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ABSTRACT

Microarray or DNA chip technology is revolution-
izing biology by empowering researchers in the
collection of broad-scope gene information. It is
well known that microarray-based measurements
exhibit a substantial amount of variability due to a
number of possible sources, ranging from hybridiz-
ation conditions to image capture and analysis. In
order to make reliable inferences and carry out
quantitative analysis with microarray data, it is
generally advisable to have more than one measure-
ment of each gene. The availability of both between-
array and within-array replicate measurements is
essential for this purpose. Although statistical con-
siderations call for increasing the number of
replicates of both types, the latter is particularly
challenging in practice due to a number of limiting
factors, especially for in-house spotting facilities.
We propose a novel approach to design so-called
composite microarrays, which allow more replicates
to be obtained without increasing the number of
printed spots.

INTRODUCTION

Oligonucleotide arrays (1,2), both synthesized and spotted,
enjoy several advantages over cDNA-based arrays (3,4), such
as simpler methodology to obtain DNA and better quality
control, options to select high-speci®city sequences to avoid
cross-hybridization, and the potential to detect alternative
spliced variants of genes (5). It is known that microarray gene
expression measurements exhibit both between-slide and
within-slide variability (6) and that apart from making efforts
to improve the technology, having replicate measurements is
essential for improving the reliability of subsequent quanti-
tative analysis. Dealing with between-slide variability invol-
ves repeating entire microarray experiments. There exist some
limitations, however, such as availability of RNA as well as
cost factors. To address within-slide variability, the typical
approach entails printing replicate spots on the same slide.
However, spotting robots typically have a limitation on the
number of spots that can be reliably printed. Thus, increasing

the number of replicates can be done at the expense of
decreasing the number of genes surveyed. In addition, even if
the total number of spots was not a limitation, having more
spots requires more labor during the image analysis stage, as
most microarray image analysis tools are not totally
unsupervised or automatic, which translates directly into
higher cost or lower throughput. Finally, fewer spots require
less physical space on the solid support (e.g. glass slide),
which in turn translates into smaller amounts of RNA required
for hybridization.

The primary reason for the above tradeoffs is rooted in the
fact that current spotted microarray technology employs one
printed spot per measurement. Although the `one spot±one
gene' methodology is straightforward to implement and
appealing from the standpoint of visual inspection of the
produced images, where speci®c genes of interest can quickly
be qualitatively examined without further analysis, it is not
necessarily the most ef®cient.

If we think of the spotted DNA that corresponds to some
particular gene as a signal and of the spot itself as a sensor or
receiver, then the standard microarray approach entails using
one sensor (spot) to detect only one signal (gene). This
scenario is illustrated in Figure 1a. A more general approach
would be to allow each sensor to detect more than one signal.
That way, each signal is received and recorded at several
different sensors simultaneously. For example, Figure 1b
depicts the situation where each spot is used to detect two
different genes. Such a set-up is called a sensor array and has
been extensively used in radar and sonar signal processing,
where antenna arrays are used (7), in electroencephalography
and magnetoencephalography, where a number of electrodes
are simultaneously recording brain activity (8), in remote
sensing (9), and in other applications. In molecular biology, a
similar approach has been used for high-throughput geno-
typing (10). For example, suppose several people are speaking
simultaneously in the same room while several microphones,
positioned in different locations, are simultaneously recording
the conversations. Thus, each microphone receives a typically
linear mixture of several different signals. The task is to
recover the original signals (speakers) from the recorded
mixtures. This problem is called the blind source separation
problem and has received a considerable amount of attention
in the signal processing community (11,12).

The approach that we propose here is quite similar in spirit
to the above problem and consists of spotting a mixture of two
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or more oligos into the same spot. The challenge then is to
recover the individual gene intensities by observing the
intensities of the mixtures. This is, in fact, conceptually
simpler than the blind source separation problem because we
know exactly which genes are present in which spots and
because intensities are simply scalars and not time-varying
signals. In addition, the contributions from the mixed oligos
are expected to be mutually independent, as they are designed
to be non-homologous to each other, which is a fundamental
assumption of all oligonucleotide microarrays. The obvious
bene®t of this approach is that each gene is given an
opportunity to make several contributions in different spots,
each time with a different partner, and therefore, is also a type
of replication. The question is whether the original gene
expressions can be reliably recovered from such mixtures.

