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Abstract

8-Chloro-adenosine (8-Cl-Ado) is a potent chemother-

apeutic agent whose cytotoxicity in a variety of tumor

cell lines has been widely investigated. However, the

molecular mechanisms are uncertain. In this study, we

found that exposure of human lung cancer cell lines

A549 (p53-wt) and H1299 (p53-depleted) to 8-Cl-Ado

induced cell arrest in the G2/M phase, which was ac-

companied by accumulation of binucleated and poly-

morphonucleated cells resulting from aberrant mitosis

and failed cytokinesis. Western blotting showed the

loss of phosphorylated forms of Cdc2 and Cdc25C that

allowed progression into mitosis. Furthermore, the in-

crease in Ser10-phosphorylated histone H3–positive

cells revealed by fluorescence-activated cell sorting

suggested that the agent-targeted cells were able to

exit the G2 phase and enter the M phase. Immunocyto-

chemistry showed that microtubule and microfilament

arrays were changed in exposed cells, indicating that

the dynamic instability of microtubules and microfila-

ments was lost, which may correlate with mitotic

dividing failure. Aberrant mitosis resulted in mitotic

catastrophe followed by varying degrees of apoptosis,

depending on the cell lines. Thus, 8-Cl-Ado appears

to exert its cytotoxicity toward cells in culture by

inducing mitotic catastrophe.
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Introduction

The essential processes of cell cycle, such as DNA replica-

tion, mitosis, and cytokinesis, are triggered by a cell control

system. Overexpression of cyclins and suppression of

cyclin-dependent kinase (Cdk) inhibitors deregulate Cdk

activities and provide cells with a selective growth advan-

tage. Inefficiency of checkpoint control results in initiation of

S phase or mitosis despite cellular damage. Thus, specific

kinase inhibition and checkpoint activation are commonly

considered to be promising targets for antitumor agents [1].

However, the failures of cell cycle arrest responses in tumor

cells can also be exploited therapeutically. G2 checkpoint

failure that leads to progression into mitosis prior to DNA

damage repair or replication often triggers mitotic catastrophe,

which is characterized by mitotic division failure and cell death,

by a process that appears to be mechanistically distinct from

apoptosis [2–4]. It is believed that cell death through mitotic

catastrophe appears to be common in at least some tumors

following treatment with chemotherapeutic agents [3], and may

be normal response to DNA lesions or incomplete replication at

mitosis during development [5,6].

Dynamic instability is an intrinsic property of microtubules

and microfilaments, permitting cells to quickly assemble or

disassemble cellular filament structures, such as microtubule-

based mitotic spindle and microfilament-based contractile

ring, to coordinate mitosis and cytokinesis [7]. Therefore, many

microtubule-depolymerizing agents and microtubule-polymer-

izing agents can preferentially disrupt mitosis and induce

mitotic catastrophe [3].

The 8-chloro derivative of 8-chloroadenosine 3V,5V-mono-

phosphate (8-Cl-cAMP) is a very potent, site-selective cAMP

analogue, whose phase I clinical effects on solid tumors have

been evaluated [8,9]. The earlier studies of 8-Cl-cAMP [10,11]

and its metabolite, 8-chloro-adenosine (8-Cl-Ado) [10], have

demonstrated their potent toxicity for human tumor cells in

culture. Cell cycle arrest and apoptotic cell death are consid-

ered to be responsible for this effect [9,10,12–18]. Although

8-Cl-cAMP acting through the modulation of protein kinase

activities has been reported [12,13,19,20], it seems likely that

8-Cl-cAMP exerts its cytotoxicity by converting into 8-Cl-Ado

in living cells [9,10,14–17]. Metabolite analyses, combined

with blocking nucleoside uptake, demonstrate that it is 8-Cl-

Ado, but not 8-Cl-cAMP, that is phosphorylated to the moiety of
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8-Cl-ATP and mediates tumor cell death through inhibition

of RNA synthesis [16,17]. Moreover, there was no evidence

that 8-Cl-Ado induces mitotic catastrophe. We describe

herein 8-Cl-Ado – induced improper activation of Cdc2

and Cdc25C and aberrant mitotic division. Thus, 8-Cl-Ado

appears to exert its cytotoxicity toward cells by inducing

G2/M arrest and triggering mitotic catastrophe followed

by apoptosis.

