $ j $ 2), at time TA 1 TD is a random
variable. The probability of an initial i sequences at time
zero coalescing into j sequences at time T in a pop-
ulation with effective size N is

gi;jðN ;T Þ ¼
Xi
k¼j

ð�1Þk�jð2k � 1Þjðk�1Þi½k�
j !ðk � jÞ!iðkÞ

e�kðk�1ÞT=ð4N Þ

ð2Þ
(Tavaré 1984). Inserting i ¼ n1, T ¼ TA 1 TD, and N ¼
N1 into (2) gives the probability that j (n1 $ j $ 2)
sequences are left extant at time TA 1TD in population
1. Given j at time TA 1 TD and the effective size of the
ancestral population N0, the expected total branch
length of the second segment of genealogy (e.g.,
Hudson 1990) is 4N0

Pj�1
k¼1ð1=kÞ. Summing over all pos-

sible values of j gives the expected total branch length of
the second segment of genealogy

d2ði;N ;T ;N0Þ ¼ 4N0

Xi
j¼2

gi;jðN ;T Þ
Xj�1

k¼1

1

k
; ð3Þ

where i ¼ n1, N ¼ N1, T ¼ TA 1 TD. The ETBLG is the
sum of (1) and (3),

D1 ¼ d1ðn1;N1;TA 1TDÞ1 d2ðn1;N1;TA 1TD;N0Þ:
ð4Þ

When TA 1TD/‘, d2ðn1;N1;TA 1TD;N0Þ[ 0 irrespec-
tive of the parameter values of n1;N1, and N0, as is
expected because the most recent common ancestor
(MRCA)must be found in the first segment of genealogy.
In such a case, (4) reduces to 4N1

Pn1�1
k¼1 ð1=kÞ, the ex-

pected total branch length of the genealogy of n1 se-
quences from a population of a constant size N1 (e.g.,
Hudson 1990). It can be shown that when N0 ¼ N1, (4)
also reduces to 4N1

Pn1�1
k¼1 ð1=kÞ irrespective of TA and

TD, as expected.
Similarly, the ETBLG of sample 2 conditional on

parameter setv,D2, is calculated by the right side of (4),
replacing N1 by N2 and n1 by n2, respectively.

The derivation for the ETBLG of sample 3 is much
more complicated. The genealogy is again partitioned
into two segments. The first segment is formed by the
coalescent process of an initial nh sequences in pop-
ulation Ph during interval [0, TA]. The expected total
branch length of this segment is calculated by (1) with
i ¼ nh, N ¼ Nh, and T ¼ TA. The second segment is
formed by the coalescent processes in populations P1
and/or P2 during time interval [TA, TA 1 TD] and then
in ancestral population P0 during time interval [TA 1

TD, ‘]. The probability of i ¼ nh sequences coalescing
into j ¼ m sequences at time T ¼ TA in population Ph
with effective sizeN¼Nh is calculated by (2). According
to the sources of the m extant sequences at time TA,
three cases are distinguishable.

Case 1: The m extant sequences at time TA come ex-
clusively from population P1. When this case occurs,
with probability pm1 , the expected total branch length
of the second segment of genealogy given m can be
calculated by the sum of (1) and (3), replacing i, N,
and T by m, N1, and TD, respectively.

Case 2: The m extant sequences at time TA come ex-
clusively from population P2. When this case occurs,
with probability pm2 where p2 ¼ 1� p1, the expected
total length of the second segment of genealogy given
m can be calculated by the sum of (1) and (3), re-
placing i, N, and T by m, N2, and TD, respectively.

Case 3: Among the m extant sequences at time TA, m1

(0,m1,m) sequences come frompopulation P1 and
m2 ¼ m � m1 from P2. When this case occurs, with the
binomial probability ofm!=m1!=m2!p

m1

1 pm2

2 , the second
segment of genealogy can be further partitioned into
three subsegments. Subsegment 1 is formed by the
coalescent process of the initial m1 sequences at time
TA in population P1 during interval [TA, TA1TD].
The expected total branch length of this subsegment
can be derived, shown in appendix a, as

d3ði;N ;T Þ ¼ T 1 4N
Xi
k¼2

ð2k � 1Þi½k�
kðk � 1ÞiðkÞ

ð1� e�kðk�1ÞT=ð4N ÞÞ;

ð5Þ

where i ¼ m1 is the initial number of sequences, N ¼ N1

is the effective size, and T ¼ TD is the length of time.
Subsegment 2 is formed by the coalescent process of
the initial m2 sequences at time TA in population P2 dur-
ing interval [TA, TA 1 TD]. The expected total branch
length of this subsegment can be calculated similarly by
(5) replacing i, N, and T by m2, N2, and TD, respectively.
The third subsegment is formed by the coalescent pro-
cess in ancestral population P0 during the time interval
[TA1TD,‘]. Supposem3 andm4 sequences are extant at
time TA1TD in populations P1 and P2, respectively, with
probabilities gm1;m3

ðN1;TDÞ and gm2;m4
ðN2;TDÞ, respec-

tively, calculated by (2). The expected total branch
length of the segment of genealogy for the given initial
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m31 m4 sequences in population P0 during the time inter-
val [TA 1 TD, ‘] is (e.g., Hudson 1990) 4N0

Pm31m4�1
k¼1 �

ð1=kÞ. Considering all possible values of m3 and m4

leads to the expected total branch length of the third
subsegment of genealogy, 4N0

Pm1

m3¼1 gm1;m3
ðN1;TDÞ �Pm2

m4¼1 gm2;m4
ðN2;TDÞ

Pm31m4�1
k¼1 ð1=kÞ. Summing over the

three subsegments gives the expected total branch
length of the second segment of genealogy in case 3.

Summing over the three cases yields the expected
total branch length of genealogy for segment 2. Adding
the expected total branch lengths of segments 1 and 2
gives the ETBLG of sample 3,

D3 ¼ d1ðnh;Nh;TAÞ1
Xnh
m¼1

gnh ;mðNh;TAÞ

3

(X2
k¼1

pmk d1ðm;Nk ;TDÞ1d2ðm;Nk ;TD;N0Þð Þ

1
Xm�1

m1¼1

m!pm1
1 pm2

2

m1!m2!

