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Abstract

A goal of oncology is the individualization of patient

care to optimize therapeutic responses and minimize

toxicities. Achieving this will require noninvasive,

quantifiable, and early markers of tumor response.

Preclinical data from xenografted tumors using a vari-

ety of antitumor therapies have shown that magnetic

resonance imaging (MRI)–measured mobility of tissue

water (apparent diffusion coefficient of water, or ADCw)

is a biomarker presaging cell death in the tumor. This

communication tests the hypothesis that changes in

water mobility will quantitatively presage tumor re-

sponses in patients with metastatic liver lesions from

breast cancer. A total of 13 patients with metastatic

breast cancer and 60 measurable liver lesions were mon-

itored by diffusion MRI after initiation of new courses of

chemotherapy. MR images were obtained prior to, and

at 4, 11, and 39 days following the initiation of therapy

for determination of volumes and ADCw values. The

data indicate that diffusion MRI can predict response

by 4 or 11 days after commencement of therapy, de-

pending on the analytic method. The highest concord-

ance was observed in tumor lesions that were less

than 8 cm3 in volume at presentation. These results sug-

gest that diffusion MRI can be useful to predict the re-

sponse of liver metastases to effective chemotherapy.
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Introduction

Breast cancer is the most common life-threatening malig-

nancy in women. Metastatic disease is rarely curative de-

spite new therapies and improvements in diagnostics. The

selection of systemic treatment is based on the aggressive-

ness of the cancer, the patient’s comorbidities, and the

response rates and toxicities associated with each therapy.

Most patients with metastatic breast cancer will receive

numerous antitumor therapies in an effort to palliate symp-

toms and prolong life. Thus, preservation of quality of life—

and not solely response rates—has become an important

determinant in choosing therapies. Response rates to var-

ious antitumor regimens range from 10% to 70%, depending of

the number of prior therapies, interval from initial diagnosis,

adjuvant therapy received, and unknown individual character-

istics of the tumor. Thus, predicting a patient’s response to a

particular therapy is difficult. Typically, oncologists empirically

initiate therapies based on known response rates from the

literature and then follow the patients closely for evidence of

response or disease progression based on signs, symptoms,

and/or objective radiographic measures of tumor size. Because

of the inherent insensitivity of standard radiographic tools to

accurately measure changes in tumor volume, radiographic

studies are usually repeated on 3- to 6-month intervals for

monitoring responses. For patients with aggressive disease

involving vital visceral organs, months of ineffective therapy

can lead to permanent and irreversible losses in quality of life,

performance status, and early mortality. Thus, an early, non-

invasive, and reproducible method to determine a tumor’s

responsiveness to a particular antitumor therapy would greatly

benefit these patients. Responders would be continued on

successful therapy, and nonresponders would be discontinued

from ineffective and toxic therapy prior to disease progression

and loss of performance status.

Several MRI modalities have been explored in various

cancer models for the early detection of therapy response.

T2-weighted imaging has been explored to monitor response in

pancreatic cancer [1]; T1 (U) imaging has been used to assess

treatment in brain tumors [2]; dynamic contract-enhanced

(DCE) imaging has been used to asses response to cytotoxic

and cytostatic therapies (reviewed in Ref. [3]); and 1H magnetic

resonance spectroscopy has been used to detect changes in

tumor lactate levels as early indicators of response [4].

Conventional MRI is a sensitive and specific indicator of

metastatic disease to the liver [18]. The validity of MRI for

lesion volume (LV) measurements and quantitation of re-

sponse to chemotherapy has been established [19–21].
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Pathologic correlation studies have established the histolog-

ic basis of variable appearances of hepatic metastases on

conventional MR images [22]. The use of both T1- and T2-

weighted sequences can identify metastases, in spite of

variable T1 and T2 of the metastases relative to normal liver

tissue. The use of both moderately and heavily T2-weighted

images provides high specificity for the identification of

common benign lesions, such as cysts and hemangiomas

[23,24,25]. These benign lesions can thus be identified and

excluded from quantitative diffusion measurements because

of their markedly higher pretreatment apparent diffusion

coefficient of water (ADCw) [26].

In recent years, the ADCw, as measured by diffusion-

weighted magnetic resonance imaging (DWMRI), has

emerged as a novel indicator of tumor response to therapy.

