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ABSTRACT

Partially randomized (doped) pools are important
for optimizing activities initially isolated by selec-
tion-ampli®cation or SELEX, and for locating
nucleotides critical for function. Here we present a
method for calculating the number of unique
sequences in a pool, and the expected copy number
of each unique sequence with a speci®ed number of
changes from the original sequence. Surprisingly,
small differences in doping can have large conse-
quences for the number of copies of sequences
with certain numbers of changes from the original
sequence. We demonstrate the effects of pool size,
percentage doping, length of the random region and
taking aliquots from the original pool on the explor-
ation of sequence space in a doped reselection
experiment. A web form is provided for customized
calculations.

INTRODUCTION

SELEX (1±3), selection of novel activities from randomized
sequence pools of 1012±1015 unique nucleic acid molecules
(~2±2000 pmol), is remarkably successful at ®nding new
nucleic acid ligands and catalysts. However, even the 1015

molecules in a large experiment cover only a tiny fraction of
the possible sequences, e.g. a random region of just 20 nt has
420 or 1.1 3 1012 possible sequences, and a random region of
100 has 4100 or 1.6 3 1060 possible sequences. Consequently,
although the initial sequences recovered from SELEX are
highly optimized, they frequently are not the best possible
solutions.

One fruitful method for increasing the activity of selected
sequences is doping, in which an original, successful sequence
is partially randomized at some or all positions and reselected
(4). Whereas the initial selection samples all of sequence
space, albeit sparsely, the doped reselection can provide a
dense exploration of the region surrounding the original active
sequence. If the ®tness landscape is relatively smooth (in other
words, if acceptable ligands or catalysts tend to have similar
sequences), doping and reselection can ®nd molecules with
much higher activity than the original. Additionally, the
positions that remain constant after reselection are probably

required for activity (as long as sequences that varied in those
positions really were generated and selected against).

Here we review the statistical methods for estimating the
fraction of the pool sequences that have a speci®ed number of
changes from the original sequence (5), and the number of
possible sequences at each distance (6). We extend these
methods to calculate explicitly the fraction and number of
sequences found and missed at each number of changes and, in
particular, the range over which every possible variant
sequence is found (given a ®xed pool size, number of
randomized nucleotides and percentage doping).

METHODS

Calculating the probability of ®nding a sequence in a pool of
sequences requires two pieces of information: the probability
of ®nding the sequence in a single attempt, and the number of
attempts to ®nd it. The following calculations assume that the
pattern of change is truly random: a change at one position
does not affect the probability that its neighbors will also
change, and there is an equal probability of changing to each
of the three alternative nucleotides. Though not always
precisely true, this is the obvious ®rst approximation. Since
the coupling frequencies of the different phosphoramidites
used for synthesizing the pools are not identical, ratios can be
adjusted to ensure equality [e.g. 0.26 dA:0.25 dC:0.29
dG:0.20 dT in Unrau and Bartel (7)].

Within a pool synthesized with a speci®ed random length
and percentage doping, the only factor that systematically
affects the abundance of a particular sequence is what we will
term its mutational distance, the number of positions at which
it differs from the original sequence. The probability of ®nding
a particular sequence depends on its mutational distance for
two reasons. First, the probability of making different numbers
of changes in a molecule is not constant, and depends on the
doping. A lightly doped pool will have more molecules that
are close to the original sequence, while a heavily doped pool
will have more molecules that are dissimilar from it. Secondly,
the number of possible sequences at each mutational distance
increases rapidly as the mutational distance itself increases.

These approximations allow us to idealize the situation as
the binomial distribution, ®rst described by Jakob Bernoulli in
1713 and today familiar from introductory statistics textbooks
[see, for example, Pfeiffer (8)]. For a sequence of length n with
a speci®ed number of changes k, there are n positions that
could be chosen to make the ®rst change. This leaves n ± 1
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positions where the second change could occur, n ± 2 positions
where the third change could occur, and so on until the last
change, which could occur at any of n ± k positions. Since
each change is assumed to be independent, there are thus
n 3 (n ± 1) 3 (n ± 2)... 3 (n ± k) numbers of ways to pick a list
of positions that will be mutated. This expression can be
simpli®ed as follows.

