Molecular Patchwork: Chromosomal Recombination between Two Helicobacter pylori Strains during Natural Colonization

Leonard C. Smeets,^{1*} Nicolaas L. A. Arents,² Anton A. van Zwet,² Christina M. J. E. Vandenbroucke-Grauls,¹ Theo Verboom,¹ Wilbert Bitter,¹ and Johannes G. Kusters^{1,3}

Department of Medical Microbiology and Infection Control, Vrije Universiteit Medical Center, Amsterdam,¹ Department of Medical Microbiology, Bethesda Hospital, Hoogeveen,² and Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam,³ The Netherlands

Received 7 October 2002/Returned for modification 17 January 2003/Accepted 5 February 2003

Genetic analysis of two *Helicobacter pylori* strains isolated from a single gastric biopsy showed evidence of extensive horizontal gene transfer. Several large recombinations were identified in the rdxA gene, which is involved in metronidazole resistance.

The gastric pathogen Helicobacter pylori displays considerable genetic diversity (2). This diversity can be attributed to genetic drift, which was observed in clinical isolates obtained at intervals of several years from one patient (7, 10, 14), and to horizontal gene transfer. Several studies have demonstrated that recombination between *H. pylori* strains occurs frequently enough to virtually eliminate the effect of clonal descent on the population structure of H. pylori and to generate a linkage equilibrium between alleles at different loci (1, 8, 17, 19). Furthermore, some H. pylori strains contain a 37-kb genomic region, the cag pathogenicity island (PAI), which is located in the glutamate racemase gene between two short direct repeats. The cag PAI is not a stable genomic region, since it can be readily lost from the chromosomes of cag⁺ strains by recombination with strains lacking the cag gene (13, 22). The variability between strains can be significant for the outcome of H. pylori infection. For instance, the cag PAI and certain alleles of the vacA and iceA genes are more frequent in strains that cause peptic ulceration or gastric cancer (4, 24).

In *H. pylori*, random mutations that inactivate the *rdxA* gene cause metronidazole resistance (9). *rdxA* mutations that have been described for resistant isolates include frameshifts, premature stop codons, codon changes resulting in amino acid changes, and promoter alterations (9, 11, 12, 15, 20). In a previous study, we reported that in stomach biopsies with both metronidazole-sensitive (Mtz^s) and metronidazole-resistant (Mtz^r) bacteria, usually a single *H. pylori* strain is present, which suggested that a subpopulation of the original, susceptible strain had become resistant by mutation (3). However, in one biopsy, random amplified polymorphic DNA and restriction fragment length polymorphism genotyping showed that two different strains were present. Interestingly, both strains contained Mtz^s as well as Mtz^r subpopulations. In the present study we determined whether horizontal gene transfer has

* Corresponding author. Mailing address: Department of Medical Microbiology and Infection Control, Vrije Universiteit Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands. Phone: 31 20 4448310. Fax: 31 20 4448318. E-mail: lc.smeets@vumc.nl. occurred between these two strains. The results show that extensive recombination has taken place in the rdxA locus.

Strain identification. Twelve isolates were subcultured from biopsy BH9809-109 and named L1 to L12 according to increasing Mtz resistance (Table 1). Seven isolates (L1 to L7) were Mtz^s (MIC, <8 mg/liter) (Table 1), and five (L8 to L12) were Mtz^r (MIC, ≥ 8 mg/liter). Six Mtz^s isolates (L1 to L4, L6, and L8) and three Mtz^r isolates (L9, L11, and L12) belonged to the first genotype (strain 1). The second genotype (strain 2) included two Mtz^s isolates (L5 and L7) and one Mtz^r isolate (L10). cag and vacA statuses were assessed by line probe assay. The line probe assay types two variable regions of the vacA gene, the S region and M region. Furthermore, it determines the presence or absence of the cag PAI (23). Strain 1 isolates contained vacA type S1a/M2 and were cag⁺; strain 2 isolates had vacA type S2/M2 and lacked cag (Table 1). Neither strain showed variation in vacA or cagA status among individual isolates; this indicated that no recombination that affected the S/M type of the vacA gene and the presence of the cag PAI had taken place.