DWMRI is a noninvasive imaging technique that measures

the mobility of water in tissues. Generally, cells restrict water

mobility and, hence, as cell volumes decrease in response

to therapy, there is an increase in the ADCw. In preclinical

models, there is abundant evidence that the ADCw in tumors

increases early in response to successful therapies. This

has been shown in sarcoma, glioma, and breast carci-

noma xenografts treated with cytotoxic chemotherapies,

cytostatic chemotherapies, radiation therapy, and gene ther-

apies [5–11]. Previous work by our group has demonstrated

this effect in breast [12] and prostate [13] cancer xenografts

treated with taxanes. Treatments that caused cells to shrink

led to early increases in ADCw that were predictive of the

ultimate tumor response. It is tempting to extrapolate that

the therapy-induced increases in ADCw are due to cell

shrinkage, although the exact mechanisms have not been

determined [14]. Notably, cell shrinkage occurs early during

the apoptotic program [16]. Thus, it has been hypothesized

that apoptosis-induced cell shrinkage leads to increased

extracellular volume. Because water is not as diffusionally

restricted in the extracellular space, a decrease in cell vol-

ume fraction (i.e., intracellular water) will result in an overall

increase in the ADCw [12]. Because of the strength of these

preclinical data, clinical trials have begun to examine the

effectiveness of the ADCw as an early surrogate marker for

therapy response, particularly in brain tumors [15,16].

This pilot trial examined the change in ADCw of liver

metastases in patients after initiation of new chemotherapy

regimens. Despite the motion problems inherent in visceral

imaging, we have chosen to image liver metastases be-

cause: 1) the liver is more amenable to MRI compared to

the lungs; (2) many other tumor types metastasize common-

ly to the liver (e.g., gastrointestinal carcinomas, lung can-

cers, and melanomas); and (3) patients with liver metastases

typically have a poor prognosis compared to patients with

nonvisceral metastases and thus would benefit most from

early predictors of response.

This communication tests the hypotheses that: (A)

patients with objective clinical responses will have early

increases in the ADCw of their lesions, and (B) that the

magnitude of change in ADCw will predict the magnitude of

objective response. Our results are consistent with both

hypotheses being true. Hence, changes in the ADCw may

improve the treatment of patients by predicting antitumor

responses early during the course of a new therapy.

Materials and Methods

Participant Selection

Patients were recruited from the clinics of the Arizona

Cancer Center and provided voluntary informed consent.

Patients eligible for this study met the following criteria:

histologically confirmed metastatic breast cancer with a

minimum of one liver metastases measuring greater than 1

cm in diameter, measurable in at least two dimensions;

Karnofsky performance status (KPS) z 70%; nonpregnant

state; at least 18 years of age; and scheduled to initiate a

new chemotherapy regimen for their metastatic disease.

MRI

Patients underwent their first MRI exam prior to receiving

their first course of therapy (baseline) and then at 4, 11, and

39 days after the commencement of therapy. Conventional

T1-weighted and T2 fast spin echo (FSE) MRI were used to

identify and measure intrahepatic metastases and to objec-

tively quantify lesion responses to chemotherapy. Diffusion-

weighted imaging was used to monitor changes in the ADCw

of lesions. Imaging protocols were carried out on participants

in accordance with protocols approved by the IRB at the

University of Arizona. All MRIs were performed on a GE

Signa echospeed scanner at 1.5 T equipped with a 22-mT/m,

actively shielded, 120-mT/m per msec gradient system.

A single-shot fast spin echo (SSFSE) sequence was

utilized to obtain contiguous T2-weighted images within a

breath-hold encompassing the entire liver. Image parame-

ters for the T2-weighted images were: TE = 93.9 and 187

msec, 256 � 160 image matrix, 0.5 signal averages (i.e., half-

Fourier), FOV = 36 � 27 cm, 31.3 kHz receiver bandwidth,

and 6 mm slice thickness. The use of the moderate and

heavily T2-weighted SSFSE scans enabled the differential

identification of cysts and hemangiomas by the radiologist

(E.O.) as described previously [25], and these lesions were

excluded from diffusion and LV measurements. T1- and T2-

weighted images were acquired within a breath-hold utilizing

a 3D fast gradient echo sequence. The 3D fast gradient echo

sequence obtained a 3D image of the abdomen, which

encompassed the whole liver. Image parameters for the 3D

T1-weighted images were: TE = 1.5 msec, TR = 7.2 msec,

256 � 128 � 32 image matrix, 6 mm slice thickness with no

interslice gap, FOV = 36 � 27 cm, and 62.5 kHz receiver

bandwidth. Images were transferred offline to a workstation

and viewed by a radiologist (E.O.), who manually circum-

scribed lesions in a blinded fashion.