�X2
k¼1

d3ðmk ;Nk ;TDÞ

14N0

Xm1

m3¼1

gm1;m3ðN1;TDÞ

3
Xm2

m4¼1

gm2;m4ðN2;TDÞ
Xm31m4�1

k¼1

1

k

�)
;

ð6Þ

where p2 [ 1� p1 and m2 [m � m1. It can be shown
that, when Nk ¼ 1

2N (k ¼ 0, 1, 2, h) and nh ¼ 2, (6)
reduces to 2N 1 4p1ð1� p1ÞTDe

�TA=N , which is twice the
expected coalescent time between a pair of sequences
from the admixed haploid population derived by
Bertorelle and Excoffier (1998).

Using an approach similar to the derivation of (6), I
also obtained, as shown in appendix a, the equations for
the ETBLGs of samples 4–7.

Expected number of segregating sites: Under the infinite-
site model assumed above, the expected number of
segregating sites (ES) in a sample is simply the product
of mutation rate m and ETBLG of the sample. The
expected number of segregating sites of the kth sam-
ple conditional on parameter set V, ESk, can then be
calculated by the equation for Dk by replacing Nj, TA,
and TD with uj/4, tA, and tB, respectively, where k ¼ 1,
2, . . . , 7 and j ¼ 0, 1, 2, h.

Estimation of parameters: Suppose, for a single locus
with (unknown) mutation rate m, the number of seg-
regating sites in sample k (k ¼ 1, 2, . . . , 7) is observed to
be OSk. Estimates of the parameters V ¼ {u0, u1, u2, uh,
tA, tD, p1} can be obtained by fitting these observed
to the expected numbers of segregating sites by a least-
squares approach,

Min f ðVÞ ¼
X7
k¼1

ðOSk � ESkÞ2; ð7Þ

where ESk is calculated as shown above. Since f(V) is a
complicated function of the seven parameters and no
closed form of solution is possible, some numerical
methods have to be adopted for the estimation. The first
derivatives of f(V) with respect to each of the seven
parameters can be obtained and used in the multi-
dimensional Newton–Raphson algorithm for the esti-
mates of V from (7). However, the computation is
intensive, especially when sample sizes are large, be-
cause both function (7) and its derivatives are not trivial
to compute. Further, such an algorithm is sometimes
fooled by a local rather than a global minimum of f(V).
Having tried several methods, I finally choose to use
Powell’s quadratically convergent method (Press et al.
1996) with slightmodifications. This algorithmdoes not
require the computation of derivatives, and with the
modification it updates only one of the parameters in
most iterations so that only part of (7) needs to be re-
calculated. For example, updating u1 does not alter ES2
but changes only parts of the calculations of ESj for j ¼ 3,
4, . . . , 7. Therefore, the algorithm coupled with stor-
ing/reusing the computational results for different
parts of ESj could reduce computational burden tre-
mendously. To speed up computation, this algorithm
occasionally updates multiple parameters simultane-
ously along an optimal direction determined by col-
lecting and using information of previous iterations.
Some comparative analyses of simulated data indicated
that Powell’s algorithm is less often stuck on a local
minimum than the Newton–Raphson algorithm. In the
results shown below, each simulated data set is ana-
lyzed in five independent replicates, each with a ran-
domly chosen set of starting parameter values. The final
estimates are those from the replicate with the mini-
mum value of f(V). To analyze an empirical data set,
more starting points can be used to obtainmore reliable
estimates.

The computational load of (7) increases rapidly with
the numbers of sequences from the three populations.
Furthermore, it is difficult to calculate (2) quickly and
accurately because it is a series having terms of large
values and alternating signs. To avoid large numerical
errors in calculating (2) and thus (7) for large geneal-
ogies (a sample of $100 sequences), I conduct compu-
tations using high precision of hundreds of significant
digits (depending on sample size). An alternative op-
tion is to adopt aMarkov chainMonteCarlomethodpro-
posed by Griffiths and Tavaré (1994) as in O’Ryan
et al. (1998).

Multiple loci: For multiple independent loci, it is
inappropriate to use simply the average numbers of seg-
regating sites over loci as data in the estimation. Dis-
tinctive loci may have different mutation rates because
of the differences in mutation rate per base pair and/or
in the sequence length. Different loci may also have
different sample sizes, resulting in different ETBLGs
and thus different expected numbers of segregating
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sites. The above methodology can be extended to use
multilocus data jointly in estimating the parametersV¼
{u0, u1, u2, uh, tA, tD, p1}. In addition, the relative muta-
tion rate of each locus can be estimated simultaneously.

Suppose a number of L unlinked loci have been
surveyed, with locus l (l¼ 1, 2, . . . ,L) having a mutation
rate ml and a sample size of nj,l sequences from pop-
ulation Pj ( j¼ 1, 2, h). Without loss of generality, I scale
parameters Nj ( j ¼ 0, 1, 2, h), TA, TD, and ml (l ¼ 2,
3, . . . ,L) by m1, the mutation rate of the first locus. The
set of parameters to be estimated now becomesV¼ {u0,
u1, u2, uh, tA, tD, p1, l2, l3, . . . , lL}, where uj ¼ 4Njm1 ( j¼
0, 1, 2, h), tA ¼TAm1, tD ¼TDm1, and ll ¼ ml/m1 (l ¼ 2,
3, . . . ,L). The least-squares function for multiple loci
becomes

Min f ðVÞ ¼
XL
l¼1

X7
j¼1

ðOSj ;l � ESj ;l Þ2; ð8Þ

where OSj,l and ESj,l are observed and expected num-
bers of segregating sites for locus l in composite sample j
( j ¼ 1, 2, . . . , 7). ESj,1 is calculated as before, while ESj,l
for locus l with l $ 2 is calculated using parameters {u0,
u1, u2, uh, tA, tD, p1} and then multiplied by ll.

The value of p1 and the relative values of uj ( j¼ 0, 1, 2,
h), tA, and tD obtained from (8) are independent of the
locus chosen to scale the parameters. This is because
mutation rate does not affect the genealogies and acts
only as a multiplier with ETBLGs in determining the
expected numbers of segregating sites. Using a locus
with a smaller (larger) mutation rate to scale the pa-
rameters causes just a proportional decrease (increase)
in the estimates of uj ( j¼ 0, 1, 2, h), tA, and tD and has no
affect on the estimates of p1. This can be checked easily
by simulations.

