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ABSTRACT

Oligonucleotide microarrays are based on the
hybridization of labeled mRNA molecules to short
length oligonucleotide probes on a glass surface.
Two effects have been shown to affect the raw data:
the sequence dependence of the probe hybrid-
ization properties and the chemical saturation
resulting from surface adsorption processes. We
address both issues simultaneously using a physic-
ally motivated hybridization model. Based on
publicly available calibration data sets, we show
that Langmuir adsorption accurately describes
GeneChip hybridization, with model parameters that
we predict from the sequence composition of the
probes. Because these parameters have physical
units, we are able to estimate absolute mRNA
concentrations in picomolar. Additionally, by
accounting for chemical saturation, we substantially
reduce the compressive bias of differential expres-
sion estimates that normally occurs toward high
concentrations.

INTRODUCTION

Hybridization of complementary oligonucleotide sequences
lies at the heart of microarray technology. The detailed
understanding of this process is crucial for perfecting both the
design of arrays and analyses of experiments. Yet, few studies
have addressed the sequence speci®city in the binding of
oligonucleotides to DNA probes near a glass surface. Several
practically relevant consequences of sequence speci®city have
been reported in the case of high-density oligonucleotide
arrays, also known as GeneChips (1). For instance, non-
linearities in the probe responses and differences in the onset
of saturation between exactly complementary probes and
probes with a single mismatch were discussed in (2,3).
Additionally, the sequence-speci®city in the behavior of
mismatched probes was mentioned in Naef et al. (4). In a
recent article (5), the difference in hybridization kinetics
between speci®c and non-speci®c targets is described in the
context of spotted oligonucleotide arrays, and it is shown how
such differences can be exploited to reduce contaminating
non-speci®c contributions.

Here, we show how most of these issues can be understood
within a simple model of surface adsorption, and how the
sequence composition of the probes can be used to calibrate
GeneChips. We proceed in several steps: we ®rst show how
GeneChip data beautifully follows Langmuir isotherms
(Fig. 1). Next, we ®t the three model parameters to the
sequence composition of each probe. Finally, we explain how
to construct estimators of absolute concentration and expres-
sion ratio and test their predictions.

Our procedure offers several advantages among which the
estimation of absolute concentration, and a strong reduction in
bias of differential expression measures that occurs when a
linear relationship between measured ¯uorescence and target
RNA concentration is assumed. We emphasize that extant
methods, either similar to MAS 5.0 or model-based (6), are
designed around the notion that predicted concentrations can
be compared for the same transcript measured in different
experiments, but not for different transcripts. The reason is
that sequence speci®city is not taken into account at all (MAS
5.0) or only partially (6). In contrast, the approach described
below yields estimates that permit the comparison of, say, a-
tubulin versus b-tubulin within the same experiment.

MATERIALS AND METHODS

The GeneChip technology is based on a photolithographic
oligonucleotide deposition process: individual probes consist
of 25 base DNA sequences. As such short length hybridization
should not be expected to be speci®c enough, labeled mRNA
transcripts are probed by 22±40 of those probes (depending on
chip models), introducing redundancy. Additionally, the
probes come in two varieties: half are perfect matches (PM)
identical to templates found in databases, and the other half
single mismatches (MM), carrying a single base substitution at
the middle (13th) base position. MM probes were introduced
as non-speci®c hybridization controls, with the idea that the
true signal (proportional to the target's mRNA concentration)
would be proportional to the difference of match versus
mismatch (PM ± MM) signal.

Data sets

The Human HG-U95A Latin Square (LS) experiment is a
calibration data set produced by Affymetrix (available at
http://www.netaffx.com), in which 14 genes are spiked onto 14
different arrays at concentrations corresponding to all cyclic
permutations of the series (0, 0.25, 0.5, 1, 2, ¼, 1024) pM.

*To whom correspondence should be addressed. Tel: +1 212 327 8186; Fax: +1 212 327 7422; Email: felix@funes.rockefeller.edu

1962±1968 Nucleic Acids Research, 2003, Vol. 31, No. 7
DOI: 10.1093/nar/gkg283

Nucleic Acids Research, Vol. 31 No. 7 ã Oxford University Press 2003; all rights reserved



Each gene is therefore probed at 14 different concentrations
one of which is zero. The remaining are logarithmically spaced
by a factor 2, ranging from 0.25 to 1024 pM. In addition to the
spiked-in target cRNAs, a complex RNA background
extracted from human pancreas was added to the sample.
Each experiment was hybridized twice, leading to two groups
of 14 arrays named Groups 1521 and 1532 (an additional
Group 2353 was not used because it is incomplete). The probe
sequences of all transcript are also available at the above
website.