Materials and Methods

Cell Culture and Chemical Treatment

Human lung cancer cell lines A549 (p53-wt) and H1299

(p53-depleted),and leukemia cell lines HL60 and K562

were purchased from ATCC (Rockville, MD). The cells were

cultured in RPMI medium 1640 supplemented with 10%

fetal bovine serum (GIBCO BRL, Carlsbad, CA), 100 U/ml

penicillin, and 100 mg/ml streptomycin, and grown in a 37jC

incubator with 5% CO2.

Twenty-four hours prior to experiments, 1.5 � 106 cells

were plated on 75-cm2 plates for Western blotting, and

5 � 104 cells were plated on coverslips (10 � 10 mm), which

were placed in each well of 24-well dishes for immunocyto-

chemical labeling. 8-Cl-Ado (The State Key Laboratory

for Natural and Biomimetic Drugs, Peking University HSC,

Beijing, China) was dissolved in sterilized 0.85% NaCl solu-

tion and added to cultures at the concentration of 2 mM for

24, 48, 72, and 96 hours, respectively. For control experi-

ments, 0.85% NaCl solution was used.

Cell Proliferation Assay

This assay was performed as described previously [21]

with slight modifications. Briefly, 24 hours prior to the exper-

iment, thecellswerecultured into96-well dishes (15,000cells/

0.2 ml per well). 8-Cl-Ado of 0, 0.02, 0.2, 2, and 20 mM con-

centration was added to cultures, respectively, followed by

incubation for 24, 48, 72, or 96 hours. Before harvest, 20 ml

of MTT [3-(4, 5-dimethythiazolzyl)-2, 5-diphenyl tetrazolium

tromide; 5 mg/ml] (Sigma, St. Louis, MO) was added to each

well. After incubating for 4 hours, 0.2 ml of DMSO was added

to stop reactions. The absorbance values of each well were

determined spectrophotometrically at 490 nm on a Micro-

plate Reader (BIO-TEK, Rockville, MA).

Fluorescence-Activated Cell Sorting (FACS)

Cell cycle analysis was performed as previously de-

scribed [15] with modifications. Briefly, aliquots of cells

(1.5 � 106) were pelleted (1500 rpm � 5 minutes at 4jC)

and washed twice in ice-cold PBS, and fixed in ice-cold

70% ethanol. For dual-labeling flow cytometry, the fixed cells

were incubated with specific anti–Ser10-phosphorylated

H3 antibody (Cell Signaling Technology, Beverly, MA) for

30 minutes, followed by incubation with fluorescein isothio-

cyanate (FITC)–conjugated secondary antibody at room

temperature for 30 minutes in the dark. Then the cells were

washed in PBS and digested with DNase-free RNase A

(10 mg/ml) at 37jC for 30 minutes. Before FACS analysis,

the cells (2 � l04) were resuspended in 200 ml of propidium

iodide (10 mg/ml; Sigma) for DNA staining. A FACScan

(Becton Dickinson, Franklin Lakes, NJ) was used to ana-

lyze cellular DNA content. For cell cycle analysis, computer

programs CELLQuest and ModFit LT 2.0ep for Power

were used. Apoptosis was assayed by the appearance of a

sub-G1 (<2N ploidy) population by the computer program

CELLQuest.

Immunocytochemical Labeling

Immunocytochemical labeling was performed as previ-

ously described [22,23] with modifications. Briefly, the cells

grown on the coverslips were fixed with 4% formaldehyde

(40% formaldehyde and RPMI 1640, 1:9, pH 6.8) at 37jC

for 30 minutes, washed in PBS, and then permeabilized

with 0.5% Triton X-100 in PBS for 20 minutes at room

temperature. After washing in PBS, the cells were washed

in a blocking solution consisting of 5% BSA and 0.2% Triton

X-100 and stored in the same blocking solution at 4jC

until labeling. For tubulin labeling, the fixed cells were

incubated for 2 hours at 37jC with a primary rat anti–a-

tubulin monoclonal antibody (1:100; Chemicon International,

Inc., Temecula, CA) in the blocking solution, followed by

three washes in the blocking solution. Then, the cells were

incubated with an FITC-conjugated goat antirat IgG (1:l00)