MATERIALS AND METHODS

Oligonucleotide design

For the proof-of-principle experiments, we designed 30
oligonucleotides (oligos) of 50 bases in length representing
30 genes that are expressed at different levels in the colon
carcinoma cell line RKO (ATCC, CRL-2577). The 50-base
oligonucleotide for each gene was from within the 500 bp of
the 3¢ end of each of the cDNA and had minimal homology
with any other genes in the BLAST search. The accession
numbers for the 30 genes are: X00351, X01677, K00558,
L20941, NM_002283, NM_007260, NM_004798, NM_003192,
NM_003747, NM_014328, NM_018728, U90942, NM_005619,
NM_002278, M11147, NM_002274, M86400, NM_001016,
L06505, U14971, V00530, X98507, NM_006709, X16302,
AF019770, L25610, L26165, NM_000595, NM_000594,
T95289.

Oligo mixing

Oligos were combined on a RSP100 liquid handling robot
(Tecan Systems, San Jose, CA). For single spots, 0.825 mg of
each oligo was transferred into ®ve wells of a 384-well plate.
For mixed oligos, 0.825 mg of each of the partner oligos was
transferred to the same well. This pair was repeated for ®ve
positions. The 384-well plates were dried and the oligos in

each well were resuspended in 1 ml of 50% DMSO array
buffer (50 mM for each oligo).

Spotting

Oligos were spotted onto poly-L-lysine glass slides by a G3
solid pin spotter (Genomic Solutions, Ann Arbor, MI, USA),
baked at 65°C for 90 min, and crosslinked with 65 mJ of
ultraviolet radiation.

Probe labeling, hybridization and quanti®cation

The microarray experiments were performed as described
previously (13). Brie¯y, triplicate reverse transcription reac-
tions using 100 mg of total RNA from RKO cells incorporated
Cy3 d-CTP into cDNA. After G50 column puri®cation,
replicates were combined for uniformity and distributed to
three identical microarray slides. Each slide was hybridized
overnight at 60°C in a humid incubator, then washed at 37°C
with increasing stringency until 0.13 SSC was used. Slides
were scanned on a LSIV laser scanner (Genomic Solutions,
Ann Arbor, MI, USA) and quanti®ed using ArrayVision
software (Imaging Research, Inc, St Catherine's, Ontario,
Canada).

RESULTS

Our experiment consisted of designing a spotted microarray
containing 30 genes represented in 50 bp oligos that are
expressed at different levels in RKO colon cancer cells based
on our prior experiments. Those genes were spotted individu-
ally ®ve times each, as well as mixtures of all possible pairs of
genes, for a total of (30 3 29) / 2 = 435 pairs. Thus, each of the
30 genes appeared 29 times with different partner genes.
Finally, each mixture was replicated ®ve times to facilitate
statistical analysis. Total RNA was isolated from RKO colon
cancer cells and used for microarray experiments.

As a ®rst step, we proceeded to discover how the intensities
of signals of the mixtures are related to signal intensities of the
individual genes. Prior to any experimentation, it was
expected that the intensity of the mixture should be at least
an increasing function of the individual intensities. In other
words, the higher the expression of the two genes, the higher is
the signal from their mixture. It was further anticipated that the
mixture would be a linear combination of the individual gene
intensities. That is, if xi is the individual intensity of gene i, xj