Normalization

In this article we compare the default MAS 5.0 algorithm with
the method described below. In particular, we are interested in
how chemical saturation affects the sensitivity of differential
expression scores. For fair comparison, we used a single
normalization method throughout the paper: all arrays were
normalized to the ®rst array in Group 1521 using the default
(global) normalization provided by MAS 5.0.

Background subtraction

We like to distinguish between two background sources: the
physical background, e.g. re¯ection from the glass surface or
photo-multiplier dark current, and the biological background
resulting from the hybridization of non-speci®c RNA mol-
ecules. The physical background e was estimated as explained
in Naef et al. (3) and subtracted from all raw PM and MM
intensities. We will exclusively discuss the quantity I = IF ± e,
where IF is the raw ¯uorescence intensity. We found that
estimating e separately, instead of including it into parameter
d in equation 1, slightly increases sensitivity.

RESULTS

Langmuir adsorption model

The most elementary model of surface adsorption is the
Langmuir adsorption isotherm (7). Let x be the speci®c target
RNA concentration. Then, the fraction of occupied probe sites
q is given by

q � x

x� x0

;

where x0 is the concentration at which half of the surface sites
is occupied. This model assumes that the molecules in solution
are in large excess compared to the number of adsorption sites.
Assuming the measured ¯uorescence intensity to be linearly
dependent on the amount of complementary RNA bound to a
probe leads to the following model for the intensity I:

I � aq� d � a
x

x� b
� d 1

where a, b and d are probe speci®c parameters. Both a and d
have units of intensity; b can be interpreted as the concentra-
tion at which the complementary RNA saturates half of the
probes if there were no non-speci®c hybridization. The
background term d contains contributions from non-speci®c
hybridization. Other sources of ¯uorescence have been
subtracted already (see Materials and Methods). At high
intensity, the model predicts the saturation of I at a value of

a + d. We emphasize that this effect describes chemical
saturation, which is different from optical saturation that
would result from a high photo-multiplier gain. Recently, the
relevance of this model to microarrays was also suggested in
Dai et al. (5) and Kepler et al. (8).

We proceed to show that competitive cross-hybridization
by non-speci®c RNAs in the target solution does not change
the functional dependence on concentration of equation 1, but
only affects the parameter values. To see this, examine an
extension of the Langmuir model for two competing species.
Let z be the concentration of a competing non-speci®c RNA,
with z0 being its half-saturation concentration; aS and aNS

denote the dependence of ¯uorescence signal on the fractions
of speci®c and non-speci®c hybridizing molecules. Then, the
¯uorescence reads

I � aS�x=x0� � aNS�z=z0�
1� �x=x0� � �z=z0�

� aS ÿ aNS
z

z� z0

� �
x

x� x0�1� �z=z0�� � aNS
z

z� z0

: 2

Inclusion of multiple non-speci®c compounds is straight-
forward and does not affect the conclusion that the functional
dependence on the speci®c concentration x is preserved. The
effective parameters (a, b, d) in equation 1 can easily be read
off equation 2. The magnitude of the non-speci®c background
can be estimated from the ratios d / a = z / z0. It turns out that
non-speci®c background is small (z / z0 < 1%) in 66.5% of the
probes (see Supplementary Material).

The Langmuir form provides a nearly perfect description of
the calibration data. To illustrate this, a, b and d were
determined for all probes (PM and MMs) separately by
weighted least-squares ®ts of equation 1 to the ¯uorescence
measurements Ii, where i is the concentration index. We
minimized the sum S of weighted squared errors:

S �
X14

i� 1

1

Ii

Ii ÿ axi

b� xi

� d

� �� �2

where the weights wi = 1 / Ii are consistent with a noise model
in which the uncertainties in Ii are proportional to

���
Ii

p
.

Subsequently, we rescaled the data for each probe according to

X � x

b
and Y � I ÿ d

a
;

using the ®tted hybridization parameters. According to the
model, all measurements should then satisfy a single relation-
ship:

Y � X

1� X
:

The resulting collapsed data are shown in Figure 1,
providing a striking demonstration that the Langmuir model
thoroughly captures the physical chemistry of GeneChip
hybridization. We emphasize the high density of points in the
non-linear regime, proving that chemical saturation is not a
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marginal effect (see Fig. 5A for the consequences of
saturation).

