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ABSTRACT

Tuberculosis can be studied at the population level by genotyping strains of Mycobacterium tuberculosis
isolated from patients. We use an approximate Bayesian computational method in combination with a
stochastic model of tuberculosis transmission and mutation of a molecular marker to estimate the net
transmission rate, the doubling time, and the reproductive value of the pathogen. This method is applied
to a published data set from San Francisco of tuberculosis genotypes based on the marker IS6110. The
mutation rate of this marker has previously been studied, and we use those estimates to form a prior
distribution of mutation rates in the inference procedure. The posterior point estimates of the key
parameters of interest for these data are as follows: net transmission rate, 0.69/year [95% credibility
interval (C.I.) 0.38, 1.08]; doubling time, 1.08 years (95% C.I. 0.64, 1.82); and reproductive value 3.4 (95%
C.I. 1.4, 79.7). These figures suggest a rapidly spreading epidemic, consistent with observations of the
resurgence of tuberculosis in the United States in the 1980s and 1990s.

TUBERCULOSIS (TB) is a directly transmitted dis-
ease caused by the bacterium Mycobacterium tuber-

culosis, which kills �2 million people each year. Much
effort has been made to understand the patterns of
transmission of TB in populations, for example, by
constructing and analyzing deterministic epidemiolog-
ical models. Properties of the population dynamics of
the disease can also be investigated using estimates
of the key parameters from epidemiological studies.
This approach has led to a quantification of the in-
trinsic properties of the tuberculosis epidemic: the ba-
sic reproductive value (or R0) of the disease is �4.5
(Blower et al. 1995) and it has a doubling time of
1–3 years (Porco and Blower 1998). Other measures of
the extent or speed of transmission have also been stud-
ied, such as the risk of infection during a year or a life-
time (Garcia et al. 1997; Vynnycky and Fine 2000).

Genetic typing tools have helped to study the trans-
mission of tuberculosis in populations and track partic-
ular chains of transmission. Common typing methods
for characterizing the diversity of tuberculosis strains
include insertion sequence (IS) typing (Cave et al. 1991)
and spoligotyping (Kamerbeek et al. 1997). Insertion
sequences are small bacterial transposable elements;
IS6110 in particular transposes at a fast enough rate to
allow effective discrimination of types within a set of
clinical isolates of M. tuberculosis (Kremer et al. 1999). A

DNA fingerprint based on IS6110 is generated by hy-
bridization of the element to a Southern blot of a ge-
nome digested with a restriction enzyme that cuts once
within each copy of the element. One advantage of the
IS6110 marker system is that the rate at which genotypes
change (the mutation rate) has been well studied (de
Boer et al. 1999; Warren et al. 2002; Rosenberg et al.
2003). Strictly, the critical rate is the within-host sub-
stitution of new genotypes created by transposition,
rather than transposition/mutation at the cellular level,
but the term ‘‘mutation’’ is used here for simplicity. A
major difference between these typing methods and
DNA sequencing is that the latter allows the determi-
nation of the number of mutation events—through the
number of segregating sites—while mutation events are
often difficult to identify in the former.

To study transmission using genotype data, it is im-
portant to understand the mutation process at some
level of detail. For example, one approach to estimating
the extent of recent transmission is to count ‘‘clusters’’
of cases whose genotypes are identical, under the
assumption that cases in the same cluster have arisen
through recent transmission, as opposed to reactivation
(Small et al. 1994). While a high proportion of cases in
clusters should indicate a high level of recent trans-
mission, we need to know the mutation rate to properly
assess the impact of the clustering of genotypes in a
sample. In other words, the clusteredness of genotypes
can be attributed not only to fast transmission, but also
to a slow mutation process. Ultimately, it would be useful
to estimate transmission and other parameters formally
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by accounting for mutation, rather than summarizing
data with indexes alone (Tanaka and Francis 2005).
Although many studies use typing techniques such as
these to measure the genetic diversity of TB isolates
from particular geographic regions, little progress has
been made in building theoretical foundations for
analyzing the resulting data statistically.