The *rdxA* alleles. Because both strains included Mtz^s as well as Mtzr isolates and reversion of nonsense mutations is unlikely, resistant subpopulations appeared during colonization from the Mtz^s ancestors of either strain (with intact rdxA alleles). To demonstrate a possible transfer of a resistant rdxAallele from one strain to the other, we sequenced the rdxA genes in all 12 isolates. The results are shown in Fig. 1. Two different alleles of the *rdxA* gene (allele A and allele B), which differed from each other at 22 base positions in the 630-bp open reading frame (ORF), were present in the set of isolates. However, the distribution of the *rdxA* alleles did not correspond to the genotypes of the isolates. Strain 1 included isolates with rdxA allele A (L3, L4, L6, L8, L9, L11, and L12) as well as isolates with rdxA allele B (L1 and L2), which indicates that one of the alleles must have been acquired by horizontal DNA transfer. Of the isolates with the genetic background of strain 2, L10 had allele A but the other two (L5 and L7) possessed a mixed allele. L5 had an allele that was predominantly type A, with a single polymorphism at base position 549. This change was consistent with allele B, which suggests the

TABLE 1. Metronidazole susceptibilities, genotypes, *rdxA* alleles, presence of the *cag* PAI, and *vacA* type of isolates L1 to L12

Isolate	Metronidazole MIC (mg/liter) ^a	Genotype ^b	<i>rdxA</i> allele	<i>cagA</i> gene present	VacA type
L1	0.5	1	В	+	S1a/M2
L2	0.5	1	В	+	S1a/M2
L3	0.38	1	А	+	S1a/M2
L4	0.75	1	А	+	S1a/M2
L5	1.5	2	А	—	S2/M2
L6	1.5	1	А	+	S1a/M2
L7	1.5	2	A/B	—	S2/M2
L8	48	1	А	+	S1a/M2
L9	>256	1	А	+	S1a/M2
L10	>256	2	А	—	S2/M2
L11	>256	1	А	+	S1a/M2
L12	>256	1	А	+	S1a/M2

^{*a*} Sensitive, < 8 mg/liter; resistant, ≥ 8 mg/liter.

^b According to random amplified polymorphic DNA typing and restriction fragment length polymorphism of the *ureC* gene.

transfer of a very small DNA fragment. However, this change could also result from a single point mutation which happened to match the sequence of allele B.

In L7, of the 22 polymorphic base pairs that distinguish

INFECT. IMMUN.

allele A from allele B, the 3 polymorphic sites at the 5'-end region of the ORF were identical to those in the allele B group, whereas the other 19 in the middle and at the 3' end were concordant with the allele A group. Between the allele A and allele B regions of L7, there was a gene fragment of 77 bases with perfect homology between allele A and allele B. These data indicate that a recombination event introduced part of the *rdxA* locus of strain 1 into the L7 genome.

Origin of metronidazole resistance. All resistant isolates contained rdxA allele A, which suggests transfer of the resistance mutation. However, there was a difference between the resistant isolate of strain 2 (L10) and the resistant isolates of strain 1 (L8, L9, L11, and L12). In L10, a single-base-pair deletion was found at base position 192 of the ORF, causing a frameshift that interrupts the reading frame. This frameshift occurred in a homopolymeric stretch of 10 adenine residues interrupted by one cytosine. An identical deletion was observed earlier in an unrelated strain (11). Apparently, this locus is vulnerable to slipped-strand mispairing. The resistant isolates of strain 1 (L8, L9, L11, and L12) did not posses this frameshift but showed a C-to-T mutation at position 200 of the ORF, which causes an amino acid change from alanine to valine. To confirm that this minor difference causes metroni-