Comparison of perfect match and mismatch
hybridization parameters

A comparison of the values of the hybridization parameters a,
b and d between PM probes and their MM partners is shown in
Figure 2. In essence, we observe systematically larger as and
smaller bs in the PM probe, on the other hand, d is on average
equal in the PM and MM cases. The results for b and d can be
interpreted in terms of our hybridization model.

First, b is of the form b = x0(1 + z / z0). Considering that
non-speci®c background level is found to be generally low
(see the discussion above), the factor (1 + z / z0) is close to 1,
and we expect:

ln
b PM

b MM
� ln

x PM
0

x MM
0

:

In the Langmuir model x0 can be interpreted as an inverse
equilibrium constant, and so the difference in binding free
energies EB between PM and MM probes is given by:

EPM
B ÿ EMM

B � kBT ln
bPM

bMM

where kB is Boltzmann's constant and T is the temperature at
which hybridization was performed (45°C). Figure 2 shows
that this difference is negative for almost all probes. As a
guide to the eye, the line in Figure 2B represents 3.13 bPM =
bMM, which corresponds to a difference in binding energy of
1.15 kBT = 3.0 kJ/mol at T = 45°C (318 K).

Turning to the non-speci®c background d, equation 2
implies that

d � aNS
z

z� z0

� aNS z=z0

when z / z0 is small. As shown in Figure 2C, d has comparable
magnitude for PM and MM probes, which is expected for non-
speci®c contributions. We show in the Supplementary
Material that the middle base largely determines whether d
is larger for the PM or MM. Speci®cally, we obseverve that
dPM > dMM when the PM middle base is a C or a T, while the
opposite holds for G or A. This purine±pyrimidine effect could

Figure 1. Langmuir isotherms provide a very accurate description of GeneChip hybridization. After each probe has been ®tted to the form I = ax / (b + x) + d,
the rescaled variables X = x / b and Y = (I ± d) / a collapse onto the form Y = X / (1 + X). Notice the range on the x-axis covers six orders of magnitude. The
signi®cant density of points near the shoulders indicates that saturation is not a marginal effect. Speci®cally, 69% of all PM probes have b < 512 pM. For
these, at least 2 out of the 14 measurements lie above X = 1. The total fraction of measurements above X = 1 (respectively X = 0.5) is 20% (respectively
28%). The MM case is only slightly noisier. All probes with a, b, Y > 0 were plotted representing 94% of all probes for the PM (5472 out of 5824
measurements with positive target RNA concentration), and 87% in the MM case.

Figure 2. Comparison of the Langmuir parameters a (A), b (B) and d (C) for the PM and MM probes. The line in (B) corresponds to bMM = 3.13 bPM.
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be related to the cRNA labeling protocol, as C and Us are the
biotinylated bases (see our preprint at http://xxx.lanl.gov/abs/
physics/0208095).

On the contrary, the origin of the result for the as is more
dif®cult to understand. a describes the dependence of the
¯uorescence on the amount of complementary RNA bound.
From equation 2 we identify

a � aS ÿ aNS
z

z� z0

� aS ÿ d � aS;

when z / z0 is small. Since aS is the expected ¯uorescence
when the complementary RNA fully saturates the probe, we
would not expect this quantity to differ between PM and MM
probes; however, we almost exclusively see aPM > aMM. One
plausible explanation invokes the washing of the arrays before
the scan, to which MM probes are likely more susceptible than
PM probes [see Dai et al. (5) and the discussion of b above].

Prediction of probe hybridization parameters from
sequence

It is natural to expect that a large fraction of the variability in
the probe parameters has a sequence speci®c origin. We
therefore undertook to predict the parameters a, b and d from
the sequences of the probes. A cursory inspection of the
hybridization parameters suggested a linear model for the
logarithms of the hybridization parameters:

ln a

ln b

ln d

0@ 1A � ga
A ga

C ga
G

gb
A gb

C gb
G

gd
A gd

C gd
G

0@ 1A � nA

nC

nG

0@ 1A� Ca

Cb

Cd

0@ 1A� e!; 3

which for the case of b is compatible with a model where each
base would have an additive contribution to the free energy of
binding. Here, nL is the number of letters L = A, C or G in the
sequence of a probe, gs are letter speci®c susceptibilities, Cs

are intercepts, and e! is an error term. Because the total number
of letters must add up to 25, this representation is equivalent to
one without intercept but with one additional term gT nT. In the
above form, the intercepts C correspond to the estimates for
ln a (or, b or d) when the probe sequence would be composed
of Ts only. For example, gb

C should be understood as the
change in ln b when a C base is substituted for a T.