Simulations: Monte Carlo simulations were run to
generate data sets with known parameters. These data
were then analyzed by the newly developed estimator to
check its quality of estimates, to investigate its statistical
properties, and to compare it with a previous molecular
estimator. Although quite a few admixture estimators
are available, only the one of Bertorelle andExcoffier

(1998) is a molecular estimator designed to use molec-
ular informationand takemutations into account. There-
fore I confinemy comparison to thismolecular estimator
in this study.

Following the coalescence approach (Hudson 1990)
and the admixture model (Figure 1), the genealogies of
the n11 n21 nh DNA sequences from the current three
populations were reconstructed until the MRCA was
found. Poisson-distributed mutations were then im-
posed on the reconstructed gene tree. Recombination
was assumed to be absent and mutations were assumed
to follow the infinite-site model. Data for different loci
were generated independently, and monomorphic loci
with no segregating sites were discarded. The sequence
data were then processed to extract information for

different estimators. For the current estimator, the num-
ber of segregating sites in each of the seven composite
samples was obtained. For Bertorelle and Excoffier’s
molecular estimator, themean coalescence time (scaled
by mutation rate) was estimated by the mean number of
site differences between pairs of sequences.
Several statistics are adopted tomeasure the quality of

estimates from simulated data. First, the applicability
(denoted as Appl%) of an estimator is calculated as the
percentage of replicates in which admixture proportion
estimates can bemade successfully and the estimates are
in the legitimate range of [0, 1] (Choisy et al. 2004).
Second, the mean and root mean square errors (the
square root of mean squared errors, denoted by RMSE)
of estimates across replicates are calculated. Third,
‘‘factor 2’’ is calculated as the proportion of replicates
in which the estimated value is within the interval
bounded by values equal to 50 and 200% that of the
true value (Excoffier et al. 2005). This measurement
overlaps with RMSE in telling how close the estimates
are to the true parameter value, but it is less affected by
extreme outliers of the distribution of estimates. For
most combinations of parameters, 1000 replicates were
conducted.
Analysis of an empirical data set: For demonstration,

the estimator proposed herein was applied to the anal-
ysis of a published data set from McLean et al. (2003).
They sequenced the hypervariable segments I (HVSI,
364 bp in length) and II (HVSII, 343 bp in length) of
the mtDNA from 47 Sierra Leoneans, 12 European–
Americans, 12 rural Gullah-speaking African–Americans,
12 urbanAfrican–Americans living in Charleston, South
Carolina, and 12 Jamaicans. Assuming that African–
American populations are admixtures by Europeans
and Africans (e.g., Parra et al. 1998), the mtDNA data
can be analyzed by the coalescent estimator to infer
the European genetic contributions to the gene pool of
each of the three African–American populations and
the admixture time, divergence time, and genetic drift
(population size) of each parental and admixed pop-
ulation involved. Sites in HVSI and HVSII sequences
with missing or ambiguous information were elimi-
nated, resulting in 295 and 275 unambiguous sites for
HVSI and HVSII, respectively, utilized in the analysis.
Due to the absence of recombination in humanmtDNA,
HVSI and HVSII are effectively a single locus. Sequen-
ces for the two loci are thus combined to form single-
locus data before being analyzed by the two molecular
estimators of admixture.

RESULTS

Simulations: Many factors are important in determin-
ing the quality of admixture estimates, including the
true parameters (definedby the geneticmodel in Figure
1) being estimated and the marker information con-
tent influenced by the number of loci, the number of
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individuals genotyped, and the polymorphism of each
locus (e.g., Wang 2003; Choisy et al. 2004; Excoffier

et al. 2005). The factor combinations are prohibitively
too numerous to consider in a simulation study. Here
I choose to present the estimation results in some hope-
fully typical scenarios.

The performances of the current and previous mo-
lecular estimators in estimating admixture proportions
for the scenarios of a short or long divergence time
(TD¼ 2500 or 10,000 generations); short, intermediate,
or long admixture time (TA ¼ 50, 500, or 5000 gen-
erations); and small or moderate admixture (p1 ¼ 0.05
or 0.20) are summarized in Table 1. Sample size for each
population is assumed to be either 20 or 40, and the
number of loci is assumed to be 1, 5, or 10 with the same
mutation rate of 0.001 per DNA sequence per genera-
tion. When the divergence time is short (TD ¼ 2500) so
that parental populations are not highly differentiated
(TD/N¼ 0.5) when admixture occurs, the Appl% of the
mY estimator is only �70–90% for the case of a single
locus, and 10–30% of p1 estimates from this estimator
are either smaller than zero or greater than one. Al-
though the Appl% of the mY estimator improves with
an increasing amount of marker information (mainly
number of loci), it is still ,90% for slight admixture
even if 5 loci are used. Note that the increase in Appl%
of the mY estimator with an increasing TA is an artifact,
because a large TA results in the estimates of p1 biased
toward 0.5 and thus in fewer negative estimates. In
contrast, the new estimator gives the estimates of p1 that

are always in the legitimate range of [0, 1]. Compared
with the mY estimator, the new estimator is generally
much less biased and has much smaller RMSE.

When the divergence time is long (TD ¼ 10,000 gen-
erations) so that parental populations are highly dif-
ferentiated (TD/N ¼ 2) before they contribute to the
admixture, the performances of the two estimators be-
come similar. The mY estimator has an Appl% close to
100%, except when a single locus is used in estimating
small admixture proportions. The new estimator is less
biased than the mY estimator, especially when admixture
is small and TA is large. The main merit of molecular
estimators in comparison with traditional estimators is
that mutations after the admixture events can be ac-
counted for so that ancient admixture can be inferred
accurately. The current estimator allows almost un-
biased estimation of admixture proportions even if
TA ¼ 5000 (TA/N ¼ 1) when the divergence time is
long and multilocus data are available. In contrast, the
mY estimator gives estimates of p1 biased toward 0.5
when admixture is ancient.