is the intensity of gene j ¹ i, and yk(i,j) is the intensity of the
mixture of genes i and j, then yk(i,j) = a(xi + xj) + n, i, j, = 1, ...,
30, for some scalar a and additive error component n. Here,
k(i, j) is simply an index that counts from 1 to 435, so k(1, 2) =
1, k(1,3) = 2, ..., k(29,30) = 435. Note that since genes are
simply mixed in equal proportions, there is no notion of `®rst'
or `second' gene and thus, we would not expect different
weights ai and aj for genes xi and xj. Also, for the least-squares
approach that we use below, no statistical description of the
error component n is required. Rewriting the above relation-
ship in vector-matrix notation, we have:

y = aAx + n

where y is a 435 3 1 vector of mixtures, x is a 30 3 1 vector of
individual gene intensities, A is a binary matrix of size 435 3
30 in which row k(i, j) contains ones in the ith and jth positions

Figure 1. An illustration of the difference between the standard and pro-
posed approaches to microarray design. The drawing in (a) shows that each
gene represented in an oligonucleotide (oligo) is placed into its own
individual spot on the glass slide. Drawing (b) shows an example where
each spot contains a mixture of two different oligos. Thus, it is expected
that the measured signal intensity of such a spot would be a combination of
the intensities of the constituent genes measured individually.
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and zeros everywhere else, and n is the 435 3 1 vector of noise
components. This is an overdetermined system, since the
length of x is less than the length of y.

To explore the extent to which the above relationships hold,
we ®rst plotted the mixture signal intensities versus the
intensities of the two genes measured individually, as shown
in Figure 2. As we had ®ve replicates of each single-gene
measurement, the shown values are the means of these
replicates. To obtain a qualitative estimate for the mixing
model, we ®tted a cubic smoothing spline (14) to the data, as
shown in Figure 2. It can be readily seen that the mixture
intensity is indeed an increasing function of the single-gene
intensities. In order to assess this assertion, we decided to
compare: the mean of all the mixtures for which both genes are
in the low range (100±400), the mean of all mixtures for which
one gene is in the low range (100±400) and the other gene is in
the high range (500±800), and ®nally, the mean of all mixtures
for which both genes are in the high range (500±800). The
three means were approximately equal to 109, 402 and 652,

respectively. In order to test whether the ®rst two means as
well as the second two means are signi®cantly different, we
performed both a t-test to test equality of means as well as a
Wilcoxon rank sum test (also called Mann±Whitney test),
which is a distribution free method used for assessing whether
two populations have the same location. Both tests used
a = 0.01 signi®cance level. The t-test resulted in P-values of 0
and 0.0038 for testing the equality of the ®rst two and second
two means, respectively. The Wilcoxon rank sum test resulted
in P = 0 and P = 3 3 10±12, respectively. Thus, we can
conclude that the means of the mixtures in the low±low,
low±high, and high±high ranges are all signi®cantly different.

If we use the linear model discussed above, then the original
gene intensities can be reconstructed from the observed
mixtures by a least-squares solution. That is:

xÃ = (1 / a) (ATA)±1ATy

gives the least-squares estimate of x in terms of y, where
T denotes matrix transpose. Since we expect all gene

Figure 2. The relationship between the individual gene intensities and the intensities of their mixtures. The axes labeled `Gene 1' and `Gene 2' contain the
means of the ®ve replicates of each of the 30 genes, measured individually. The vertical axis shows the intensity of the spots containing the mixtures of every
pair of genes. Each of the blue-colored `stems' corresponds to a particular mixture of two genes. Thus, its coordinates on the `Gene 1' and `Gene 2' axes
correspond to the means of those two individual genes whereas its height corresponds to the intensity of the mixture. A cubic smoothing spline has been ®tted
to the data, for visual purposes. The color of the ®tted surface corresponds to its height. The plot shows that the mixture signal intensity is an increasing
function of the single-gene signal intensities.
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expressions to be non-negative, another possible approach is
to use a least-squares algorithm with non-negativity con-
straints (15). However, in practice, we have found that the two
approaches produce identical estimates, as the standard least-
squares approach always results in positive solutions. Finally,
we should point out that the least-squares solution is unique
because the columns of A can be shown to be linearly
independent.

