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ABSTRACT

In linkage disequilibrium mapping of genetic variants causally associated with phenotypes, spurious
associations can potentially be generated by any of a variety of types of population structure. However,
mathematical theory of the production of spurious associations has largely been restricted to population
structure models that involve the sampling of individuals from a collection of discrete subpopulations.
Here, we introduce a general model of spurious association in structured populations, appropriate
whether the population structure involves discrete groups, admixture among such groups, or continuous
variation across space. Under the assumptions of the model, we find that a single common principle—
applicable to both the discrete and admixed settings as well as to spatial populations—gives a necessary
and sufficient condition for the occurrence of spurious associations. Using a mathematical connection
between the discrete and admixed cases, we show that in admixed populations, spurious associations are
less severe than in corresponding mixtures of discrete subpopulations, especially when the variance of
admixture across individuals is small. This observation, together with the results of simulations that
examine the relative influences of various model parameters, has important implications for the design
and analysis of genetic association studies in structured populations.

GENETIC association studies aim to map phenotype-
influencing genes by identifying alleles whose

presence or absence in individuals correlates with phe-
notype (Risch and Merikangas 1996; Clark 2003).
These studies rely on the fact that remnants of the
ancestral genome in which a phenotypically important
allele originated can be shared among descendants who
carry the phenotype. The presence of the allele in these
descendants will therefore be associated not only with
the occurrence of the phenotype, but also with the
occurrence of alleles inherited from the ancestor at
other loci. Thus, a statistical association with a phenotype
suggests that an allele directly influences the pheno-
type or, more probably, that the allele is indirectly
associated with the phenotype as a result of shared
inheritance and consequent association with true
phenotype-influencing alleles. By virtue of the high
probability of shared inheritance for alleles physically
proximate on a chromosome—due to the relatively low
amount of recombination decoupling them over time—in
comparison with a low probability for distant alleles or
those on different chromosomes, allelic associations
are likely to involve alleles that lie close together. Thus,

discovery of indirect associations can enable localiza-
tion of the position of the true directly associated alleles
(Pritchard and Przeworski 2001; Zondervan and
Cardon 2004).

It is hoped that all alleles observed to be associated
with a phenotype have either direct or indirect associ-
ations. However, in an instance of the general problem
of statistical confounding (Greenland et al. 1999), the
existence of an unmeasured variable associated with
both genotype and phenotype can be an additional
cause of genotype–phenotype associations. The status
of an individual for such a variable affects both the
genotype and the phenotype of the individual, inducing
a genotype–phenotype relationship.

In the genetic mapping context, the primary variable
that produces this type of misleading relationship can
be thought of as population structure or genetic back-
ground. An individual’s genetic population of origin,
geographical position along a genetic cline, or labora-
tory strain can affect its probability of having any allele
that varies in frequency across groups, as well as the
probability of having any varying phenotype. The allele
of an individual provides information about the indi-
vidual’s ancestry, which in turn provides information
about the phenotype of the individual. This gain in
knowledge about phenotype from knowledge of geno-
type is a statistical association. However, because alleles
across the genome have the potential to have this type
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of association with the phenotype, identifying these
associations does not assist in localizing phenotype-
influencing alleles. Consequently, an important prob-
lem in association mapping is the separation of the
spurious associations due to population structure from
the indirect and direct associations that permit po-
sitional refinement of alleles that affect phenotype
(Lander and Schork 1994; Ewens and Spielman 1995;
Risch 2000; Pritchard and Donnelly 2001; Thomas

and Witte 2002; Ziv and Burchard 2003).
Population-genetic models of the production of spu-

rious associations can provide insight into the circum-
stances that are likely to increase their frequency
and magnitude (Pritchard and Rosenberg 1999;
Gorroochurn et al. 2004; Heiman et al. 2004). Such
models, together with sampling theory or simulations of
finite samples, can provide a framework for measuring
the properties of spurious associations in actual pop-
ulations and in evaluating methods for detecting and
avoiding them (Ewens and Spielman 1995; Devlin

and Roeder 1999; Wacholder et al. 2000; Pritchard

and Donnelly 2001; Freedman et al. 2004; Hinds et al.
2004; Khlat et al. 2004; Marchini et al. 2004; Helgason

et al. 2005; Köhler and Bickeböller 2006; Setakis

et al. 2006). Here, our focus is on the former topic rather
than the latter, that is, on determining at the popula-
tion-genetic level the characteristics of populations,
genotypes, and phenotypes that lead to spurious asso-
ciations. Thus, we are concerned with what would happen
in samples that are large enough that all associations—
direct, indirect, and spurious—are detected. We note
that while the type of modeling in this article can assist
in assessing the relative potential for production of
spurious associations across population-genetic scenar-
ios, evaluation of the actual risk of spurious associations
for typical association studies further requires that the
role of finite sampling and the choice of statistical
analysis tool be considered.

Pritchard and Rosenberg (1999) developed a model
in which a case-control study is constructed by sampling
individuals from a population that consists of a set of dis-
crete underlying subpopulations. We observed that spu-
rious associations could be produced at a locus if the
frequency of the phenotype and the allele frequencies
at the locus varied across subpopulations. With the same
model, Gorroochurn et al. (2004) more precisely char-
acterized the necessary and sufficient conditions for pro-
duction of spurious associations, finding that under the
assumptions of the model, they occur if and only if geno-
type and phenotype are variable and have nonzero corre-
lation over the space of populations (weighted by sampling
scheme). Gorroochurn et al. (2004) also defined a func-
tion that measures the extent of spurious association in
the model and showed that the magnitude of this function
declines with an increase in the number of subpopula-
tions. Using a different modeling approach, Wacholder

et al. (2000) previously had made a similar observation.

Given the growing interest in association mapping
using samples from admixed and geographically struc-
tured populations (Thornsberry et al. 2001; Borevitz

and Nordborg 2003; Caicedo et al. 2004; Olsen et al.
2004; Aranzana et al. 2005; Campbell et al. 2005; Flint-
Garcia et al. 2005; Camus-Kulandaivelu et al. 2006; Yu

et al. 2006), it is important to understand the situations
that lead to an elevated false positive rate in admixed
and spatially distributed groups that cannot easily be
viewed as collections of discrete subpopulations. Here
we extend the model of Pritchard and Rosenberg

(1999) from a population consisting of discrete sub-
populations to admixed and spatial populations. Our
general spatial model contains the discrete model as a
special case, and it also enables the magnitude of the
spurious association problem to be characterized in a
flexible class of admixture models. We find that the
necessary and sufficient condition of Gorroochurn

et al. (2004) extends directly to the general model, and
we identify a simple relationship between the extent of
spurious association, as measured by the function of
Gorroochurn et al. (2004), in an admixed population
and that in a corresponding mixture of discrete sub-
populations. To further explore the relationship of spu-
rious association in the discrete and admixed settings, as
well as to study the roles of model parameters more
generally, we perform simulations of spurious associa-
tion in discrete and admixed populations. Results based
on our extended model are then discussed in terms of
their implications for genetic association studies in
structured populations.

