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ABSTRACT

It is an outstanding problem to clarify how the RNA
sequence is related to its structure and biological
functions. We developed a simpli®ed de®nition of a
metric for tree representation of RNA secondary
structures and analyzed the conformational energy
landscapes of human spliceosomal snRNAs. We
discuss the structural properties of the biological
sequence by calculating the conformational energy
landscapes based on the structural distance
between each of the pairs in the set of suboptimal
structures. The new index value is introduced for
estimating the shapes of distribution patterns in
conformational energy landscapes. We apply our
method to the ®ve human snRNAs and show that U1
snRNA has a multi-valley pro®le of the landscape,
whereas the landscapes of the other four snRNAs
have one steep valley. This result re¯ects different
biological functions of these snRNAs in the pre-
mRNA splicing process. The results of analyzing
tRNAs and rRNAs show that the conformational
energy landscapes of these sequences have multi-
valley pro®les.

INTRODUCTION

In the Human Genome Project, sequences for a large number
of genes that code for RNA molecules have been identi®ed,
such as mRNAs, rRNAs, tRNAs, snRNAs (U1, U2, ¼) and
others. However, it is still unclear how the sequence data of
these molecules relates to these structures and their biological
functions. We focus on the bioinformatics analysis of
structures obtained from a biological sequence and random
sequences by developing a simpli®ed metric of the RNA
secondary structures using a tree representation.

Several methods that can compare RNA secondary struc-
tures have been proposed. RNA secondary structures can be
represented as trees (1,2). The tree edit distance can be de®ned

as the minimum number of operations that can transform one
RNA secondary structure into another (3). An alternative
simple method for comparing RNA secondary structures
encodes secondary structures as linear strings with parentheses
representing the base pairs (4,5).

Our comparison method is between these two kinds of
approaches. In our representation, we de®ne a tree in which
the nodes are the loops and in which the base paired regions
are the arcs of the tree. We translate the tree structure into a
linear string of symbols. The two linear strings are aligned
using a dynamic programming algorithm, and the distance
between the two different structures is calculated by replace-
ment scores between the symbols used. We call this metric the
tree representation (TR) distance.

With this method, we analyze and compare the RNA
secondary structure from a biological sequence and shuf¯ed
sequences that have the same composition as the original one.
As a biological sequence, we use the snRNAs of the `U'
family. We focused on the snRNAs as the target of our method
because a lot of biochemical studies have been done on them.
In addition, these indispensable RNA molecules have very
important roles involved in the pre-mRNA splicing reactions
and also they are one of the non-coding RNAs (rRNA, tRNA,
snRNA) whose functions could be associated with their known
structures.

We de®ne a new index called the Valley Index to estimate
the valley pro®le in the structural space for a RNA sequence
with a set of suboptimal structures. This new de®ned index
provides a method to distinguish some types of topologies of
conformational energy landscapes. We calculate the Valley
Index for the conformational energy landscape of the sampling
set of the RNA (sub)optimal structures and compare it
between the biological structure and the randomly generated
structure of the shuf¯ed sequence. Such analysis may be of
value in understanding how biological RNAs are different
from random RNA sequences (6).

With this index, we did a histogram analysis of the set of
sampling structures for the ®ve human snRNAs (U1, U2, U4,
U5 and U6). The resulting distribution patterns are so
distinctive that we can point out some structural features in
these RNA molecules.
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MATERIALS AND METHODS

We applied our algorithm to structured human RNA genes
such as U1 snRNA, U2 snRNA, etc. The RNA sequences used
are shown in Table 1. All the sequences used are obtained
from GenBank with the accession numbers listed in Table 1.

It has been known that traditional calculations of sub-
optimal structures often result in erroneous predictions when
sequence lengths are long due to the lack of consideration of
entropic effects (7). In this work, we focus on short RNA
sequences (of about 100 bases in length). Although our
approach might be dependent on the predicting algorithm,
structures calculation of such short sequences can produce a
better set of suboptimal structures.