Diffusion-Weighted Single-Shot Echo Planar Imaging

(SSEPI)

Diffusion-weighted SSEPI images were obtained through

the entire liver. Image parameters for the DW-SSEPI images

were as follows: TE = 103 msec, 128 � 90 image matrix,

FOV = 36 � 27 cm, TR = 6 seconds, 100 kHz receiver
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bandwidth, and 6 mm slice thickness. Diffusion-weighted

images were acquired during a breath-hold on inhalation in

6-mm slices through the entire liver. Diffusion weighting was

applied in the superior/inferior direction with b = 0, 150, 300,

450 sec/mm2. All measurements were repeated twice (i.e.,

two repetitions).

LV Measurements

Total tumor burden in the liver was determined by ana-

lyzing up to five of the largest tumor nodules in each patient.

Tumor nodule volumes were measured on the 3D fast

gradient echo images on contiguous slices. Manually circum-

scribed regions of interest (ROIs) were used to quantitate

the lesion area on each slice and these were multiplied by

the slice thickness and added-on contiguous slices to arrive

at LVs (mm3). Determination of lesion response was made

on a lesion-by-lesion basis by evaluating the ratio between

LVs on day 39 and pretherapy (i.e., day �3) LV (%DLV =

LVday 39 / LVbaseline).

ADCw Calculations

The influence of motion during acquisitions raised con-

cern regarding the accuracy of image registration from one

b value to the next. To overcome this, histograms of pixel

intensity were obtained for each lesion at each b value from

manually circumscribed ROIs combined across slices. Multi-

slice data and histograms were visualized using Amira image

analysis software (TGS, San Diego, CA). Average values of

signal intensity Ii were obtained from these histograms and

compared to the intensities in the absence of diffusion

weighting (Io), where b = 0. ADCw values were calculated

for each measurement using a least squares method to fit

a set of data points to ln(Ii/ Io) = �biADCw (Eq. (1)), with the

y-intercept set equal to zero. Hence, an average ADCw value

was obtained for each lesion. In addition to intensity values,

pixel count values and intensity standard deviations were

obtained for each ROI at each repetition.

The changes in the ADCw values following therapy were

determined by calculating the percent change in the ADCw

from baseline (day �3), with each patient serving as his/her

own control. %ADCw
4, %ADCw

11, and %ADCw
39 correspond to

the percent change in the ADCw from baseline to days 4, 11,

and 39, respectively:

%ADC4
w ¼ ADC4

w � ADCb
w

ADCb
w

;

%ADC11
w ¼ ADC11

w � ADCb
w

ADCb
w

; ð1Þ

%ADC39
w ¼ ADC39

w � ADCb
w

ADCb
w

Results

Sixteen patients with metastatic breast cancer were initially

enrolled in this pilot trial. Three patients were unable to com-

plete the imaging protocol due to morbidity or early mortality.

Of the 13 evaluable patients, one patient was evaluated by

diffusion MRI during the initiation of two different courses

of chemotherapy (weekly paclitaxel and weekly vinorelbine).

Thus, the ability of diffusion MRI to accurately predict che-

motherapy responses was analyzed after the initiation of

14 separate chemotherapy regimens in 13 patients. Patient

characteristics as well as chemotherapy regimens received

during the study are detailed in Table 1. For the 13 evaluable

patients, up to five hepatic metastases were identified by

MRI for each patient, for a total of 60 lesions analyzed. All

patients were scanned at baseline, and then at 4, 11, and

39 days after commencement of a new chemotherapy reg-

imen. Diffusion imaging was not obtained on day 11 for

three patients. In addition, three lesions were not identifiable

on the day 39 diffusion-weighted images. Thus, 60 lesions

were analyzed for day 4, 50 lesions were analyzed for day

11, and 57 lesions were analyzed for day 39 (Table 2).

