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The advent of gene chips has led to a promising technology for cell,
tumor, and cancer classification. We exploit and expand the meth-
odology of recursive partitioning trees for tumor and cell classifi-
cation from microarray gene expression data. To improve classifi-
cation and prediction accuracy, we introduce a deterministic
procedure to form forests of classification trees and compare their
performance with extant alternatives. When two published and
commonly used data sets are used, we find that the deterministic
forests perform similarly to the random forests in terms of the error
rate obtained from the leave-one-out procedure, and all of the
forests are far better than the single trees. In addition, we provide
graphical presentations to facilitate interpretation of complex
forests and compare our findings with the current biological
literature. In addition to numerical improvement, the main advan-
tage of deterministic forests is reproducibility and scientific inter-
pretability of all steps in tree construction.

M icroarray chips represent a promising technology for tu-
mor and cancer-type classification. Classical approaches to

this problem do not discriminate among tumors with similar
histopathologic features, despite the fact that they can vary with
clinical course and in response to treatment. Classification and
diagnosis based on gene expression profiles may provide more
information than standard morphologies and, thereby, identify
pathologically different tumor types. Many investigators have
exploited a variety of analytical methods (1–5) to derive classi-
fication criteria for tumor- and cancer-type by using microarray
data. In this regard, we introduced a methodology (6) based on
classification trees and demonstrated that they were significantly
more accurate for discriminating among distinct colon cancer
tissues than other statistical approaches previously used.

The analyses in refs. 6 and 7 indicated that several equivalent
(from the vantage point of minimizing classification error) trees
were compatible with the same microarray data. This feature led
to identification of several sets of candidate genes as the primary
contributors to colon and breast cancer classification. Multiple
equivalent trees are generic to classification problems where the
number of variables (genes in the context of microarrays, fre-
quency bands in the context of NMR spectroscopy) is substan-
tially larger than the number of samples. However, the phenom-
enon of multiple equivalent trees raises the question of whether
there are strategies for identifying a forest of such trees and
where the forest could provide more precise and biologically
interpretable classification rules than any individual tree. The
purpose of this paper is to describe a new forest construction
strategy and illustrate its use for cancer classification based on
gene expression levels in microarrays. We use two published data
sets for this purpose. Our methodology differs in both philoso-
phy and algorithmic implementation from the production of
random forests (12) in the machine learning literature. The
essential limitation of random forest algorithms for our purposes
is that one loses scientific interpretability in the structure of the
trees as the result of random selections of variables in the original
tree constructions.

Methods
Data Structure and the Classification Problem. Let {(xi, yi)}i�1

n , be a
collection of n observations, where xi is a vector consisting of the

expression levels of m genes for the i-th observation (or sample),
and yi is the label or class (e.g., tumor type) of the ith observation,
i � 1, . . . , n. Linear discriminant analysis, support vector
machines and neural networks are common approaches for
developing classification rules based on this general data struc-
ture. However, they do not have a built-in feature (variable)
selection procedure. This is particularly important for extracting
genes and associated expression levels that will be essential for
classification rules from a large number of candidate genes (e.g.,
several thousand genes). As discussed in detail in refs. 6 and 7,
tree-based methods become more desirable than their alterna-
tives because they simultaneously integrate feature selection and
classification, and produce simple and precise classification
rules. This will become evident in the context of the specific
examples discussed below. Another important feature of the
tree-based methods is that classification rules can be represented
by a simple string of Boolean statements, read directly from a
tree. For example, in Fig. 1, a cell is classified as an acute myeloid
leukemia cell when the expression levels for three genes, CD33,
DF, and MGST1, satisfy ((CD33 � 309) � (DF � 203) �
(CD33 � 309) � (MGST1 � 104)).

Growing a Single Tree. Recursive partitioning (8, 9) is the basis for
tree construction. It is a technique that builds a classification rule
to predict class membership based on the feature information,
and does so by extracting homogeneous strata from the sample.
For example, in Fig. 1, the entire sample (the circle on the top,
also called the root node) of 72 cells is split into two subgroups,
which are called daughter nodes. The choice of the selected
predictor (a gene) and its corresponding cutoff value (an ex-
pression level) are designed to provide maximum discrimination
between a pair of tissue types. The quality of discrimination,
referred to as node impurity, can be measured by the Gini index,
defined as �i�j pipj where pi is the probability of a sample within
the node have tissue (e.g., tumor) label i. The goodness of split
is measured by a weighted sum of the within-node impurities.
Another common measure of impurity is the entropy, �i pi-

log(pi). More formally, to split the root node by expression levels
of gene k, namely, x1k, . . . , xnk, we ask for each value, c, between
the minimum and maximum of these expression levels, whether
subject i should be in the left or right daughter node according
to whether xik � c or xik � c, respectively. We select the cut-off
value ck so that the resulting goodness of split is optimized. We
repeat this process for every gene and select a best candidate,
based on minimum node impurity, among the set of m candidates
as the final choice to split the root node.