There are n! ways to arrange the n positions in order from
the position that would be chosen ®rst to the position that
would be chosen last, where n! is the factorial function
(1 3 2 3 3 3 ... 3 n). However, the kth position is the last
position that changes: all positions after k will stay the same.
There are thus k! ways to arrange the k positions that will
change, and (n ± k)! ways to arrange the remaining n ± k
positions that will remain constant. These rearrangements
within each class (change or constant) have no effect on which
positions are in each class. Dividing the total number of
arrangements by the number of arrangements that give the
same divisions into classes, we get the following equation for
the number of unique combinations C, which is the binomial
coef®cient:

C = n!/[k!(n ± k)!] 1

Each of the k positions that changes could become any of
the three alternative nucleotides. As shown in Cadwell and
Joyce (6), the total number of possible sequences S at a
speci®ed mutational distance k is therefore given by:

S = 3k 3 C 2

The appropriate model for ®nding the fraction of the pool
that lies at each mutational distance is the binomial distribu-
tion (5,6), which speci®es how often a sequence of length n is
expected to have exactly k changes. The expected number of
changes depends on the amount of doping d, which is the
probability of changing each position. For example, d of 0.15,
or 15%, implies that at each position there is an 85% chance of
retaining the original sequence and a 5% chance of changing
to each of the three other nucleotides. For a particular
sequence, the probability of changing at a position is d, and
these changes have occurred k times, so the contribution from
the changed positions to the overall probability of getting the
sequence is dk. Conversely, the probability of remaining
constant at a position is (1 ± d), and (n ± k) positions have
remained constant, so the contribution from these positions is
(1 ± d)(n ± k).

However, many sequences are the same mutational distance
from the original, both because there are three possible ways
to change at each position and because different sequences do
not necessarily change at the same positions. Weighting the
combinations of sequence changes C given in equation 1 by
the relative probabilities of each number of changes from the
paragraph above, the formula for the fraction of the pool that
lies at each mutational distance k is the binomial equation:

Pr (k changes) = C 3 dk (1 ± d)(n ± k) 3

To obtain the number of molecules at each mutational
distance, multiply the result from equation 3 by N, the total
number of molecules in the pool.

Combining the number of possible sequences at each
distance with the number of molecules actually found at each
distance, it is possible to calculate the probability of ®nding a
particular sequence (and hence the number of unique
sequences found in the pool). For example, in a pool of
length 50 with 25% doping and 1013 molecules, there are
2.59 3 1011 molecules that are seven changes away from the
original sequence. However, since there are only 37 3 50!/
(7! 3 43!) = 2.18 3 1011 possible sequences that are seven
changes away, there must be multiple copies of at least some
of the sequences. Although on average there are about 1.18
copies of each of the possible seven-change variants, not every
sequence will actually be present. (We will revisit this speci®c
example in more detail later in the paper.) In order to ®nd the
number of unique sequences that are actually present, and
hence the true copy number of those sequences (rather than the
copy number averaged across all possible sequences), we need
to ®nd out how many sequences were missed by chance.

If there are S different sequences at a given mutational
distance (as given by equation 2), the probability of ®nding a
particular sequence when examining a randomly chosen
molecule at this mutational distance is S±1. Conversely, the
probability that the sequence was not found is the complement
of this probability, 1 ± S±1. Since the changes are random and
independent, the probability that the sequence was not found
in either of two molecules is (1 ± S±1)2, and the probability that
it was not found in any of M molecules is (1 ± S±1)M. The
probability that the sequence was found at least once is the
complement of this probability, or 1 ± (1 ± S±1)M. Since there
are S different sequences that could be found at a given
mutational distance, the total number of unique sequences U
found at each distance k is:

U = S 3 [1 ± (1 ± S±1)M] 4

where M is the number of molecules at that distance that were
found in the pool, using equation 3. Dividing M by U gives the
average copy number of each of the sequences that was found
at a distance k, and subtracting M from S gives the number of
sequences that were absent.