Population parameters have been estimated from ge-
netic data in other biological systems using appropriate
models (e.g., Griffiths and Tavaré 1994; Kuhner
et al. 1995, 2000; Tavaré et al. 1997; Pritchard et al.
2000; Drummond et al. 2002; Leman et al. 2005; Welch

et al. 2005), but such efforts are sometimes hindered
by difficulty in constructing analytical likelihood func-
tions. Recent statistical advances allow Bayesian analyses
while bypassing explicit likelihood functions by simu-
lating data from the model. Indeed, the development
of approximate Bayesian computation (ABC) has been
motivated by population genetic problems. In these
settings there are complex dependencies among indi-
viduals that can be simulated using the coalescent and
related models, but likelihood functions are more dif-
ficult to write down (Marjoram et al. 2003). For a range
of applications of methodologies that do not require
likelihoods see Estoup et al. (2004), Tallmon et al.
(2004), Hamilton et al. (2005), and Bortot et al. (2006).

The aim of this article is to devise a method to
estimate appropriate (compound) parameters reflect-
ing the transmission rate of a disease in a population,
using a model of transmission, mutation, and sampling
within a computational Bayesian framework. We first
describe a simple stochastic model that includes both
transmission of the disease and mutation of the marker
and then provide a way to obtain the posterior distribu-
tions of compound transmissibility parameters using
this model and genetic data. Applying the method to
tuberculosis/IS6110 data from Small et al. (1994), we
estimate the net transmission rate, the doubling time,
and the reproductive value.

MODELS AND METHODS

A model of disease transmission and marker mu-
tation: A continuous-time stochastic model is used to
describe the growth in the number of infectious cases of
a disease over time. This model is an extension of the
linear birth–death process. The ‘‘birth’’ component
models the occurrence of new infections, while ‘‘death’’
corresponds to death or recovery of the host. To model
the mutation process, we allow different genotypes of
the pathogen. Note that mutation here assumes the
replacement of one type with another within a host—
that is, mutation as well as instantaneous fixation. Mu-
tation between genotypes follows the infinite-alleles
assumption: all mutation events give rise to genotypes
that have never appeared before. We assume that all
genotypes are selectively neutral with respect to each

other—they all have the same epidemiological proper-
ties. In relation to the mutation and transmission pro-
cesses, we assume that the processes are mutually
independent, that the probability of each type of event
over a short time interval is proportional to the number
of cases, and that the process is time homogeneous so
that the rates per individual remain constant over time.
Finally we assume that the population is initiated with a
single infection. The resulting model is similar to the
birth–death and immigration model through which
the distribution of family size can be studied (Tavaré
1989). The difference is that here the rate at which new
types appear is proportional to the number of cases
rather than being constant over time.

Let Xi(t) be the number of cases of genotype i and
G(t) be the number of distinct genotypes that have
existed in the population up to and including time t.
Each of these random variables takes values from {0, 1,
2, . . . }. Let

N ðtÞ ¼
XGðtÞ

i¼1

XiðtÞ

be the total number of cases at time t.
Define the following probabilities:

Pi;xðtÞ ¼ PðXiðtÞ ¼ xÞ; ð1Þ
�PnðtÞ ¼ PðN ðtÞ ¼ nÞ; ð2Þ

and

P̃g ðtÞ ¼ PðGðtÞ ¼ g Þ: ð3Þ

The three rates of the system are the birth ratea per case
per year, the death rate d per case per year, and the
mutation rate u per case per year. Under the assump-
tions given above, the time evolution of Pi,x(t) can be
described by the differential equation

dPi;xðtÞ
dt

¼ �ða1 d1 uÞxPi;xðtÞ1aðx � 1ÞPi;x�1ðtÞ

1 ðd1 uÞðx1 1ÞPi;x11ðtÞ ð4Þ

for x ¼ 1, 2, 3, . . . , and with boundary condition

dPi;0ðtÞ
dt

¼ ðd1 uÞPi;1ðtÞ;

where i represents any of the G(t) genotypes that have
existed up to and including time t. For convenience,
the genotypes are labeled i ¼ 1, 2, 3, . . . , although the
ordering has no meaning, except that i ¼ 1 represents
the parental type from which others are descended
(directly or indirectly). The initial conditions are one
copy of the ancestral genotype and no copies of any
other genotype; that is, Pi,x(0) ¼ 0 for all (i, x) except for
P1,1(0) ¼ 1 and Pi,0(0) ¼ 1 for i¼ 2, 3, 4, . . . . To account
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for the creation of new genotypes, the probability P̃g ðtÞ
changes according to

dP̃g ðtÞ
dt

¼ �uN ðtÞP̃g ðtÞ1 uN ðtÞP̃g�1ðtÞ for g ¼ 2; 3; 4; . . .