The minimum free energy and (sub)optimal structures are
calculated using Zuker's MFOLD version 3.0 and PlotFold in
the GCG package (8,9). The Vienna package is also a
frequently used program, which can calculate optimal struc-
tures by evaluating the partition function (10). We have used
the same approach on the optimal structure using the Vienna
package, and found that it gave almost the same results as the
MFOLD approach. In principle, one can obtain similar sets of
data from either MFOLD or the Vienna package. However,
since MFOLD produces an easily manageable subset of data,
we chose to focus on the MFOLD results rather than the
Vienna package.

Our programs for this approach are written in C++ and Perl.
We run the program on the CRAY T94 of the Institute of
Medical Science (IMS), University of Tokyo.

The MFOLD program requires two parameters: the
folding temperature T and the energy increment Eth at
which to calculate secondary structures as suboptimal struc-
tures. The parameters used in our method are T = 37°C and
Eth = 5 kcal/mol.

Human U1 snRNA is known to fold into a secondary
structure with four stem±loops, I, II, III and IV (11). The
predicted optimal structure of U1 snRNA including these four
stem±loops is in a good agreement with the experimentally
known structure. Human U2 snRNA forms ®ve stem±loops, I,
IIa, IIb, III and IV (11). In this case, four out of these ®ve
stem±loops can be correctly predicted by MFOLD. Some
well-known motifs in other snRNAs like the U5 loop or a
stem±loop in U6 RNA can also be predicted by the program
with good accuracy (12,13).

The process of our approach is as follows.

Generating the (sub)optimal structures. With folding pro-
grams, we make a set of secondary structures S ={s1, ¼, sn},
which have folding free energies that differ by no more than a
certain threshold value from the computed minimum free

energy of the optimal structure. The set of structures Soriginal

from the biological snRNA and Srandom from the shuf¯ed RNA
with the same composition as the original sequence are
obtained in this step.

Structure comparison using our metric based on tree repre-
sentation. The structure distance is calculated for all pairs in
S. We carried out this process with the new metric of RNA
structures based on the tree representation.

Conformational energy landscape. We de®ne a conforma-
tional energy landscape by plotting free energies and structural
distances between two pairs in S. The Valley Index is newly
de®ned to classify pro®les of the landscape with respect to the
steepness of the funnels around the possible optimal struc-
tures.

Histogram analysis. Histograms are calculated to compare the
conformational energy landscape of each snRNA and that of
shuf¯ed RNA.

TR distance

We de®ne the new metric of RNA structures based on a tree
representation, which is called the TR distance.

In this metric, secondary structures of RNA are represented
by labeled trees (Fig. 1). Each tree node represents a loop of
the secondary structure, and the node label is assigned as the
number of branches from the node. The topology of the tree-
represented RNA structures can be encoded into linear strings
of node labels using a depth-®rst traversal of the nodes. The
comparison of two trees A and B is accomplished by obtaining
the alignment of the linear string ai for A and bj for B, where i
and j represent the position of each symbol of the linear string.

The goal is to ®nd an optimal alignment of two strings with
respect to a biologically and mathematically justi®ed cost
measure. Costs of the operation for pairwise alignment are
de®ned as follows.

cost(ai,bj) = |ai ± bj| (match or mismatch)
cost(ai,±) = cost(±,bj) = 1 (one insertion)
cost(±,±) = 0 (two insertions)

This cost function satis®es the following constraints as a
metric.

cost(±,±) = 0
cost(a,b) = cost(b,a)
cost(a,c) < cost(a,b) + cost(b,c)

The TR distance is de®ned as the minimum cost of the
operations necessary to transform ai into bj.