(Sino-American Biotech Co., Beijing, China) in the blocking

solution for 1 hour at 37jC and subsequently washed three

times. These steps were followed by the exposure of the

cells to rhodamine phalloidin (1:50) (Molecular Probes,

Eugene, OR) in the blocking solution for 40 minutes at

37jC. After that, the cells were incubated for 10 minutes at

room temperature with 5 mg/ml Hoechst 33342 (Molecular

Probes). After three washes in PBS, the cells were mounted

in a 90% glycerol–PBS mixture. Laser confocal microscopy

was performed at room temperature using Leica TCS SP2

(Leica Microsystems Heidelberg GmbH, Mannheim, Ger-

many) confocal microscope equipped with a 63 � /1.4

HCxPlanAPO oil immersion objective. Microtubules were

excited with an argon laser (488 nm line), microfilaments

with a helium–neon laser (543 nm), and DNA with a UV

laser (364 nm). Each image represents a two-dimensional

maximum projection of sections in the Z-series taken at

0.5-mm intervals across the depth of the cell. Furthermore,

a minimum of 50 mitotic cells was counted for each time

point for examining chromosome segregation failure and at

least 200 interphase cells for examining accumulation of

abnormal nuclei.

Western Blotting

Cells were harvested, and proteins were extracted as de-

scribed previously [24] and quantified with BCA protein as-

say reagent kit (Pierce, Rockford, IL). Western blotting was

performed as described previously [25] with modifications.

Cells were lysed with lysis buffer [50 mM Tris–HCl, 250 mM

NaCl, 5 mM EDTA, 50 mM NaF, 0.1% Igepal CA-630, and

the protease inhibitor cocktail (Roche Diagnostics, Penz-

berg, Germany)]. Fifty micrograms of total proteins was sub-

jected to SDS-PAGE [10% for phospho-Cdc25C (Ser216),

8-Cl-Ado – Induced Mitotic Catastrophe Zhang et al. 803
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phospho-Cdc2 (Tyr15), a-tubulin, actin, phospho-Chk2

(Ser19), Cdc25C, Cdc2, and Chk2; 8% for PARP and 12%

for caspase-3], transferred onto nitrocellulose membranes,

and blocked with 5% nonfat milk in 200 mM NaCI, 25 mM Tris

(pH 7.5) and 0.05% Tween 20 at 4jC overnight with rocking.

The membranes were probed with specific antibodies for

phospho-Cdc25C (Ser216) (1:500), phospho-Cdc2 (Tyr15)

(1:500), phospho-Chk2 (Ser19) (1:500), Cdc25C (1:500),

Cdc2 (1:500), Chk2 (1:500), tubulin (1:500), actin (1:500),

PARP (1:500), or caspase-3 (1:100), respectively. After

washing with TBS-T (20 mM Tris, 500 mM NaCl, and 0.1%

Tween 20) six times at 5 minutes each, membranes were

incubated with horseradish peroxidase–conjugated second-

ary antibodies [goat antimouse 1:4000 for PARP, caspase-3,

rabbit antigoat 1:4000 for actin; goat antirat 1:4000 for

tubulin; goat antirabbit 1:1000 for phospho-Cdc25C

(Ser216), phospho-Cdc2 (Tyr15), phospho-Chk2 (Ser19),

Cdc25C, Cdc2, and Chk2] in TBS containing 0.1% Tween

20 and 1% BSA at room temperature for 1 to 2 hours.

Chemiluminescence signals were visualized using Western

blotting luminol reagent (Santa Cruz Biotechnology, Santa

Cruz, CA) and exposed to film. The antibodies were pur-

chased from Santa Cruz Biotechnology (anti-PARP, F-2;

antiactin, I-19), Oncogene Research Products (Darmstadt,

Germany; anti-caspase-3, Ab-I), Cell Signaling Technology

[anti-Cdc25C and phospho-Cdc25C (Ser216), Cdc2 and

phospho-Cdc2 (Tyr15), and Chk2 and phospho-Chk2

(Ser19)], and Chemicon International, Inc. (antitubulin).