and

dP̃1ðtÞ
dt

¼ �uN ðtÞP̃1ðtÞ ð5Þ

with the condition that G(0) ¼ 1. To establish the new
genotypes, set Pg,1(tg) ¼ 1 and Pg,x(tg) ¼ 0 for x 6¼ 1 for
the time tg at which genotype g first appears through
mutation. Change in �PnðtÞ, concerning the total num-
ber of cases, is governed by the differential equations

d �PnðtÞ
dt

¼ �ða1 dÞn �PnðtÞ1aðn � 1Þ �Pn�1ðtÞ

1 dðn1 1Þ �Pn11ðtÞ ð6Þ

for n ¼ 1, 2, 3, . . . and

d �P0

dt
¼ d �P1ðtÞ ð7Þ

with initial conditions �P1ð0Þ ¼ 1; �Pnð0Þ ¼ 0 for n 6¼ 1.
This is a standard linear birth–death process. Note that
the mutation process does not influence changes in the
total number of cases.

Some properties of epidemics under the model: We
first consider the theoretical properties of the epidemic
regardless of the mutation process. The goal is to
identify suitable functions of the parameters for estima-
tion. Analysis of the full model including the generation
of genetic variation is beyond the scope of this study;
however, the total number of infectious cases N(t) fol-
lows a simple birth–death process. This section con-
cerns some of the basic properties of this process (as
defined by Equations 6 and 7) that can be found from
the theory of stochastic processes (e.g., Feller 1968).
The key quantities we estimate in this article are the net
transmission rate, the doubling time, and the reproduc-
tive value.

Consider the dynamics of the total number of infec-
tious cases. Let the expected total number be mðtÞ ¼P‘

n¼1 n
�PnðtÞ. Using the initial conditionm(0)¼N(0)¼ 1,

the solution of this equation is

mðtÞ ¼ eða�dÞt : ð8Þ

(see, for example, Karlin and Taylor 1975). There-
fore a� d, which we call the net transmission rate, is a key
compound parameter describing the rate of increase
of the number of cases in the population. Another
associated parameter of interest is the doubling time,
which for this model is ln(2)/(a � d).

In analogy to deterministic models and branching
process models of the spread of infectious diseases, we

can define the reproductive number of the disease in a
continuous-time transmission model as the expected
number of new cases produced by a single infectious case
while the primary case is still infectious. The ‘‘basic’’
reproductive value or R0 is a related quantity corre-
sponding to the situation where a single infection is
introduced into a wholly susceptible population. Since
the model we use does not explicitly track a susceptible
population, we use the simpler term ‘‘reproductive
value.’’ The use of the birth–death process here implic-
itly assumes a constant supply of susceptible people, an
assumption that could be relaxed in more realistic
models.

Consider a single infectious individual in a birth–
death process. The time T until the death of a given
individual is distributed exponentially with parameter d.
The probability density of this distribution is thus fT(t)¼
de�dt. Let R be the number of new cases produced by
a single infectious individual. In a linear birth–death
process, this number is Poisson distributed with param-
eter at where t is the duration of infectiousness. That
is, the probability mass function is P(R ¼ k jT ¼ t) ¼
e�at(at)k/k!, for k ¼ 0, 1, 2, . . . . The unconditional
distribution of the number of secondary cases R is
therefore

PðR ¼ kÞ ¼
ð‘

0
PðR ¼ k jT ¼ tÞfT ðtÞdt ¼

dak

ða1 dÞk11

and thus

EðRÞ ¼ a

d
:

The reproductive value in this model is therefore the
ratio a/d.

Simulation of the birth–death–mutation process: This
section describes the implementation of the computer
simulation of the birth–death process with mutation.
As mentioned above, we track three kinds of events,
with rates a (birth), d (death), and u (mutation), Xi(t)
is the number of cases of type i at time t, G(t) is
the current number of distinct genotypes, and N ðtÞ ¼PGðtÞ

j¼1 XjðtÞ is the total number of cases (of all types)
at time t. To initialize the population X1(0) is set to
1 and all other Xi(0) are set to zero; also, N(0) ¼ 1 and
G(0) ¼ 1.

In this model, the time until the next event is dis-
tributed exponentially. The parameter of this distri-
bution is the product of the total number of cases N(t)
and the total rate of events of any kind, (a 1 d 1 u).
However, we do not simulate these times since the total
time experienced by the infectious population is not
needed.