	5	15	25	35	45	55	65	75	85	95	105
T.1 2	(1) ATGAAATTTT	TGGATCAAGA	AAAAAGAAGA		ACGAGCGCCA	TTCTTGCAAG	ATGTTTGATA	GCCATTATGA	GTTTTCTAGC	GAAGAATTAG	AAGAAATCGC
1346	(1)										
L5	(2)										
L7	(2)										
L8,9,11,	12(1)										
L10	(2)				• • • • • • • • • • • • • • • • • • •			• • • • • • • • • • •		• • • • • • • • • • •	• • • • • • • • • • •
	115	125	135	145	155	165	175	185	195	205	215
L1,2	(1) TGAAATCGCC	AGACTATCGC	CAAGCTCTTA	CAACACGCAA	CCATGGCATT	TIGTGATGGT	TACTAATAAG	GATTTAAAAA	AACAAATTGC	AGCACACAGC	TATTTCAATG
L3,4,6	(1)			G		A		G			
L5	(2)		· · · · · · · · · · ·	G		A	• • • • • • • • • • •	G			• • • • • • • • • • •
L7	(2)	• • • • • • • • • • •	· • · · · · · · · · ·		• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·		
L8,9,11,	12(1)	•••••	• • • • • • • • • • •	G	• • • • • • • • • • •	A	• • • • • • • • • • •	G	T	• • • • • • • • • • • •	• • • • • • • • • • •
L10	(2)	• • • • • • • • • • •		G	••••	A	•••••	G		• • • • • • • • • • •	•••••
	225	235	245	255	265	275	285	295	305	315	325
L1,2	(1) AAGAAATGAT	TAAAAGCGCT	TCAGCGTTAA	TGGTGGTATG	CTCTTTAAA	CCAGCGAGT	IGTTACCACA	GGCCACTAC	ATGCAAAATC 1	CTATCCGGA (JTCTTATAAA
L3,4,6	(1)	• • • • • • • • • • •			.CG.		• • • • • • • • • • •	.AA	T.	.CT	.G
L5	(2)		• • • • • • • • • • • •	• • • • • • • • • • •	.CG.		•••••	.AA	T.	.CT	.G
L7	(2)	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	.CG.	• • • • • • • • • • •	• • • • • • • • • • •	.AA	T.	.CT	.G
L8,9,11,	12(1)		• • • • • • • • • • •		.CG.	• • • • • • • • • • •	• • • • • • • • • • •	.AA	T.	.CT	.G
L10	(2)		• • • • • • • • • • • •	• • • • • • • • • • •	.CG.	• • • • • • • • • • •		.AA			
	335	345	355	365	375	385	395	405	415	425	435
	335	345 	355	365	375 	385	395 	405 	415 	425 	435
L1,2	335 (1)GTCAGAGTGA	345 TCCCCTCTTT	355 TGCTCAAATG	365 CTTGGCGTGA	375 GATTCAACCA	385 CAGCATGCAA	395 AGATTAGAAA	405 GCTATATTTT	415 AGAGCAATGC	425 TATATCGCTG	435 TGGGGCAAAT
L1,2 L3,4,6	335 (1) GTCAGAGTGA (1)	345 TCCCCTCTTT .TG	355 TGCTCAAATG .T	365 CTTGGCGTGA	375 GATTCAACCA	385 CAGCATGCAA	395 AGATTAGAAA	405 GCTATATTTT	415 AGAGCAATGC	425 TATATCGCTG	435 TGGGGCAAAT
L1,2 L3,4,6 L5 L7	335 (1) GTCAGAGTGA (1)T (2)T	345 TCCCCTCTTT .TG .TG	355 TGCTCAAATG .T .T	365 CTTGGCGTGA	375 GATTCAACCA	385 CAGCATGCAA	395 AGATTAGAAA	405 GCTATATTTT	415 AGAGCAATGC	425 TATATCGCTG	435 TGGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11,	335 (1) GTCAGAGTGA (1)T (2)T (2)T (2)T	345 TCCCCTCTTT .TG .TG .TG	355 TGCTCAAATG .T .T .T	365 CTTGGCGTGA	375 GATTCAACCA	385 CAGCATGCAA	395 AGATTAGAAA	405 GCTATATTTT	415 AGAGCAATGC	425 TATATCGCTG	435 TGGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11, L10	335 (1)GTCAGAGTGA (1)T (2)T (2)T (2)T	345 TCCCCTCTTT .T.G .T.G .T.G .T.G	355 TGCTCAAATG .T .T .T	365 CTTGGCGTGA	375 GATTCAACCA	385 CAGCATGCAA	395 AGATTAGAAA	405 GCTATATTTT	415 AGAGCAATGC	425 TATATCGCTG	435 TGGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11, L10	335 (1) GTCAGAGTGA (1) . T (2) . T (2) T (2) T (2) T	345 TCCCCTCTTT .TG .TG .TG .TG	355 TGCTCAAATG .T .T .T .T	365 CTTGGCGTGA	375 GATTCAACCA	385 CAGCATGCAA	395 AGATTAGAAA	405 GCTATATTTT	415 AGAGCAATGC	425 TATATCGCTG	435 TGGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11, L10	335 (1)GTCAGAGTGA (1)T (2)T (2)T (2)T (2)T (2)T (2)T	345 TCCCCTCTTT .T.G .T.G .T.G .T.G .T.G .T.G	355 TGCTCAAATG .T .T .T 465	365 CTTGGCGTGA 	375 GATTCAACCA 	385 CAGCATGCAA 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 	425 TATATCGCTG 	435 TGGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11, L10	335 (1) GTCAGAGTGA (1) . T (2) . T (2) T (2) T (2) (2)	345 TCCCCTCTTT .T.G .T.G .T.G .T.G .T.G .T.G .C.G	355 TGCTCAAATG .T .T .T .T 465 	365 CTTGGCGTGA 	375 GATTCAACCA 	385 CAGCATGCAA 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 	425 TATATCGCTG 	435 TGGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11, L10	335 (1)GTCAGAGTGA (1)T (2)T (2)T (2)T (2)T (2)T (1)TTCCATGGCC (1)	345 T.CCCCTCTTT T.G T.G T.G T.G 455 GTGAGCTTAA	355 TGCTCAAATG .T .T .T .T 465 TGGGATTGGA	365 CTTGGCGTGA 	375 GATTCAACCA 	385 CAGCATGCAA 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 525 AACAGCGTAT 	425 TATATCGCTG 535 CAATAAGCCT	435 TGGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6 L5	335 (1) GTCAGAGTGA (1) (2)T (2)T (2)T (2)T (2)T (2)T (2)T (1) (2)T (2)T (2)T (2)	345 T.CCCTCTTT T.G T.G T.G T.G 455 GTGAGCTTAA	355 TGCTCAAATG .T .T .T .T 465 TGGGATTGGA	365 CTTGCGTGA 	375 GATTCAACCA 	385 CAGCATGCAA 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 	425 TATATCGCTG 	435 TGGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6 L5	335 (1)GTCAGAGTGA (1)T (2)T (2)T (2)T (2)T (2)T (2)T (2) (1)TTGCATGGCC (1) (2)	345 TCCCCTCTT .TG .TG .TG .TG .TG .TG .TG	355 TGCTCAAATG T	365 CTTGGCGTGA 	375 GATTCAACCA 485 ATTGGAGGCT	385 CAGCATGCAA 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 	425 TATATCGCTG 	435 TGGGCAAAT AAATCGCAT G. G.
L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6 L5 L7 L8,9,11,	$\begin{array}{c} 335 \\ \mid \mid \\ (1) GTCAGAGTGA \\ (1) . T \\ (2) . T \\ (2) . T \\ (2) . T \\ (2) T \\ (2) T \\ (2) \\ (2) \\ (1) TTGCATGGC \\ (1) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (3) . \\ (3) \\ (3) .$	345 TCCCCTTT TG TG TG 455 GTGAGCTTAA	355 TGCTCAAATG .T .T .T 465 TGGGATTGGA	365 CTTGGCGTGA 475 TAGTTGCATT	375 GATTCAACCA 	385 CAGCATGCAA 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 	425 TATATCGCTG 	435 TGGGCAAAT
L1,2 L3,4,6 L5 L7 L10 L1,2 L3,4,6 L5 L7 L8,9,11, L10	335 (1) GTCAGAGTGA (1)T (2)T (2)T (2)T (2)T (2)T (2)T (2) (1) TTGCATGGGC (1) (2) (2) (2)	345 TCCCCTCTT TG TG TG tG 455 GTGAGCTTAA	355 TGCTCAAATG .T .T .T 465 TGGGATTGGA	365 CTTGGCGTGA 	375 GATTCAACCA 	385 CAGCATGCAA 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 	425 TATATCGCTG 	435 TGGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6 L5 L7 L8,9,11, L10	335 (1) GTCAGAGTGA (1) . T (2) . T (2) (2)	345 T.C.CTCTTT T.G T.G T.G T.G GTGAGCTTAA	355 TGCTCAAATG T T T 465 	365 CTTGGCGTGA 	375 GATTCAACCA 	