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Abstract

A solid tumor presents a unique challenge as a system
in which the dynamics of the relationship between
vascularization, the physiological environment and
metabolism are continually changing with growth and
following treatment. Magnetic resonance imaging (MRI)
and magnetic resonance spectroscopy (MRS) studies
have demonstrated quantifiable linkages between the
physiological environment, angiogenesis, vasculariza-
tion and metabolism of tumors. The dynamics between
these parameters continually change with tumor ag-
gressiveness, tumor growth and during therapy and
each of these can be monitored longitudinally, quantita-
tively and non-invasively with MRI and MRS. An
important aspect of MRI and MRS studies is that
techniques and findings are easily translated between
systems. Hence, pre-clinical studies using cultured
cells or experimental animals have a high connectivity
to potential clinical utility. In the following review,
leaders in the field of MR studies of basic tumor
physiology using pre-clinical models have contributed
individual sections according to their expertise and
outlook. The following review is a cogent and timely
overview of the current capabilities and state-of-the-art
of MRI and MRS as applied to experimental cancers. A
companion review deals with the application of MR
methods to anticancer therapy. Neoplasia (2000) 2, 139—
151.
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Introduction

A clear finding from magnetic resonance (MR) investiga-
tions into clinical and experimental tumors is that they are
internally heterogeneous in terms of their perfusion, oxyge-

nation and metabolism. This phenotype has a direct impact
on the ability to cure cancers, since therapies that work in one
volume of the tumor may not be effective in other volumes.
The companion review (Evelhoch et al., this volume)
describes the use of MR to assess and improve therapeutic
efficacy. The current review describes research aimed at
defining the causes of this heterogeneous physiology. No
comparisons are made to other methods (e.g., microelec-
trodes for pH or oxygen, Doppler ultrasound or nuclear
medicine for perfusion). MR is able to observe many diverse
aspects of tumor physiology, often simultaneously or in the
same exam. Because of this, it is a peerless technology.

Perfusion and Angiogenesis

Insights into Tumor Perfusion from MR Studies

Of the myriad facets that cancer displays, its ability to
establish a vascular network is one of the most dangerous.
This vascular network provides cancer cells with nutrients
and oxygen to grow, as well as avenues to escape from.
Paradoxically, it is also the primary means through which
anti-neoplastic agents can be delivered to treat solid tumors.
Interest in tumor vasculature has existed since the 1920s and
before [1], and it was recognized as early as 1945 that
malignant cells provoked a continuous vascular proliferation
[2]. The earliest indirect evidence of the existence of
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radioresistant hypoxic cells [3] in solid tumors came from
observations made by Thomlinson and Gray on human
specimens of bronchogenic carcinoma in 1955 [4]. Necrosis
was found to occur at a distance of 160 um or greater from
the nearest vessel in the histologic sections. This distance
corresponded closely to the diffusion distance calculated by
them where the concentration of oxygen would approach
zero.

Numerous studies, which now span almost a century (see
Ref. [5] for review), have identified several features which
are characteristic of tumor vasculature. Amongst these are i)
spatial heterogeneity and chaotic structures, ii) arterio-
venous shunts, iii) acutely collapsed vessels and transiently
collapsing vessels, iv) poorly differentiated, fragile and leaky
vessels lacking in smooth muscle cell lining, and v)
vasculature which is frequently unable to match the rapid
growth of cancer cells, resulting in areas of hypoxia and
necrosis. Interest in tumor vascularization and angiogenesis
has increased recently due to two findings. One is that high
vascular density in histologic specimens may be predictive of
the disposition of the tumor to metastasize [6,7]. The
second finding is that repeated treatment cycles with the
angiogenesis inhibitor, endostatin, induced tumor dormancy
in experimental tumor models without inducing tumor drug
resistance [8].

Neovascularization is essential for tumor growth and
progression [9]. Tumor cells induce neovascularization
through the release of angiogenesis factors and several
factors have now been identified as angiogenic promoters
and angiogenic inhibitors [9,10]. An angiogenic factor which
appears to be most responsive to the abnormal physiological
environments of hypoxia, extracellular acidosis and sub-
strate deprivation occurring in solid tumors [11] is vascular
endothelial growth factor (VEGF). VEGF induces angiogen-
esis [12—14] and is also a potent vascular permeability
factor [15]. Angiogenesis continues to occur through the
lifetime of the tumor since new vasculature has to be
continually generated with tumor growth. Three quantities,
tumor blood flow, tumor vascular volume and vascular
permeability, have mainly been used to characterize tumor
vasculature. Relative to the time frame of non-MR methods
of studying vasculature, MR is very recent. However, both
magnetic resonance imaging (MRI) and magnetic reso-
nance spectroscopy (MRS) have provided unique and novel
insights into tumor vasculature and the interaction between
the vasculature and physiology and metabolism.

MRI of Tumor Vasculature

Vascularization can be evaluated with MRI using intrinsic
endogenous contrast [16] or with exogenous paramagnetic
contrast agents. The theoretical basis and applications of
these methods to studying solid tumor vasculature has been
recently reviewed [17]. Gadolinium chelates are the con-
trast agents most frequently used for MRI. When the ion is
placed in a magnetic field, the seven unpaired electrons of
gadolinium produce a large magnetic moment that results in
paramagnetic properties, creating contrast in an MR image.
Paramagnetic agents shorten the T4 (spin-lattice relaxation

time), and tissues that take up a paramagnetic agent are
brightened (positive enhancement). Several Gd complexes
are under development or in use. Low-molecular weight
GdDTPA (Gadolinium DiethyleneTriaminePentaAcetate)
compounds (0.57 kDa) are used clinically for contrast
enhancement of various lesions, including malignant tumors.
Macromolecular contrast agents such as Gadomer-17 or
albumin-GdDTPA, remain in the intravascular space with a
half life of several hours because of their large molecular
weights (approximately 35 or 65 kDa, respectively).
Analysis of relaxivity changes induced by an intravascular
agent can be used to determine blood or vascular volume
and vascular permeability [18,19]. Recently, receptor-
targeted contrast agents have been designed, where the
contrast is derived from the density of receptor expression
[20]. Of the three parameters mainly used to characterize
tumor vasculature, currently, only vascular volume and
vascular permeability can be quantified with contrast-
enhanced proton imaging. However, quantitative blood flow
measurements have been obtained using deuterium MRI
with D,O as the blood flow tracer [21].