Given an event of one of the three kinds, the
probability that it occurs in genotype i is Xi(t)/N(t).
The probability of a birth event given that an event
occurred is
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Pðbirth j eventÞ ¼ a

a1 d1 u
;

and similarly,

Pðdeath j eventÞ ¼ d

a1 d1 u

Pðmutation j eventÞ ¼ u

a1 d1 u
:

If the event is a birth and the chosen genotype is i, the
value of Xi(t) is incremented by 1. If the event is a death,
the value of Xi(t) is decremented by 1. Note that if Xi(t)
was zero, the probability of choosing i is zero, so its value
cannot become negative. If the event is a mutation, the
value of Xi(t) is decremented by 1, the value of G(t) is in-
cremented by 1, andXG(t)(t) is assigned the value 1. As dis-
cussed above, a mutation event always creates a new type.

If the population size N(t) reaches a prespecified
number Nstop the process is stopped and a sample taken
from it. The value of Nstop should reflect the size of a
population carrying the appropriate level of diversity at
the time the sample is taken. Low values of the order of
103 with this model do not produce the appropriate
level of diversity, while high values of the order of 105 are
in excess of realistic infectious population sizes in a
given region. Among alternative values, Nstop ¼ 10,000
gave high acceptance rates in the Bayesian computa-
tion; further, the outcomes are not strongly sensitive to
changes in this parameter (results not shown). Samples
of size n are drawn from the final population randomly
without replacement. The clusters are of size ni, where
i ¼ 1, 2, . . . , g and g is the number of distinct genotypes
in the sample [in contrast to the whole population, in
which there areG(t)]. If the population goes extinct, the
simulation is discarded. In terms of the Bayesian analysis
(see the following section) such a simulation is consid-
ered to give zero posterior probability to the parameters
(a, d, u) from which it is generated.

Estimation of key quantities: Data appropriate for
the inference procedure described here consist of a set
of clusters of size ni where i ¼ 1, 2, . . . , g and g is the
number of distinct genotypes in the sample. The sample
size is n ¼

P
i ni . Let D denote the data.

We adopt a Bayesian framework for parameter esti-
mation, under which the posterior distribution p(a, d,
u jD) ¼ p(a, d, u)p(D ja, d, u)/p(D) is a normalized
product of the prior and the (intractable) likelihood.
The marginal posterior distribution of a parameter of
the model, say a, is given by integrating out unwanted
parameters:

pða jDÞ ¼
ð ð

pða; d; u jDÞdu dd:

However, as discussed above, combinations of a and d

produce parameters of biological interest. In particular,
f1(a, d) ¼ a� d, f2(a, d) ¼ ln(2)/(a� d), and f3(a, d) ¼

a/d are of interest. We then require the posterior, for i¼
1, 2, 3,

pð fi j DÞ ¼
ð
pða; d j DÞj Ji jda;

where j Jij is the Jacobian determinant of the change of
coordinates from { fi, a} to {d, a}. Computing this dis-
tribution directly is unfeasible because the likelihood
p(D ja, d, u) is unavailable, and the necessary integra-
tions are intractable. Instead, we use approximate
Bayesian computation because it does not require the
likelihood to be known, only that simulation from the
model is computationally inexpensive. The general
approach is to approximate the likelihood through a
distance metric defined on summary statistics between
simulated and observed data.

The data can be summarized in a number of ways. A
barrier to choosing appropriate statistics is the lack of
knowledge about the sufficiency of possible statistics.
For the infinite-alleles model, a diffusion model of ge-
netic drift in which mutations follow the infinite-alleles
assumption, Ewens (1972) showed that g is a sufficient
statistic. However, we have a rather different population
model here, and it is probably necessary to use in-
formation from other statistics. A biologically natural
quantity to consider is the gene diversity

H ¼ 1 �
X

ðni=nÞ2;

which is related to heterozygosity in randomly mating
diploid populations.