MODELS OF SPURIOUS ASSOCIATION

Consider an association mapping study in a popula-
tion in which individuals are sampled from points z in a
space Z. At present we view Z as geographical space in
some number of dimensions; we see later that Z can also
represent ‘‘admixture space.’’

Individuals are tested for a phenotype and for a ge-
notype at a locus of interest. We assume for now that
both genotype and phenotype are binary, denoting the
alleles byA and non-A (A*) and the phenotypes byD and
non-D (D*). A multiallelic locus can be accommodated
by focusing on the allele A and grouping the remaining
alleles into the A* class. A similar grouping can be made
for a phenotype with multiple discrete states; as we show
later, a continuous phenotype can also be incorporated.

Suppose that the genotype and the phenotype of an
individual are conditionally independent given the po-
sition of the individual, z (that is, suppose that there is
no direct or indirect association anywhere in Z between
the phenotype and alleles at the locus). In other words,
genotype and phenotype are unassociated at every point
in Z,

qDðA j zÞ � qD*ðA j zÞ ¼ 0; ð1Þ
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where qD(A j z) and qD*ðA j zÞ are, respectively, the fre-
quencies of allele A among individuals at point z with
phenotype D and among those with phenotype D*.

The null hypothesis that genotype and phenotype are
unassociated in the full space Z is equivalent to

qDðAÞ � qD*ðAÞ ¼ 0; ð2Þ

where qD(A) and qD*ðAÞ are, respectively, the frequen-
cies of A among individuals sampled in space Z with
phenotypes D and D*. The null hypothesis is false if and
only if Equation 2 fails to hold. In other words, spurious
associations occur when local independence of geno-
type and phenotype (Equation 1) does not produce
global independence (Equation 2). Note that if Z con-
sists of a single point, local independence trivially guar-
antees global independence, and no spurious associations
are produced.

When Equation 2 is not satisfied, depending on the
sign of qDðAÞ � qD*ðAÞ, allele A and phenotype D will be
either positively or negatively associated. The absolute
deviation jqDðAÞ � qD*ðAÞj, which we label by D, mea-
sures the degree to which the null hypothesis of no
association is violated (Gorroochurn et al. 2004), with
larger values of D indicating more severe deviations.

Spatial populations: Let g(z) be the prior probability
density of sampling an individual from point z in Z, withÐ
Z gðzÞdz ¼ 1. Denote the frequency of phenotype D at z

by p(z) and that of allele A at z by q(z). If the mean
frequency of phenotype D with respect to the sampling
scheme,

Ð
Z pðzÞgðzÞdz, or the mean frequency of allele

A,
Ð
Z qðzÞgðzÞdz, is 0 or 1, then there can be no asso-

ciation between genotype and phenotype. Henceforth,
these trivial scenarios are excluded from consideration.

Using Bayes’ theorem, the probability density that a
sampled individual with phenotypeD is from location z is

f ðzÞ ¼ pðzÞgðzÞÐ
Z pðzÞgðzÞdz

; ð3Þ

and the probability density that a sampled individual
with phenotype D* is from location z is

g ðzÞ ¼ ½1 � pðzÞ�gðzÞÐ
Z ½1 � pðzÞ�gðzÞdz: ð4Þ

Applying the local independence of genotype and phe-
notype, qDðA j zÞ ¼ qD*ðA j zÞ ¼ qðzÞ, and

qDðAÞ � qD*ðAÞ

¼
ð
Z
f ðzÞqðzÞdz�

ð
Z
g ðzÞqðzÞdz

¼
Ð
Z pðzÞqðzÞgðzÞdz�

Ð
Z pðzÞgðzÞdz

� � Ð
Z qðzÞgðzÞdz
� �Ð

Z pðzÞgðzÞdz
� �

1 �
Ð
Z pðzÞgðzÞdz

� � :

ð5Þ

This equation has two main consequences. First, under
the model, D is given by the absolute value of the right-

hand side of Equation 5. Second, for individuals sam-
pled from the space Z according to sampling scheme g,
spurious associations between genotype and phenotype
are produced if and only if the phenotype function p
and the allele frequency function q do not satisfyð

Z
pðzÞqðzÞgðzÞdz ¼

ð
Z
pðzÞgðzÞdz

� � ð
Z
qðzÞgðzÞdz

� �
:

ð6Þ

Note that in the cases in which p or q is constant (except
possibly on a set of points Z0 for which the probability of
sampling an individual, or

Ð
Z0
gðzÞdz, is zero), Equation

6 is satisfied and no spurious associations occur.
Alternatively, if the variances of p and q with respect to

the sampling scheme g,

Var½pðzÞ� ¼
ð
Z
pðzÞ2gðzÞdz�

ð
Z
pðzÞgðzÞdz

� �2

ð7Þ

Var½qðzÞ� ¼
ð
Z
qðzÞ2gðzÞdz�

ð
Z
qðzÞgðzÞdz

� �2

; ð8Þ

are nonzero, then qDðAÞ � qD*ðAÞ is proportional to the
correlation coefficient between p and qwith respect to g,

rðp; qÞ ¼
Ð
Z pðzÞqðzÞgðzÞdz�

Ð
Z pðzÞgðzÞdz

� � Ð
Z qðzÞgðzÞdz
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½pðzÞ�Var½qðzÞ�
p :

ð9Þ

In other words, for individuals sampled from the space Z
according to sampling scheme g, spurious associations
between genotype and phenotype are produced if and
only if the phenotype function p and the allele fre-
quency function q are correlated with respect to g.
Discrete populations: The spatial model above con-

tains the discrete subpopulation model of Pritchard

and Rosenberg (1999) as a special case. Suppose that
the space Z can be subdivided into disjoint compo-
nents Z1, Z2, . . . , Zn, so that p(z) and q(z), respectively,
have the constant values pi and qi in component i, with
gi ¼

Ð
Zi
gðzÞdz and

Pn
i¼1 gi ¼ 1. Thus, each of the n

nonoverlapping subunits of Z can be viewed as a discrete
subpopulation. In this model, using Equation 5, the
absolute deviation D simplifies to

Ddisc ¼
����
P

n
i¼1 piqigi �

P
n
i¼1 pigi

� � P
n
i¼1 qigi

� �P
n
i¼1 pigi

� �
1 �

P
n
i¼1 pigi

� � ���� ð10Þ

(Gorroochurn et al., 2004). Consequently, there are
no spurious associations if and only if

Xn
i¼1

piqigi ¼
Xn
i¼1

pigi

 ! Xn
i¼1

qigi

 !
: ð11Þ

In the special case of n ¼ 2, in agreement with
Pritchard and Rosenberg (1999), Equation 11 re-
duces to
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g1g2ðp1 � p2Þðq1 � q2Þ ¼ 0: ð12Þ

In other words, in the case of an association study in a
population with two underlying discrete subpopula-
tions, spurious associations occur if and only if (i) all
subpopulations are sampled, (ii) phenotype frequen-
cies vary across subpopulations, and (iii) genotype fre-
quencies vary across subpopulations.