Assessing Features of Tumor Perfusion by Dynamic "H-
MRI Studies of GADTPA Uptake

In the context of tumor therapy, it is important to know
how efficiently blood is providing oxygen, nutrients and
drugs to tumor tissue and how effective it is in removing
waste products from that tissue. In most tumors, only 20%
to 80% of the microvessels are perfused at a given time
[22], which results in a considerable spatial and temporal
heterogeneity of the microcirculation. Therefore, techni-
ques that reveal the spatial and temporal heterogeneity of
the tumor microcirculation will help in the development of
new treatment strategies and may predict treatment
outcome.

Fast dynamic '"H-MRI studies of GADTPA uptake can
measure features of the perfused microvascular architecture
with a high spatial and temporal resolution [23-25]. The
regional uptake rate of this tracer into the extravascular
volume of tumor tissue is related to physiological parameters
that determine the supply of oxygen, nutrients and drugs,
such as tumor blood perfusion (TBP) and diffusive transport
across the vascular endothelium [5,26]. Different pharma-
cokinetic models have been developed to relate GADTPA -
uptake rates to these physiological parameters [27-29].
The most important are the single - capillary model proposed
by Kety [27] or Larsson et al. [28] and the multi-
compartment model developed by Tofts and Kermode
[29]. Both models were compared in 1992 and possible
differences were explained [30]. In these models, tumor
tissue is considered as a volume with a vascular and
extravascular compartment. The uptake of a tracer in the
extravascular compartment is governed by a rate constant k
(s~ 1) and by tracer concentration differences between both
compartments. The single -capillary model is more universal
than the multi-compartment model, because the tracer-
uptake rate constant k (s~') is related to both TBP (ml
s~ ") and diffusive transport across the vascular endothe-
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lium (mls~ '), whereas in the multi-compartment model, k
is only determined by diffusive transport across the vascular
endothelium [29,30]. This transport term is dominated by
the permeability (P) of the vascular endothelium (cms~1)
and the surface-area (S) of the perfused microvessels
(cm?). Both parameters are grouped in the so-called PS-
product, because they are difficult to measure separately.
Finally, in both models, the uptake rate constant has an
inverse relationship with the distribution volume (Vg4) (ml)
of the tracer, which is the extracellular space in the case of
GdDTPA.

The choice of the pharmacokinetic model depends on
the physicochemical and pharmacological properties of the
tracer. For instance, diffusion-limited tracer uptake across
the vascular endothelium may be favored when tracers
with a molecular weight larger than 20 kDa are chosen
[31] (see also Tumor Perfusion Measured with High-
Molecular Weight Tracers section). In the case of small
tracers, such as GdDTPA, it is more difficult to correlate
tracer-uptake rates directly to TBP and/or diffusive
transport across the vascular endothelium, since both
may influence the tracer-uptake rate simultaneously.
However, detailed information on morphometric para-
meters of the perfused neovasculature of a tumor may
help to solve this problem.

In pre-clinical studies on 9L-glioma growing in rat brain,
the perfused vascular surface-area (S) was determined
immunohistochemically and co-registered with images of
fast dynamic GADTPA uptake [31]. Spatial matching of S
with GADTPA-uptake rates revealed a linear relationship
(see Figure 1A). The linear relationship suggests that
GdDTPA-uptake rates (k) are dominated by S and hence,
are not significantly affected by variations in TBP or vascular
permeability (P). The molecular weight of GdDTPA is
probably not large enough to discriminate between more or
less leaky microvessels, because all microvessels were
highly permeable to GADTPA. Furthermore, it would be of
interest to know which range of TBP values could affect the
relationship between kand S. For that purpose, relationships
between k-values, PS-product and TBP were simulated
using the single-capillary model. In these simulations, the
TBP was varied between 0 and 4 times the maximum PS-
product found in the study on 9L -glioma growing in rat brain
[31]. In Figure 1B, it is shown that the relationship between
k-values and the PS-product becomes linear only when the
TBP is larger than the PS-product. Thus, the linear
relationship between k-values and the perfused vascular
surface area in Figure 1A suggest that TBP is larger than the
PS-product in the different voxels. Hence, GADTPA - uptake
rates are diffusion-limited. If the TBP was less than the PS-
product, the relationship between k and PS-product would
be exponential, showing that GADTPA-uptake rates were
perfusion-limited. When GdDTPA-uptake rates can be
related to parameters of the functional neovasculature, they
can be used more efficiently as a prognostic tool before or
during the monitoring of a therapy. For instance, this may
help to monitor non-invasively the effect of an anti-
angiogenic therapy on tumor microvessels.
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Figure 1. (A) The correlation between GADTPA - uptake rates (k) and the
perfused vascular surface-areas (S) in voxels of 10 9L - gliomas. The solid
line indicates the results of the least- squares linear regression analysis of the
data: k = 0.23 + 0.02 SDxS, R? = 0.72 (n = 86). (B) Surface-plot of
correlations between the PS-product (x-axis), TBP (y-axis) and
GdDTPA - uptake rate constants (k) (z-axis) using the definition of the rate
constant k as proposed by Kety [27] or Larsson et al. [28]. Note that the
range of k- values is comparable to the range in (Figure 2A). These data are
from work performed by B. van der Sanden with grateful acknowledgements to
Dr. T.H. Rozijn, Dr. W.M.M.J. Bovee, P.F.J.W. Rijken, Prof. A.J. van der Kogel
and Prof. A. Heerschap.