Results

Growth Inhibition and G2/M Arrest

As revealed by the time–effect and dose–effect curves,

8-Cl-Ado (z2 mM) caused significant growth inhibition of

A549 and H1299 cells within 24 to 96 hours after exposure

(Figure 1). We also assessed the ability of 8-Cl-Ado to

inhibit the growth of leukemia cells (data not shown). There

appeared to be a little quantitative difference in the inhibitory

effects of 8-Cl-Ado on cell growth, depending on time, dose,

and tumor cell lines.

To determine whether the inhibition of cell growth by

8-Cl-Ado was closely related to cell cycle control, we ana-

lyzed the cell cycle distribution of the tumor cells with FACS.

As shown in Figure 2 A, exposure of A549 cells to 2 mM 8-Cl-

Ado caused increases from 14.49% to 34.68% of G2/M

subpopulation within 24 to 96 hours, compared with unex-

posed cells that showed 10.15% G2/M subpopulation. In

H1299 cells, 8-Cl-Ado–induced accumulation of G2/M phase

was 18.4% in 24 hours, 22.57% in 48 hours, 30.07% in

72 hours, and 27.32% in 96 hours, respectively, compared

with 18.89% G2/M in unexposed cells. Compared with 8.15%

G2/M phase in unexposed cells, exposed K562 cells in G2/M

phase showed 6.23% to 31.14% increase in 24 to 72 hours.

All of them showed a time-dependent increase in G2/M

subpopulation within 24 to 96 hours. Similar G2/M distri-

butions in three cell lines were detected in dose–response

experiments (Figure 2 B). However, G2/M population in HL60

cells had no any changes within 24 to 72 hours, compared

with unexposed cells. These results indicate that 8-Cl-Ado

induces cell accumulation in G2/M phase in a time-, dose-

and cell type–dependent manner. We noted that 8-Cl-Ado

could induce apoptosis in varying degrees in target cells,

depending on cell lines.

Because site-specific phosphorylation of histone H3 is a

marker for mitotic progression in mammalian cells [26], we

analyzed Ser10-phospho-H3 by FACS (Figure 3 A). In A549

cells, 24 to 96 hours of 8-Cl-Ado exposure induced 10% to

15% phospho-H3–positive cells, compared with 3% positive

staining in unexposed cells. H1299 cells showed 12% to

16% phospho-H3 staining after 24 to 96 hours of exposure,

whereas unexposed cells had 2% positive cells. PI staining

showed phospho-H3–positive cells with 4N DNA. These

data indicate that 8-Cl-Ado–exposed cells are able to enter

the M phase and arrest there, which contributes in part to

cells accumulating in G2/M phases.

Figure 1. Effects of 8-Cl-Ado on cell proliferation. A549 and H1299 cells were exposed to 8-Cl-Ado at the indicated concentrations for 24, 48, 72, or 96 hours,

respectively. Cell proliferation was evaluated with MTT assay (see Materials and Methods section). Data represent mean ± SD derived from three independent

experiments.

804 8-Cl-Ado – Induced Mitotic Catastrophe Zhang et al.

Neoplasia . Vol. 6, No. 6, 2004



Figure 2. Analyses of cell cycle. (A) Time – response experiments. The A549, H1299, K562, and HL 60 cells were exposed to 2 �M 8-Cl-Ado for 24, 48, 72, or

96 hours, respectively. The cells were stained with PI and DNA content was analyzed by FACScan as described in Materials and Methods section. Con:

unexposed cells (control). (B) Dose – response experiments. The A549, H1299, and K562 cells were exposed to 8-Cl-Ado (0.02, 0.2, 2, or 20 �M) for 72 hours,

respectively. G2/M population and apoptosis (%) are listed on the bottom. Apoptosis is revealed by sub-G1 (<2N ploidy). Data represent one of three independent

experiments.
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G2 Checkpoint Failure

Because Cdc2 and Cdc25C activities are essential for

G2/M transition [27–29], we performed Western blotting with

phospho-Cdc25C (Ser216) and phospho-Cdc2 (Tyr15)

antibodies (Figure 4). In comparison with unexposed

cells, markedly decreased Ser216-phospho-Cdc25C and

Tyr15-phospho-Cdc2 were detected in exposed A549 cells

within 24 to 96 hours. In exposed H1299 cells, Ser216-

phospho-Cdc25C partially decreased in 24 hours and

almost completely disappeared within 48 to 96 hours;

Tyr15-phospho-Cdc2 was markedly decreased within 24 to

72 hours and slightly decreased in 96 hours. These results

indicate a G2 checkpoint failure in both exposed cell lines,

marked by the loss of phosphorylated forms of Cdc2 and

Cdc25C.