If n $ 3, however, conditions i–iii, although they are
necessary to produce spurious associations, are not
sufficient (Gorroochurn et al. 2004). For example,
consider p1 ¼ 1

50; p2 ¼ 1
100; p3 ¼ 7

100; q1 ¼ 1
4; q2 ¼ 3

8; q3 ¼
1
3; g1 ¼ 1

2; g2 ¼ 1
3; g3 ¼ 1

6. In this example, three popula-
tions are represented. Both allele frequencies and phe-
notype frequencies vary across populations. However,
Equation 11 is satisfied, with both sides equaling 11

1440.
The effects of the individual subpopulations ‘‘cancel’’ so
that no spurious associations occur.

Another scenario of interest is that of uniform sam-
pling: gi ¼ 1/n for each i. Equation 11 then reduces to

n
Xn
i¼1

piqi ¼
Xn
i¼1

pi

 ! Xn
i¼1

qi

 !
: ð13Þ

Admixed populations: By applying the spatial model
to the n � 1 dimensional space Zn�1 ¼ fz ¼ ðz1; . . . ;
zn�1Þjzi $ 0;

Pn�1
i¼1 zi # 1g, the model can also be viewed

as applicable to a situation in which individuals are
allowed to be admixed among n discrete populations.
In the space Zn�1, for each i, 1 # i # n � 1, individuals
at point (z1, z2, . . . , zn�1) have a fraction zi of their
ancestors from population i, with the fraction zn from
subpopulation n equaling 1 �

Pn�1
i¼1 zi . Each of the n

vertices of the simplex Zn�1 corresponds to an individ-
ual who is not admixed. For 1 # i# n� 1, an individual
strictly in the ith population is located at the vertex ei
with the ith coordinate 1 and all other coordinates 0;
an individual in the nth population is located at the
origin.

As in the discrete model, let the allele frequency for
nonadmixed individuals from population i be qi, and let
their phenotype frequency be pi. For admixed individ-
uals at point z, the genotype frequency is

qðzÞ ¼
Xn
i¼1

qizi : ð14Þ

Using Equation 6, the condition that must be satisfied to
avoid spurious associations is

ð
Zn�1

pðzÞ
Xn
i¼1

qizigðzÞdz

¼
ð
Zn�1

pðzÞgðzÞdz
" # ð

Zn�1

Xn
i¼1

qizigðzÞdz
" #

: ð15Þ

We can consider a natural phenotypic model for ad-
mixed individuals, in which the phenotype frequency at
a given point is a linear combination of the phenotype
frequencies of the underlying discrete subpopulations:

pðzÞ ¼
Xn
i¼1

pizi : ð16Þ

Following previous treatments with admixture models
(Pritchard et al. 2000; Hoggart et al. 2003; Erosheva

et al. 2004), suppose further that sampling is Dirichlet-
(a1, a2, . . . ,an) distributed over Zn�1, where ai . 0 for
each i. This multivariate prior accommodates a wide
range of possible sampling distributions. Then

gðzÞ ¼ Gð
P

n
i¼1 aiÞQ

n
i¼1 GðaiÞ

Yn
i¼1

zai�1
i : ð17Þ

Denote a ¼
Pn

i¼1 ai . Using the formulas for moments
of a Dirichlet distribution (Lange 1997, p. 44),

ð
Zn�1

Xn
i¼1

pizigðzÞdz ¼
P

n
i¼1 piai

a
ð18Þ

ð
Zn�1

Xn
i¼1

qizigðzÞdz ¼
P

n
i¼1 qiai

a
ð19Þ

ð
Zn�1

Xn
i¼1

pizi

 ! Xn
i¼1

qizi

 !
gðzÞdz

¼ ð
P

n
i¼1 piaiÞð

P
n
i¼1 qiaiÞ1

P
n
i¼1 piqiai

aða1 1Þ : ð20Þ

Applying Equations 18–20 in Equation 15, the necessary
and sufficient condition for no spurious associations is

a
Xn
i¼1

piqiai ¼
Xn
i¼1

piai

 ! Xn
i¼1

qiai

 !
: ð21Þ

The correspondence of this formula with Equation 11
means that heuristically, the conditions for spurious
associations in an admixed population consisting of
individuals admixed among a collection of subpopula-
tions are identical to those that permit spurious associ-
ations in a mixed population consisting of individuals
sampled only from the subpopulations themselves. In
the case of two subpopulations, Equation 21 reduces to

a1a2ðp1 � p2Þðq1 � q2Þ ¼ 0; ð22Þ

so that conditions i–iii apply, except that i is replaced
with the condition that individuals admixed among
both subpopulations must be sampled. In the case of
uniform sampling over possible collections of admix-
ture fractions, ai¼ 1 for each i and Equation 21 reduces
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to Equation 13, the same condition for no spurious
association as in the situation of uniformly sampled dis-
crete subpopulations. More generally, this equality of
Equations 21 and 13 holds if ai, which describes the
degree to which the distribution of admixture from
subpopulation i is concentrated around its mean value
ai/a (with larger values of ai indicating less variability of
admixture from subpopulation i), is the same for all i.