Table 1. Free energy and base length of snRNAs

snRNA Base length (nt) Minimum DG (kcal/mol) GenBank no. Reference

U1 164 ±55.8 J00318 (25)
U2 187 ±63.0 M19204 (26)
U4 144 ±46.9 X59361 (27)
U5 115 ±27.7 X04293 (28)
U6 106 ±26.6 M14486 (29)

All the sequence data were obtained from GenBank with the accession number listed in the table.
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De®nition 1. TR distance

dTR(i, j) = min{dTR(i ± 1, j ± 1) + cost(ai,bj),
dTR(i, j ± 1) + cost(±,bj),
dTR(i ± 1, j) + cost(ai,±)}

As compared with the tree edit distance (14), our simpli®ed
method cannot fully consider the topological features of the
tree representations. However, we have examined these
metrics and have found that the TR distance yields almost
no difference in the results of our analysis.

The application of this tree representation-based metric is
limited to pure secondary structures. Therefore, it cannot
represent tertiary structural interactions such as pseudoknots.
Most works on modeling RNA structures have been limited to
secondary structures that do not contain pseudoknots because
problems of these tertiary structural interactions could become
computationally very hard. Rivas and Eddy present an
algorithm that predicts the secondary structures of an RNA
that allows certain kinds of pseudoknots (15). Recently a
grammatical modeling method has been proposed for repre-
senting secondary structures of RNAs including pseudoknot
structures (16). However, there still remain problems in the
computational complexity to predict RNA secondary struc-
tures containing pseudoknots (17).

Valley index

We introduce the index value called the Valley Index to
evaluate the steepness of funnels in the conformational energy
landscapes. The Valley Index is de®ned by considering a
weighted average structural distance for a given sequence with
suboptimal structures S ={s1, ¼, sn}.

De®nition 2. Valley Index

VI = [åi,j Î SdTR(i,j)´w(i)´w(j)]/[ åi,j Î Sw(i)´w(j)]

where S ={s1, ¼, sn} is a set of secondary structures, which
have folding free energies that differ by an energy threshold
value Eth from the optimal structure.

The Bolzmann factor w(i) is de®ned as follows.

w(i) = exp{±[E(i) ± Eoptimal]/RT}

where E(i) is the free energy of structure i. The Valley Index
calculates the average value of TR distances over all possible
pairs of optimal and suboptimal structures. We just use the
difference of folding free energies as the energy distance
instead of taking into account the energy barrier in the
transition path between two structures. This de®ned index is
thought to re¯ect the number of valleys in the conformational
energy landscape. The Valley Index of the uni-valley type of
RNA is considered to have a rather small value compared to
the other RNA.

In our method, we used an energy threshold value of Eth =
5 kcal/mol for calculating the set of secondary structures S.
We have demonstrated our analysis with a bigger cut-off value
(Eth = 10 kcal/mol), and it was found that the whole approach
is not so much dependent on the cut-off value. This may be
because structures of higher free energies have only a small
in¯uence on the calculation of the Valley Index.

RESULTS

Conformational energy landscape

To describe the topographic features of the structural distri-
bution, we plot the folding free energy versus the TR distance
between one structure and the optimal structure. This process
allows us to see the lower dimensional conformational
landscape of RNA structures.

In Figure 2, we show the conformational energy landscapes
of natural U2 snRNA and typical shuf¯ed U2 snRNA. This
®gure implies that natural RNAs are likely to have uni-valley
pro®les. In contrast, randomly generated RNAs have non-
distinctive pro®les. The Valley Indices of natural U2 snRNA
and shuf¯ed U2 snRNA, whose pro®les are shown in Figure 2,
are 0.55 and 4.1, respectively.

In Figure 3, we show the two typical patterns of suboptimal
folding free energies distributed in the structure space around
the optimal structure: the uni-valley pro®le and the multi-
valley pro®le. The shallowness of the funnel in the
conformational energy landscapes suggests multiple stable
structures of the RNA, which may suggest some property
related to its biological functions (18).

The calculated results of conformational energy landscapes
for the other four human snRNA (U1, U4, U5 and U6) are
shown in Figure 4. This ®gure suggests that some unique
topographic features can be found for U1 snRNA while other
snRNAs have uni-valley pro®les.

Histogram analysis

Our approach has indicated that biological snRNA structures
show different patterns in conformational energy landscapes
when compared with random RNA structures of the same A,
T, G, C components. The histogram analysis was carried out
for the statistical comparison of shapes in landscapes between
the biological RNA and the randomly generated RNA.