However, using the formula directly on longer random
regions (>40) causes numerical errors unless specialized
software such as Mathematica or Maple is used. Since most
biologists are unfamiliar with these programs, we have
included as an Appendix approximations that work around
the imprecision in more familiar software such as Excel. Using
these approximations, the revised equation for the binomial
becomes:

ln Pr (k) = ln (n) ± {ln (k!) + ln [(n ± k)!]} +
k ln (d) + (n ± k) ln (1 ± d) 5

The revised equation for the number of unique sequences,
using the approximation (1 ± x)N = eN 3 ln (1 ± x) »e±N 3 x,
becomes:

U = S 3 (1 ± e±M/S) 6

Returning to our example above (a pool of 1013 molecules,
with a region of 50 nt doped at 25%), we can calculate the
number of unique sequences that are exactly seven changes
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away from the original, and the copy number of each sequence
present, as follows.

Step 1. Calculate the number of ways of choosing exactly
seven positions out of 50 to change (this will be used both to
calculate the number of possible sequences and to calculate
the fraction of the pool at this mutational distance). The
formula is 50!/(7! 3 43!). 50! is about 3.04 3 1064, which is
small enough to calculate by typing the formula directly into a
spreadsheet (although it would be necessary to calculate the
log of the factorial, or to use the log of the gamma function, for
longer sequences). The number of possible combinations is
9.99 3 107, and the natural log of this number is 18.4.

Step 2. Calculate the number of different sequences that have
exactly seven changes. The formula for this, as given in
equation 2, is 3k times the result from step 1. As 37 is 2187, the
natural log of which is 7.69, then the total number of possible
sequences is e(7.69 + 18.4), or 2.18 3 1011.

Step 3. Calculate the fraction of the pool molecules that have
exactly seven changes. The formula for this, as given in
equation 3, is the result from step 1 multiplied by the
probability that 7 nt changed. This probability is 0.257 3
0.7543, re¯ecting the fact that seven positions changed (with
probability 0.25 per position), and 43 positions remained the
same (with probability 1 ± 0.25 = 0.75 per position). Raising a
small number to a high power often results in an under¯ow
error (i.e. the number is rounded to zero), so calculate the
natural logs of the probabilities directly: 7 3 ln (0.25) + 43 3
ln (0.75), giving ±22.1. Adding this to the natural log of the
result from step 1, the total is (18.4 ± 22.0) = ±3.65. Since
e±3.65 = 0.0259, ~2.6% of the pool molecules have exactly
seven changes.

Step 4. Calculate the number of molecules in the pool that
have seven changes. This is the product of the result from step
3 and the pool size, giving 0.0259 3 1014 = 2.59 3 1011

molecules.

Step 5. Calculate the average number of copies of each
sequence at this mutational distance. This is the number of
molecules divided by the number of possible sequences (i.e.
the result from step 4 divided by the result from step 2: in this
case (2.59 3 1011)/(2.18 3 1011), or 1.18. This ®gure might
suggest that every sequence will be present at least once, but in
fact some sequences are found many times while others are
missed entirely. In the last step, we will see that the sequences
that were found are actually more abundant.

Step 6. Calculate the probability that a particular sequence
with seven changes is not present in the pool. This is
(1 ± {37 3 [50!/(7! 3 43!)]}±1)2.59 3 1011

. In this case, the
number can be calculated directly by typing in the formula
(giving 0.306), but if the number of changes had been as few
as 14, the rounding error would make direct calculation
impossible. Instead, calculate the natural log: 2.59 3 1011 3 ln
(1 ± S±1), where S is the number of possible sequences from
step 2 (which is 2.18 3 1011). Since S±1 is a very small number,
we can use the approximation ln (1 ± x) » ±x, so the calculation
simpli®es to (2.59 3 1011)/(±2.18 3 1011), which is ±1.18.

Exponentiating, we get a probability of 0.306 that any
particular sequence was not found; in other words, despite
the fact that there was more than one copy of each sequence on
average, nearly a third of the possible sequences at this
distance were not actually present.

Step 7. Calculate the probability that a sequence was found.
This is 1 ± Pr (not found) from step 6, = (1 ± 0.306) = 0.694.

Step 8. Calculate the number of unique sequences that were
found. This is the product of the number of possible sequences
S from step 2 and the fraction that were found from step 7:
0.694 3 2.18 3 1011 = 1.52 3 1011.