In the admixture model, using Equation 5, the ab-
solute deviation D simplifies to

Dadm ¼
����a
P

n
i¼1 piqiai �

P
n
i¼1 piai

� � P
n
i¼1 qiai

� �
ða1 1Þ

P
n
i¼1 piai

� �
a�

P
n
i¼1 piai

� � ����: ð23Þ

Using Ddisc and Dadm, it is possible to compare the
degree of spurious association in an admixed setting
and in the corresponding discrete setting. Consider a
mixture of n discrete subpopulations with contributions
(g1, g2, . . . , gn) and an admixed population with param-
eters (a1, a2, . . . ,an) ¼ (ag1, ag2, . . . ,agn), for positive
gi and a. The ith component of a Dirichlet-(a1,
a2, . . . ,an) random vector with a ¼

Pn
i¼1 ai has beta-

(ai, a � ai) distribution. As the mean of this beta
distribution, ai/a, equals gi, the admixed population
has the same relative contributions from the various
subpopulations as the discrete mixture, regardless of
the value of a. The difference between the two scenarios
is that in the admixed population, contributions from
multiple sources occur within individuals, and in the
discrete mixture these contributions occur across indi-
viduals. Simplifying Equations 10 and 23,

Dadm ¼ Ddisc=ða1 1Þ: ð24Þ

Because a . 0, the deviation from the null, and thus
the severity of spurious associations, is smaller in the
admixture model than in the corresponding discrete
model. Note that large values of a indicate relatively
localized sampling in admixture space, whereas small
values suggest that most individuals are close to vertices
of the space and are only slightly admixed. Thus, admixed
populations in which individuals have similar admixture
will have large a and consequently will produce rela-
tively few spurious associations in comparison with cor-
responding mixtures of discrete subpopulations.

The assumption of Dirichlet-distributed sampling
can be interpreted to mean that individuals in a popu-
lation are uniformly distributed over the set of possible
admixture combinations, but that sampling from this
population is weighted by a Dirichlet distribution. Per-
haps more appropriate to actual populations is a view
in which the underlying population of individuals ac-
tually satisfies a Dirichlet distribution of admixture com-
binations and in which random sampling of individuals
from the population leads to a Dirichlet distribution of
admixture combinations in a sample.

Continuous traits: We have so far assumed that the
trait that is to be mapped is discrete. However, a small

modification can be made to make the theory above
applicable to quantitative traits. Instead of viewing p(z)
as the frequency of phenotype D at location z, we can
view p(z) as the mean trait value at z. We can then repeat
the development by investigating the conditional prob-
ability of sampling location given genotype rather than
conditional on phenotype, as is done above and in
Pritchard and Rosenberg (1999) and Gorroochurn

et al. (2004). In this alternate perspective, rather than
using Equation 1, local independence of genotype and
phenotype occurs if for every z,

pAðzÞ � pA*ðzÞ ¼ 0; ð25Þ

where pAðzÞ and pA*ðzÞ are the mean trait values among
individuals at point z with alleles A and A*, respectively.
Global independence occurs if

pA � pA* ¼ 0; ð26Þ

where pA and pA* are the mean trait values among in-
dividuals with alleles A and A* in the full space Z. The
theory above then proceeds similarly, and in particular,
the same condition for the occurrence of spurious asso-
ciation is obtained, except with p(z) corresponding to the
mean trait value instead of the phenotype frequency.

EXAMPLES

We have found that the same general condition for
spurious associations—first identified by Gorroochurn

et al. (2004) for the discrete subpopulation case—applies
whether the population of interest is spatially distrib-
uted, composed of subpopulations, or composed of in-
dividuals admixed among subpopulations, and regardless
of whether the trait of interest is continuous or discrete.
Loosely speaking, under the model, spurious associa-
tions occur if and only if genotype and phenotype are
variable and correlated over the space of populations.
To illustrate this principle, we now consider several
heuristic examples, investigating the potential for pro-
duction of spurious associations in each scenario.
Asymmetric cline: Consider a population spatially

distributed on a line segment, along which allele fre-
quencies vary linearly from one end to the other and
along which phenotype also varies monotonically
(Figure 1). An example of such a situation would be a
latitudinal or altitudinal gradient, in which the fre-
quency or value of a trait increases (or decreases) with
latitude or altitude. Because allele frequencies and phe-
notype vary in a correlated manner in this scenario,
Equation 6 will not be satisfied, and spurious associa-
tions will occur.

A variant of this example is what might be termed a
discrete cline, in which the latitudinal or altitudinal
gradient is a set of regions in which genotype and
phenotype are piecewise constant. Allele frequency and
phenotype frequency are step functions, perhaps with
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spatial gaps between ‘‘steps.’’ Each step corresponds to a
discrete population; similarly to the case of a continuous
cline, spurious associations occur if and only if the
genotypic and phenotypic step functions are correlated.

One special case is a situation in which sampling is
uniform over the line segment, phenotype frequency
equals a constant plus a function asymmetric around the
center of the segment, and allele frequency is a second
constant plus a second asymmetric function. Assuming
that both asymmetric functions are nonzero over at least
some of the length of the segment, Equation 6 can be
applied to demonstrate that spurious associations must
occur. As a corollary, discrete clines necessarily produce
spurious associations if both phenotype and genotype
equal constants plus asymmetric functions.

Symmetric cline: Consider another population dis-
tributed along a line segment, but now, suppose that
phenotype varies symmetrically around the midpoint of
the segment. An example of this situation would be
individuals along a symmetric transect perpendicular to
a mountain range, with the peak at the center (Figure
2), or a latitudinal gradient bisected by the equator.
Allele frequencies at random loci may still vary in a
linear fashion from one end of the segment to the other,
but now, the latitudinal or altitudinal gradient places
one extreme of the phenotype in the middle of the
range and the other extreme at both endpoints. In this
case, genotype and phenotype vary in an uncorrelated
manner, and spurious associations might not occur.

A corresponding special case is a situation in which
sampling is uniform over the line segment, phenotype
frequency equals a constant plus a function symmetric
around the center of the line segment, and allele

frequency is a constant plus an asymmetric function.
In this case, Equation 6 can be applied to demonstrate
that spurious associations are evaded. As a corollary,
discrete clines do not produce spurious associations if
phenotype is a constant plus a symmetric function and
genotype is a constant plus an asymmetric function. The
same is true if the roles of phenotype and genotype are
reversed.

SIMULATION PROCEDURE

Recall that under the null hypothesis of no associa-
tion between genotype and phenotype, the absolute
deviation D equals 0 and that larger values of the
absolute deviation D indicate that the null hypothesis
is more severely violated through an increase both in the
number and in the magnitude of spurious associations.
As a result, an investigation of how D depends on model
parameters can uncover the major influences on the
severity of spurious associations. We therefore studied
the determinants of D using simulations of discrete and
admixed populations.