To further check the loss of phosphorylated proteins, we

determined Ser19-phospho-Chk2 with specific antibody. We

found that Chk2 was constitutively phosphorylated at Ser19

in unexposed cells. By contrast, Ser19-phospho-Chk2 in

exposed A549 cells was considerably decreased within 24

to 96 hours (Figure 4). In exposed H1299 cells, phospho-

Chk2 was also decreased, although it was not so exciting.

These data suggest that 8-Cl-Ado may inhibit phosphory-

lation in target cells.

Mitotic Catastrophe

G2 checkpoint failure promotes mitotic catastrophe [3].

We thus examined the mitotic division using immunocyto-

chemistry method. The confocal micrographs showed a part

of the mitotic course of A549 cells (Figure 5). In control cells,

mitotic cells underwent the normal mitosis (Figure 5 A, a–c).

8-Cl-Ado–exposed cells, however, displayed aberrant mito-

sis (Figure 5 A, d– f ). In an abnormal metaphase in exposed

cells, the chromosomes did not align properly, and there

were several clusters of decondensed chromosomes distrib-

uted randomly (Figure 5 A, d ). In an abnormal anaphase,

Figure 3. Analyses of mitotic progression. (A) Phospho-histone H3 as a marker for mitotic progression. After exposure to 8-Cl-Ado (2 �M) for an indicated time, the

cells were fixed with 70% ethanol; stained with anti – Ser10-phospho-H3 primary antibody, FITC-conjugated secondary antibody, and PI; and analyzed by

FACScan. PI and FITC signals were measured in linear mode FL2-A and in logarithmic mode FL1-H, respectively. No primary antibody was used in the ‘‘blank’’;

dual staining of unexposed cells was used as control. The mitotic cells in red square are positive for phospho-H3. (B) Apoptosis analysis. Cell exposure and

staining are the same as in (A). PI and FITC signals were recorded in logarithmic mode FL3-H and FL1-H, respectively. The cells in the left quadrants are apoptotic

cells with <2N DNA content; that in the left upper quadrant are phospho-H3 –positive. The values (%) represent means of two independent experiments. Data

represent one of two independent experiments.
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the chromosomes decondensed unusually and were divided

asymmetrically and incompletely (Figure 5 A, e), indicating

the lagging anaphase and chromosome segregation failure.

In a cell with failed cytokinesis, two daughter nuclei were

linked by residual chromatin bridge, the disruption of micro-

tubule and microfilament networks could be perceived, and

the microfilament-based contractile ring could not form

(Figure 5 A, f ). Based on the observation of mitosis, the

frequency of failed mitosis was calculated (Figure 5 B): the

proportion of failed mitotic cells in exposed A549 cells was

32% to 45% (control was 11%) and that in H1299 cells was

24% to 33% (control was 6%) in 24 to 96 hours, respectively.

These results demonstrate that 8-Cl-Ado can interfere with

mitosis and cytokinesis in both cells and induce mitotic

catastrophe.

Binuclei and Multinuclei Accumulation and Filament

Network Disturbance

Because mitotic catastrophe often results from aberrant

mitosis [3], and microtubules and microfilaments are essen-

tial for cell division [7,23,30], triple fluorescence labeling

was employed to analyze the nuclear and cellular morphol-

ogy and the microtubule and microfilament organization

following 8-Cl-Ado exposure (Figure 6, A–D). In control

systems, most unexposed A549 and H1299 cells were

characterized by single nucleus. When exposed A549

cells to 8-Cl-Ado (2 mM), more than 20% of the cells with

binuclei, polymorphonuclei, and multinuclei accumulated

by 24 hours; this ratio increased to about 25.5% to 38%

within 48 to 96 hours; about 3.5% to 12% A549 cells with

shrunken bodies and condensed or fragmented nuclei

could be perceived in 48 to 96 hours (Figure 6 E ). In

H1299 cells, the maximum accumulation of binuclei, poly-

morphonuclei, and multinuclei was 27.5% by 96 h; the

shrunken H1299 cells with condensed or fragmented

nuclei increased from 4% to 24% within 24 to 96 hours

(Figure 6 F ). These results further demonstrate that 24 to

96 hours of 8-Cl-Ado exposure may induce dividing failure

and mitotic catastrophe.