Step 9. Calculate the copy number of the sequences that were
found. This is the number of molecules at that mutational
distance from step 4 divided by the number of unique
sequences from step 8: 2.59 3 1011/1.52 3 1011 = 1.71.
Compare with the estimate of 1.18 copies per sequence
calculated at step 5: the difference is ~45%.

Thus, for any combination of pool size, random length and
doping, we can calculate the number of unique sequences at
each mutational distance, and also the fraction of possible
sequences that are present or absent at each distance. An Excel
spreadsheet and a Perl program implementing the method are
available at http://bayes.colorado.edu/doped_pools/.

All the calculations presented here are in terms of numbers
of sequences, but what is typically measured is the A260 of the
ssDNA pool produced in the synthesis. Figure 1 shows this
conversion for molecules of total length (not just the length of
the randomized region) 50, 100, 150 and 200 nt. These ®gures
assume average molar extinction coef®cients of 15 400 for dA,
7400 for dC, 11 500 for dG, and 8700 for dT in the context of a
DNA strand, as reported on the Sigma-Genosys web page:
http: //www.sigmaaldrich.com.au/tec_qua.htm. Our web page
calculates more accurate extinction coef®cients based on the
dinucleotide extinction coef®cients reported on the same site,
extending the technique to take into account the differences in
dinucleotide frequencies with doping at speci®ed positions in
the sequence. Variation in base composition can have almost a
2-fold effect on the apparent number of sequences: the gray
lines ¯anking the 50 nt line are for 75% pyrimidines (high) and
for 75% purines (low). The ratio of the number of biased
sequences to the number of unbiased sequences at a given A260

is constant, so the potential error due to composition is not
shown for the other lengths.

Pool DNA is seldom used directly: instead, the pool is
ampli®ed by PCR and/or each template DNA is transcribed
into many copies of RNA. Although these techniques increase
the number of copies of those sequences that survive the
procedure, rare sequences can be lost due to sampling. Even
having multiple copies of a sequence does not guarantee that it
will be present in the ®nal pool. Assuming that all sequences
amplify and transcribe equally well (an assumption that is
almost certainly false most of the time), let the aliquot that is
carried forward in the experiment be some fraction f of the
total pool. If every sequence were unique, the aliquot would
contain f of the total sequences. However, a sequence with c
copies has more than one chance to ®nd itself in the aliquot. If
the number of copies of the sequence is much smaller than the
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number of molecules in the aliquot (a factor of 1000 or more),
then the probability that all of the copies were left behind is
(1 ± f)c. Consequently, the fraction of the sequences that are
present in the aliquot is 1 ± (1 ± f)c. This is useful in
conjunction with the calculations for the copy number and the
number of unique sequences at each mutational distance, since
the fraction of sequences at each distance that are carried over
(or lost) can be calculated directly (Fig. 2). Therefore,
experimental design that divides the pool should accommo-
date the disproportionate effect of this division on unique
sequences and, therefore, on the total diversity of the pool.

Using this method, it can be seen that an aliquot of 1% of the
total pool (e.g. 0.5 ml of a 50 ml pool) will contain ~1% of the
single-copy molecules, but at least 99% of all the molecules
that are present in at least 500 copies. However, to get 99% of
the molecules that are only present in ®ve copies would take an
aliquot of 60%, or 30 ml from the same pool (Fig. 2).

RESULTS

Here we take as a starting point a typical doped selection
(random region 30 nt, 25% doping, 1014 sequences or
~150 pmol) and investigate the effects of systematically
varying each of these parameters (Fig. 3).

Varying the randomized length from 0 to 100, while
keeping the doping constant at 25% and the number of
sequences at 1014, every possible variant was found until the
randomized region reached ~11 nt (Fig. 3a). Thereafter, the

distance at which all sequences (or at least 1% of sequences)
were still found slowly decreased, until for a sequence with
100 random nt there was no mutational distance (except for the
original sequence with no changes) where all possibilities
were recovered. However, even at 100 nt, at least 1% of the 4.3
million possible sequences with up to three changes from the
original were still found (Fig. 3).