Tumor Perfusion Measured with High-Molecular Weight
Tracers

GdDTPA conjugated to high molecular weight tracers can
be used to generate three-dimensional maps of vascular
volume and permeability [32,33]. Multi-slice data obtained
for a human breast cancer model (MDA-MB-435-13) in a
SCID mouse are presented in (Figure 2a — f). At the end of
the imaging studies, the animals were sacrificed, 0.5 ml of
blood withdrawn from the inferior vena cava, and tumors
were marked for referencing to the MRI images, excised and
fixed in 10% formalin for sectioning and staining.

In the MR images, the relaxation rate (1/T;) was
determined in each voxel as a function of time. The slopes
of these relationships were used to compute (PS)
maps (Figure 2b). The intercept of the line at zero time
is used to compute vascular volume maps, shown in
(Figure 2c) [34]. In this manner, vascular volumes are
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Figure 2. Three - dimensional reconstructed maps obtained from a single MDA -MB-435-13 tumor. (a) Sections stained for VEGF expression using a rabbit
polyclonal anti- VEGF antibody (Santa Cruz Biotechnology, Santa Cruz, CA). (b) Hematoxylin/eosin - stained histologic sections. (c) MRI map of vascular
permeability. (d) MRI map of vascular volume. (e,f) Three-dimensional and triplanar views of a fused vascular image obtained by displaying vascular volume
through a green channel and vascular permeability through a red channel. Multi- slice maps of relaxation rates (T;~ ') were obtained by a saturation recovery
method combined with fast T SNAPSHOT - FLASH imaging (flip angle of 5°, echo time of 2 msec). Images of eight slices (slice thickness of 1 mm) acquired with
an in-plane spatial resolution of 250 um (64x 64 matrix, 16 mm field of view, NS = 16) were obtained for three relaxation delays (100 msec, 500 msec, and 1
second) for each of the slices. Thus, 64x64x8 T ; maps were acquired within 7 minutes with an M, map with a recovery delay of 7 seconds acquired once at the
beginning of the experiment. Images were obtained before i.v. administration of 0.2 ml of 60 mg/ml albumin - GdDTPA in saline (dose of 500 mg/kg) and repeated
every 8 minutes, starting 10 minutes after the injection, up to 32 minutes. Relaxation maps are reconstructed from data sets for three different relaxation times and

the M, data set on a pixel - by - pixel basis. These data are from work performed by D. Artemov, M. Solaiyappan and Z. M. Bhujwalla.

corrected for vessel permeability. Adjacent 5-pm-thick
histologic sections obtained at 500-um intervals through
the tumor were stained with hematoxylin/eosin or for
distribution of VEGF. Sections were digitized with a
Sanyo CCD camera attached to an optical microscope.
Three-dimensional reconstructions of both MRI and histo-
logic sections (Figure 2a and b), were performed using the
Clinical Microscope Visualization software running on
Silicon Graphics Inc., Octane Workstation. Image cross-
registration was performed interactively. Also shown in
Figure 2e and f are the fusion of vascular volume and
vascular permeability displayed as two independent colors,
green and red. The absence of yellow in most of the image

demonstrates visually that there is very little overlap
between regions of high vascular volume and regions of
high permeability. This characteristic has been consistently
observed. Regions of low vascular volume often contain
necrotic foci and are also the most permeable [17]. These
regions are also usually associated with higher expression
of VEGF. These data support earlier MRI observations
made by Furman-Haran et al. [35] that highly permeable
vessels were detected near necrotic regions for MCF-7
tumors. Another possibility is that tumor vessels appear
leaky in these regions (especially in the clinic) because
they have been destroyed by an advancing invasive tumor
mass.

Neoplasia e Vol. 2, Nos. 1- 2, January - April 2000
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Ethylnitrosourea induces breast tumors fibroadenomas
(FA), as well as low and high grade infiltrating ductal
carcinomas (IDC) in the rat. Using this system, the
pharmacokinetic characteristics of Gd-DTPA (<1 kD),
Gadomer-17 (35 kD), and albumin-Gd-DTPA (70—-90 kD)
were evaluated by Dynamic Contrast Enhanced MRI in order
to differentiate the different tumor types [18]. The benefits of
using three different sized contrast agents is that a greater
range in permeability values can be discriminated. The
results indicated that vascular volume was a consistent
determinant of tumor grade. Although high-grade IDC had
the highest vascular permeability, this parameter was
somewhat more variable in that FA had a higher vascular
permeability than that of low-grade IDC. The statistical
analyses showed that the clinically available small agents
could be used to differentiate FA from the malignant tumors,
but it could not differentiate between malignant tumors of low
and high grades. GADTPA was useful in discriminating FA
from IDC but could not discriminate between low and high
grade IDC. The intermediate sized agent, Gadomer-17,
could differentiate between high-grade and low-grade IDC,
but it could not discriminate low-grade IDC from the benign
FA. The largest agent, albumin-Gd-DTPA, was capable of
differentiating all three tumor grades, but the low signal to
noise ratio (resulting in high variation) was a major technical
concern.