Once the root node is split into two daughters, the daughter
nodes, themselves, can be further split by repeating the above
procedure. This partitioning process continues recursively. In
general, one has to be concerned with the issue as to when the
process should be terminated to avoid overfitting. Stopping rules
or pruning procedures can be used to eliminate redundant nodes
(8, 10, 11). This is less of an issue in microarray applications,
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because there tend to be an ample number of trees that have two,
or at most three layers, with high resubstitution classification
precision. Furthermore, trees where all terminal nodes have only
one nonzero category (i.e., perfect classification) are the rule,
rather than the exception. In the present context, we focus on
trees that have at most three layers.

Deterministic Forest. An important consequence of the fact that
we have a small number of samples and a large number of gene
expressions is that there are typically many splits that are
indistinguishable or close by either the Gini- or entropy-based
goodness-of-split criterion. This frequently leaves us with nu-
merous trees all of which perfectly (or nearly) classify the initial
sample. This population of trees is the basis for forming a forest;
but it is, at this stage, too complex to be useful. An alternative
preliminary screening of trees, which we adopt in the present
study, consists of selecting a prespecified number, say 20, of the
top splits of the root node and a prespecified number, say 3, of
the top splits of the two daughter nodes of the root node. This
use of top nodes gives rise to a total of 180 possible (20 by 3 by
3) trees, for example, as displayed in Fig. 2. Of particular interest
among these 180 trees are those with perfect or near perfect
classification precision. When a left or right daughter node of the
root node is pure, further splits are not warranted. Thus, we
usually do not have all of the 180 trees. To be consistent, we
collect a fixed number of 100 available trees to form a deter-
ministic forest. In addition, as revealed by Fig. 2, many splits of
the daughter nodes lead to pure offspring nodes and hence are
mathematically equivalent. For example, there are 424 splits of
the left daughter node that lead to pure nodes. Instead of
arbitrarily choosing three splits, we identify the underlying genes
of the equivalent splits and reexamine the ranks of those genes
when they produced the splits for the root node. For example,
among the 424 splits of left daughter nodes, the splits based on
following three genes, DF, CSTA, and SPTAN1, are ranked at
top three when these three genes are used to split the root node.
Thus, the bottom-left column of three splits are based on DF,
CSTA, and SPTAN1.

Error Estimation. To assess a tree or forest, we leave one sample
out as a test sample and reconstruct a tree or forest using the

Fig. 1. A top tree produced by RTREE program for the leukemia two-level data
set. The circles represent internal nodes that are split further. The boxes are
terminal nodes without a split. Inside each node are the counts of ALL (upper)
and AML (lower) cells. Under each internal node is the gene whose expression
is used to split the node with the splitting value on its right. Under each
terminal node is the class label that dominates the classes of the cells in that
node.

Fig. 2. A schematic deterministic forest for the 2-class leukemia data. I1, . . . , I20 are the top 20 splits of the root node. For example, I1 � (CD33 � 309). Each
of these splits leads to a left (L) and a right (R) daughter node. The daughter nodes have their own splits (Lij and Rij, j � 1,2,3, i � 1, . . . , 20) and offspring. Three
top splits are drawn underneath them. For example, L11 � (DF � 203) and R11 � (MGST1 � 104). Depending on the combinations of the splits of the root node
(I’s) and the daughter nodes (L’s and R’s), we end up with trees with different terminal nodes (rectangulars). Inside the terminal nodes are the counts of ALL
(upper) and AML (lower) cells. For example, the combination of {I1, L11, R11} corresponds to the top tree as depicted in Fig. 1.
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same procedure as the one used to construct the tree or forest
of interest, based on the remaining n � 1 cases. Then we classify
the omitted sample based on the new tree or forest. Repeating
this process n times, i.e., omitting each sample once, we count up
the number of errors made in classifying the omitted sample with
the modified tree or forest. We then tabulate the proportion of
errors made across all n samples, (1�n)�i�1

n �i, where �i is the
number of errors made in classifying the ith omitted sample.

The above leave-one-out cross validation procedure is a
particular form of the jackknife. Because of the small number of
samples in most current microarray experiments, this jackknifing
procedure is preferable to the routine cross validation where a
greater portion (usually ranging from one tenth to one half) of
the full samples is left out as test samples. In the present
application, the learning sample would become much smaller
and the classification criteria would have far greater uncertainty.