Since the structure of matrix A is known in advance, the
only parameter to be estimated is a. This is performed prior to
forming the estimate xÃ , again by a least-squares ®t, where a is
now treated as the variable to be estimated. In practice, the
estimated value of a would be used when only mixture gene
measurements are available. Several observations about the
various models we tried to ®t are pertinent. First, when we
tried a linear model of the form yk(i,j) = a1xi + a2xj + n, it turned
out that a1 and a2 were nearly identical, as we expected. This is
reassuring, since the oligos were spotted in equal concentra-
tions. Second, when we tried some nonlinear models, such as
yk(i,j) = a(xi

p1 + xj
p2) + n, we found both p1 and p2 also to be

nearly identical and very close to 1, indicating that the model
is very close to linear.

Having estimated the parameter a, we then proceeded to
recover the single-gene expressions from the mixtures using
the least-squares approach. The results are shown in Figure 3.
It can be seen that the single-gene estimates recovered from
the mixtures follow the means of the ®ve replicates fairly well,
although larger errors are evident for higher-expressed genes.
This is not totally surprising as higher expressed genes have a
higher variance, with a coef®cient of variation in our data set
being ~0.18. In order for us to get an estimate of the accuracy
of xÃ , we determined the bootstrap con®dence intervals for the
estimate of the mean of the ®ve replicates for each gene (16).
The con®dence intervals based on the percentiles of the

bootstrap distribution and those based on the standard
Student's t distribution (4 degrees of freedom) were almost
identical. This is because the bootstrap histograms were
essentially normal (data not shown). Figure 3 also shows the
con®dence intervals for the means of the ®ve single-gene
replicates, with a = 0.01. Again, not surprisingly, the
con®dence intervals for the highly expressed genes are larger
as their bootstrap histograms have a higher standard deviation.

Since we spotted mixtures of all possible pairs of genes,
each gene appeared a total of 29 times. Thus, we expected that
the standard errors, and consequently the con®dence intervals,
for the reconstructed values of the genes should be smaller
than those for the single-gene replicates. This was con®rmed,
as shown in Figure 3 (right). Recall that each mixture was
replicated ®ve times to facilitate this type of analysis. Thus,
we had ®ve reconstructed values for each gene. Using the
same bootstrap approach as above, the con®dence intervals for
the reconstructed values were formed. These are considerably
narrower than the con®dence intervals of the means of the
single-gene replicates. Speci®cally, the sum of the differences
between the upper and lower con®dence interval bounds is
3740 for the means of the single-gene replicates, while it is
1984 for the reconstructed values, representing an almost
2-fold reduction. Finally, it should be noted that the most
evident difference in the con®dence intervals occurs for higher
expressed genes, which are always more variable. Thus, the
bene®t of 29 replications in the mixtures becomes appreciably
more evident in higher expressed genes.

DISCUSSION

Our results suggest that composite microarray design and data
analysis are highly promising. This approach has the potential
to increase the accuracy of microarray measurements without

Figure 3. (Left) A graph showing the means of the ®ve single-gene replicates (red) and the values reconstructed from the mixtures of the genes (black). Also
shown are the bootstrap-based con®dence intervals for the means of the ®ve single-gene replicates, with a = 0.01 (blue). (Right) A comparison of the
con®dence intervals for the means of the ®ve single-gene replicates (blue, same as in the left panel) and the con®dence intervals constructed for the values
reconstructed from the mixtures (red), with a = 0.01.
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requiring more spots to be printed. We recommend that,
because of the differences between microarray platforms and
experimental protocols, the investigator wishing to implement
this approach repeat the above procedures, namely, design a
test array and infer the model parameters.

There are also ways in which the approach could be
improved and generalized. First, although the simple linear
model performed quite well, it is possible that other more
¯exible models or transformations could produce a better ®t.
Also, while we have demonstrated the approach with mixtures
of only two genes per spot, the possibility of mixing more
genes in the same spot should be investigated so that even
more replicates could be achieved without increasing the
number of spots.
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