The linear model in equation 3 was ®t to the hybridization
parameters a, b and d from the previous section. The results of
the parameters g are shown in Table 1 for PMs, Table 2 for the
MMs, and in Figure 3. The small errors in the ®tted parameters
indicate that the simple linear model does capture sequence
speci®c effects (see Supplementary Material for a comparison
of ®tted versus original parameters). We ®nd it hard to assign a
physical basis to the results but we point out the following
features: (i) PM and MM parameters are very similar (within
the errors of one another); (ii) surprisingly, only a exhibits the
symmetry between A and T or G and C bases; (iii) letter A has
a large negative contribution to ln d. It is unclear to what
extent the labeling protocol, only the pyrimidines C and U on
the cRNA strand are labeled, contributes to the A-T or C-G
asymmetry.

The small size of the calibration set (14 genes 3 16 probes
per gene = 224 probes) could only support a model using the
overall base composition of each probe. Nevertheless, we
show below that even this crude level of modeling is useful in
practice.

Prediction of absolute RNA concentration

We now turn to the practically relevant aspects. First, we show
how the predicted probe speci®c hybridization parameters can
be exploited to construct an estimator of absolute mRNA
concentration. We really mean absolute here, in the sense that
RNA levels for different genes can be compared. This adds an
interesting new feature to GeneChips.

The Langmuir model relates ¯uorescence intensity to
absolute mRNA concentration. We proceed by inverting
equation 1 in which we substitute the predicted parameters

Table 1. Linear regression parameters for the model in equation 3 for the PM data

PM Intercept gA gC gG R2

ln a 6.617 6 0.167 0.008 6 0.014 0.219 6 0.014 0.195 6 0.013 0.56
ln b 0.768 6 0.324 0.154 6 0.022 0.206 6 0.028 0.377 6 0.026 0.44
ln d 2.533 6 0.416 ±0.305 6 0.028 0.354 6 0.035 0.168 6 0.033 0.48

Most parameters have small standard errors compared to their values, indicating that the ®ts truly capture sequence speci®city. Probabilities p(g = 0) < 10±6

under the hypothesis of no sequence-speci®city, except for ga
A. Probes were excluded from the ®t according to the following criteria: (i) (a, b, d) had to be

strictly positive because of the logarithms; (ii) an upper limit on b < 10 000 excluded probes in which no saturation effects were observed and hence a and b
could not be determined independently; (iii) d < a / 5 excluded probes that were probably subject to signi®cant cross-hybridization; and (iv) the calibration
curves had to follow good Langmuir isotherms: the correlation coef®cient r(ln Iobs, ln I®t) between the observed and ®tted intensities had to be >0.99. In total,
this procedure removed 29.7% of the probes.

Table 2. Linear regression parameters for the model in equation 3 for the MM data

MM Intercept gA gC gG R2

ln a 5.526 6 0.256 0.012 6 0.017 0.277 6 0.023 0.219 6 0.018 0.57
ln b 1.066 6 0.489 0.108 6 0.032 0.268 6 0.043 0.418 6 0.035 0.46
ln d 2.200 6 0.564 ±0.213 6 0.036 0.322 6 0.050 0.178 6 0.040 0.37

Probabilities p(g = 0) < 10±3 under the hypothesis of no sequence-speci®city, except for ga
A.
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from equation 3 (denoted with hats). Each probe p (PM or
MM) then yields an estimate of concentration:

Ãxp � Ãb
I ÿ Ãd

Ãa� Ãd ÿ I
4

which has a vertical asymptote at I = aÃ + dÃ . Occasionally,
measured intensities will fall above the asymptote or below
background, resulting in unphysical values for xÃp. We
therefore exclude probes with I > aÃ + dÃ or I < dÃ . The values
xÃp are then combined to obtain an estimate of probe set
concentration:

log�Ãxprobeset� � 1

n
0

X
p

0
log�Ãxp� 5

where the prime (¢) indicates exclusion of probes for which
I < dÃ or I > aÃ + dÃ , and n¢ is the number of probes included in the
sum. For the analysis presented in the Results section, we
included only the PM probes, as inclusion of the MMs
appeared to increase the noise in the estimates without
improvement in the sensitivity.