While a number of algorithms exist that implement
approximate Bayesian inference (e.g., Beaumont et al.
2002), we adopt the method of Marjoram et al. (2003),
which embeds the simulation process within the well-
known Markov chain Monte Carlo (MCMC) framework.
Define g* to be the number of distinct genotypes andH*
to be the gene diversity statistic determined from a
simulated sample. Let f¼ (a, d, u) denote the vector of
unknown parameters. The algorithm is as follows:

1. Initialize parameter values, f0. Set t ¼ 0.
2. Propose a new set of parameter values f* � q(f jft)

according to an arbitrary transition density q.
3. Simulate a sample of size n from the birth–death–

mutation process using the proposed parameter val-
ues f* and calculate the summary statistics g*, H*.

4. If ð1=nÞ j g* � g j1 jH* �H j, e, where e is a suit-
ably small threshold, and

u,min 1;
pðf*Þqðft jf*Þ
pðftÞqðf* jftÞ

� �
;

where u � Uniform(0, 1), then set ft11 ¼ f*. Other-
wise set ft11 ¼ ft.

5. Set t ¼ t 1 1 and go to 2.
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The above will generate a Markov chain f0, f1, f2, . . .
whose stationary distribution is pða; d; u j ð1=nÞj g*�
g j1 jH* �H j , eÞ. Note that g and g* are normalized
by dividing by n since they lie between 0 and n, while
H and H* lie between 0 and 1. Following chain con-
vergence, the parameter vectors form a (dependent)
sample from this approximate joint posterior distri-
bution. As in standard MCMC methods, the choice of
the proposal density q(f jft) does not influence the
stationary distribution of the chain, although it can
affect its efficiency. Here it was specified as a multivar-
iate normal whereby f*�N(ft, S) with covariance
matrix

S ¼
0:52 0:225 0

0:225 0:52 0
0 0 0:0152

0
@

1
A:

The covariance of 0.225 between a and d corresponds to
a correlation of 0.9.

APPLICATION TO SAN FRANCISCO DATA

Prior specification: Before discussing the data, we
first address the prior specification. Since we wish to
make inferences about a and d from the data, we adopt
an uninformative prior with respect to each of these
parameters, such that both are positive and a. d. In con-
trast, for the data in which we are interested, information
is available in the literature about the mutation rate of
some genetic markers. We therefore incorporate this
external information into our analysis and specify

pða; d; uÞ ¼ pðuÞ if 0, d,a

0 otherwise:

�

This prior is improper (its integral is not 1), but this
does not cause problems for the MCMC sampler of
Marjoram et al. (2003) as all normalizing constants
cancel out in the implied likelihood ratio.

A number of studies have attempted to estimate the
mutation rate of IS6110 fingerprints. A study from the
Netherlands (de Boer et al. 1999) gave an estimate of
0.2166/year (converted from a half-life estimate) with a
95% confidence interval of (0.13863, 0.33007). A study
from South Africa (Warren et al. 2002) produced a
much lower estimate of �0.08 (95% C.I. 0.066330,
0.092297). Another study used data from San Francisco
and Germany (from Niemann et al. 1999) to obtain a
per copy estimate of 0.0287 (Rosenberg et al. 2003).
Extrapolating linearly, this estimate corresponds to a
per strain rate of 0.287 for a strain with 10 copies, which
is a typical copy number. However, the transposition rate
as a function of copy number has been found to be
nonlinear, with a peak value of �0.33 near 10 copies
(Tanaka et al. 2004); hence the 0.287 number is likely to

be an overestimate. Nevertheless, even with variation in
these values, the point estimates lie within a fourfold
range of each other. Taking into consideration this
background information, we set the prior distribution
for the mutation rate u to be normal with mean 0.198
and standard deviation 0.06735 [i.e., p(u) ¼ N(0.198,
0.067352)]. The mean was set to the average of 0.066 and
0.33, and the standard deviation was chosen such that
the 95% limits of the distribution are 0.066 and 0.33.

Posterior distribution of key compound parameters:
We apply the methods of this study to the data of Small
et al. (1994), an article that demonstrated the utility of
the marker IS6110 in understanding the population
dynamics of TB with molecular resolution. These data
consist of 473 isolates collected in San Francisco during
1991 and 1992. The IS6110 fingerprints can be grouped
into 326 distinct genotypes whose configuration into
clusters can be represented by

301 231 151 101 81 52 44 313 220 1282;

where nk indicates there were k clusters of size n.
The application of the approximate Bayesian com-

putation method to the data of Small et al. (1994)
produced informative posterior distributions on the
compound parameters of interest. The Markov chain
simulation was implemented for �2.5 million postcon-
vergence iterations, retaining every 50th realization,
with e ¼ 0.0025. The sensitivity of inference to the
choice of e is examined below.