Examples of typical image quality are presented in

Figure 1, which shows echoplanar diffusion-weighted

images obtained at b values from 0 to 450 sec/mm2. At

higher b values, lesions have higher conspicuity relative to

normal liver, indicating motionally restricted water in the

lesion. Note also the presence of substructures within each

lesion, which may indicate microenvironmental hetero-

geneity. Because of visceral motion during the breath-hold

period, images at different b values were not parsed on a

pixel-by-pixel basis. This was determined early on in the

study where ADCw maps were calculated on a pixel-wise

basis using a single b value, according to ADCw(x,y) =

ln[I(x,y) / Io(x,y)] / b, where I is the intensity in the DW image

at b = 450 sec/mm2 and Io is the intensity in an image

obtained without diffusion gradients. Histograms of ADCw

pixel values were generated from tumor ROIs combined

across slices. From the ADCw histograms, a median value

was reported for each lesion and measurement. ADCw

values for the first and second measurements were labeled

by ADCw1 and ADCw2. The reproducibility of the ADCw value

was determined as the numeric difference between ADCw1

and ADCw2 for each lesion. These analyses showed a large

variability in the ADCw for lesions located in the dome of the

liver when analysis is done on a pixel-by-pixel basis, which

was likely due to cardiac motion (data not shown, provided

with review). The problem with pixel-by-pixel calculations

was also demonstrated with multiple b values, as shown in

Table 1. Patient Characteristics and Therapies.

Number of patients 13

Mean age (range) [years] 55 (38 –73)

Female:male 12:1

Chemotherapy regimens

Taxane 9

Vinorelbine 3

Capecitabine 1

Paclitaxel and trastuzumab 1

Number of prior chemotherapy regimens

None 5

One 3

Two 3

z 3 2
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Figure 2. In these analyses, lesions were identified in whole

torso images (Figure 2A) and images were obtained at four

b values (Figure 2, B1–B4). Pixel-by-pixel fits to determine

the ADCw were obtained using Eq. (1), and the results are

displayed in Figure 2C, which shows a crescent of low ADCw

values near the ventral edge of the lesion. This region also

had low correlation coefficients (r2 < 0.85), further indicating

that this artifact was due to visceral motion (Figure 2D ).

Thus, to include all visible lesions with reliability, subsequent

analyses were performed with manually circumscribed ROIs

for each lesion at each b value.

As expected, there was a strong correlation, r = 0.977

(P < .001), between the manually circumscribed ROI pixel

counts (in DWMR images) and the LVs obtained from the

radiology reports, indicating that the circumscribed ROI

was an accurate representation of the LV (data not shown).

The average signal intensities within the ROIs were fit to

determine the ADCw using equation [1]. A summary of

lesion responses among the 13 patients is shown in Table

2. Although there appears to be a trend to smaller lesions

among the responding groups, this was not significant. This

was further documented by examining the relationship be-

tween the LVs at presentation (LVbaseline) and therapy-in-

duced change in LV (%DLV), shown in Figure 3. These data

clearly show no relationship between these two measures.

Mean intensity values were extracted from diffusion-

weighted images across all slices for each lesion at each

b value and each exam to calculate the ADCw. For the mean

ROI analysis, the numeric difference between ADCw1 and

ADCw2 was examined to determine reliability. Ideally, if a

measurement is reproducible, the difference should be

zero. The mean and the standard deviation of the difference

in the ADCw values obtained from the two replicated images

for each lesion and exam are 19.6 and 376.4 mm2/sec,

respectively. Patients were grouped from one to five accord-

ing to tumor response (Table 2). Because analysis was

completed on a lesion-by-lesion basis, there is a range of

tumor responses for each patient.

As stable or responding disease is similarly treated clin-

ically, the response groups were pooled into two larger

subsets. Lesions in groups 1 and 2 were considered non-

responders, and lesions in groups 3, 4, and 5 were pooled

into a responder subset. Figure 4 shows typical chances in

ADCw in a responding (right-hand panel) and a nonrespond-

ing (left-hand panel) patient. Data from all patients are

shown in Figure 5. These data indicate that, as a group, re-

sponders can be distinguished from nonresponders by day

11 following commencement of therapy. Table 3 indicates

that nonresponder ADCw values are never significantly dif-

ferent from baseline, whereas responders are significantly

different on days 11 and 39. Hence, an increase in the ADCw

value relative to baseline was a strong predictor of response.

The predictive value of the ADCw changes was also exam-

ined by constructing a receiver–operator–characteristic

(ROC) curve (Figure 6). As shown, there is significant

potential to diagnose response even by day 4, with an area

under the curve of 0.84, and this improves to 0.91 by day 11.

Sensitivity and specificity are both approximately 80% on

diagonal. Sensitivity can be over 70% at a specificity of 100%

and, conversely, a sensitivity of over 90% is reached at a

specificity of 70%. Sensitivity is TP / (TP + FN) and specificity

is TN / (TN + FP).