In contrast to the above strategy, the random forest construc-
tions from the machine learning literature are based on a
perturb-and-combine strategy (sometimes referred to as arcing,
ref. 12). Two of these methods are closely related to our
approach. One is bagging (boostrapping and aggregating) that
generates a random forest of trees by repeatedly drawing boot-
strap samples from the original sample and by constructing trees
for the bootstrap samples. The other strategy is random selec-
tion. Instead of choosing the best overall split of a node as
described above, a random split among a prespecified number of
top splits is chosen. Repeating this process also results in a
random forest. The final classification is then based on the
majority vote of all trees in the forest. Our data analysis
presented below also confirms that such random forests improve
the predication of class membership. Our key concern with
regard to random forests lies in their lack of exact reproducibil-
ity. This is consequential when identification of a list of key genes
useful for tumor classification is a fundamental objective of an
investigation.

Data. To compare the performance of our forest constructions
with random forests, individual trees, and other commonly used
methods of classification and discrimination, we use two pub-
lished and frequently used data sets.

The first data set (1) is on leukemia and can be downloaded
at http:��www-genome.wi.mit.edu�cancer. It includes 25 mRNA
samples with acute myeloid leukemia (AML), 38 samples with B

cell acute lymphoblastic leukemia, and 9 samples with T cell
acute lymphoblastic leukemia. Expression profiles were assessed
for 7,129 genes for each sample. The question is whether the
microarray data are useful in classifying the three types (or two
types, AML and ALL) of leukemia.

The lymphoma data set by Alizadeh et al. (13) is our second
example. Data are available on the three most prevalent adult
lymphoma malignancies: B cell chronic lymphocytic leukemia
(B-CLL), follicular lymphoma (FL), and diffuse large B cell
lymphoma (DLBCL). There are a total of 84 samples (29 B-CLL,
9 FL, and 46 DLBCL) with expressions from 4,026 genes. We
analyzed the data with 3,198 genes by removing the genes with
at least eight missing values among all 84 samples. This lym-
phoma data set is available at http:��llmpp.nih.gov�lymphoma.

Results
Comparisons. We analyzed the leukemia data set by treating the
two ‘‘ALL’’ classes both together and separately. Thus, we have
three operational data sets. Fig. 3 compares the misclassification
rates among different classification methods. For each data set
and each forest or tree, we used the leave-one-out cross valida-
tion to estimate the error rate. The sizes of both random and
deterministic forests are 100.

As displayed in Fig. 3, both deterministic and random forests
have much reduced error rates (between half and one third) as
opposed to a single tree. For the leukemia two-level data set,
deterministic trees have a slight advantage over the random
forests. For the leukemia three-level data set, the Gini-based
deterministic forest has a similar performance with the random
forest. For the lymphoma data set, the random forest is slightly
better than the deterministic forests. Overall, the performances
of the random and deterministic forests are similar and impres-
sive for the three data sets.

Identifying Key Genes in the Deterministic Forest. Reducing the
misclassification rate is one objective, but our second objective
is to understand the genes that participate in the forest forma-
tion. To this end, we assess the number of different genes
appearing in the deterministic trees using the entropy and Gini
index as impurities, and the frequencies of the genes used. This
scrutiny should reveal the importance of the genes in classifying
tumor tissues in the respective data sets. For the leukemia data
set, when the two ‘‘ALL’’ were merged, 27 different genes

Fig. 3. Error rate of classification trees and forests based on leave-one-out cross validation.
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appeared in the forest of 100 trees. When those two classes are
treated distinctly, 35 different genes appeared in the forest of 100
trees. For the lymphoma data set, 49 different genes appeared
in the forest of 100 trees. Fig. 4 Left presents the frequencies of
the genes that are used relatively frequently among the three
data sets. A high frequency is indicative of the importance of a
gene in the respective classification.

Fig. 4 Right displays the expression levels of the ‘‘most
important’’ genes in the designated data sets. Such frequency
plots also provide a useful basis for variable selection. Once the
important genes are identified, we can use the pairs or triples of
genes to construct trees or forests and to form decision bound-

aries by using linear or quadratic discriminant analysis or support
vector machines. Fig. 4 Right is based on the frequently occurring
genes. For example, Fig. 4 Top Right illustrates how linear
discriminant analysis or support vector machine can also be
applied to classify tumor and cancer type by using the identified
frequently occurring genes.