In addition to admixture proportions, the new esti-
mator can also provide estimates of other interesting
parameters. Table 2 summarizes the properties of the
estimates of u0, u1, u2, uh, tA, tD, and relative mutation
rates (ll). It can be seen that u1, u2, and ml are very well
estimated with small biases and RMSEs, while uh is the
most difficult parameter to estimate. This is understand-
able because information about uh comes from the co-
alescent events in the hybrid population during time
interval [0, TA] only, and these events are too few when
nh and TA/Nh are small to allow accurate estimates of uh.
Indeed, the quality of uh-estimates increases with an in-
creasing sample size and admixture time, as shown in
Table 2. Similarly, the quality of tA estimates is de-
pendent on the number of coalescent events in the
three populations during interval [0, TA] and thus
increases with an increasing admixture time (TA) and
a decreasing population size (N1,N2,Nh). In contrast, tD
is more accurately estimated with a decreasing admix-
ture time (TA). Small TA means fewer coalescent events
during interval [0, TA] and more coalescent events
during time interval [TA, TA1TD] and thus more in-
formation about tD. For similar reasons, u0 is better
estimated with a smaller value of TA1TD. The estimates
of all parameters are improved substantially by increas-
ing the number of loci and sample sizes.

I adopt the parametric bootstrapping technique to
assess the uncertainties of admixture estimates from the
new estimator. This is rendered possible because all
the parameters fully defining the admixture model in
Figure 1 can be estimated by the new estimator. Para-
metric bootstrapping is more appropriate than non-
parametric bootstrapping (Bertorelle and Excoffier

1998) because the latter tends to yield too conservative
estimates of uncertainties when the number of resam-
pling units (loci, sequences) is small. Due to the heavy

Figure 1.—The admixture model. It is assumed that an an-
cestral population, P0, is split into two parental populations P1
and P2, which evolve independently for TD generations before
they contribute genes of proportions p1 and 1� p1 to form the
hybrid population, Ph. After the admixture event, P1, P2, and
Ph evolve independently for TA generations before a sample
of individuals is taken from each of them to assay some
markers. The effective sizes of populations P0, P1, P2, and
Ph are N0, N1, N2, and Nh, respectively.
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computational burden of the current estimator, how-
ever, it is difficult to evaluate the performance of the
parametric bootstrapping procedure using extensive
simulations. Table 3 lists the uncertainty estimates,
which are average upper and lower limits of 95% con-
fidence intervals (C.I.95%) and coverage (frequency of
the true parameter value being covered by the estimated

C.I.95%), for the cases of a single locus and five loci. In
each case, 100 replicate data sets are simulated, and
each data set is analyzed for point andC.I.95% estimates
using 500 bootstrapping samples. The parameter values
used in generating the simulated data sets are uk ¼ 20
(k ¼ 0, 1, 2, h), tA ¼ 0.5, tD ¼ 10, m ¼ 0.001, and 20
sequences for each locus from each population. As can

TABLE 1

Estimates of admixture proportions from simulations

TD ¼ 2,500 TD ¼ 10,000

New estimator mY New estimator mY

S/L p1 TA Mean RMSE Mean RMSE Appl% Mean RMSE Mean RMSE Appl%

20/1 0.05 50 0.075 0.138 0.126 0.343 71.5 0.081 0.128 0.071 0.085 86.6
500 0.102 0.186 0.178 0.387 76.5 0.088 0.146 0.087 0.125 86.8

5000 0.260 0.478 0.347 0.523 83.1 0.102 0.213 0.199 0.247 95.7
0.20 50 0.236 0.220 0.269 0.309 85.7 0.251 0.207 0.221 0.114 98.7

500 0.249 0.259 0.278 0.375 83.6 0.265 0.225 0.230 0.151 97.8
5000 0.336 0.415 0.379 0.470 84.0 0.257 0.293 0.295 0.261 96.8

20/5 0.05 50 0.054 0.065 0.129 0.150 88.4 0.059 0.047 0.068 0.042 97.6
500 0.067 0.097 0.167 0.189 90.6 0.064 0.056 0.080 0.058 97.3

5000 0.186 0.302 0.346 0.353 97.1 0.063 0.088 0.188 0.165 99.8
0.20 50 0.212 0.126 0.260 0.138 97.6 0.215 0.104 0.211 0.054 100

500 0.232 0.163 0.286 0.177 97.0 0.227 0.118 0.221 0.075 99.9
5000 0.285 0.324 0.389 0.268 98.2 0.215 0.160 0.292 0.153 99.9

20/10 0.05 50 0.051 0.048 0.127 0.117 93.4 0.054 0.031 0.067 0.033 99.2
500 0.063 0.076 0.172 0.160 95.5 0.059 0.037 0.080 0.047 99.2

5000 0.158 0.251 0.352 0.328 99.6 0.055 0.062 0.184 0.148 100
0.20 50 0.209 0.097 0.258 0.100 99.9 0.209 0.076 0.212 0.041 100

500 0.224 0.126 0.281 0.136 98.9 0.219 0.087 0.222 0.056 100
5000 0.258 0.275 0.400 0.236 99.8 0.204 0.116 0.289 0.124 100

40/1 0.05 50 0.064 0.101 0.100 0.258 72.5 0.073 0.099 0.061 0.072 88.4
500 0.096 0.167 0.139 0.365 74.3 0.089 0.133 0.076 0.103 84.9

5000 0.238 0.405 0.356 0.533 82.2 0.088 0.190 0.191 0.232 94.7
0.20 50 0.216 0.171 0.234 0.237 89.8 0.231 0.187 0.205 0.083 99.0

500 0.255 0.229 0.249 0.341 83.6 0.271 0.226 0.215 0.129 97.6
5000 0.324 0.410 0.408 0.482 84.9 0.254 0.291 0.298 0.267 95.7

40/5 0.05 50 0.054 0.048 0.098 0.108 86.8 0.055 0.038 0.059 0.030 98.0
500 0.070 0.086 0.145 0.174 86.6 0.064 0.055 0.075 0.051 97.2

5000 0.173 0.286 0.348 0.354 97.3 0.066 0.090 0.182 0.160 99.8
0.20 50 0.206 0.097 0.229 0.101 97.9 0.205 0.099 0.204 0.040 100

500 0.229 0.135 0.260 0.151 96.9 0.230 0.116 0.216 0.064 100
5000 0.277 0.308 0.396 0.269 97.8 0.222 0.160 0.289 0.152 99.8

40/10 0.05 50 0.052 0.034 0.099 0.083 94.0 0.053 0.025 0.059 0.022 99.6
500 0.066 0.064 0.146 0.136 93.1 0.059 0.035 0.074 0.039 99.5

5000 0.134 0.215 0.349 0.325 99.7 0.059 0.064 0.179 0.145 100
0.20 50 0.205 0.071 0.230 0.072 100 0.198 0.067 0.205 0.029 100