Allele frequencies across populations were simulated
using the F model of Falush et al. (2003), which assumes
that populations descend from a common ancestral
population. We employed a special case of the F model
for biallelic loci, in which the Dirichlet distribution for
allele frequencies used by Falush et al. (2003) collapses
to a beta distribution, as was studied by Marchini and
Cardon (2002). In this special case, alleles (A, A*) at a
biallelic locus have frequencies ðqA; qA*Þ in the ancestral
population, and n descendant populations are consid-
ered. For descendant population i, allele frequencies

Figure 1.—Asymmetric cline. Allele frequency varies mono-
tonically with latitude, as might be expected in a species in
which individuals disperse or migrate along a latitudinal gra-
dient. Phenotype frequency varies to a greater extent, as
might be expected, for example, if temperature, represented
by the shading, produces selective pressure in favor of one
particular phenotype. The genotype and phenotype curves
are constants plus functions asymmetric around the center
of the range of latitudes. In this example, with uniform sam-
pling by latitude, spurious associations will occur.

Figure 2.—Symmetric cline. Allele frequency varies mono-
tonically with altitude, as might be expected in a species in
which individuals disperse or migrate along a mountain slope.
Phenotype frequency varies to a greater extent, as might be
expected, for example, if altitude produces selective pressure
in favor of one particular phenotype. The genotype curve is a
constant plus an asymmetric function, and the phenotype
curve is a constant plus a symmetric function. In this exam-
ple, with a sampling scheme symmetric around the mountain
peak, no spurious associations will occur.
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are drawn independently from a beta-ðciqA; ciqA*Þ distri-
bution, where ci ¼ (1� Fi)/Fi and Fi is a parameter
(analogous to Fst) that measures the level of genetic drift
of population i from the ancestor on a scale from 0 to 1.
We used the same level of divergence for each de-
scendant population, or Fi ¼ F for each i.

We considered several fixed values of F (0.01, 0.02,
0.05, 0.10, and 0.20) and assumed that the ancestral
frequency qA was uniformly distributed between 0.05
and 0.95. For each value of F and each of several values
of the number of populations n (2, 3, 4, 5, 10, 20, and
40), 10,000 loci were simulated. These simulated allele
frequencies were then utilized in a variety of ways.

First, for each F, to investigate the influence of n on D

in the discrete population case, a set of phenotype
frequencies (p1, . . . , pn) was simulated for each set of
simulated allele frequencies. This procedure used the
F model with the same value of F as was used for the
allele frequencies. The ancestral phenotype frequency
(henceforth denoted p) was fixed at a specific value,
and in each replicate it was additionally required that
the phenotype frequency be in the interval [0.01, 0.99]
in at least one of the descendant populations. The
number of simulated loci required to obtain 10,000
loci that satisfied this requirement was generally
,11,000, except with n # 5 and p # 0.05, for which it
was as large as �50,000. For this analysis, the contribu-
tion gi from population i was assumed to equal 1/n for
each i. The simulated values of the frequencies of the
first allele—the values of qi—were then inserted into
Equation 10 together with the simulated values of pi and
the fixed values of gi.

To investigate the influence of g1 on D in the two-
subpopulation discrete model, for each value of F the
10,000 values of q1 and q2 from the simulations above
with n ¼ 2 were used. In this analysis, phenotype fre-
quencies p1 and p2 were fixed rather than simulated with
the F model. The simulated genotype frequencies and
the fixed phenotype frequencies were then inserted
along with specific values of g1 and g2 into Equation 10.

Finally, to examine the roles of the mean and vari-
ance of admixture in the two-subpopulation admixture
model—as well as to compare the admixed and discrete
models—for each F, the 10,000 values of q1 and q2 from
the simulations of the discrete model with n ¼ 2 were
used as the allele frequencies in the subpopulations
among which individuals were admixed. Using the
moment formulas for a Dirichlet distribution (Lange

1997, p. 44), the mean admixture from subpopulation
1, denoted E, and the variance of admixture V—which is
equal for both admixture fractions, the one for sub-
population 1 and the one for subpopulation 2—are
related to the model parameters a1 and a2 by

a1 ¼ ½Eð1 � EÞ � V �E=V ð27Þ
a2 ¼ ½Eð1 � EÞ � V �ð1 � EÞ=V : ð28Þ

Because a1, a2 . 0, E is constrained to the interval from
ð1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4V

p
Þ=2 to ð11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4V

p
Þ=2, and V must be in

(0, E(1 � E)). A variety of values of E and V—and con-
sequently of a1 and a2—were considered. For each (a1,
a2), the simulated genotype frequencies, as well as fixed
phenotype frequencies and fixed values of a1 and a2,
were inserted into Equation 23.

SIMULATION RESULTS

Number of discrete subpopulations: Figure 3 shows
the influence on Ddisc of the number of populations n,
illustrating that as n increases while the population
divergence F and the ancestral phenotype frequency p
are held constant, the fraction of simulations with a
large deviation generally decreases. Thus, spurious as-
sociations in a population consisting of many distinct
subgroups are likely to be rarer and less severe than in a
mixed population containing only a few subgroups
(Gorroochurn et al. 2004). This result, that as the
number of subpopulations increases, the effects of these
populations tend to destructively interfere, can be
explained by the fact that with only two subpopulations,
if genotype and phenotype frequency vary across pop-
ulations, the genotype and phenotype functions neces-
sarily must be correlated. As the number of subpopulations
increases, however, the chance decreases that two sets of
numbers—the genotype and phenotype frequencies—
have nontrivial correlation. A similar effect was also seen
in the simulations of Wacholder et al. (2000). In those
simulations, as the number of subpopulations in a
discrete subpopulation model increased, the influence
of population structure on the estimation of relative risk
of disease decreased.
Genetic divergence across discrete subpopulations:

A comparison of Figure 3, A and B, or of Figure 3, C and
D, illustrates that increasing the divergence F across
populations while holding n and p constant increases
the fraction of simulations for which Ddisc exceeds a
given value. Thus, greater population divergence pro-
duces a greater magnitude of spurious association. As
this effect was seen in all simulations and the value of F
did not influence the qualitative relationships between
other parameters and D, simulations focusing on these
other parameters are displayed only for single values of
F. Among the values chosen are 0.10, which corresponds
roughly to the magnitude of intercontinental diver-
gences between pairs of human populations (Akey et al.
2002; Ramachandran et al. 2005; Weir et al. 2005), and
0.01 and 0.02, which correspond to many human pop-
ulation divergences within continents (Ramachandran

et al. 2005; Rosenberg et al. 2005).
Phenotype frequency divergence across discrete sub-

populations: An increase in the ancestral phenotype
frequency p while holding the level of population
divergence and the number of subpopulations con-
stant was observed to decrease the amount of spurious

A General Model of Population Structure and Spurious Association 1671



association. This result is evident from a comparison of
the corresponding graphs in Figure 3, A and C, or in
Figure 3, B and D.