As the number of doped positions increased, the maximum
number of copies of a sequence decreased exponentially,
while the average number of copies decreased exponentially at
®rst and then leveled off (Fig. 3b, dotted and solid lines,
respectively). However, even with a randomized region of
100 nt, there were still more than 30 copies of the original
sequence and more than three copies of each one-change
variant (although, on average, nearly every sequence was
unique). When the number of doped positions was 30, there
were 1.7 3 1010 copies of the original sequence, 2.0 3 109

copies of each of the one-change variants and ®ve copies of
each of the 12-change variants (99% of which were found).
However, when the number of doped positions increased to
50, the number of copies of the original sequence dropped to
5.6 3 107, and only 0.02% of the possible 12-change variants
were found (each a unique sequence).

The number of unique sequences (Fig. 3g) increased very
rapidly between 0 and 18 nt, reaching 106 sequences by 10 nt
and 2.2 3 1010 sequences at 18, but the rate of change
continually decreases as the number of positions increases. At
100 nt, every sequence with more than three changes from the

Figure 1. Relationship between A260 (x-axis) and number of sequences (y-axis) for single-stranded DNA of total length 50, 100, 150 and 200. Black lines
assume equal base composition. Gray lines ¯anking the length 50 line indicate 75% pyrimidines (high) and 75% purines (low).

e30 Nucleic Acids Research, 2003, Vol. 31, No. 6 PAGE 4 OF 9



original was almost certainly unique, and the number of
different sequences was only about 5000 less than the total
pool size of 1014.

Varying the amount of doping from 0 to 100% (note that
75% doping is complete randomization; further doping
arti®cially depletes the pool in sequences that resemble the
original sequence), while keeping the random region at 30 nt
and the pool size at 1014, gave a somewhat more complex
pattern. The region of complete coverage increased to a
maximum of nine changes from 21±40% doping, and then
rapidly declined again; above 63% doping, there was no
number of changes that was completely covered (Fig. 3d, solid
line). The pattern was similar for the region of 1% coverage
(dotted line), although the maximum was somewhat greater
(14 nt, from 36±57% doping). The maximum copy number
started at 7.4 3 1013 at 1% doping and declined rapidly as
doping increased, although even at 57% doping some
sequences were present in thousands of copies (Fig. 3e, dotted
line). In general, the average copy number (solid line)
decreased much faster than did the maximum. The number
of unique sequences started at about 82 million (for 1%
doping). About 1% of the sequences were unique at 15%
doping, 10% at 25% doping, 90% at 48% doping, and 99% at
55% doping. After 75% doping (complete sequence random-
ization), the number of sequences actually declines slightly
(not readily visible on log scale), down to 8.8 3 1013 at 99%
doping (Fig. 3f).

Varying the pool size from one to 1020 molecules while
holding the doping constant at 25% and the random region at

30 nt, we see that the mutational distance covered, the mean
and average copy number and the total number of unique
sequences all increase as the pool size increases (Fig. 3g±i).
However, the maximum copy number increases much faster
than the average copy number (compare dotted and solid lines
in Fig. 3h), and increasing the pool size provides an ever-
decreasing advantage in ®nding new unique sequences (Fig. 3i:
slope starts to decrease above about 107 sequences).

The minimum doping required in order to ®nd a speci®ed
percentage of the sequences within a given mutational
distance of the original sequence is shown in Figure 4. This
is useful for designing experiments that are intended to
explore the space close to the original sequence without
®nding alternative catalysts or ligands that are many point
mutations distant. Figure 4 shows the minimum doping
required to ®nd sequences that are <5, 10, 15, 20, 30, 40 and
50% changed from the original sequence.