500 0.229 0.101 0.267 0.117 99.3 0.217 0.085 0.215 0.047 100
5000 0.256 0.264 0.399 0.236 99.9 0.210 0.120 0.283 0.121 100

For each parameter combination, estimates of admixture proportion are obtained from 1000 replicates using the new estimator
and Bertorelle and Excoffier’s (1998) estimator mY. The parameters are TD ¼ 2500 or 10,000 generations; TA ¼ 50, 500, or
5000 generations; Nj¼ 5000 ( j¼ 0, 1, 2, h); the sample size S¼ 20 or 40 for all three populations; the number of loci L¼ 1, 5, or 10;
and the admixture proportion p1 ¼ 0.05 or 0.20. The applicability of the new estimator is always 100% irrespective the parameter
combinations and is thus not listed.
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be seen, the true parameter value is included in the es-
timated 95% confidence intervals in �95% of the rep-
licates for both the single-locus and the five-loci cases.
The confidence intervals for five loci aremuch narrower
than those for a single locus, as is expected. In ac-
cordance with the results listed in Table 2, uh is the most
difficult parameter to estimate, as indicated by the ex-
tremely large confidence intervals.

Admixture analysis of human populations: ThemtDNA
sequence data from McLean et al. (2003) are analyzed
by Bertorelle and Excoffier’s (1998) mY estimator
and the new estimator. Parametric bootstrapping and
nonparametric bootstrapping are adopted for the new
and mY estimators, respectively, to ascertain the un-
certainties of the estimates using 1000 samples of size

identical to the original samples. The estimates of the
European contributions to each of the three admixed
African–American and Jamaican populations are listed
in Table 4.

The European contributions to the three admixed
populations are estimated to be ,7% from the new
coalescent estimator and are in close agreement with
previous estimates (Parra et al. 2001; McLean et al.
2003). McLean et al. (2003) calculated admixture pro-
portions from the frequencies of haplotypes composed
of three HVS restriction site polymorphisms (RSPs).
These RSPs are chosen because they are substantially
differentiated between African and European pop-
ulations and are thus highly informative for admix-
ture analysis. Furthermore, a large number of 1396

TABLE 2

Estimates of divergence and admixture times and population sizes from simulations

One locus Five loci

Parameters True value Mean RMSE Factor2 Mean RMSE Factor2

TD ¼ 10,000, TA ¼ 500, S ¼ 40
u1 20 24.2 13.6 0.87 21.2 5.5 0.99
u2 20 23.1 10.7 0.91 21.1 5.4 0.99
uh 20 42.1 105.1 0.44 26.2 28.9 0.86
u0 20 12.1 19.1 0.31 15.4 12.9 0.60
tA 0.5 0.41 0.38 0.53 0.46 0.21 0.85
tD 10 15.6 11.2 0.71 15.4 8.0 0.78
ll 1 1.02 0.26 0.99

TD¼ 2,500, TA¼ 50, S¼ 40
u1 20 17.9 11.8 0.75 18.4 6.0 0.95
u2 20 17.1 9.1 0.80 18.2 5.3 0.97
uh 20 79.0 183.1 0.05 49.4 132.3 0.22
u0 20 24.4 14.2 0.75 23.1 7.5 0.97
tA 0.05 0.09 0.14 0.17 0.08 0.10 0.33
tD 2.5 2.7 1.5 0.78 2.6 0.86 0.96
ll 1 1.05 0.31 0.99

TD¼ 10,000, TA¼ 500, S¼ 100
u1 20 22.6 9.0 0.94 21.7 7.6 0.95
u2 20 22.8 9.1 0.95 22.1 7.7 0.96
uh 20 39.6 28.9 0.74 28.1 27.9 0.90
u0 20 12.0 17.3 0.33 18.3 13.7 0.61
tA 0.5 0.49 0.37 0.68 0.48 0.23 0.85
tD 10 17.2 14.0 0.63 13.6 7.5 0.76
ll 1 1.02 0.21 1.00

TD¼ 2,500, TA¼ 50, S¼ 100
u1 20 19.2 7.0 0.93 19.2 4.7 0.98
u2 20 18.5 5.9 0.94 19.2 4.9 0.99
uh 20 39.8 85.0 0.24 35.3 72.5 0.50
u0 20 23.5 11.7 0.83 22.2 7.1 0.99
tA 0.05 0.06 0.09 0.45 0.06 0.04 0.63
tD 2.5 2.8 1.6 0.78 2.8 1.0 0.94
ll 1 0.99 0.22 1.00

The parameters being estimated are ui ¼ 4m1Ni (i ¼ 0, 1, 2, h), tA ¼ m1TA, tD ¼ m1TD, and ll ¼ ml/m1 (l ¼ 2, 3,
4, 5). A total of 1000 simulated data sets are generated and analyzed, assuming Ni¼ 5000 (i¼ 0, 1, 2, h), p1¼ 0.2,
ml¼ 0.001 (l¼ 1, . . . , 5), and TD¼ 10,000 and TA¼ 500 or TD¼ 2500 and TA¼ 50. The sample size S¼ 40 or 100
for all three populations, and the number of loci L ¼ 1 or 5.
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individuals from the same five populations as the
mtDNA sequence data analyzed herein are assayed for
the RSPs. The estimated European contributions from
their analyses are 0.030, 0.069, and �0.027 for the
Gullahs, Charleston African–Americans, and the Jamai-
cans, respectively. From large samples (�100 sequences
per population) of HVSI data, the European contribu-
tions to the three admixed populations were estimated
to be �0% using the highly informative haplogroup H
frequencies (Parra et al. 2001) and were estimated to
be 0.065 and 0.129 for the Charleston and Jamaican
populations, respectively, from both haplogroup H and
L frequencies (Parra et al. 1998). In general, these
estimates are much lower than those inferred from
many informative nuclear markers (Parra et al. 1998),
indicating that European females contributed little to
the admixtures. The sex-biased admixtures, with Euro-
pean males contributing substantially greater than
European females, were confirmed by analyzing the Y
Alu polymorphic (YAP) informative markers (Parra

et al. 1998). It is encouraging that with a sample size as
small as 12 sequences, the new coalescent estimator
yields similar results.
The mY estimator yields estimates of European con-

tributions to the Gullah or Jamaican population that are
low and roughly compatible with estimates from the
other estimators and data, but estimates of European
contribution to the Charleston population (0.5) that is
much larger than other estimates and is even larger than
the estimate from nuclear markers (0.12, Parra et al.
1998). The estimated European contribution to the
Jamaican population was �0.063, which is not surpris-
ing given the simulation result that the mY estimator
often yields negative estimates when admixture pro-
portion is low (Table 1).
For both molecular estimators and all of the three

admixed populations, the 95% confidence intervals
for the admixture estimates determined by paramet-
ric and nonparametric bootstrapping are quite broad.
This is perhaps not surprising because the data set is