Fixing the number of subpopulations at two, the role
of phenotype frequency divergence can be examined in
greater detail by using specific values for the phenotype
frequencies in the two subpopulations, p1 and p2, rather
than by simulating values from the F model (as in Figure
3). Figure 4 shows the distribution ofDdisc with n¼ 2 and
F ¼ 0.01, for fixed values of p1 and p2. A comparison of
Figure 4, A and B, illustrates that if the phenotype
frequency p1 is held constant, spurious association is
more severe if p2 has a greater difference from p1. A sim-
ilar result is observed by comparing Figure 4, B and C,
which have the same value of p2 but different values of p1.

Note, however, that the similarity of Figure 4, A and C,
which is based on the same value for p1/p2, suggests that
this ratio is a major determinant ofDdisc. Examination of
Equation 10 demonstrates that if the allele frequencies
q1 and q2 and the population contributions g1 and g2 are
held constant, Ddisc can be written

Ddisc ¼
1

11 ðp2 � p1Þg1 � p2
f

p1

p2

	 

; ð29Þ

where f(p1/p2) is a function of the ratio p1/p2. Thus,
holding p1/p2 constant (and not equal to 1), as p1 and p2

vary, Ddisc changes only by a multiplicative factor that is
fairly close to 1 under most reasonable choices of p1, p2,
and g1. For given values of p1/p2 and g1, this factor is
largest when p1 and p2 are largest, so that for a given ratio
of prevalences between subpopulations, more frequent
phenotypes will produce more spurious association.
Consequently, a graph with a given value of g1 in Figure
4C—which has larger p1 and p2 than does Figure 4A,
with the same ratio p1/p2—produces slightly greater
values of Ddisc than does the corresponding graph in
Figure 4A.

The dependence ofDdisc largely on the ratio p1/p2 can
help explain why in Figure 3, A and C, and in Figure 3, B
and D, rarer phenotypes led to a greater degree of
spurious association. In the simulations used to gener-
ate Figure 3, the phenotype frequency varied across
subpopulations according to the F model. Thus, the
greater degree of spurious association for rarer pheno-
types in Figure 3 is a consequence of the fact that pairs of
small frequencies under the F model will tend to have
ratios farther from 1 than will pairs of large frequen-
cies. Only if the ratio of phenotype frequencies is held

Figure 3.—Distribution of the absolute deviation from the null hypothesis (Ddisc, Equation 10) in a discrete subpopulation
model. The fractions of 10,000 simulations that exceed given levels of absolute deviation are plotted for seven choices of the
number of populations n and four combinations of the ancestral phenotype frequency p and population divergence F. (A)
p ¼ 0.05, F ¼ 0.02; (B) p ¼ 0.05, F ¼ 0.10; (C) p ¼ 0.20, F ¼ 0.02; (D) p ¼ 0.20, F ¼ 0.10.
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constant do more frequent phenotypes produce more
spurious association.
Relative contributions of two discrete subpopula-

tions: Similarly to the observations of Khlat et al. (2004),
Figure 4 shows that Ddisc is usually greater if both pop-
ulations have nontrivial contributions and smaller if
one population dominates the sample and one is nearly
absent. This observation is sensible, as the limiting case
in which one of the populations has contribution 0 pro-
duces no spurious associations.

However, as can be shown using Equation 10, the
mixture that produces the maximal degree of spurious
association does not occur when the contributions of
the two populations are exactly equal, and the position
of the maximum depends on the phenotype frequen-
cies. Consider fixed values of p1, p2, q1, and q2, and write
g2 ¼ 1 � g1 so that Ddisc is thought of as a function of g1:

Ddisc ¼
jðp1 � p2Þðq1 � q2Þjg1ð1 � g1Þ

p2ð1 � p2Þ1 ðp1 � p2Þð1 � 2p2Þg1 � ðp1 � p2Þ2g2
1

:

ð30Þ

Setting the derivative of this function with respect to g1

equal to zero, it can be shown that the maximum of Ddisc

occurs at

gmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1 � p1Þp2ð1 � p2Þ

p
� p2ð1 � p2Þ

ðp1 � p2Þð1 � p1 � p2Þ
: ð31Þ

The allele frequencies q1 and q2 do not appear in this
expression, so that the location of the maximal Ddisc

depends only on the phenotype frequencies. Figure 5
shows the median of Ddisc for each of the choices of p1

and p2 plotted in Figure 4, locating the values of g1 that
produce the highest median. These points, marked by
circles, match the values obtained from Equation 31.

To more completely understand how gmax depends
on p1 and p2, Figure 6 plots the function in Equation
31, showing that for most choices of p1 and p2, gmax is
close to 1

2. Figure 6 also illustrates that for phenotypes
with frequencies ,50% in both subpopulations, the
maximal Ddisc occurs at a value of g1 for which the
low-prevalence subpopulation is overrepresented, with
contributions of this subpopulation being greatest
when its phenotype frequency is extremely small.
Discrete and admixed models: Figure 7 shows that an

admixed population produces fewer spurious associa-
tions than does the corresponding discrete population,
comparing a discrete model with two subpopulations,
which respectively contribute 20 and 80% of the in-
dividuals, to admixture models in which the mean ad-
mixture is 20%. The fraction of simulations with large
absolute deviations is considerably greater in the dis-
crete model than in any of the admixture scenarios.
This observation follows directly from Equation 24.

Note that the connection between the admixed and
discrete models via Equation 24 has the additional

Figure 4.—Distribution of the absolute deviation from the
null hypothesis (Ddisc, Equation 10) in a discrete subpopula-
tion model with two subpopulations. The fractions of 10,000
simulations that exceed given levels of absolute deviation are
plotted for seven choices of the fractional contribution of sub-
population 1, or g1, and three combinations of the phenotype
frequencies p1 and p2 in the two subpopulations. All three
plots use population divergence F ¼ 0.01. (A) p1 ¼ 0.01, p2 ¼
0.02; (B) p1 ¼ 0.01, p2 ¼ 0.20; (C) p1 ¼ 0.10, p2 ¼ 0.20.
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consequence that the level of spurious association in the
admixture model depends on a function of the ratio
p1/p2 in the same way as in the corresponding discrete
model. Although the function differs because it must
subsume the factor of 1/(a1 1), the multiplier, 1/[11
(p2 � p1)(a1/a) � p2] in the admixture model, is the
same.

Variance of admixture: Holding the phenotype fre-
quencies and the level of population divergence fixed,
the severity of spurious associations is observed to be
larger in admixture models with larger variance of indi-
vidual admixture. This can be seen by comparing the
various graphs within Figure 7A or 7B or by comparing
corresponding graphs in Figures 8, A and B. The result
is sensible, as an increase in this variance increases
the heterogeneity of the population, contributing to a
greater potential for spurious association.