At a deeper level of evaluation, the strength of the

association between the ADCw and the objective clinical

response was evaluated using Pearson correlation coeffi-

cients. These compared the scalar clinical response (i.e.,

percent change in the LV between days �3 and +39) with the

scalar percent change in ADCw. A significant correlation was

observed between tumor response and percent change in

ADCw at days 4 and 39, with the correlation on day 11 just

failing significance at a P value of .077 (Table 4). Negative

values of the Pearson coefficient indicated that the increases

in the ADCw were correlated to decreases in LVs. Notably,

the significance between tumor response and change in

Table 2. Summary of Lesion Responses.

Classification of Group

(%DLV = LV39 / LVB)

Lesion Counts Volumes at

Presentation

(cm3 ± SD)Baseline Day 4 Day 11 Day 39

1) Progressive disease

(>125%)

17 17 12 17 17.0 ± 43.4

2) Progressive disease

(113 – 125%)

4 4 2 4 94.5 ± 177.0

3) Stable (88– 112%) 9 9 9 9 8.5 ± 10.3

4) Minor response

(75 – 87%)

6 6 6 6 7.4 ± 5.3

5) Major response

(< 74%)

24 24 21 21 10.8 ± 15.1

Figure 1. Representative images. Echoplanar diffusion-weighted images

from patient with breast cancer metastases. A full torso image is shown in the

lower left, wherein a metastatic lesion in the liver is delineated with circle. The

upper figures show the lesion images from the same slice obtained at b

values from 0 to 450 sec/mm2. In these images, the display gains have been

increased so as to scale to the brightest spot in each image. The actual

intensities decrease as shown in the plot. The natural log of the average

signal intensity within the ROI relative to b = 0 was expressed as a function of

b value to calculate the apparent diffusion coefficient ADCw (denoted as D in

the figure).
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ADCw held only for the smaller lesions (i.e., < 8 cm3), even

though there was no difference in the overall response

rates between large and small lesions (Figure 3, Table 4).

It is also notable that the correlation was strongest on day

4, which was the earliest time point examined. This is

in contrast with the group analyses shown in Figure 5,

wherein the binary response/nonresponse was best pre-

dicted by day 11.

Discussion

A challenge to oncologists in the 21st century will be individ-

ualization of patient care. This will require minimally invasive

measures of patient response, preferably early in the ther-

apy regimen. The current pilot trial indicates that the MR-

measured ADCw may be appropriate as an early marker of

Figure 2. Pixel-by-pixel ADC calculations. Slice from torso image (A) was used to identify lesions, demarcated by circle. Lesion images were obtained at b values

from 0 to 450 sec/mm2 (B1 – B4). Individual pixels were fit to obtain ADC values using Eq. (1), assuming perfect interimage registration. As above, the display gains

have been adjusted to the brightest spot in each image. This resulted in a dark crescent at the edge of the ADC map (C), suggesting misalignment of pixels

between scans at different b values. This was confirmed using a map of the correlation coefficients (D) wherein the bright values had higher r2 values (white > 0.90).

This map also showed that the dark crescent in (C) coregistered with the low r2 values in (D).

Figure 3. Relationship between pretherapy LV and clinical response. The

LV at presentation (LVbaseline) was determined manually by circumscribing

lesions on SSFSE images. The objective clinical response was determined

by calculating the change in LVs between presentation and day 39 follow-

ing commencement of therapy (%DLV). As shown, there is no correlation

between LV and response (r = 0.13).

Figure 4. Representative responses. Changes in the ADCw (o) and volumes

(.) for single lesions in a nonresponding patient and a responding patient.

ADCw values were calculated from ROI analyses, as described in the Mate-

rials and Methods section. LVs were calculated from SSFSE images obtained

in the same session. Data are expressed relative to the values at baseline.
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response in breast cancer patients with hepatic metastases.

This is in agreement with work from other groups who

have used ADCw to monitor response in brain tumors

[8,9,11,15,17]. The current work is different in that it is more

generally applicable to a larger number of patients, com-

pared to gliomas. Liver metastases are common for breast

carcinoma, gastrointestinal carcinoma, and melanoma. The

current results are apparently discrepant with a recent study

in rectal tumors, which showed a decrease in ADCw in

patients responding to chemoradiotherapy [27]. In that work,

the drop in ADCw was associated with a sloughing of dying

parts of the lesions into the lumen of the rectum. Hence,

the domains of the lesion that remained were not responding

and apparently healthy.