Figure 1 shows the marginal posterior distribution
of the net transmission rate a� d, the doubling time
ln(2)/(a � d), and the reproductive value a/d, and
posterior estimates of these parameters are given in
Table 1. The posterior distribution of the net trans-
mission rate is almost symmetric, with a mean of 0.69
and a 95% credibility interval of (0.38, 1.08). The pos-
terior of the doubling time shows essentially the same
information, transforming it into units of interest in
epidemiology. The mean doubling time is 1.08 years
(95% C.I. 0.64, 1.82). The posterior distribution of the
reproductive value a/d is rather wide (95% C.I. 1.39,
79.7), with a heavy upper tail due to some positive
posterior probability on very low values of d. Most of the
mass of the distribution, however, is near the median
value of 3.43. The heavy tail suggests that the mean, which
is �19, is too unstable to be used as a point estimate.

In the posterior distribution, the parameters a and d

are strongly correlated (r � 0.85) as shown in Figure 2.
This confirms that it is the relative values of these
parameters that explain the observed data. The mar-
ginal posterior distribution of each individual parame-
ter is therefore of little use on its own. The right side of
Figure 2 reveals that the values of the net transmission
rate that explain the data depend on the mutation rate.
If the mutation rate is high, the net transmission rate
must also be high to account for the diversity observed
in the empirical sample.
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Sensitivity to mutation rate: We present results from
changing the mutation rate prior. Our inference relies
on information about the mutation rate taken from the
literature to ‘‘calibrate’’ the transmission rate estima-
tion. Hence, it is important to know the effect of the
assumed mutation rate prior distribution on the out-
comes. We considered four different values of the mean
around the adopted mean of 0.198, namely, 0.3, 0.25,
0.2, and 0.15. However, to study the effects of the lo-
cation of the priors being different, we tightened the
distributions through a reduction in standard deviation.
Each prior had a standard deviation of 0.026, chosen so
that the lower limits of the 95% prior credibility inter-
vals of the distibutions with means 0.3 and 0.25 co-
incided, respectively, with the upper 95% limits of the
distributions with means 0.2 and 0.15.

In Figure 3, we show the effect of varying the muta-
tion prior on net transmission rate, doubling time, and
reproductive value. The posterior reproductive value
exhibits a remarkable resilience to the mutation rate:
the ratio of birth to death rate is orthogonal to the mu-
tation rate in the posterior distribution. In the left and
middle of Figure 3 a higher mutation rate implies a
higher net transmission rate and a lower doubling time.
The standard deviation of the doubling time also
decreases for a higher mutation rate. The superimposed
posterior densities of the original analysis with p(u)�
N(0.198, 0.067352) indicate an averaging of the un-

derlying uncertainty in the true value of the mutation
rate.

Tolerance level: We investigated the effect of varying
the tolerance parameter e. This parameter affects both
the computational efficiency and the accuracy of the
inference. Unfortunately, with the Markov chain imple-
mentation of likelihood-free simulation, one can rarely
be both efficient and accurate in the same analysis
(other implementations have different drawbacks). The
higher the value of e, the greater the proportion of
Metropolis–Hastings steps that are accepted and the
faster the sampler moves around the parameter space.
However, the fidelity of the posterior distribution to
the observed data also becomes reduced. Conversely, a
smaller tolerance implies lower acceptance rates, but
improved data fidelity. While recent work (Bortot et al.
2006) suggests there may be a way to postpone specifi-
cation of e until examination of an augmented posterior
distribution (which is also dependent on e), we instead
manually examine any differences in the posterior un-
der a range of tolerance values.

Using the data of Small et al. (1994) and the prior on
the mutation parameterp(u)�N(0.198, 0.067352) we ex-
amined the series of e-values: 0.025, 0.015, 0.005, and
0.0025. Sampler acceptance rates for these tolerances
were 10.3, 5.9, 1.3, and 0.3%, respectively.