MRI Analysis of Tumor Angiogenesis

MRI provides multiple approaches for detection of tumor
angiogenesis, based on molecular, structural and physiolo-
gical distinctions between normal and tumor vasculature.
Tumor neovasculature is frequently highly permeable,
resulting in rapid extravasation of exogenously administered
contrast material into the extracellular space. Dynamic
contrast enhancement and clearance curves can be used
for analysis of vascular permeability, blood volume and the
extracellular volume fraction (vide supra). Using low-
molecular weight contrast material (e.g., GdDTPA), sig-
nificant correlations can be found between the parameters
derived from MRI and histologic analyses of microvessel
densities, but not with VEGF expression [36]. With the
exception of the brain, most normal capillaries are permeable
to low-molecular weight compounds such as GdDTPA.
However, capillary endothelial cells stimulated with the
angiogenic growth factor VEGF showed enhanced extra-
vasation of plasma proteins. MRI analysis of VEGF -induced
permeability was demonstrated using albumin-GdDTPA
[37]. Treatment with neutralizing anti-VEGF antibodies led
to immediate and persistent inhibition of albumin-GdDTPA
extravasation [37]. Permeability measured by albumin-
GdDTPA correlated spatially with elevated expression of
VEGF (vide supra).

Thus, MRI-detected hyperpermeability can be used in
many cases for in vivo assessment of VEGF signaling.
However, the large variance in vessel permeability found in
normal tissues as well as in tumors, implies that hyper-
permeability cannot be used as a reliable marker of
neovasculature. Alternative approaches for specific evalua-
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tion of angiogenesis can be found in two recent studies, in
which the MRI contrast was sensitized to molecular or
structural markers of angiogenesis. In the first study, specific
image enhancement of tumor neovasculature has been
achieved in a model of squamous cell carcinoma in rabbit
using paramagnetic polymerized liposomes conjugated with
anti «,03 antibodies [20]. In the second study, tumor
neovasculature was characterized by the increased capillary
diameter. Two mechanisms of water relaxivity induced by
intravascular contrast material, AR, (i.e., 1/T,) and ARY*
(i.e., 1/ To*), exhibit different dependencies on the radius of
the blood vessels. Thus, the ratio of relaxivities (ARy*/
AR5) can be used to derive maps of capillary diameter,
showing excellent agreement with histology and sensitive
detection of the tumor neovasculature in experimental C6 rat
glioma tumors [38].

Changes in blood volume associated with angiogenesis
can be measured using the intrinsic contrast of blood vessels
arising from deoxyhemoglobin and detected by T,*-
weighted gradient echo images [16,39]. This method has
been applied to measure, for example, the kinetics of
spheroid vascularization and growth for rapidly growing C6
glioma [39], the vascular instability during the dormant
phase of implanted human epithelial ovarian carcinoma
spheroids [40], wound-induced tumor growth [41] and the
increased angiogenic activity of human epithelial ovarian
carcinoma tumors in ovariectomized hyper-gonadotropic
mice [42]. These studies demonstrate that the angiogenic
potential of tumors is frequently dominated by local micro-
environmental changes (such as hypoxia and injury) or by
systemic perturbations (such as changes in the hormonal
milieu), rather than by genetic selection for angiogenic
phenotype. The primary signal for tumor angiogenesis in this
system was attributed to stress-induced expression of
VEGF as controlled by the hypoxia-inducible transcription
factor, hif-1a.

In summary, assessment of environmental, molecular,
genetic and pharmacological perturbations of angiogenesis
requires extensive in vivo analytical tools. MRI can be used
to non-invasively access a wide range of parameters that
reflect vascular expansion and regression. The ability of MRI
to obtain three-dimensional information provides large
freedom in the design of the biologic model. Moreover,
almost any MRI method developed in experimental models is
potentially transferable to the clinical assessment of tumor
angiogenesis.

MRI Tracking of Vascular Function and Maturation Using
Carbogen

Regions of active angiogenesis are often connected to
regions of low blood oxygenation, due to hif-1«-induced
transcription of VEGF. These volumes show large signal
enhancements during exposure to elevated oxygen [43].
This signal enhancement can be used for imaging vascular
functionality without intravenous administration of contrast
material [44]. Oxygen is usually provided as carbogen
(95% 05/5% CO,). The CO, is thought to act on
baroreceptors in mature vasculature and prevent hyperoxic
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vasoconstriction. Maturation of vessels is a secondary
process related to the recruitment of perivascular smooth
muscle cells and pericytes allowing the vessels to respond
to vasoactive agents. Using this approach, reduced
vascular functionality was measured in hif-1«a-deficient
embryonic stem cell tumors [44]. MRI has been applied
for detection of changes in blood flow in response to
elevated CO,, as a physiological measure of vascular
maturation [45]. Since VEGF is an essential survival
factor for immature neovasculature [46], its withdrawal
should lead to collapse of immature, but not mature
vasculature. This was tested in subcutaneous C6 tumors
containing the VEGF gene under control of an inducible
(tetracycline) promotor (pTET-VEGF), and revealed the
ability of MRI to predict vascular susceptibility to VEGF
withdrawal [45]. These results are shown in Figure 3. In
these studies, inhalation was switched between 95% air/
5% CO, and carbogen. Hence, CO, was held constant and
the only variable was O..

Tumor Oxygenation, pH and Metabolism

Tumor oxygenation and pH are important parameters of
tumor physiology that are inextricably coupled. Both low pH
and low pO, levels negatively impact therapy and induce
maturation of more transformed phenotypes [47]. These are
also coupled through metabolism such that volumes with low
pO, are expected to be more glycolytic and hence, the most
acidic.