TABLE 3

Estimates of confidence intervals by parametric bootstrapping

One locus Five loci

Parameters True value Coverage C.I.95L C.I.95U Coverage C.I.95L C.I.95U

u1 20 0.91 6.23 74.44 0.91 7.18 30.71
u2 20 0.93 5.68 42.87 0.92 8.07 30.07
uh 20 0.99 1.08 ‘ 0.98 2.71 ‘

u0 20 0.99 0.41 94.17 0.99 0.55 78.12
tA 0.5 0.95 0.05 1.95 0.96 0.06 1.20
tD 10 0.93 3.62 36.62 0.94 4.43 34.75
p1 0.2 0.92 0.03 0.75 0.95 0.07 0.49

A total of 100 data sets were simulated, assuming the parameter values listed in column 2, ml ¼ 0.001 (l ¼
1, . . . , 5), and a sample size S ¼ 20 for each population and locus. Each data set was analyzed by the coalescent
estimator with 500 bootstrapping samples. C.I.95L (C.I.95U) is the average lower (upper) limit of the estimated
95% confidence intervals, and coverage gives the frequency that the true parameter value is included in the
estimated 95% confidence intervals.

TABLE 4

Admixture analysis results of three human admixed populations

Gullah Charleston Jamaican
Admixture
parameters Estimate 95% C.I. Estimate 95% C.I. Estimate 95% C.I.

tD 2.053 0.113, 5.844 1.883 0.003, 6.242 1.868 0.001, 6.057
tA 0.001 0.000, 0.848 0.114 0.000, 0.820 0.196 0.000, 1.050
u1 5.006 0.565, 22.931 4.175 0.034, 18.860 3.972 0.020, 18.992
u2 45.146 8.662, 106.283 32.207 0.152, 143.713 34.083 0.129, 137.628
uh 0.001 0.000, ‘ 0.848 0.000, ‘ 2.142 0.000, ‘
u0 16.492 1.927, 47.619 19.933 1.728, 49.476 21.787 0.847, 53.180
p1 0.001 0.000, 0.546 0.064 0.000, 0.752 0.048 0.000, 0.870
p1* 0.090 �0.343, 0.356 0.500 �0.008, 0.681 �0.063 �0.490, 0.330

The 95% confidence intervals are obtained from 1000 bootstrapping samples. The estimated parameters are
ui ¼ 4mNi, tA ¼ mTA, tD ¼ mTD, where Ni is the female effective size of population i (i ¼ 0, 1, 2, h for ancestral,
European, African, and admixed populations, respectively). The European contribution to an admixed pop-
ulation was obtained from the new estimator (line headed by p1) and the mY estimator (line headed by p1*). The
other seven parameters were estimated by the new estimator only.
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small with effectively a single locus and only 12 se-
quences from a population.More loci and larger sample
sizes are required to obtain more precise admixture
estimates.

In addition to admixture proportions, the new esti-
mator also gives the estimates of divergence times, ad-
mixture times, population sizes, and relative mutation
rates. These estimates are listed in Table 4. Because
human mtDNA does not recombine (Pakendorf and
Stoneking 2005), HVSI and -II sequences were ob-
tained from the same individuals (McLean et al. 2003),
and the sample sizes are very small, the genealogical
information that can be extracted from the data set is
quite limited and the analysis results need to be in-
terpreted with caution. Divergence time between the
Africans and Europeans is estimated to be 1.9 on aver-
age. In the literature, the estimates of mutation rate for
HVSs are quite diverse, the median value being �0.1/
site/million years (MY) (Pakendorf and Stoneking
2005; Santos et al. 2005). The total mutation rate for
HVSI and -II is therefore�70/MYor 0.0021/generation
if the generation interval is taken to be 30 years. The
absolute divergence time is thus estimated to be 1.9/
(70/MY)¼ 27,143 years, which is roughly in agreement
with the estimate of ,60,000 years from phylogenetic
analysis of mtDNA control regions (e.g., Watson et al.
1997; Quintana-Murci et al. 1999). Subsequent migra-
tion after the split of Eurasian from African population
could reduce the divergence and thus lead to an under-
estimation of divergence time (Wang 2003).

The point estimates of admixture time are quite
variable from the three admixture analyses. Using the
mutation rate estimate of 70/MY, the admixture time is
estimated to be 6, 1628, and 2801 years ago for the
Gullah, Charleston, and Jamaican populations, respec-
tively. The first estimate is too small while the last two
estimates are too high compared with the historical
evidence that the American–African populations were
formed 150 years ago (Parra et al. 1998). For all of the
three admixed populations, however, the 95%C.I.’s are
fairly consistent and well include the admixture time of
150 years.

The parental and ancestral population sizes (u1, u2,
u0) are well estimated while the admixed population size
(uh) is poorly estimated, as indicated by the correspond-
ing widths of 95%C.I.’s. On average, the African pop-
ulation size is estimated to be 8 and 37 times larger than
that of European and admixed populations, respec-
tively, and the European population is 4 times larger
than admixed populations. The results seem to be plau-
sible and are at least qualitatively in agreement with
previous studies.