Figure 4 illustrates the effect of the tolerance pa-
rameter, in terms of sampler accuracy, on the net

TABLE 1

Posterior estimates of compound parameters from San Francisco data

Parameter Description 95% credibility interval Mean Median

a � d Net transmission rate (0.38, 1.08) 0.69 0.68
log(2)/(a � d) Doubling time (0.64, 1.82) 1.08 1.02
a/d Reproductive value (1.39, 79.71) 19.04 3.43

Figure 1.—Marginal posterior
densities of net transmission rate
a � d, doubling time log(2)/(a �
d), and reproductive value a/d.
The data used are from Small
et al. (1994). The prior distribution
of the mutation rate is p(u) �
N(0.198, 0.067352) and the toler-
ance level e ¼ 0.0025.
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transmission rate, doubling time, and reproductive
value. In each case there is a clear progression of den-
sities as the tolerance is reduced. While we might hope
that the posterior distributions stabilize beyond a
certain tolerance value (i.e., when the information
gained from decreasing its value becomes negligible),
this does not appear to have occurred for the values
trialed. Unfortunately a Markov chain with less than a
0.3% acceptance rate goes beyond acceptable time and
computation limits for such a simulation (�1 week on a
computational cluster). Hence we acknowledge that
while we have conducted this analysis to the limit of our
computational power, the inference remains approxi-
mate. However, some speculative extrapolation may
contend that, for example, the mode/median of the

reproductive value a/d might increase were we able to
reduce e further.

DISCUSSION

A useful though simple approach to studying TB
genotype data is to analyze the proportion of isolates
that appear in genetic clusters of size two or more
(Alland et al. 1994; Small et al. 1994). These kinds of
statistics serve to indicate the extent of recent trans-
mission. A goal of the current study is to extract further
information from TB genotype data by explicitly esti-
mating transmission parameters from them. In partic-
ular, these parameters are estimated using a model of
disease transmission and marker mutation along with a

Figure 2.—Joint posterior den-
sities p(a, d jD) (integrating over
u) and p(a � d, u jD).

Figure 3.—Posterior densities
of net transmission ratea� d, dou-
bling time log(2)/(a � d), and
reproductive value a/d as prior
mean of u is varied. The prior
means of u are 0.15 (shaded dotted
lines), 0.2 (shaded dashed lines),
0.25 (shaded solid lines), and 0.3
(dashedsolid lines).Thethicksolid
line corresponds to the analysis of
Figure 1.
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computational Bayesian method. In contrast to de-
terministic models of disease spread, we have used
empirical data to estimate parameters, a methodology
enabled by constructing a simple stochastic model.
Bayesian methodology also has the advantage of in-
corporating parameter uncertainty directly within the
inference and being able to assimilate expert informa-
tion on quantities of interest from external sources. We
have made use of these advantages, for example, by
incorporating uncertainty in the mutation rate.

Our results indicate that in the data of Small et al.
(1994) the reproductive rate of tuberculosis is �3.4, and
the doubling time �1.1 years. The basic reproductive
value of TB was previously estimated to be 4.5 (Blower

et al. 1995), which is well within the credibility interval
of the reproductive value in the present study. The
posterior mean doubling time of 1.1 years in this study is
low compared to the estimated 1–3 years of Porco and
Blower (1998), although there is considerable overlap
with the credibility interval. Although estimates of the
rates of infection in the population (incidences) exist
in the literature (Vynnycky and Fine 2000), estimates
of the rates of transmission and recovery/death per
infectious individual are unavailable, preventing any
direct comparisons for the net transmission rate. How-
ever, the doubling-time estimate of 1–3 years (Porco
and Blower 1998) corresponds to a range for the net
transmission rate of 0.231–0.693/case/year, which en-
compasses our estimate of 0.69. Considering that the
methods, models, and data used here are completely
different from those in the work of Blower et al. (1995)
and Porco and Blower (1998), it is interesting to ob-
serve that these estimates are not dissimilar to those
previous estimates. Overall, the IS6110 data from San

Francisco indicate a faster transmission than what has
been put forward through general epidemiological
studies. That is, the genetic information (as interpreted
with the methods in this study) supports a faster spread
of tuberculosis, at least for the data of Small et al.
(1994). This conclusion agrees with the finding of that
study that a large proportion of cases (around a third)
were due to recent transmission and may reflect the
strong transmission-driven resurgence of tuberculosis
in urban populations in the United States in the 1980s
and 1990s.

Interestingly, of the compound parameters estimated
here, the reproductive value is the most robust to
uncertainty in the prior distribution of the mutation
rate. This suggests that the ratio of the birth to death
parameters is of greater fundamental importance than
the difference. This accords with intuition since the
relative rates are what determine the outcome of events
in the process.