"SF-NMR Techniques for the Study of Tumor Oxygenation
and Response to Interventions

Hypoxic cells in solid tumors are generally found in
regions of poor tumor vascularization and are thought to be
responsible for reducing the effectiveness of both chemo-
and radiotherapy. Vascularization in neoplastic tissue can be
quite heterogeneous, allowing cells to become necrotic,
chronically hypoxic (diffusion limited) or acutely hypoxic
(perfusion limited). Consequently, the ability to spatially
resolve tumor oxygen tension in a timely fashion would allow
rapid dynamic changes in local tumor oxygen values to be
evaluated in response to therapeutic interventions. The
ability to study and monitor tumor hypoxia would facilitate the
most efficacious administration of current treatment strate-
gies and should stimulate new developments in solid tumor
therapy.

F_NMR spectroscopy and imaging of perfluorocarbon
(PFC) emulsions has been used extensively to measure
oxygen tension in biologic systems [48]. The favorable
biocompatibility of PFCs allows intravenous injection of
these compounds in large doses. Following PFC adminis-
tration, the emulsion particles are cleared from the
vasculature by the reticuloendothelial system (RES) of
the liver and spleen as well as macrophages in abscesses
and tumors. In tumors with “leaky” vasculature, PFC
particles can pass through the fenestrations in the
vascular wall and accumulate in the interstitial space
[49]. Oxygen-sensitive '®F-NMR relies on the fact that

the NMR spin-lattice relaxation rate, Ry (1/T4), of the
PFC is enhanced in direct proportion to the dissolved
molecular oxygen concentration and thus allows oxygen
measurements to be performed in the vicinity of the
sequestered PFC. Consequently, PFC spin-lattice relaxa-
tion rates measured in vivo are a sensitive indicator of
tumor oxygen tension and provide a powerful noninvasive
method for monitoring tumor hypoxia before and during
treatment.

In spite of their promise as in vivo oxygen probes, the
molecular structure of many PFCs is not conducive to high-
sensitivity '°F-MRI studies of tumor oxygenation. Short T,
relaxation times, relatively long T, relaxation times,
compensation for chemical shift artifacts and J-modulation
effects can severely reduce the '°F-MRI signal intensity for
many PFCs [50]. Most of these technical difficulties have
been mitigated through the introduction of more NMR-
compatible PFCs [50,51] and the use of time-efficient
MRI-data acquisition methods [51,52]. In particular, '°F-
echo-planar imaging (EPI) of perfluoro-15-crown-5-ether
has proven to be a useful method for measuring tumor
oxygenation in experimental tumor models [51].

®F_.NMR spectroscopy and imaging have been used
extensively to monitor changes in tumor oxygenation as a
function of a variety of therapeutic interventions in animal
models. '°F spectroscopy measurements from RIF-1
tumors in C3H mice showed a statistically significant
improvement in tumor pO, for a nicotinamide - treated group
as compared with saline-treated controls [53]. As shown in
Figure 4, '°F-IR-EPI of perfluoro- 15-crown-5-ether can be
used to map the spatial distribution of oxygen tension in RIF -
1 tumors and statistically significant changes in tumor
oxygenation have been measured when the breathing gas
was changed from air to carbogen [51,54]. This same
imaging methodology has also been used to monitor
changes in tumor oxygenation following radiotherapy [55],
nicotinamide administration [53,56] and chemotherapeutic
treatment with 5-fluorouracil [57].

Carbogen-Induced Changes in Tumor Oxygenation and
Blood Flow Monitored by Gradient-Recalled Echo (GRE)
MRI

Because the oxygenation status of cells in tumors can
influence the response of those tumors to therapy [58],
several approaches have focused on methods for modify-
ing tumor oxygenation and blood flow. One such approach
is breathing carbogen (95% 0,/5% CO.,), to increase the
amount of dissolved oxygen in the plasma to provide
more oxygen at the capillary level, and hence allow
diffusion of oxygen into chronically hypoxic regions.
Carbogen has been shown to enhance rodent tumor
radiosensitivity [59] and, in combination with nicotina-
mide, is currently being re-evaluated in several European
clinical trials [60,61].

A non-invasive technique to assess changes in oxygena-
tion and perfusion, and their heterogeneous distribution
within an individual tumor, would be of considerable
prognostic and diagnostic clinical value. "H-MRI methods
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Enhancement

Figure 3. Vascular collapse in response to VEGF withdrawal. Signal
enhancement in response to hyperoxia was monitored in C6-pTET-VEGF
tumors in nude mice, by switching the mice from inhalation of 95% air/5% CO,
tp 95% 0./5% CO, (carbogen). (A) In the absence of tetracycline, the
tumors were hypervascular in accord with over-expression of VEGF. (B)
Forty-eight hours after administration of tetracycline, suppressing VEGF
over-expression, a significant drop in vascular function was observed (see
also Refs. [20,21] ). These data are from work performed by R. Abramovitch,
H. Dafni, E. Smouha, L. Benjamin and M. Neeman.

have high temporal and spatial resolution, which are
sensitive to changes in deoxyhemoglobin content through
the NMR relaxation time, T.*. Deoxyhemoglobin is para-
magnetic and creates susceptibility variations in the proxi-
mity of blood vessels, shortening the MR relaxation time,
T>*. GRE MRI sequences are sensitive to T»>* and hence
reflect blood oxygenation levels. GRE MR images of tumors

can thus be used to monitor changes in the tissue
concentration of deoxyhemoglobin, whether due to fractional
desaturation of oxygen from red blood cells, or blood flow
modification causing changes in the absolute number of red
blood cells. Deoxyhemoglobin thus acts as an endogenous
contrast agent.