Equation 24 can be used to precisely determine the
nature of the dependence of Dadm on the variance of
admixture. For the two-population case, usinga¼a11a2

together with Equations 27 and 28, Equation 24 sim-
plifies to

Dadm ¼ V

Eð1 � EÞDdisc: ð32Þ

Thus, in the two-population admixture model, for fixed
mean admixture E, the level of spurious association
increases linearly with the variance of admixture. This
result explains why in Figure 7 the fraction of simu-
lations with variance V that exceeds a cutoff C in ab-

solute deviation is equal to the fraction of simulations in
the graph with variance 2V that exceeds 2C.

Mean admixture: Finally, with all other parameters
held constant, the mean individual admixture also af-
fects the severity of spurious associations, although its
effect on Dadm is smaller than that of the variance, as is
shown in Figure 8.

Equation 32 can be used to understand the influence
of mean admixture on Dadm. The Ddisc term in Equation
32 applies to the corresponding discrete model, that is,
the discrete model in which g1 ¼ E and g2 ¼ 1� E. Thus,
as a function of E, Dadm reduces to

Dadm ¼ jðp1 � p2Þðq1 � q2ÞjV
p2ð1 � p2Þ1 ðp1 � p2Þð1 � 2p2ÞE � ðp1 � p2Þ2E2:

ð33Þ

This equation is simpler than Equation 30 for the dis-
crete model. With p1, p2, q1, q2, and V held constant, it
can be shown that the function has no maximum
between the minimal and maximal mean admixture.
Thus, the largest values of Dadm occur as E approaches
one of these boundaries, ð1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4V

p
Þ=2 or ð11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 4V
p

Þ=2.
Recall that in the discrete two-subpopulation model,

for phenotypes rarer than 50% in both subpopulations,
Ddisc was maximal at a value where the contribution
from the low-prevalence subpopulation exceeded 1

2.
Without loss of generality, suppose that subpopula-
tion 1 is the low-prevalence subpopulation. For g1 .

1
2,

if p1, p2 , 1
2, it can be shown that transposing the

Figure 6.—The value of g1 that maximizes the absolute de-
viation Ddisc as a function of the phenotype frequencies p1 and
p2 in a two-subpopulation discrete model (gmax, Equation 31).
From lightest to darkest, the shadings represent values in [0,
0.15), [0.15, 0.3), [0.3, 0.45], (0.45, 0.55), [0.55, 0.7], (0.7,
0.85], and (0.85, 1], with the shading for (0.45, 0.55) occupy-
ing most of the plot. The function is not defined for p2 ¼ p1 or
p2 ¼ 1 � p1 (although its limit is 1

2 when approaching these
diagonals).

Figure 5.—Median absolute deviation from the null hy-
pothesis (Ddisc, Equation 10) in a discrete subpopulation
model with two subpopulations. The median deviation over
10,000 simulations is plotted against g1, the fraction contrib-
uted by subpopulation 1. Three combinations of the phe-
notype frequencies p1 and p2 in the two populations are
considered, and the population divergence parameter F is
set to 0.01. The maximal deviation predicted by Equation
31 occurs at the values marked with circles. For (p1, p2) ¼
(0.01, 0.02), gmax ¼ ð196 � 42

ffiffiffiffiffi
11

p
Þ=97 � 0:585; for (0.01,

0.20), gmax ¼ ð1600 � 120
ffiffiffiffiffi
11

p
Þ=1501 � 0:801; for (0.10,

0.20), gmax ¼ 4
7 � 0:571.
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contributions of the two populations (that is, switching
the values of g1 and g2) reduces Ddisc. Because Dadm ¼
Ddisc up to a factor symmetric about the line E ¼ 1

2, Dadm

has the same property that if E . 1
2 and p1, p2 ,

1
2,

transposing the contributions of the two populations
reduces Dadm. Thus, the factor of V/[E(1 � E)] in Dadm

does not affect the side of the line E ¼ 1
2 on which the

values of E with higher Dadm occur. In other words,
although the effect of E in the admixture model differs
from that of g1 in the discrete model, the E-values with
highest D—similarly to the discrete model—involve a

larger contribution from the low-prevalence subpopu-
lation. This result is reflected in Figure 7, in which the
extent of spurious association is greater when the larger
admixture contribution is from the low-prevalence sub-
population (Figure 7B) rather than from the high-
prevalence subpopulation (Figure 7A).

DISCUSSION

In this article, we have constructed a model that ex-
tends the discrete subpopulation model of Pritchard

and Rosenberg (1999) to describe the occurrence of
spurious associations in discrete, admixed, or spatially

Figure 7.—Distribution of the absolute deviation from the
null hypothesis in an admixture model (Dadm, Equation 23).
The fractions of 10,000 simulations that exceed given levels
of absolute deviation are plotted for various choices of the var-
iance across individuals of the admixture fraction for pop-
ulation 1 in a two-subpopulation model with admixture
contributions 0.2 and 0.8 for the two subpopulations; the
curves with mean admixture 0.2 and variance 0.01 use similar
values to estimates for European ancestry in African–Ameri-
cans (Patterson et al. 2004, mean of 0.21, standard deviation
of 0.11). For comparison, Ddisc for a mixture of discrete sub-
populations is also shown. Both the top and the bottom plots
use a level of population divergence of F ¼ 0.10, and they dif-
fer only in the phenotype frequencies of the two underlying
subpopulations. (A) p1 ¼ 0.05, p2 ¼ 0.10; (B) p1 ¼ 0.10, p2 ¼
0.05.

Figure 8.—Distribution of the absolute deviation from the
null hypothesis in an admixture model (Dadm, Equation 23).
The fractions of 10,000 simulations that exceed given levels of
absolute deviation are plotted for various choices of the mean
and variance across individuals of the admixture fraction for
population 1 in a two-subpopulation model. For comparison,
the mixture of discrete subpopulations that maximizes Ddisc is
also shown, as is a uniform distribution of admixture. Both
the top and the bottom plots use a level of population diver-
gence of F ¼ 0.10 and phenotype frequencies p1 ¼ 0.05 and
p2 ¼ 0.10, and they differ only in the variances of the admix-
ture fraction. (A) V ¼ 0.04. (B) V ¼ 0.01.
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distributed populations. Generalizing a result of
Gorroochurn et al. (2004), we have found in that in
the general model, false positives occur when the ge-
notype and phenotype functions are correlated with
respect to the sampling scheme, but not otherwise.