385 CAGCATGCAA 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 	425 TATATCGCTG 	435 TGGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6 L5 L7 L8,9,11, L10	335 (1)GTCAGAGTGA (1)T (2)T (2)T (2)T (2)T (2)T (2) (1)TTGCATGGC (1) (2)	345 TCCCCTCT. .TG .TG .TG 455 GTGAGCTTAA 565	355 TGCTCAAATG T T T 465 TGGGATTGGA	365 CTTGGCGTGA 475 TAGTTGCATT 585	375 GATTCAACCA 485 ATTGGAGGCT 595 	385 CAGCATGCAA 495 TTGATCCTT 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 	425 TATATCGCTG 	435 TGGGCAAAT AAATCGCAT G. G. G. G. G.
L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6 L5 L7 L8,9,11, L10	335 (1) GTCAGAGTGA (1)T (2)T (2)T (2)T (2)T (2)T (2)T (2) (1) TTGCATGGCC (1) (2).	345 TCCCTCTT TG TG TG 455 GTGAGCTTAA 565 	355 TGCTCAAATG T T T 465 	365 CTTGGCGTGA TAGTTGCATT TAGTTGCATT 	375 GATTCAACCA 	385 CAGCATGCAA 495 TTGATCCTTT 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 	425 TATATCGCTG 	435 TGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6	335 (1) GTCAGAGTGA (1)T (2)T (2)T (2)T (2)T (2)T (2)T (2) (1) TTGCATGGC (1) (2) (2) (2) (1) CCTTGATCGC (1) (1) GCTTGATCGC (1)	345 TCCCCTCTTT TG TG 455 GTGAGCTTAA 565 TTTGGGTAAG	355 TGCTCAAATG T T 465 TGGGATTGGA 575 AGGGTGCGGG	365 CTTGGCGTGA 475 TAGTTGCATT 	375 GATTCAACCA 	385 CAGCATGCAA 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 	425 TATATCGCTG 	435 TGGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6 L7 L8,9,11, L10 L1,2 L3,4,6 L5	335 (1)GTCAGAGTGA (1)T (2)T (2)T (2)T (2)T (2)T (2)T (1)TTCGATGGC (1) (2) (2) (2) (1)GCTTGATCGC (1) (2) (2) (1)GCTTGATCGC (1)	345 TCCCCTCA T.G T.G T.G 455 GTGAGCTTAA 565 TTTGGGTAAG	355 TGCTCAAATG T T T 465 TGGGATTGGA 575 AGGGTGGCGG A.	365 CTTGGCGTGA 475 TAGTTGCATT AAGCGAGCCA	375 GATTCAACCA ATTGGAGGCT 	385 CAGCATGCAA 	395 AGATTAGAAA 505 AAAAGTGGGC 	405 GCTATATTTT 	415 AGAGCAATGC ACAGCGTAT .G .G .G	425 TATATCGCTG 	435 TGGGCAAAT AAATCGCAT G. G. G.
L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6 L5 L1,2 L3,4,6 L5 L7	335 (1) GTCAGAGTGA (1)T (2)T (2)T (2)T (2)T (2)T (2) (1) TTGCATGGGC (1) (2)	345 TCCCCTTT T. G T. G T. G 455 GTGAGCTTAA 565 TTTGGGTAAG	355 TGCTCAAATG T T T 465 TGGATTGGA 575 AGGTGCCGG AGGTGCCGG	365 CTTGGCGTGA TAGTTGCATT 585 AAGCGAGCCA	375 GATTCAACCA 485 ATTGGAGGCT 595 AAATCAAGA	385 CAGCATGCAA 495 TTGATCCTTT TTGATCCTTT 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 	425 TATATCGCTG 	435 TGGGCAAAT
L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6 L5 L7 L8,9,11, L10 L1,2 L3,4,6 L5 L7 L8,9,11,	$\begin{array}{c c} & 335 & & \\ \hline & & & & \\ (1) GTCAGAGTGA \\ (1) . T \\ (2) . T \\ (2) . T \\ (2) . T \\ (2) T \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (1) GCTTGATCGC \\ (1) \\ (2) . \\ (2) . \\ (3) $	345 TCCCCTTT T. G T. G T. G 455 GTGAGCTTAA 565 TTTGGGTAAG	355 TGCTCAAATG T T T 465 TGGGATTGGA 575 AGGGTGGCGG AA.	365 CTTGGCGTGA TAGTTGCATT 585 AAGCGAGCCA	375 GATTCAACCA 	385 CAGCATGCAA 	395 AGATTAGAAA 	405 GCTATATTTT 	415 AGAGCAATGC 	425 TATATCGCTG 	435 TGGGCAAAT