Many details of tuberculosis epidemiology have
been deliberately omitted from consideration to ask
whether genotypes from molecular epidemiological
studies alone can yield information about transmission.
We have not included phenomena such as age structure,
latent infection, reinfection, and migration; we also
assume that the reproductive value of the pathogen is
constant over time rather than varying as epidemiolog-
ical circumstances change (Vynnycky and Fine 1998).
We regard the estimated parameters as the ‘‘effective
reproductive value,’’ ‘‘effective net transmission rate,’’
and ‘‘effective doubling time’’—values that make the
idealized model fit the data. Nevertheless, the statistical
approach adopted here is an improvement on comput-
ing simple summary statistics from the data. Making use

Figure 4.—Posterior densities
of net transmission ratea� d, dou-
bling time log(2)/(a � d), and
reproductive value a/d as depen-
dent on algorithm tolerance e.
The values of e are 0.025 (shaded
dashed lines), 0.015 (shaded solid
lines), 0.005 (dashed solid lines),
and 0.0025 (thick solid lines).
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of further ideas from population genetics and compu-
tational Bayesian methods may help to refine our un-
derstanding of transmission patterns of TB. It may be
worth developing more realistic models in the future,
which include a larger number of parameters while still
retaining the ability to recover the most important
of these in the estimation procedure. If such models
reflect TB dynamics effectively without using an exces-
sive number of parameters, they may yield precise es-
timates of key parameters. Similarly, it is possible to
increase the complexity of the mutation model to better
capture the biology of the marker of interest. Here, we
have been concerned with IS6110, but as other genetic
typing systems such as spoligotyping and variable num-
bers of tandem repeats become more popular in the
future, more specific mutation models can be incor-
porated into this methodology.

The advantages of approximate Bayesian computa-
tion to studies involving complex modeling are im-
mense, as evidenced by a growing number of articles
using this class of methods in population genetics (e.g.,
Hamilton et al. 2005). The approximate Bayesian com-
putation approach enables the exploration of more
realistic models without being hampered by the need to
generate exact mathematical expressions for the likeli-
hood function. In spite of this, a considerable challenge
still remains in developing improved inferential proce-
dures that reduce the effect of the ‘‘approximate’’ while
keeping the ‘‘computation’’ to a manageable level. Sev-
eral open problems include investigating how the degree
of sufficiency of summary statistics can be efficiently
determined, how to most effectively incorporate all sim-
ulations (with varying degrees of fidelity to the observed
data) into the analysis, and the implications of choice of
distance metric.
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Griffiths, R. C., and S. Tavaré, 1994 Simulating probability-
distributions in the coalescent. Theor. Popul. Biol. 46: 131–159.

Hamilton, G., M. Currat, N. Ray, G. Heckel, M. Beaumont et al.,
2005 Bayesian estimation of recent migration rates after a spa-
tial expansion. Genetics 170: 409–417.

Kamerbeek, J., L. Schouls, A. Kolk, M. van Agterveld, D. van

Soolingen et al., 1997 Simultaneous detection and strain dif-
ferentiation of Mycobacterium tuberculosis for diagnosis and epide-
miology. J. Clin. Microbiol. 35: 907–914.

Karlin, S., and H. M. Taylor, 1975 A First Course in Stochastic Pro-
cesses, Ed. 2. Academic Press, San Diego.

Kremer, K., D. van Soolingen, R. Frothingham, W. H. Haas, P. W.
Hermans et al., 1999 Comparison of methods based on dif-
ferent molecular epidemiological markers for typing of Mycobac-
terium tuberculosis complex strains: interlaboratory study of
discriminatory power and reproducibility. J. Clin. Microbiol.
37: 2607–2618.

Kuhner, M. K., J. Yamato and J. Felsenstein, 1995 Estimating
effective population size and mutation rate from sequence data
using Metropolis-Hastings sampling. Genetics 140: 1421–1430.

Kuhner, M. K., J. Yamato and J. Felsenstein, 2000 Maximum-
likelihood estimation of recombination rates from population
data. Genetics 156: 1393–1401.

Leman, S. C., Y. Chen, J. E. Stajich, M. A. F. Noor and M. K.
Uyenoyama, 2005 Likelihoods from summary statistics: recent
divergence between species. Genetics 171: 1419–1436.

Marjoram, P., J. Molitor, V. Plagnol and S. Tavaré, 2003 Markov
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