One of the first demonstrations of the potential of GRE
MRI to the study of tumor physiology was by showing that
carbogen breathing-induced large increases in image
intensity of transplanted GH3 prolactinomas [62]. This
increase in T,* was consistent with a decrease in deox-
yhemoglobin content within the tumor (Figure 5). Increases
in both tumor blood oxygenation and blood flow have been
discriminated within this response. Different GRE MRI
responses to carbogen breathing have been observed in a
number of other rodent tumor models (Ref. [62] and
references therein), and the approach has also been
successfully translated to the clinic, where differing GRE
MRI responses of human tumors to carbogen breathing have
been monitored [63]. This demonstrates that the effects are
tumor-type -dependent and are presumably a consequence
of different vascular architectures that exist within each
tumor type.

The relationship of GRE MRI response and tumor pO,,
the critical parameter with respect to treatment outcome, has
been investigated by invasive Eppendorf histography during
carbogen breathing and showed a weak correlation in GH3
prolactinomas [62]. A stronger correlation of carbogen-
induced increases in T,* with tumor oxygen tension has

Calculated Tumor pO, Maps
=)
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e
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Figure 4. Oxygen - tension mapping in a radiation - induced fibrosarcoma (RIF - 1) tumor implanted on the lower back of a C3H mouse which received a 10 g/kg
dose of perfluoro - 15 - crown - 5 - ether 4 days before imaging at 2.0 T. Upper Left: Coronal "H spin - echo image of RIF - 1 tumor, 256x 256 pixel resolution, repetition
time (TR) = 1 second, echo time (TE) = 25 msec, field of view (FOV) = 30 mm, slice thickness of 2 mm, 128 phase - encoding steps, number of averages
(NEX) = 2. Upper Center: Coronal projection "°F spin-echo image of sequestered perfluoro- 15 -crown - 5 - ether in same tumor as in Upper Left, 128x 128 pixel
resolution, TR = 5 seconds, TE = 25 msec, FOV = 30 mm, 64 phase - encoding steps, NEX = 4, total image acquisition time = 21 minutes. Upper Right: Coronal
projection "°F - inversion recovery - EPI of same tumor as in Upper Left, 64x 64 pixel resolution, TR = 10 seconds, TE = 30 msec, inversion time (TI) = 80 msec,
FOV = 30 mm, NEX = 8, total image acquisition time = 80 seconds. Lower Left: Calculated pO. map (from seven IR-EPIs, like that shown in Upper Right, with TI
values of 0.08, 0.20, 0.50, 1.0, 2.0, 4.0, and 8.0 seconds, respectively) for animal breathing air. Color indicates pO, values from 0 to >25 Torr. Lower Center:
Calculated pO, map as in Lower Left, but with animal breathing carbogen (95% O»/5% CO_) for 15 minutes. Lower Right: Difference in pO, map obtained by
subtracting pO» map in Lower Left from pO. map in Lower Center (carbogen -air). Color scale now indicates change in pO, from — 12.5 to +12.5 Torr. Oxygen
tension maps have been cropped to remove some of the background noise region shown in Upper Right. These data are from work performed by C. Sotak, with
grateful acknowledgement to K. Helmer and M. Meiler.
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Air Carbogen

Figure 5. GRE images obtained from two rat transplanted GH3 prolactinomas
grown subcutaneously in the flank, acquired whilst the host breathed air and
subsequently carbogen (95% 0O./5% CO). Images are typically hetero-
geneous, with regions of intense signal (long T2* hence low [deoxyhae-
moglobin]) becoming more so during carbogen breathing. Within some of
these regions, intensity increases can be observed for structures that are
attributed to large tumor blood vessels. Other regions giving rise to little or no
signal (short T>* hence higher [deoxyhaemoglobin]) are unaffected by
carbogen breathing and probably correspond to areas of either low blood
flow/hypoxia or necrosis, though this has still to be addressed. These data are
from work performed by S. Robinson, with grateful acknowledgement to Prof.
J.R. Griffiths.

been observed in R3230Ac mammary adenocarcinomas
[64]. Preliminary data using a novel MR-compatible fiber-
optic oxygen electrode have demonstrated the simultaneous
acquisition of tumor GRE MR images and pO,, and
increases in both signal intensity and oxygenation status
with carbogen breathing [65].

The effects of carbogen breathing on the tumor metabolic
phenotype have been monitored by GRE MRI interleaved
with 3'P-MRS, an indicator of the tumor bioenergetic state
[66]. Carbogen increased both tumor GRE MR image
intensity and SNTP/P;. Host carbogen breathing did not
change intracellular pH, whereas extracellular pH became
more acidic (vide infra). Tissue and plasma glucose
increased in response to carbogen, whilst intra- and
extracellular lactate decreased, consistent with a switch to
a more oxidative tumor metabolism.

Carbogen, in combination with nicotinamide, is being
re-evaluated as a clinical radiosensitizer with some
encouraging results [60,61]. However, breathing carbogen
in the clinic has proven problematical, as such high levels
of hypercapnia induce sensations of breathlessness and
heat. In support of these trials and the development of
appropriate gas mixtures for routine clinical use, both 1%
and 2.5% CO, in oxygen were found to elicit a GRE MRI
response in rat GH3 prolactinomas, the latter to a similar
extent as carbogen [67]. This supports the concept that
levels of hypercapnia can be reduced without loss of
enhanced oxygenation and hence radiotherapeutic benefit
[68].

Additionally, carbogen-induced increases in tumor blood
flow have been used to enhance the uptake and efficacy of
the chemotherapeutic agents ifosfamide and 5-fluorouracil,
monitored by MRS [69,70]. The underlying hypothesis is
that carbogen dilates the tumor blood vessels, due to CO,-
induced vasodilatation, resulting in improved drug delivery,
with the resumption of air breathing closing down these
vessels and trapping the drug.