Figure 1. The structure distance is calculated based on the tree representa-
tion of RNA structures. Each tree node represents a loop of the secondary
structure, and the node label is assigned as the number of branches from the
node. The topology of tree represented RNA structures can be encoded into
linear strings of node labels using a depth-®rst traversal of the nodes.
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We calculated the Valley Index corresponding to 500
random RNAs, which have shuf¯ed sequences of human
snRNA (U1, U2, U4, U5 and U6). We then applied the
Kolmogorov±Smirnov test to determine whether the Valley
Index follows a normal distribution. The Kolmogorov±
Smirnov test accepts the normality hypothesis for the case
of log-normal data at the signi®cance level of 0.05 for all cases
of snRNA.

Figure 5 shows the histograms of the natural logarithm of
the Valley Index for a collection of 500 RNAs generated from
each of the natural snRNAs. The position of the original RNA
is represented by an arrow in each histogram.

As observed in Figure 5, the four biological snRNAs (U2,
U4, U5 and U6) have smaller values for the Valley Index than
the random sequences of the same base composition at the
0.05 signi®cance level (U2, U4 and U6) and the 0.30
signi®cance level (U5). While the natural snRNAs show
smaller Valley Indices than their distributions of suboptimal
structures show in the uni-valley pro®les, the biological U1
snRNA has no distinguishable Valley Index compared to the
random sequences.

We have also calculated the folding free energy of the
optimal structures for 500 shuf¯ed RNA sequences having the
same composition as a human snRNA (U1, U2, U4, U5 and
U6). Figure 6 shows the histograms of the minimum free
energy. It is known that the distribution pattern of the
minimum free energy shows a Gaussian distribution (19).

As shown in Figure 6, the biological snRNAs have rather
low minimum free energies compared to the shuf¯ed
sequences at the 0.30 signi®cance level. Although only U1
snRNA has different features from the other four snRNAs with
respect to the Valley Index, there are no remarkable differ-
ences among the ®ve snRNAs in the free energy distribution
patterns on this criterion.

We examined the correlation between the Valley Index and
the minimum free energy. In Figure 7, we plot the Valley
Index and the minimum free energy of the set of 500 shuf¯ed
sequences of each of the human snRNAs reported here. The
circle represents the original sequence.

As shown in these plots, there is a moderate correlation
between the two variables, which indicates that when one
RNA molecule has a lower free energy, it is more likely to
have a smaller Valley Index and a uni-valley pro®le. The
correlation factors between the two variables are 0.45, 0.39,
0.42, 0.48 and 0.48 for U1, U2, U4, U5 and U6, respectively.

Each map is divided into nine areas by broken lines
representing the standard deviations for each variable. The
position of the circle in this map can tell us the general features
of the biological RNA structures compared with the RNAs of
the shuf¯ed sequences. The circle plots of the three snRNAs
(U2, U4 and U6) are in the same area, which has stable free
energies and small Valley Indices. The Valley Index of U5
snRNA is also lower than the average value. However, the
circle plot of U1 snRNA is placed in the area that has stable
free energies and medium values of the Valley Index.

We have carried out a further calculation for other types of
RNA molecules: tRNA and 5S rRNA. The calculated
correlation factors are 0.34, 0.39, 0.42 and 0.39 for yeast

Figure 4. Conformational energy landscapes for (a) U1 snRNA, (b) U4
snRNA, (c) U5 snRNA and (d) U6 snRNA. The circles stand for the
optimal structures and crosses stand for the suboptimal. The horizontal axis
is the TR distance and the vertical axis is the free energy.

Figure 2. Conformational energy landscapes. (a) U2 snRNA, (b) randomly
generated RNA which has a shuf¯ed sequence of U2 snRNA. The circles
stand for the optimal structures and crosses stand for the suboptimal. The
horizontal axis is the TR distance and the vertical axis is the free energy.