In general, considerably less than x% doping is required in
order to ®nd 99% of the sequences up to length x. For example,
only 7% doping is required to ®nd 99% of the sequences that
are up to 50% different from a sequence with a randomized
region of 16 nt (i.e. sequences that have fewer than eight
changes), and only 2% doping is required to ®nd 99% of the
sequences that are up to 20% different from a sequence of
length 30 (i.e. that have fewer than six changes). In all cases,
the minimum amount of doping required begins very low, but
rises increasingly rapidly with sequence length. The graph has
a stepped appearance because there can only be a whole
number of changes in a sequence, so the sequence lengths that

Figure 2. Aliquot required (y-axis) to contain at least one copy of the desired percentage (different lines) of molecules that are present in the original pool in
a speci®ed copy number (x-axis). For example, to obtain 99% of the single-copy molecules in a pool (top line, left-hand side), it is necessary to take an
`aliquot' that is 99% of the pool, but to obtain 99% of the molecules in the pool that are each present in 10 000 copies (top line, right-hand side), it is only
necessary to take an aliquot of ~0.06% of the pool.
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are not divided evenly by a particular percentage behave in
about the same way (e.g. from 60 to 69 nt, being within 10%
of the original sequence means having fewer than seven
changes).

DISCUSSION

The most important factors for the usual purposes of a doped
selection are the coverage of sequences (i.e. the range of
mutational distances where all the possible sequences are
found or the range where at least some sequences are found)
and the copy number (i.e. the average number of copies of
each sequence that is present in the pool).

The region of the mutational space where every single
sequence is expected to be found (top row of Fig. 3, area under
the solid line), and the region where at least 1% of the possible
sequences are expected to be found (area under the dotted line)
increase as the length of the random region increases, but
rapidly start to level off (Fig. 3a). This is because the number
of possible sequences rapidly increases when each additional
random position is added, in part because there are more ways
to pick out a certain number of positions to change, and in part
because each position that changes can produce three different
sequences.

The variation with the fraction of doping is somewhat more
complex (Fig. 3d). At low levels of doping, every sequence
close to the original sequence is found and, as the doping
increases, it is also possible to ®nd all the sequences at
progressively greater distances. As the doping increases above

~40%, the sequences with few changes start to become rare
and eventually vanish. The rare sequences could be restored
by using very large sequence pools, but this might sometimes
require kilograms of RNA.

As the doping gets to high levels, there are so many possible
sequences that there is no region in which most of them are
found. At the limit, consider 75% doping: at this level, the
sequence has been completely randomized. A pool at that
level is the same as a completely random pool, which samples
all of sequence space but covers each region only sparsely.
Thus, all plausible experiments employ <75% doping (unless
the purpose is speci®cally to ®nd sequences that differ from
the original sequence more than would be expected by chance,
perhaps to eliminate a known type of catalyst or ligand from
an otherwise random pool).

One interesting observation is that, for reasonably long
sequences, relatively small differences in doping make large
differences in both the average and maximum copy number.
For example, changing the doping from 15 to 20% reduced the
average copy number from 85 to 23, nearly a 4-fold decrease.
Similarly, changing from 25 to 35% reduced the average copy
number 3.8-fold (8.8 to 2.4). Most of this contribution comes
from large changes in the amount of the most abundant
sequence classes (those closest to the original sequence), but
small changes in doping can lead to unexpectedly large
changes in pool complexity. For instance, the change from 15
to 20% doping increased the number of unique sequences from
1.17 3 1012 to 4.29 3 1012, and the change from 25 to 35%
increased the number of unique sequences from 1.13 3 1013 to

Figure 3. Properties of doped sequence pools for different randomized region lengths, doping and number of sequences (®rst, second and third column,
respectively), showing regions of 100% (solid line) and 1% (dotted line) sequence coverage (top row), average (solid line) and maximum (dotted line) copy
number (center row), and total number of unique sequences (bottom row). Apart from the variable parameter in each column, the pool is assumed to be 30 nt
with 25% doping and 1014 sequences. Often, the most abundant sequence in the pool [`max' in graphs (b), (e) and (h)] is the original sequence.
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4.23 3 1013. For ®nding rare activities, a 4-fold change in the
number of unique sequences in the pool could make a
signi®cant difference.

The variation with pool size (Fig. 3g) is much more
straightforward. Below some threshold pool size, there are so
few sequences that many are missed by chance. As sequences
are added, the coverage increases in approximately log-
linear fashion. Since 106 sequences allow all the one-change
variants to be found, and 1020 sequences allow allow all the
15-change variants to be found, the increase in the
accessible mutational distance is about 1 additional nt with
each order of magnitude increase in pool size. This is
considerably less than the 1/log (3) or 2.1 additional nt that
would be expected just from considering the increase in the
number of randomized sequence positions: the additional
dif®culty in ®nding all possible sequences comes from the fact
that there are also many ways to choose the particular
positions that vary.