FIG. 1. Alignment of the rdxA ORFs of isolates L1 to L12. Numbers in parentheses indicate the strain type (1 or 2).

FIG. 2. Distribution of alleles A and B in isolates L1 to L12. Numbers in parentheses indicate the genotype (1 or 2). S and R, metronidazole susceptibility and resistance, respectively. The arrow shows the *rdxA* ORF. Open bars, allele A; solid bars, allele B; hatched bars, crossover sequence; gray bars, identical sequence. Strain L4 and strain L7 contain recombined sequences. The point mutations that cause resistance in the resistant isolates L8 to L12 are not shown.

dazole resistance, we used a PCR amplimer of the L8 rdxA allele for natural transformation (25) to susceptible *H. pylori* strains. This yielded Mtz^r transformants with a frequency of 10^{-3} per recipient cell, which indicated that this amino acid change is sufficient to cause metronidazole resistance. We conclude that resistance in both strains arose by an independent mutation of the rdxA gene after transfer of an intact rdxA allele A had taken place. Despite the high frequency of horizontal gene transfer between strain 1 and strain 2, an rdxA mutation arose independently in both strains.

Region around *rdxA*. In order to determine the length of the recombinations between strain 1 and strain 2, the DNA sequence on both sides of the *rdxA* ORF was determined for two isolates from strain 1 (L1 with allele B and L4 with allele A), as well as two isolates from strain 2 (L7, which contains the 5' end of allele B and the complementing part of allele A, and isolate L10, which contains allele A). The results are shown in Fig. 2. Downstream, another crossover between the two alleles was identified: after a perfect homology of 145 bp between the four sequences, the sequences of the strain 1 isolates L4 and L1 were identical over a length of at least 205 bp, with eight mismatches between strain 1 (L1 and L4) and strain 2 (L7 and L10). This is concordant with ancestral combinations of strain 1 with allele B and strain 2 with allele A. Upstream of the rdxA ORF, however, the sequences of L1, L4, L7, and L10 were identical over a length of >1.7 kbp (results not shown). It is unlikely that the original sequences of strain 1 and 2 were already identical before their cohabitation, because in this region there is only 94% conservation between these strains and the published genome sequences (2, 21). Apparently, a previous, major recombination event had replaced the original sequence in one of the strains, which results in an identical sequence in all four isolates. In an attempt to find a copy of the other original sequence, from the remaining eight isolates a fragment of 800 bp upstream of rdxA was sequenced. Their sequences were identical to the one in L1, L4, L7, and L10. Thus, the second ancestral sequence is not present in our set of 12 isolates.