These results indicate that changes in the ADCw can

predict clinical outcome, within limits. First, the pooled data

suggest that statistical significance is highest by day 11,

compared to day 4. This is in contrast to the correlation

analyses, which showed a higher significance at day 4. This

apparent discrepancy could be explained by the presence of

two outliers in the responding group on day 4, thus reducing

the average change by day 4. These outliers were both

larger (> 8 cm3) lesions, and the correlation coefficients for

this group of lesions were reduced. Pearson correlation

coefficients are sensitive to outliers. All of these analyses

suggest that smaller tumors respond more quickly and,

consequently, the optimum time for evaluation may be

dependent on the size of the lesions. Despite this, significant

data were obtained from smaller lesions, even though they

are more difficult to circumscribe and more prone to process-

ing errors.

A shortcoming of the current work is in the inability to

assess microdomain structure by parsing the data on a pixel-

by-pixel basis due to visceral motion between scans. Hence,

data analyses required cumbersome, manual circumscribing

of ROI. We are currently working on solutions for automated

segmentation and registration of these lesions. Pixel-by-

pixel analyses will also allow interrogation of the geo-

graphic microdomains of lesion ADCw values (e.g., Figure 1),

which may yield higher dynamic range and higher density

Figure 5. Distribution of ADCw values for nonresponders and responders and

volumes. Patients with positive responses or stable disease (classes 3– 5)

were grouped as responders (o), and those in classes 1 and 2 were grouped

as nonresponders (.). Data show ADCw values (± SD) normalized to the

individual pretherapy baseline ADCw for each patient. Data points are shown

for baseline, day 4 (P = .312), day 11 (P = .066), and day 39 (P = .074).

Table 3. F and P Values from Paired ANOVA Test Comparing Patient ADC

Values on Days 4, 11, and 39 Following Commencement of Therapy Versus

Their Baseline Values.

Nonresponders

(Categories 1 and 2)

Responders/Stable

(Categories 3 –5)

F P F P

Day 4 vs day 0 1.682 0.20 0.292 0.590

Day 11 vs day 0 1.013 0.32 5.610 0.021

Day 39 vs day 0 0.279 0.60 7.379 0.008

Figure 6. ROC curves. ROC for day 4 (.) and day 11 (o) posttherapy.

Lesions were identified as responders or nonresponders, and the changes in

ADCw were rank-ordered. At each value of percent change in ADCw, the

numbers of responders at higher values were classified as true positives (TP)

and the number of nonresponders were false positives (FP). At all lower

values, the numbers of nonresponders at lower values were true negatives

(TN) and the numbers of responders were false negatives (FN). The areas

under the curve for each analysis were 0.84 on day 4 and 0.91 on day 11.

Table 4. Pearson Correlation Values for All Lesions on Days 4, 11, and 39

Postcommencement of Chemotherapy.

Day Test Lesions

All < 8 cm3 > 8 cm3

4 Pearson correlation �0.305 �0.413 �0.140

P (two-tailed) 0.018 0.008 0.557

N 60 40 20

11 Pearson correlation �0.253 �0.306 �0.215

P (two-tailed) 0.077 0.069 0.416

N 50 36 14

39 Pearson correlation �0.285 �0.345 �0.212

P (two-tailed) 0.032 0.032 0.397

N 57 39 18
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of relevant information. We hypothesize that such data will

have greater sensitivity than the current ROI analysis.

Changes in the ADCw are presumably distal to the site

of drug action. Hence, it is more appropriate as a biomarker

for clinical response than, for example, detection of phar-

macodynamics. This distinguishes it from more directed

molecular imaging approaches to measure drug– target

interactions. It is also distinguished from positron emission

tomography imaging of fluorodeoxyglucose (FdG-PET) trap-

ping. Changes in FdG uptake and retention can be observed

with tumor response. Because FdG-PET requires delivery of

substrate to cells, specific uptake rates are affected by the

rate and flow of delivery (i.e., vascular changes), metabolism

(i.e., changes in monosaccharide transport or phosphoryl-

ation), or cell number. Despite these ambiguities, changes in

FdG trapping can be very sensitive and more proximal to the

site of drug action. In contrast, diffusion MRI is more distal

from the drug, but possibly more connected with ultimate

response. Hence, in a clinical setting, it may be used to

quantitatively detect and predict outcome in individual

patients.
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