The difference between the mean copy number and the
maximum copy number (solid and dotted lines, respectively, in
Fig. 3b, e and h) is usually very large (orders of magnitude). In
general, it is impossible to ensure both full coverage of a range
of mutational distances while at the same time equalizing copy
number: the reason is that in order that all of a large number of
sequences can be found, others must be sampled many times.
The discrepancy between mean and maximum copy number
increases dramatically with pool size, and is more than 10 orders

of magnitude for our `typical' case (30 random positions, 25%
doping, 1014 sequences). Only at very high levels of doping does
the variance in copy number decrease, and then only because
every sequence found is a unique sequence.

As expected, the number of unique sequences increases
with the number of doped positions, the amount of doping and
the pool size (Fig. 3c, f and i). If the mutational distance is not
critical, relatively small changes in the number of doped
positions and the amount of doping can achieve an effect that
would otherwise require a large increase in pool size.
However, the effect of doping levels off rapidly once every
sequence is likely to be unique.

Because the number of possible sequences rises extremely
rapidly as the mutational distance from the original sequence
increases, the minimum percentage doping required to ®nd
most of the sequences up to a speci®ed distance (Fig. 4) begins
low and then increases roughly exponentially as the number of
randomized nucleotides increases. Very little doping (<0.3%)
is required to ®nd all ®ve-change variants of a 100 nt
sequence, and <2% doping is required to ®nd all the variants
that are <10% distant from a 59 nt sequence. This suggests that
if it is important to minimize the amount of sequence change,
it is possible to explore quite a large region around the original
sequence almost completely while keeping the average
mutational distance very low. However, these pools will be
dominated by the original sequence, which may be a problem
for some applications.

Figure 4. Minimum percentage doping (y-axis) required to ®nd, in a pool of 1014 molecules, 99% of the sequences with more than a speci®ed similarity
(lines, annotated, similarities ranging from 5 to 50%) to an original sequence with a particular number of partially randomized nucleotides (x-axis). Lines
terminate at the length where the number of possible sequences is so large that it is impossible to ®nd 99% of them in this size pool.
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The 5 and 10% lines in Figure 4 suggest that, unexpectedly,
even the natural level of mutation in PCR may be suf®cient to
generate considerable sequence diversity. Returning to our
example of a pool of 1014 molecules, a mutagenic PCR with an
error rate over 20±25 rounds of 7 3 10±3 per position (6)
would generate all the four-error mutants for random regions
up to 100 nt, and would generate at least 1% of the six-error
mutants for randomized regions of up to 73 nt and 1% of the
®ve-error mutants for randomized regions from 74 to 100 nt.
In contrast, normal non-mutagenic PCR with an error rate of
10±4 would only produce all the two-error mutants, and <1% of
the possible four-error mutants, over this range. The number of
mutants close to the original sequence can be quite large, e.g.
there are over 128 million four-error mutants of an 80 nt
sequence, and more than 4 3 1011 six-error mutants. Thus
mutagenic PCR alone can be an effective strategy for covering
the region close to the original sequence, although it should be
noted that the copy number of variant sequences will be low
(generally, each sequence will be unique). Although it might
take 5±15 rounds of selection to amplify any variant sequences
with higher activity from such a pool, because the overall
number of variant sequences is low, any noticeable enrich-
ment of a variant over the original sequence under these
conditions would be extremely likely to indicate a functional
advantage.

Conclusions

These methods should be useful both for investigating the
properties of doped pools in general and for investigators
seeking to characterize the complexity of and distribution of
sequences within their own pools for selections. Knowing not
just the fraction of the pool that is found at each mutational
distance, but also the actual number of unique sequences and
their copy number, should assist in interpreting the results of
selections. In particular, the relationship between the copy
number, the mutational distance and the pool size is somewhat
complex, which previously has made it dif®cult to assess
whether a particular pattern of changes in the recovered
sequences differs from the chance expectation.