Both unexposed A549 and H1299 cells (controls in

Figure 6, A–D) had the typical fibrillar arrays of interphase

microtubules revealed by anti–a-tubulin antibody: the micro-

tubule spokes radiated from a central site occupied by cen-

trosome, the primary microtubule-organizing center (MTOC).

In exposed A549 (Figure 6, A and B) and H1299 cells

(Figure 6, C and D), however, the microtubules were disor-

ganized by 24 hours. Going along with the time, the alteration

grew obviously. Microfilaments were also disturbed in 24 to

48 hours in both cell lines. These data suggest that 8-Cl-Ado

can perturb the dynamic instability of cellular microtubules

and microfilaments, which may interfere with mitosis and

lead to mitotic catastrophe.

Long Exposure–Induced Apoptosis

To evaluate apoptosis after 8-Cl-Ado exposure, several

methods including DNA fragmentation, FACS, and Hoechst

staining were employed. It was easy to get a DNA ladder with

8-Cl-Ado–treated HL60 cells in 24 hours, but failed to do so

with A549, H1299, and K562 cell lines during all tested time

(data not shown). In FACS assays (Figure 2), the A549,

H1299, and K562 cells increased sub-G1 DNA content

characterizing apoptosis after 48 to 96 hours of exposure.

Our results indicate that 8-Cl-Ado long exposure can induce

apoptosis.

To determine whether the cells undergoing apoptosis

were recruited from mitosis, phosphorylated H3–positive

cells were analyzed by FACS. Compared with unexposed

A549 and H1299 cells that showed 3% and 2% positive

staining for Ser10-phospho-H3, 8-Cl-Ado exposure for 48 to

96 hours induced 13% to 24% and 18% to 26% phospho-H3

Figure 4. 8-Cl-Ado – induced G2 checkpoint failure. The A549 and H1299 cells were cultured, and unexposed (Control) or exposed to 2 �M 8-Cl-Ado for 24, 48, 72,

or 96 hours, respectively. Cell extracts were prepared and Western blotting analyses were performed for Cdc25C, phospho-Cdc25C (Ser216), Cdc2, phospho-

Cdc2 (Tyr15), Chk2, and phospho-Chk2 (Ser19) (see Materials and Methods section). Fifty micrograms of proteins was loaded for each lane, and the antigen –

antibody complex was visualized by chemiluminescence. Actin was used as control.
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positivity in A549 and H1299 apoptotic cells, respectively

(Figure 3 B), indicating that apoptosis at least in part came

from mitosis.

Because caspase-3 pathway is commonly implicated in

apoptosis, we next performed Western blotting to test the

activation of caspase-3 and the cleavage of its substrate,

poly (ADP-ribose) polymerase (PARP). In exposed H1299

cells, the active caspase-3 subunit p17 was detected within

24 to 96 hours, and a p85 fragment was yielded by PARP

(p115) after 48 to 96 hours of exposure (Figure 7). However,

the degradation of PARP without the activation of caspase-3

was detected in A549 cells after 48 to 96 hours of exposure.

These suggest that 8-Cl-Ado–induced apoptosis proceeds

through or bypasses caspase-3 activation, depending on cell

lines.

Discussion

In this study, we demonstrate that 8-Cl-Ado can induce G2

checkpoint failure and chromosome segregation failure. G2

checkpoint failure is due to the loss of phosphorylated forms

of Cdc2. Chromosome segregation failure may correlate with

the loss of dynamic instability of microtubules and micro-

filaments. Aberrant mitosis results in mitotic catastrophe

Figure 5. 8-Cl-Ado – induced chromosome segregation failure. Cells were unexposed or exposed to 8-Cl-Ado (2 �M) for 24 to 96 hours. Immunocytochemistry was

performed as described in Materials and Methods section. The cells were examined with confocal microscope. (A) Photographs characteristic of mitotic division of

A549 cells unexposed (a –c) (control) or exposed to 8-Cl-Ado (d– f). Tubulin is labeled with green, actin with red, and DNA with blue. (B) Histograms showing the

percentage of failed mitotic cells relative to the total mitotic cells in A549 and H1299 cells, respectively. Data represent mean ± SD derived from three independent

experiments.
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followed by apoptosis in 8-Cl-Ado–exposed cells, depending

on the cell lines.