A comparison of the real versus estimated concentrations is
shown in Figure 4. It is important to note that no scale
adjustment was made, and hence the different probe sets can
be compared on the same plot. Figure 4A shows three
transcripts, which were themselves excluded from the training
set determining the parameters g (the training set consists of
the remaining 11 transcripts). Two of them show remarkable
linearity throughout the range, while one is not very precise
below 16 pM. The average behavior in Figure 4B shows
overall good linear behavior in the range from 2 to 256 pM,
although residual bias at both ends of the scale can be
observed. In the linear range, we observe that the predicted
concentrations are systematically too low by a factor <1.5.
One contributing factor to this bias is the imperfect prediction
of the hybridization parameters (aÃ , bÃ , dÃ), which have smaller
dynamic range than the original parameters (see Fig. S3 in
Supplementary Material).

We found the above way of estimating concentrations to be
the most favorable among many we have tried. For instance,
we tried more robust estimators (instead of the mean in
equation 4) like the median or M-estimators, but we found that
these do not offer any obvious advantage for this data set. The
result for the median (shown in the Supplementary Material),
have slightly lower noise but larger bias, but were on average
very close to those obtained using the mean. Alternatively, we
tried estimators based on the minimization of functions like

S�x� �
X

i

wi logIi ÿ log
Ãaix

Ãbi � x
� Ãdi

� �� �2

=
X

i

wi;

where wi are weights that can depend on (I, a, b, d).
Unfortunately, we were unable to achieve similar results as
those from equation 5.

Estimates of differential expression

Each probe p in a probe set provides a differential expression
estimate fÃp between two conditions 1 and 2. From equation 4,
we obtain

Ãfp � Ãxp;2

Ãxp;1
� I2 ÿ Ãd

I1 ÿ Ãd
� �Ãa�

Ãd� ÿ I1

�Ãa� Ãd� ÿ 12

; 6

where I1 and I2 are the measured ¯uorescence intensities of
probe p in conditions 1 and 2. Notice that the parameter b
drops out of the equation. We have factorized the expression
as the naõÈve linear estimate (I2 ± dÃ) / (I1 ± dÃ) times a saturation-
correcting factor. The ratio for the full probe set is then
calculated as the geometric mean of a restricted set of probes:

log Ãfprobeset;1;2 � 1

n
00

X
p

0 0 log Ãfp1;2: 7

Here, n¢¢ is the number of probes included in the sum. The
restrictions are the following: we exclude any probe if I1 < dÃ or
I2 < dÃ , or I1 > (aÃ + dÃ) or I2 > (aÃ + dÃ), as in the previous section.
Because the saturation-correcting factor becomes very large or
small when I1 or I2 is close to aÃ + dÃ , we also exclude probes for
which the saturation-correcting factor was larger than 4 or
smaller than one-quarter.

To test the sensitivity of this method, we estimated the
relative changes in mRNA levels between measurements
taken at subsequent concentrations in the calibration set, i.e.
we compared concentrations 0.5 versus 0.25 pM, 1 versus 0.5,
¼, 1024 versus 512 pM for each probe set. In this way, ratios
of 2 are expected in all cases. Results are shown in Figure 5,
for comparison, scores from MAS 5.0 are also shown. We also
estimated the false positive rate (Fig. 5C and D) by comparing
measurements from the replicated Groups (see Materials and
Methods). In this case, we expect ratios of 1 (or 0 in log
coordinates). Figure 5A clearly shows that the MAS 5.0 ratios
are biased throughout the range, most severely at large RNA
concentration [see Naef et al. (3) for similar results on a yeast
data set]. Notice that the inter-quartiles indicated by the
boundary of the boxes lie entirely under the expected line. We
emphasize that this qualitative behavior is a feature of all
current analysis methods, not just MAS 5.0. Our method

Figure 3. Data from Tables 1 and 2. The sign ¯ip in the contribution from
letter A to ln(d) as compared to ln(a) and ln(b) is particularly obvious.
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(Fig. 5B) clearly reduces the bias in the whole range above
1 pM, with nearly perfect medians in the concentration
window spanning 1±128 pM. It is not surprising that these

improvements come at the cost of slightly larger variability;
however, gain in signal detection overcomes the increase in
noise as indicated by the paired t-statistics reported in Table 3.