The exact relationship between the GRE MRI response
to carbogen and tumor blood oxygenation and flow is
complicated, being a function of blood volume, blood
vessel morphology, vascular density and blood flow. A
similar approach is now being used to probe vascular
maturation and function in tumor angiogenesis [16]. There
is now a large amount of evidence suggesting that the
increase in GRE MR image intensity of tumors with
carbogen breathing is consistent with a decrease in
deoxyhemoglobin, i.e., an improvement in tumor blood
oxygenation (decrease in AT,*). A number of issues now
need to be addressed, namely: 1) What are the precise
mechanisms underlying this response? 2) Are carbogen
non-responding regions indicative of areas of tumor
hypoxia or necrosis? 3) Does a decrease in Ty* reflect
an increase in tissue pO,?, and 4) Can any prognostic/
diagnostic indices be identified from this response that will
be ultimately useful in the clinic?

Tumor pH

Tumors have long been known to generate notable
amounts of lactic acid even in the presence of oxygen
[71]. This has led many to postulate that tumors are acidic.
Indeed, early studies with microelectrodes appeared to
confirm this hypothesis, since pH values as low as 6.2 were
measured in many tumors [72]. However, 3'P-MRS of
inorganic phosphate (P;) in tumors measured pH values
that were neutral-to-alkaline [73-75]. This apparent
discrepancy was resolved when it was determined that the
pH measured by MRS (pHwrs) was actually measuring
intracellular pH [76], and by extrapolation, microelectrodes
were measuring the extracellular pH. Such reversal of pH
gradients can negatively impact therapy, and this is
discussed in more detail in the companion manuscript.
Additionally, the apparent reversal of the pH gradient (with
acid outside) has physiological and metabolic conse-
quences to the tumor cells [77]. Low pH can also affect
carcinogenesis itself. For example, culturing of primary
diploid Syrian hamster embryo cells at pH 6.7 induces them
to spontaneously transform to a tumorigenic phenotype
[78,79]. This may occur because low pH is clastogenic,
causing chromosomal strand breaks and rearrangements
[80,81]. At a later stage of carcinogenesis, low pH also
induces invasive, migratory behavior in vitro [82] as well as
metastasis in vivo [83], apparently through the activation
and release of proteases [84—-87].

MR provides an almost ideal technology with which to
monitor tumor pH, since it is non-invasive and non-
destructive. Additionally, the resonant frequencies and
behaviors of many compounds are pH-sensitive. The most
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common pH indicator in use by MRS is that of endogenous
P;, which is sensitive primarily to the intracellular pH [88]. A
number of '°F-labeled pH indicators have been developed,
which report both the intra- and extracellular pH values [89—
91]. These are advantageous in that there are no endogen-
ous '°F signals to interfere with the measurement. A 3'P
indicator has also been developed which is non-toxic and is
confined to the extracellular space (Ref. [92], see also
companion manuscript). This is advantageous in that it
allows simultaneous measurements of intracellular pH and
tumor bioenergetics. More recently, 'H-labeled pH indica-
tors based on imidazoles have been imaged in tumors to
report pH “maps” of localized pH heterogeneity [93].
Methods of the future will likely be based on pH-sensitive
relaxivity of contrast agents, which will allow true “pH
imaging.” A number of these compounds are being
developed [94-97].

Perfusion and Metabolism

One of the unique contributions of MR methods is its
ability to investigate the relationship between tumor blood
flow, physiology and metabolism and to understand how the
abnormal vasculature impacts on physiology and metabo-
lism. One of the first attempts to relate tumor perfusion to
metabolism was by Evelhoch et al. [98]. These authors
observed a correlation between the well-perfused fraction
(or the fraction of viable cells) and pHyrs and NTP/P;, but
not between the perfusion rate in the well-perfused fraction
and %'P-NMR spectral parameters. They concluded the
probable existence of a threshold in perfusion rate beyond
which metabolism as measured by 3'P-NMR was not
significantly coupled to perfusion. Similarly, Terpstra et al.
[99] have observed a threshold for blood flow ranging from
4.8 to 20.8 ml/100 g per minute, above which lactate was
constant in a C6 rat glioma model. These putative thresholds
will, however, also depend on the energy requirements and
oxygen and nutrient consumption rates of the cells.

Abnormal tumor vasculature manifests itself as hetero-
geneity in metabolism and pH. Localized proton spectra
obtained from a single tumor, frequently demonstrate
heterogeneity in the distribution of lactate for 2x2x2 mm?
voxels through the tumor (Ref. [100], see below). This
heterogeneity of lactate distribution likely translates into a
heterogeneity in pH (Ref. [93], Figure 6). The versatility of
current MR techniques will allow evaluation of multi-
parametric relationships, e.g., lactate, extracellular pH,
vascular volume and permeability, non-invasively within a
single tumor. Spectroscopy has also shown that interven-
tions which acutely alter blood flow alter metabolism. For
example, administration of the vasoactive agent hydralazine
which reduces tumor blood flow resulted in a significant
increase in lactate as detected by localized proton spectro-
scopy [100]. In contrast, single doses of radiation or
chemotherapy can increase tumor blood flow. A single dose
of 20 Gy, which significantly increased tumor blood flow as
measured by '*C iodoantipyrene [101], produced a sig-
nificant increase of NTP/P;, pH and a significant decrease in
lactate [101,102] as measured by MR spectroscopy. Similar
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changes were observed with single doses of 5-fluorouracil
[103,104]. These spectroscopic data provide evidence that
although the physiological environment can regulate angio-
genesis, vascularization can, in turn, regulate physiology and
metabolism.