In a special case of the model—the discrete sub-
population case—our analysis also demonstrates that
for two subpopulations, the maximal amount of spuri-
ous association occurs not for an equal subpopulation
mixture, but for a particular combination that involves
a greater contribution from the low-prevalence sub-
population. Our analysis also shows that in the two-
subpopulation discrete model, a key determinant of the
extent of spurious association is the ratio of phenotype
frequencies between the two underlying subpopulations.

In agreement with Wacholder et al. (2000) and
Gorroochurn et al. (2004), the severity of spurious
associations generally decreases with the number of
underlying subpopulations, suggesting that in the most
highly mixed human populations, spurious associations
are likely to be less common than in more moderately
mixed groups. Thus, an article by Helgason et al.
(2005), which examined the potential for spurious
associations in Iceland using simulations based on a
division of the Icelandic population into two rather than
many subgroups, may have overstated the risk of false
positives in that population.

In the admixed case the model suggests that the
spurious association problem is not as great as in the
discrete case. If individual ancestry is highly variable in
an admixed population, however, the problem increases
in severity. Consequently, concern about spurious asso-
ciations may be most justified in populations such as
Hispanic or Latino groups, for which individuals with a
very wide range of ancestry combinations may be in-
cluded in the same population (Choudhry et al. 2006).

Similarly to the discrete case, in the admixed case,
severity of spurious association is greater if the low-
prevalence population is the major contributor to the
admixed population. Thus, in African–Americans, who
have �20% European–American admixture (Patterson

et al. 2004), spurious associations are more likely for
phenotypes more common in European–Americans
than in African–Americans, in comparison with pheno-
types that are less prevalent in European–Americans.
This result is convenient, as the phenotypes that
are more likely to produce spurious associations in
African–Americans—those with greater frequency in
European–Americans—are less likely to be studied in an
African–American sample.

It is noteworthy that the numerator of the quantity
that indicates the magnitude of spurious association in
our general model, D, takes the form of a covariance
between frequencies of a phenotype and of an alleleA at
a particular locus. Suppose that the ‘‘phenotype’’ of
interest was the presence in individuals of a certain
allele B at a second locus distant from the first in the

genome, so that genotypes at the two loci were locally
independent throughout a structured population. Then
D, with its numerator equaling the absolute value of the
difference between the probability of having both
alleles A and B and the product of the probability of
having A and the probability of having B, would take the
form of a coefficient of linkage disequilibrium (LD)
between the two loci. Consequently, because any phe-
notype that had the presence of allele B as a necessary
and sufficient predictor would have the same frequen-
cies as allele B, LD in the full population between the
two locally independent loci—that is, D 6¼ 0 for the two
loci—would indicate a spurious association between
allele A and any phenotypes causally produced by allele
B (the same would occur with the roles of A and B
reversed). In other words, LD between distant loci in a
genome indicates that population structure will pro-
duce spurious associations with any phenotype that has
a perfect causal relation with any locus that experiences
a pattern of genomewide LD with other loci. If in a
structured population this kind of genomewide LD
occurs for some loci, it is likely to occur for most loci,
and thus it can be considered extremely likely that when
some allele in the genome is actually responsible for a
phenotype, population structure will produce spurious
associations between the phenotype and alleles spread
throughout the genome. Thus, if the phenotype of
interest has a causal allele, the occurrence of LD be-
tween many distant pairs of markers genomewide is
nearly a sufficient condition for the production of spu-
rious associations with the phenotype. If on the other
hand the phenotype has no causal alleles, it cannot be
assumed that there is an allele in the genome whose
frequency profile is equivalent to that of the phenotype;
thus, LD throughout the genome has no bearing on
whether D 6¼ 0 for the phenotype and some allele in the
genome and, consequently, on whether or not spurious
associations are produced.

It is important to clarify the limitations of our analysis.
First, we have discussed the necessary and sufficient
conditions for the production of spurious association
under a specific model. As conditions such as Equation
6 are not likely to be satisfied in practice in actual pop-
ulations, their primary use is for clarifying the concep-
tual basis for the production of spurious association,
so that methods for avoiding spurious associations can
be founded on appropriate assumptions. In particular,
although spurious associations have frequently been
understood to arise in discrete populations from varia-
tion in allele and phenotype frequencies across pop-
ulations, our analysis and that of Gorroochurn et al.
(2004) demonstrate that this does not provide a fully
accurate picture of the basis for production of spurious
association and that a view in which spurious associa-
tions arise from a (weighted) correlation between geno-
type and phenotype frequencies in ‘‘population space’’
is more appropriate.
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Second, our model implicitly assumes that all indi-
viduals at any point in population space are indepen-
dent draws from a frequency distribution. Consequently,
pairs of individuals from the same place in population
space are assumed to be equally unrelated. This as-
sumption is often reasonable, as the probability of
sampling pairs of closely related individuals is generally
small. Especially for a spatial setting, however, in which
geographically proximate individuals may very well be
close relatives, explicit consideration of the variation
in levels of relationship among individuals (Kennedy

et al. 1992; Voight and Pritchard 2005; Yu et al. 2006)
has the potential to provide an improved model for
the production of spurious associations.

Third, the analysis of our model has focused only
on the population-genetic scenarios that produce spu-
rious associations, assuming that sample sizes are large
enough that all associations, real and spurious, are
detectable. As our study concerns the level of spurious
association in population-genetic models and not the
actual risk of spurious association that results from
the collection of finite samples from real populations,
the conclusions that can be drawn relate to the rela-
tive severity of spurious association in different set-
tings and not to the actual type I error rates that would
be obtained in populations from the application of
specific statistical procedures. Thus, it is possible to
conclude from the model (for example) that mixtures
of many groups will generally produce fewer spurious
associations than will mixtures of fewer groups, that
admixed populations will produce fewer spurious asso-
ciations than will corresponding discrete populations,
and that a key parameter in predicting the level of
spurious association is the variability of admixture. This
does not mean that it can be concluded that multi-
source mixtures and admixed populations will not
produce spurious associations. It does, however, sug-
gest that modeling studies that have utilized a discrete
mixture of two populations may have overstated the
risk of spurious association for the more realistic set-
tings of admixed populations and mixtures of many
groups.

Note that in nonhuman organisms, unlike in the
usual scenario for humans, association studies may in-
tentionally utilize geographically distributed samples, as
phenotypic variation is required for mapping and may
be small within local populations. In these cases, par-
ticularly if sampling includes small numbers of indi-
viduals from each of many sites, rather than many
individuals from each of a few sites, a spatial perspective
may have greater potential than discrete or admixed
models to describe the genetic variation that leads to
spurious associations. Thus, the incorporation of mod-
els of spatially distributed groups into procedures that
evade spurious associations is an important step toward
the development of linkage disequilibrium mapping
strategies in natural populations.
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