Although accumulation of cells in S phase and G2/M

phases induced by 8-Cl-Ado or 8-Cl-cAMP has been report-

ed [10,12,13], molecular mechanisms are uncertain. We

showed that exposure of human tumor cells to 8-Cl-Ado

accumulated the subpopulation of G2/M cells in a time-,

dose-, and cell type–dependent manner. Compared with

unexposed cells, 8-Cl-Ado exposure induced three- to five-

fold and six- to eight-fold increases in phospho-H3–positive

Figure 6. Accumulation of abnormal nuclei and disturbance of microtubule and microfilament network. A549 (A and B) and H1299 (C and D) cells were exposed to

2 �M 8-Cl-Ado for 24, 48, 72, or 96 hours, respectively, and immunocytochemistry as described in Materials and Methods section. The cells were examined with a

confocal microscope. Tubulin is stained with green, actin with red, and DNA with blue. The enlarged photographs of A549 (B) and H1299 (D) are presented. Cells

mock-exposed for 96 and 24 hours were used as ‘‘control’’ in (A) and (C), and (B) and (D), respectively. (E and F) Histograms showing the percentage of abnormal

nuclei relative to the total nuclei in A549 and H1299 cells, respectively. Binuclei, polymorphonuclei, and multinuclei were considered to be abnormal nuclei. Data

represent mean ± SD derived from three independent experiments.
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cells in A549 and H1299 cell lines, respectively, suggesting

that 8-Cl-Ado – exposed cells are able to enter the M

phase. Entry of all eukaryotic cells into the M phase of the

cell cycle is regulated by activation of Cdc2 kinase. Activation

of Cdc2 (Tyr15 dephosphorylation) is carried out by Cdc25C

phosphatase [28,31,32]. In this study, we found the loss of

phosphorylated forms of Cdc25C and Cdc2 in 8-Cl-Ado–

exposed cells, which may associate with G2 checkpoint

failure.

It has been well established that 8-Cl-Ado can convert to

8-Cl-ATP and inhibit mRNA synthesis in target cells by

transcriptional termination [16,17]. Therefore, it is possible

that 8-Cl-Ado reduces the expression of genes including

Cdc2, Cdc25C, and Chks in G2/M checkpoint pathways. It

is also possible that 8-Cl-Ado inhibits ATP-dependent reac-

tions in target cells by interfering with ATP generation or

kinase activity. Both molecular ways may contribute to the

loss of the phosphorylated forms of Cdc2, Cdc25C, and

Chks in 8-Cl-Ado–exposed cells. Alternatively, the loss of

phosphorylated proteins may be independent of checkpoint

cascade pathway. We thus suggest that 8-Cl-Ado may

induce G2 checkpoint failure, which is directly associated

with the loss of phosphorylated Cdc2 in exposed cells.

Unsurprisingly, no gross changes in total proteins of Cdc2,

Cdc25C, and Chk2 as well as actin (control) in exposed

cells were detected by Western blotting because the same

amount of proteins was routinely used for this assay and

the syntheses of all mRNA/protein species were inhibited

by 8-Cl-Ado. Therefore, our results do not exclude the

notion that 8-Cl-Ado inhibits RNA/protein syntheses in ex-

posed cells.

It is clear that cell cycle checkpoints prevent or delay

mitosis in damaged cells [33–36]. G2/M checkpoint failures

that lead to progression into mitosis prior to DNA damage

repair or replication often trigger mitosis catastrophe [3].