Figure 3. Two patterns of conformational energy landscapes. The shape
of the valley in each landscape is represented by a dashed curve.
(a) Uni-valley and (b) multi-valley pro®les. The Valley Index of case (a) is
lower than that of (b).
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tRNAPhe, human tRNALeu, Escherichia coli 5S rRNA and
human 5S rRNA, respectively. It follows from these results
that there is a mild correlation between the two variables, but
further studies may also be required to verify the correlation
for general RNA molecules. On the other hand, unlike the ®ve
snRNAs, these tRNA and rRNA molecules do not have stable
free energies and do not show uni-valley pro®les. These four
molecules are not distinguishable from structures with
randomized sequences at the 0.30 signi®cance level in terms
of both the free energy and the Valley Index. This result may
re¯ect that the structures of tRNA and rRNA molecules could
be stabilized through interactions with proteins or other
nucleic acids, whereas many of the snRNA molecules with
lower free energies are rather structurally stable.

DISCUSSION

As described in the previous section, the U1 snRNA has no
distinguishable value of Valley Index from the shuf¯ed
sequences, while it has a rather small value of minimum free
energy, like the other biological snRNAs.

These results re¯ect several types of valley pro®le.
The U1 snRNA can be classi®ed as a multi-valley pro®le

whose Valley Index is not distinguishable from the other
pro®les of RNA with randomized sequences. The U2, U4, U5
and U6 snRNA can be classi®ed in terms of the uni-valley

pro®le of which the Valley Index is small and the folding free
energy takes on a small value. We can also point out that the
U5 snRNA has a gentle valley pro®le, while the others have
rather steep valley pro®les.

The uni-valley pro®le represents the structural stability
against the changes in energy levels.

On the other hand, the multi-valley pro®le possibly suggests
diverse conformations of alternative structures, which might
re¯ect some interesting biological roles, such as a conform-
ation switch or some stabilizing effects through interactions
with proteins. As shown in Figure 6, the traditional energy-
based index cannot distinguish these ®ve RNA molecules.
Although it may require further studies to clarify how the
Valley Index is related to possible biological functions, it is
interesting that these RNA molecules show different types of
distributions in terms of conformational energy landscapes.

We can also draw some inferences about the mechanism in
the pre-mRNA splicing process considering the results of our
approach.

The U1 snRNA is known to have a binding site that
recognizes the exon±intron sequences (20). Some proteins
have been reported to switch their functions by binding to
nucleic acid molecules. The conformational change in the U1
snRNA also might have a biologically important role to switch
on the process and enable the other snRNA molecules to bind
the splice site and proceed through the splicing process.

Figure 5. Histogram of Valley Index for a sample set of shuf¯ed sequences of human snRNA. (a) U1 snRNA, (b) U2 snRNA, (c) U4 snRNA, (d) U5 snRNA
and (e) U6 snRNA. The arrows stand for the Valley Index of the original sequence. The dashed lines represent the average values and the dotted lines show
the standard deviations for each distribution.
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Several results in biological studies suggest that the exchange
of U1 for U6 at the 5¢ splice site may be responsible for
¯ipping the switch in spliceosome activation (21).

Giegerich et al. studied a method for the prediction of
structural switches in RNA and developed a software called
paRNAss for RNA switch prediction (22). Their method is
based on the secondary structural distance and the energy
barrier distance. We also made analyses of the human
spliceosomal snRNAs using paRNAss, but it was quite
dif®cult to see clear differences among the snRNAs.
Moreover, their results are quite hard to interpret, while the
results of our method are easy to understand because of the
statistical comparison with shuf¯ed RNAs.

Rivas et al. discussed computational approaches for
detecting novel non-coding RNA genes using RNA secondary
structure prediction algorithms and concluded that the stability
of most non-coding RNA secondary structures is not suf®-
ciently different from the predicted stability of a random
sequence (23). There are also several studies which claim that
folding free energies are not sensitive enough to distinguish
known RNA structures from randomized sequences (24). Our
conformational energy landscape based approach will be
useful in further applications of predicting the uniqueness of
RNA conformational patterns.
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