Surprisingly, small changes in the level of doping have
signi®cant consequences for the copy number of individual
sequences, the difference in frequency between the most
abundant sequences in the pool and the average sequences,
and the overall pool complexity. Since the extent of doping is
sometimes chosen on an ad hoc basis, we hope that these
methods will prove useful in adapting the properties of doped
pools to particular goals.

To de®ne a local region of sequence space, i.e. to ®nd
variants that are similar to the original, we recommend a low
level of doping of about half the percentage sequence
similarity that it would be desirable to cover at the 99%
level (in other words, to ®nd most of the sequences out to 10%
similarity, dope at 5%) (Fig. 4). It should be possible to cover
all the sequences out to four changes, and an appreciable
number (1%) of the sequences out to ®ve or six changes,
through mutagenic PCR alone, although amplifying the
variant sequences might take many rounds of selection.

To broaden a search, i.e. where the goal is to maximize the
distance at which almost all sequences are still covered, we
recommend a high level of doping between 30 and 50% (for
100% coverage), or between 40 and 60% (if 1% coverage is

acceptable). Although this high level of doping will also
produce sequences that are very distant from the original, it
will also cover every sequence up to about 10 changes (for
100% coverage) or 15 changes (for 1% coverage). This
application would also bene®t from increasing the pool size
(Fig. 3).

To equalize a search, where the goal is to ensure that all
sequences are present in the same number of copies, we
recommend a small pool and a high level of doping (40% to
drive the mean copy number below 1; 60% for the maximum
copy number). Unfortunately, the only way to ensure that no
sequence is over-represented is to produce sequences that are
very dissimilar to the original and that are only slightly
different from completely random sequences. A small pool
can help here by reducing the distance at which all molecules
would be expected to occur only once (Fig. 3).

One area that invites further investigation is the effect of
PCR and transcription on the abundance of different
sequences. Although the techniques presented here give
quantitative estimates if every sequence behaves the same
way, anecdotal evidence suggests that even clones from the
same sequence family but with slight sequence variations give
very different transcription or PCR yields. De®ning these
effects may allow even more precise tracking of the number of
unique molecules through each step of a selection.
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APPENDIX

Avoiding numerical imprecision

Calculating the fraction of possible molecules that are absent
from a pool necessitates raising a number that is very close to
1 to a very high power. A 32-bit computer stores ¯oating-point
numbers internally in a format resembling scienti®c notation,
with a limited number of bits representing each part of the
number. When two numbers that are very different in size are
added or subtracted, the smaller number is rounded to zero.
Consequently, it is not possible to represent a number closer to
1 than about 1 ± 10±17, and accuracy is generally poor above
about 1 ± 10±14. This makes it dif®cult to calculate the results
when k > 15, and impossible when k > 30.

These dif®culties can be circumvented by using the
approximation that ex » 1 + x when x is small (Fig. 5). The
reason for this is that, at x = 0, the value of ex is 1, and the slope
is also 1 (by de®nition). Consequently, a small change in x
causes a small but equal change in ln (x). Table 1 gives some
useful applications of this rule.

Similarly, the factorials required for calculating the bino-
mial coef®cient rapidly become too large to calculate. This
can be avoided either by calculating the log of the factorial
directly (by taking the sum of the logs of the numbers from
1 to n), by calculating the log of the gamma function
ln [gamma(x + 1)] = ln (x!), or by using the approximation that
ln (n!) » nln (n) ± n. The log of the gamma function can be
calculated using Excel's GAMMALN worksheet function. In
practice, for the range of randomized pools in SELEX (up to
200 nt), calculating the sums of the logs is both accurate and
reasonably ef®cient.

Consequently, these approximations make it possible to use
standard programs to calculate pool parameters, avoiding the
need to learn how to use specialized numerical software.

Figure 5. Approximations of ex and ln (x) (black lines) by x + 1 and x ± 1
(gray lines), respectively. Insets show the high quality of the approximation
when x is small (for ex) or close to 1 [for ln (x)].

Table 1. Approximations for exponentials and
logs of probabilities close to 1 or 0

Expression Approximation

ex 1 + x
e±x 1 ± x
ln (1 + x) x
ln (1 ± x) ±x
ln (x) x ± 1
1 ± ex ±x
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