Discussion
To understand the scientific and clinical relevance of our results
as displayed in Fig. 4, we conducted a MEDLINE search
afterward and discovered that most of the genes that we found
important have also been examined in the related contents. It is

Fig. 4. (Top) The analysis of leukemia two-level data set. (Left) Frequencies of genes used in the deterministic forest are presented. The 1st split, 2nd level split,
and 3rd level split refer to the split of the root node, the split of the daughter nodes of the root node, and the split of the grand-daughter nodes of the root
node, respectively. Genes used with low frequencies (�10%) are not shown. (Right) A 2D representation of a tree based on two ‘‘very important’’ genes. Two
colors show a separation of ALL (green) and AML (red). In fact, we performed a post hoc linear discriminant analysis (LDA) and also used support vector machine
(SVM) to classify leukemia cells by using this frequently occurring pair of genes. (Middle) The analysis of leukemia three-level data set. (Right) A 3D representation
of a tree based on three ‘‘very important’’ genes. Three colors show a separation of B cell acute lymphoblastic leukemia (red), T cell acute lymphoblastic leukemia
(green), and AML (purple). (Bottom) The analysis of lymphoma data set. (Right) A 3D representation of a tree based on three ‘‘very important’’ genes. Three colors
show a separation of B cell chronic lymphocytic leukemia (red), FL (green), and diffuse large B cell lymphoma (purple).
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important to note that those key genes were identified from
among several thousands of genes. Thus, the chance of selecting
a gene with scientific relevance is very small.

In relation to Fig. 4 (Top and Middle), Parisi et al. (14)
explored new therapeutic approaches to AML that focus on
immune-based therapy through monoclonal antibodies that tar-
get and destroy malignant cells via specific cell receptors. One
such agent is gemtuzumab (CMA-676), an agent that targets the
CD33 antigen on malignant myeloid cells. Initial studies have
shown significant anticancer activity. In another study (15), it is
reported that CD33 is expressed by AML cells in �80% of
patients but not by normal hematopoietic stem cells, suggesting
that elimination of CD33(�) cells may be therapeutically ben-
eficial. Furthermore, Privitera et al. identified the TFPT (FB1)
gene as a molecular partner of TCF3 (E2A) in childhood pre-B
cell ALL,§ and Yu and Chang (16) observed that human MB-1
was expressed by B cell lines.

For the genes in the last row of Fig. 4, Delmer et al. (17)
reported overexpression of cyclin D2 (CCND2) in chronic B cell
malignancies. Sonoki et al. (18) found that cyclin D3 (CCND3)
is a target gene of mature B cell malignancies. Another study (19)
concluded that glucocorticoids cause G0�G1 arrest of lymphoid
cells. This is due, at least in part, to a decrease in the abundance
of the G1 progression factor, cyclin D3. The mRNA encoding
cyclin D3 (CcnD3 mRNA) is rapidly down-regulated when
dexamethasone is added to P1798 murine T lymphoma cells.

Nilson et al. (20) found that the AF-4 gene on human
chromosome 4q21, a member of the AF-4, LAF-4 and FMR-2
gene family, was involved in reciprocal translocations to the
ALL-1 gene on chromosome 11q23, which were associated with
acute lymphoblastic leukemias. Hol et al. (21) suggests that the
methylenetetrahydrofolate-dehydrogenase gene can act as a risk
factor for human neural tube defects.

Clustering algorithms are commonly used in gene expression
analyses (22). As a by-product of examining the trees in forests
and genes frequently appearing the forests, we obtain gene

clusters in a broad sense. Normally, a cluster consists of indi-
vidual genes. Here, we can view the set of genes (pairs or triplets)
that determine a tree (e.g., Fig. 4) as an object. Because some
trees in the forest are similar (hence close to each other), they
form clusters (hills) in the forest. Thus, the nature of the object
(a gene versus a small set of genes) distinguishes our clusters
from the standard clusters.

Finding the smallest number of genes that can accurately
classify samples is useful because not only can it facilitate the
search of new diagnostic procedures, but also enables us to find
genes that are coregulated with this small set of genes (5).
Although our initial intent was not exactly to look for the
smallest number of genes that can accurately classify samples, we
nonetheless achieved this desirable goal because most of our
trees are based on pairs or triplets of genes and it is unlikely to
reduce the number of used genes further. For example, for the
same leukemia data (1), a shrunken centroids method of gene
expression leads to a smallest set of 21 genes (5) to yield an
accurate classification precision. In fact, the original analysis (1)
requires a set of 50 genes to achieve a compatible precision. Our
results indicate that using trees and forests as the classification
method reduces the required number of genes substantially.

In summary, we introduced a strategy for construction of
deterministic forests of sturdy trees that are accurate on classi-
fication, relative to comparable random forests, and facilitate
identification of key genes for discriminating among tumor and
cancer types. When three published and commonly used data
sets were used, we found that the deterministic forest with two
impurities outperforms other forests and single trees. In addi-
tion, we provided graphical presentations to understand our
results and to identify important genes. The frequently occurring
pairs or triples of genes can be further scrutinized by using trees
or other classification methods. This provides a very useful data
reduction and variable selection strategy. Finally, we justified our
findings with a literature search and found that many of the
frequently occurring genes are already known to be associated
with the respective cancer or cell types.
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