Microtubule-targeting agents can also cause mitotic catas-

trophe [3,33,37]. In mitotic division analyses, we found

aberrant mitotic division and failed cytokinesis in 8-Cl-

Ado–exposed cells. Aberrant division may result from dis-

turbance of microtubule and actin filament structures. At

present, we have no direct evidence that the cellular fila-

ments are primary targets for 8-Cl-Ado. It is possible that

8-Cl-Ado may directly or indirectly perturb the functions of

the microtubule-based mitotic spindle and the actin-based

contractile ring by interfering with ATP metabolism. Metabo-

lite analyses have demonstrated that exposure of 8-Cl-Ado

accumulates monophosphates and triphosphates of 8-Cl-

Adenosine in living cells [16]. Therefore, the depletion of

cellular ATP pool may play an essential role in 8-Cl-Ado–

mediated cytotoxicity.

There are possible explanations for the mechanisms by

which 8-Cl-Ado perturbs the dynamic instability of the cellular

filaments, which may correlate with mitotic dividing failure.

First, the decrease in ATP synthesis may block the transfer

of g-phosphate from ATP to GDP for generating GTP. The

reorganization of microtubule may be inhibited because the

hydrolysis of GTP bound to tubulin is the heart of the rapid

turnover of microtubules [30,38]. Second, the depletion of

ATP may suppress the conversion of chemical energy into

mechanical work. ATP hydrolysis by kinesin is tightly cou-

pled to generating force, by which vesicles and beads can

move toward the plus end of microtubules during mitosis

[7,30,39,40]. Third, the elimination of ATP pool by 8-Cl-Ado

may directly block ATP-dependent association/dissociation

reactions at the ends of the actin, and thereby make dy-

namic instability and treadmilling impossible. In addition,

8-Cl-ATP, as an ATP analogue, may competitively bind to

the ATP-binding site on actin filaments, inhibiting their poly-

merization. The mechanism by which 8-Cl-Ado affects the

dynamic instability of the cellular filaments needs to be

further determined.

Cell death through mitotic catastrophe appears to be

common in some tumors following treatment with chemother-

apeutic agents [3]. Until now, mitotic catastrophe is defined

mostly by morphology. Some studies suggest that mitotic

catastrophe shares some common pathways with apoptosis,

whereas more evidences show that it is independent of

apoptosis [3,37]. It has been reported that a variety of tumor

cells exposed to 8-Cl-Ado died by apoptosis [9,12,13,15,16].

However, no study of mitotic catastrophe induced by 8-Cl-

Ado has been described. In this study, we could hardly detect

apoptosis in A549, H1299, and K562 cells by DNA ladder in

Figure 7. 8-Cl-Ado – induced apoptosis way. A549 and H1299 cells were unexposed (control) or exposed to 8-Cl-Ado (2 �M) for 24, 48, 72, or 96 hours. After

harvest, cell extracts were prepared, and the activation of caspase-3 and the cleavage of PARP were examined by Western blotting as described in Materials and

Methods section. Actin and tubulin were used as controls.
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all tested times (24–96 hours), except HL60 cells; the sub-G1

cells could be identified by FACS only after long exposure

(>48 hours). These facts indicate that apoptosis is a late

event in 8-Cl-Ado–exposed cells. In contrast, binuclei and

polymorphonuclei and multinuclei initially accumulated in

the cultures by 24 hours, suggesting that mitotic catastrophe

is an early and major event after 8-Cl-Ado exposure. H3

phosphorylation is a marker for mitotic progression [26]. We

found that Ser10-phospho-H3–positive cells in apoptotic

population were markedly increased in 8-Cl-Ado–exposed

cells. This fact suggests that the cells undergoing apoptosis

may recruit at least in part from mitosis as a consequence of

mitotic catastrophe. Evaluation of the effects of 8-Cl-Ado on

several tumor cell lines including A549, H1299, K562, HepG2

(data not shown), and HL60 cells showed that most of them

arrested in G2/M phase and underwent mitotic catastrophe

followed by varying degrees of apoptosis, except HL60 cells

that died by apoptosis without G2/M arrest. Our results

support the notion that cell death through mitotic catastrophe

appears to be common in at least some tumors following

treatment with chemotherapeutic agents [3]. Our study also

suggests that 8-Cl-Ado induces G2/M arrest and mitotic

catastrophe of target cells followed by apoptosis, depending

on cell lines. Whether our proposed mechanism of cell death

is valid for a wide variety of cancer cells deserves further

studied.
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