DISCUSSION

In this article, I show that DNA sequence data can
be utilized more efficiently in admixture inferences by

considering the entire genealogy of all sampled sequen-
ces rather than the genealogy of pairs of sequences.
In comparison with a previous molecular estimator
(Bertorelle and Excoffier 1998), the new estimator
provides better estimates of admixture proportions,
which are always in the legitimate range of [0, 1] and
have usually higher accuracy and precision, especially
when divergence time is short and/or admixture time is
long (Table 1). In addition, it allows reasonably good
estimation of other important parameters of the admix-
ture model, such as the divergence time, admixture
time, and population sizes (Table 2). These parameters
are scaled by the mutation rate of the markers, but their
relative values are still meaningful in understanding the
admixture events. When marker mutation rates are
known, the absolute values of divergence and admixture
times and population sizes can be easily calculated from
the estimates. Other advantages of the new estimator
are that it can use information from multiple loci with
different mutation rates in estimating admixture and
relative mutation rates jointly and that it automatically
accounts for variable sample sizes both among andwithin
loci because its inferences are based on the genealogy
of an entire sample rather than pairs of sequences. The
simulation results shown in Tables 1 and 2 assumed
equal sample sizes among populations and loci and
equal mutation rates among loci. When either or both
of these two quantities vary, the new estimator is expected
to perform even better than the previous molecular
estimator (Bertorelle and Excoffier 1998). Further-
more, the previous molecular estimator assumes an
equal size of all populations involved in the admixture.
The assumption is now redundant in the new estimator
and all population sizes can be estimated jointly with
admixture proportions.

The differences between the current and previous
molecular estimators of admixture are in close analogy
with those between Watterson’s and Tajima’s estimators
of u ¼ 4Neu from DNA sequence data. Watterson

(1975) showed that, under the infinite-site mutation
model, the product of mutation rate and expected total
branch length of the genealogy of a sample of sequences
gives the expected number of segregating sites of the
sample. From this relationship, he derived the estimator
uW ¼ OS=

Pn�1
j¼1 j�1, where OS is the observed number

of segregating sites in a sample of n sequences. Tajima’s
estimator, uT, is given by the average number of nucleo-
tide differences between two sequences (Tajima 1983).
It is well known that both estimators are unbiased, but
uW is generally more efficient than uT because it has
a smaller variance, and the difference increases with
sample size (Li 1997; Wang 2005). In the special case of
a single Wright–Fisher population (say, parental pop-
ulation 1), the admixture model has just one parameter
(u) and my admixture estimator (7) reduces to uW, as is
expected. The previous molecular estimator of admix-
ture (Bertorelle and Excoffier 1998) uses the mean
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number of nucleotide differences between pairs of se-
quences as information and is thus quite similar in this
respect to uT.

Some assumptions made in deriving the current esti-
mator can be relaxed without affecting much of the
validity of the estimator. Although the current estimator
assumes diploid nuclear markers, it applies to mater-
nally (mtDNA) or paternally (Y chromosome) inherited
markers as well. The only difference is in the explanation
of the parameter u that corresponds to different effec-
tive sizes. It is assumed that there is no recombination at
a locus. However, I use means rather than variances of
the number of segregating sites as data in the estimator,
and therefore it should apply to loci with recombina-
tion. Like Watterson’s estimator, the current admixture
estimator should actually give better estimates when
there is recombination, although the estimated uncer-
tainties might become too exaggerative. The current
estimator also assumes two parental populations con-
tributing to the admixture. It is straightforward to ex-
tend the method to the case of three or more parental
populations. However, the computational burden in-
creases very rapidly with the number of parental popu-
lations. Even with two parental populations as assumed
in this study, the estimator’s computational load in-
creases so rapidly with sample sizes that it can cope only
with samples of a few hundred sequences on an ordinary
PC. Further refinements of the computational algo-
rithms are necessary before the estimator is extended to
more complicated situations such as three or more
parental populations.

There is also room for methodological improvements
of the current estimator. In (7), the expected numbers
of segregating sites of the seven composite samples are
obviously nonindependent, because each original sam-
ple of sequences appears in four of the seven composite
samples. Ideally, their variance and covariance structure
should be incorporated into a general least-squares
framework to obtain estimates of the seven parameters.
However, it is extremely difficult to derive this variance
and covariance matrix analytically, and computation
of the matrix numerically by simulations is too CPU
demanding to be realistic. Although (7) ignored this
variance and covariance structure, it should provide
unbiased estimates as verified by simulations. The es-
timator’s precision may be improved by the proper
weighting based on the variance and covariance matrix.

A software package, Molecular Estimator of Admix-
ture (MEAdmix), computing the admixture estimator
andfinding the confidence intervals by parametric boot-
strapping, is available for free download from http://
www.zoo.cam.ac.uk/ioz/software.htm.

I thank David C. McLean for sending me the human mtDNA
sequence data that were analyzed by my new admixture estimator and
Laurent Excoffier, Brigitte Pakendorf, Bruce Walsh, and two anony-
mous referees for critical reading and constructive comments on
earlier versions of this manuscript.
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APPENDIX A: THE EXPECTED TOTAL BRANCH LENGTH OF A GENEALOGY

Suppose i genes at a locus are sampled randomly from aWright–Fisher population ofN diploid individuals. Looking
backward in time, the current time when the sample was taken is designated as generation zero and the time T
generations ago is referred to as generation T. AsT/‘, these i genes will coalesce into theirMRCA, and the ETBLG is
4N
Pi�1

k¼1 1=k generations (e.g., Hudson 1990).When T is a fixed definite number, however, theMRCAmay ormay not
be found in the interval of [0, T] and j (1 # j # i) lineages may be left extant at generation T. The probability of
j distinct lineages extant at timeT, gi;jðN ;T Þ, is given by (2) (Tavaré 1984). Given i, j,N, andT, the expected time, ETm,
during which there are m ( j # m # i) distinct lineages in a genealogy is derived as follows:

1. ETm form¼ i: Conditional on i, j, i,N, andT, the probability of the time interval (in generations), Ti, during which
there are i distinct lineages is

PrðTiÞ ¼
iði � 1Þ
4N

e�iði�1ÞTi=ð4N Þgi�1;jðN ;T � TiÞ=gi;jðN ;T Þ:

ETi is thus obtained by the integration

ETi ¼
ðT
Ti¼0

TiPrðTiÞdTi ;

which, after some algebra, simplifies to

ETi ¼
4N

gi;jðN ;T Þ
Xi�1

k¼j

ð�1Þk�jð2k � 1ÞjðkÞi½k�
ðk1 j � 1Þj !ðk � jÞ!iðkÞ

e�kðk�1Þt � e�iði�1Þt

ði � kÞði1 k � 1Þ � te�iði�1Þt
� �

; ðA1Þ

where t ¼ T=ð4N Þ.
2. ETm for j,m, i: Similarly, the expected time (in generations) during which there arem distinct lineages ( j,m, i),

given i, j , i � 1, N, and T, is obtained by integration:

ETm ¼
ðT
X¼0

ðT�X

Tm¼0

mðm � 1Þ
4N

e�mðm�1ÞTm=ð4N Þgi;mðN ;X Þgm�1;jðN ;T � X � TmÞ=gi;jðN ;T ÞdTmdX :

It can be simplified to

ETm ¼ 4N

gi;jðN ;T Þ
Xi
r¼m

ð�1Þr�mð2r � 1ÞmðrÞi½r �
m!ðm1 r � 1Þðr � mÞ!iðrÞ

Xm�1

k¼j

ð�1Þk�jð1� 2kÞjðkÞm½k�
ð j 1 k � 1Þj !ðk � jÞ!mðkÞ

a � e�rðr�1Þt � e�kðk�1Þt

ðk � r Þðk1 r � 1Þ

� �
; ðA2Þ

where a ¼ te�mðm�1Þt when r ¼ m and a ¼ ðe�rðr�1Þt � e�mðm�1ÞtÞ=ððm � rÞðm1 r � 1ÞÞ otherwise, and t ¼ T=ð4N Þ.
3. ETm form¼ j: The expected time during which there arem¼ j distinct lineages, given i, j# i,N, andT, is obtained by

integration,

ETj ¼
ðT
Tj¼0

gi;jðN ;TjÞe�jð j�1ÞðT�Tj Þ=ð4N Þ=gi;jðN ;T ÞdTj ;
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which leads to

ETj ¼
4N

gi;jðN ;T Þ
Xi
k¼j

ð�1Þk�jð2k � 1ÞjðkÞi½k�
ð j1 k � 1Þj !ðk � jÞ!iðkÞ

ðaÞ; ðA3Þ

where a ¼ te�jðj�1Þt when k¼ j and a ¼ ðe�jð j�1Þt � e�kðk�1ÞtÞ=ððk � jÞðk1 j � 1ÞÞ otherwise, and t ¼ T=ð4N Þ. When
no coalescent events occur in the interval of [0, T] (i.e., j ¼ i), (A3) reduces to ETj [T , as is expected.

The ETBLG in the interval [0, T] can be calculated using (A1–A3), in two separate cases. In the first case, the part of
the genealogy after theMRCA is found, branch lengthT1, is irrelevant and excluded. In the second case,T1 is included
in the ETBLG. Cases 2 and 1 apply when theMRCA lineage is and is not to be included in another genealogy involving
other genes formed after T. The ETBLG conditional on i, j, N, T is

ETBLG1ði; j ;N ;T Þ ¼
Xi

m¼Maxð2;jÞ
mðETmÞ ðA4Þ

if T1 is excluded and is

ETBLG3ði; j ;N ;T Þ ¼
Xi
m¼j

mðETmÞ ðA5Þ

if T1 is included.
Considering all possible values of j given i, N, and T, the ETBLG in case 1 is

d1ði;N ;T Þ ¼
Xi
j¼1

ETBLG1ði; j ;N ;T Þgi;jðN ;T Þ;

which, after some algebra, reduces to (1) in the text. As T / ‘, (1) further reduces to 4N
Pi�1

k¼1 1=k (e.g., Hudson

1990), as is expected. Similarly, the ETBLG in case 2 is

d3ði;N ;T Þ ¼
Xi
j¼1

ETBLG3ði; j ;N ;T Þgi;jðN ;T Þ;

which reduces to (5) in the text.

APPENDIX B: THE ETBLG OF SAMPLES 4–7

The expected total branch length of the genealogy (ETBLG) for sample 4 can be derived, using the approach
adopted in deriving (6) in the text, as

D4 ¼
X2
k¼1

d3ðnk ;Nk ;TA 1TDÞ1 4N0

Xn1
m1¼1

gn1;m1ðN1;TA 1TDÞ
Xn2
m2¼1

gn2;m2ðN2;TA 1TDÞ
Xm11m2�1

k¼1

1

k
: ðB1Þ

When n1 ¼ n2 ¼ 1 and Nk ¼ N (k ¼ 0, 1, 2), (B1) reduces to 2ð2N 1TA 1TDÞ, which is twice the expected coalescent
time between a sequence from parental population 1 and a sequence from parental population 2.

The ETBLG for sample 5 is

D5 ¼
X
k¼1;h

d3ðnk ;Nk ;TAÞ1
Xnh
m¼1

gnh;mðNh;TAÞ

3

(
pm1
Xn1
m3¼1

gn1;m3ðN1;TAÞ d1ðm3 1m;N1;TDÞ1 4N0

Xm31m

m4¼1

gm31m;m4ðN1;TDÞ
Xm4�1

k¼1

1

k

 !

1
Xm�1

m1¼0

m!pm1
1 pm2

2

m1!m2!

"
d3ðm2;N2;TDÞ1

Xn1
m3¼1

gn1;m3ðN1;TAÞ

3 d3ðm1 1m3;N1;TDÞ1 4N0

Xm11m3

m4¼1

gm11m3;m4ðN1;TDÞ
 

3
Xm2

m5¼1

gm2;m5ðN2;TDÞ
Xm41m5�1

k¼1

1

k

!#)
; ðB2Þ
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where m2 [m � m1 and p2 [ 1� p1. As is expected, (B2) reduces to 2ð2N 1TA 1 ð1� p1ÞTDÞ, twice the average
coalescent time between a sequence from parental population 1 and a sequence from the admixed population, when
n1 ¼ nh ¼ 1 and Nk ¼ N (k ¼ 0, 1, 2, h). For sample 6, D6 is calculated by the right side of (B2) by exchanging
fp1;n1;N1;m1g and fp2;n2;N2;m2g.

The ETBLG of sample 7 is

D7 ¼
X

k¼1;2;h

d3ðnk ;Nk ;TAÞ1
Xnh
m¼1

gnh;mðNh;TAÞ
Xm
m1¼0

m!pm1
1 pm2

2

m1!m2!

(X2
j¼1

Xnj
k¼1

gnj ;kðNj ;TAÞd3ðk1mj ;Nj ;TDÞ

1 4N0

Xn1
k1¼1

gn1;k1ðN1;TAÞ
Xn2
k2¼1

gn2;k2ðN2;TAÞ
Xk11m1

k3¼1

gk11m1;k3ðN1;TDÞ
Xk21m2

k4¼1

gk21m2;k4ðN2;TDÞ
Xk31k4�1

k¼1

1

k

)
; ðB3Þ

where m2 [m � m1 and p2 [ 1� p1.
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