Quantitative MR Studies of Glycolysis In Vivo

Under hypoxic conditions, cells in tumors derive energy
primarily from glycolysis. Even in the presence of oxygen,
however, an increased capacity for glycolytic metabolism is a
well - established property of neoplastic cells. Many studies
of experimental tumors have provided evidence of reduced
respiratory capacity and increased reliance on glycolysis for
energy production. Consequently, the concentration of lactic
acid in tumors is usually higher than in normal tissues.
Recent human studies have revealed a positive correlation
between the incidence of metastasis and the mean lactate
concentration in biopsies [105,106].

In vivo lactate levels can be measured with 'H-MRS
[107-111]. In studies of rat C6 glioma, a positive correlation
has been observed between the tumor lactate level as
measured in vivo with '"H-MRS and the neoplastic cell
density as determined ex vivo by histopathology [112].
Several groups have also demonstrated the ability to follow
glycolytic breakdown of '3C - enriched glucose to lactate. '3C
is a special NMR-active nucleus. Because it is only 1.1%
naturally abundant, its consumption and conversion in
tissues can be monitored in real time with tracer kinetic
analyses. These MRS measurements were performed either
by direct '°C detection [113—117] or by more sensitive
indirect detection of internuclear ('3C-'H) coupling
[109,111,112,118]. The incorporation of the '3C label into
glutamate, which exchanges with the TCA cycle intermediate
a-ketoglutarate, has permitted detection of respiratory
metabolism in some tumors [113—117]. By supplying
[1-'3C]glucose and applying the appropriate kinetic models,
dynamic MRS measurements of [4-'3C]glutamate have
allowed determinations of TCA cycle flux in cultured glioma
cells [119]. Hence, in vivo MRS can provide kinetic
parameters (e.g., metabolic fluxes and rate constants) to
characterize neoplastic metabolism and to potentially help
predict metabolic responsiveness to treatments.

Here we show results from a study of a rat C6 glioma in
which '"H-MRS was used to monitor the formation of
[3-"3C]lactate using inverse-detection as a function of time
while infusing [1-'®C]glucose. Figure 7 shows an image of a
rat brain with rectangles drawn to indicate the tissue volumes
from which the 'H spectra originated. The top panel on the
right shows the time - course of [3-'3C]lactate buildup in the
tumor, with an expanded view of a spectrum acquired late in
the [1-"3C]glucose infusion period. For comparison, the
lower panel shows a spectrum from predominantly normal
brain, which was also acquired long after the [1-'3C]glu-
cose infusion had begun. In the tumor, detectable '3C
enrichment was observed only in lactate, whereas the brain
exhibited the expected '°C-labeling of glutamate, which
indicated that the label cycled through the TCA cycle.
Previously, low lactate levels have been observed in tissues



™ 148

Magnetic Resonance in Model Systems Gillies et al.

Figure 6. (a) Intensity map of the H2 resonance of IEPA in a coronal slice
through an MDA™ -435 human breast cancer tumor growing in an SCID
mouse. (b) Corresponding extracellular pH map, calculated from the
chemical shift of the IEPA resonance (Ref. [93]) (reprinted with permission
from Wiley - Liss ). These data are from work performed by R. van Sluis, with
grateful acknowledgement to Prof. R.J. Gillies and Dr. N. Raghunand.

surrounding these tumors [111], and thus, the presence of
[3-"3C]lactate in this brain region was most likely due to
some inclusion of tumor tissue in the volume.

A kinetic model can be applied to calculate metabolic
fluxes from dynamic MRS data like those shown above.

For C6 glioma, the rate constant describing lactate turn-
over was determined to be 0.043 = 0.007 min~' (mean =
SD, n = 12) and the average lactate efflux was 0.41
umol/g wet weight per minute [118], which is in reason-
able agreement with autoradiographic determinations of
glucose utilization. In summary, in vivo MRS detection of
wn>13C enrichment of metabolites could conceivably
become a valuable tool to monitor metabolic responsive-
ness of tumors to therapies over time in single subjects.
Such MRS measurements may also provide important
clinical information regarding metabolic properties, and
possibly malignancy, of lesions that are difficult to diagnose
or biopsy.

Conclusions

Animal studies, in addition to providing important basic
data on tumor physiology and metabolism, can also pave
the way for advanced clinical applications. For example,
Gd-based contrast agents are used in virtually every
Radiological Center, although the use of time course data

TH MRS

tumor voxel

begin
[1-3C]glc
infusion

4 3 2 1 ppm

brain voxel
(post-infusion) [3-13C]glu

4-13C]gl
[4-"Clalu [3-13C]lac
s

4 3 2 1 ppm

Figure 7. The left panel shows a T , - weighted image of a C6 glioma (coronal view ). Rectangles outline two dimensions of the tissue volumes selected from tumor
and the contralateral hemisphere for the spectroscopic measurements. 'H spectra from tumor (b) and contralateral hemisphere (c) were acquired while infusing
[1-"3C]glucose intravenously. These spectra were acquired with a special 'H- MRS technique that detects signals from'>C - labeled compounds only. These data
are from work performed by M. Garwood.
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(dynamic contrast enhancement) is not as widespread.
The use of higher-molecular weight contrast agents, being
developed in animals, will likely find clinical utility. BOLD
experiments to assess relative deoxyhemoglobin content,
can be readily applied to human tumors. Finally, even
though specific indicators of physiology, such as '3C
glucose and indicators for pO, and pH, will take longer to
develop, they have great clinical potential. The power of
MR as a translational research tool is high, because most
physical determinants of signal intensity are readily scaled
from animal models to humans.
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