DISCUSSION

We demonstrated that the assumption of a linear relation
between measured intensity and concentration is inaccurate in
the case of GeneChips. Instead, we have proven that the
calibration curves saturate exactly as one would expect from
Langmuir isotherms. In practice, this saturation induces a
marked compressive bias in differential expression estimates,
most severely at high concentrations. It is likely that similar
effects are affecting other versions of microarrays, e.g. cDNA
slides or spotted oligonucleotide arrays. We proceeded to
show how the three parameters in the Langmuir model could
be estimated from the sequence composition of the probes.
Despite the small size of the training set, we obtained good
results for the prediction of absolute concentration.
Additionally, we were able to provide estimates of differential
expression with a signi®cant reduction in bias without
decrease in signal-to-noise ratio.

One attractive feature of the technique is that it naturally
lends itself to ®ne-tuning as more extensive calibration data
are produced. The main improvements should result from
more detailed modeling of the Langmuir parameters as a
function of probe sequence. Here, only the crudest linear
model was used, and it is likely that larger data sets would
support models incorporating base position information or
nearest-neighbor interactions. We also expect that re®nements
in the estimator for combining the information from the
redundant probes will be possible. So far, our results show that
geometric means (equations 5 and 7) lead to similar results as
more outlier-robust estimators like the median, suggesting that
outliers do not play a crucial role here.

We also observed that inclusion of the MMs generally
resulted in increased noise levels, no matter whether we
subtracted them from the PM, or pooled them with the PMs.

Figure 4. Absolute concentration estimates: no scale adjustments were made. (A) We tested generalization by using 11 out of 14 transcripts for ®tting the
parameters g, then used these parameters to predict the concentrations of the other three. Here, we picked the ®rst three transcripts (according to alphabetically
sorted Affymetrix labels) and show predicted versus real concentrations in pM for the two duplicated experiments 1521 and 1532. (B) We tested all
transcripts; no probe sets were excluded for determining the gs. The dots represent ®rst quartile, median and third quartile of the 28 measurements
(14 transcripts in duplicate). Full box plots are shown in the Supplementary Material.

Figure 5. Differential expression scores for expected ratios of 2 and 1 (no
change). Results for ratios of 2 are shown in (A) and (B); control of false
positive rates in (C) and (D). (A) and (C) were obtained from MAS 5.0;
(B) and (D) from our own estimates using only the PM probes. The
compressive bias is clearly visible in (A) as the median ratio lies systematic-
ally below the expected value indicated by the upper red line. (B) shows
how much our method is capable of reducing bias; sensitivity is also
improved despite increased noise levels (Table 3). Low intensity results in
(C) and (D) suggest that the normalization is not ideal. For the results in
(B), more than half the probes were kept in 85.4% of the comparisons, and
more than 12 probes (out of 16) were retained in 333 out of 336 cases. Full
box plots are shown in the Supplementary Material.
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This suggests that this technology would bene®t from the
replacement of MM probes by additional PMs with non-
redundant sequences.

In practice, an effective implementation of our scheme will
require some modi®cations in the current protocols. First, its
wide applicability will depend on advances in standardization,
but there is general consensus that this is imperative (9).
Secondly, it will be crucial to test to what extent the estimated
parameters can be transferred across different experiments
and/or chip series. After normalization, we expect little
variability in the parameters a and b. On the other hand, the
parameter d could be dependent on sample particularities.
However, the incorporation of a set of non-genomic (random)
probes on each array should permit determination of the level
of non-speci®c hybridization and hence calibration of the
parameters d.

We believe that using the sequence composition of probes
to calibrate arrays will be the key to perfecting microarray-
based transcriptional studies. This work provides a step in this
direction.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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Table 3. Sensitivity for detection of changes

Baseline concentration (pM) 0.25 0.5 1 2 4 8 16 32 64 128 256 512

Langmuir 1.04 2.47 8.42 10.85 10.98 13.60 12.41 21.27 21.62 11.93 12.36 7.14
MAS 5.0 2.28 2.70 5.74 9.51 13.14 18.99 16.87 27.09 12.96 11.81 5.62 4.43

A paired t-statistic between ratio estimates of 2 and 1 (no change). According to the test, the Langmuir method has higher sensitivity above baseline
concentrations of 32 pM.
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