Most observations on natural horizontal gene transfers concern transfer of genetic elements that are mobile by nature, such as plasmids or transposons. Horizontal gene transfer of nonmobile elements is only rarely observed outside experimental settings (16). It is usually inferred from sequence analysis of unrelated isolates of mucosal pathogens that are competent for DNA exchange by natural transformation: Streptococcus pneumoniae, Neisseria spp., Haemophilus influenzae, and H. pylori. In some cases, the recombining sequences must have been over 1 kb long (5, 6). For *H. pylori*, its isolated habitat in the gastric mucosa with prolonged contact between different strains provides the unique opportunity to isolate recombining strains together. Kersulyte et al. identified recombination events between two *H. pylori* strains from the same patient that involve up to 400 bp (13). Falush et al. investigated genetic relationships of sequential isolates of H. pylori from a single patient and estimated the mean size of the recombination fragments to be 417 bp (7).

Here, we demonstrate that multiple homologous recombination events occur in a single locus during cohabitation of two strains and that these events result in a molecular patchwork between two ancestral sequences. Since the duration of the contact is not known, we can make no estimate of the frequency of recombination. The sequences upstream of the *rdxA* ORF are identical for at least 1.7 kb, which suggests that a large fragment was transferred and integrated in the ancestors of all isolates and that H. pylori can exchange DNA fragments long enough to contain one or more complete genes. The lack of polymorphic sites for over 1.7 kb in this area obscures the second recombination site for two of the isolates, L4 and L7 (Fig. 2). Two crossovers had taken place, at 145 and 77 bases of perfect homology. This is in accordance with experimental data which indicate that recombination efficiency is highly dependent on the presence of a perfect homology of sufficient length (18). The molecular patchwork that is described here illustrates the frequent recombination during cocolonization of H. pylori strains that leads to the panmyctic population structure of this species.

We thank Raymond Pot (Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands) for his assistance with DNA sequencing.

REFERENCES

- Achtman, M., T. Azuma, D. E. Berg, Y. Ito, G. Morelli, Z. J. Pan, S. Suerbaum, S. A. Thompson, A. van der Ende, and L. J. van Doorn. 1999. Recombination and clonal groupings within *Helicobacter pylori* from different geographical regions. Mol. Microbiol. 32:459–470.
- Alm, R. A., L.-S. L. Ling, D. T. Moir, and B. L. King. 1999. Genomicsequence comparison of two unrelated isolates of the human gastric pathogen *Helicobacter pylori*. Nature 397:176–180.
- Arents, N. L., L. C. Smeets, A. A. van Zwet, J. C. Thijs, E. J. van der Wouden, A. de Jong, J. E. Degener, and J. G. Kusters. 2001. Implications of the simultaneous presence of metronidazole-susceptible and -resistant *Helicobacter pylori* colonies within a single biopsy specimen. Eur. J. Clin. Microbiol. Infect. Dis. 20:418–420.
- Atherton, J. C., R. M. J. Peek, K. T. Tham, T. L. Cover, and M. J. Blaser. 1997. Clinical and pathological importance of heterogeneity in *vacA*, the vacuolating cytotoxin gene of *Helicobacter pylori*. Gastroenterology 112:92– 99.
- Bowler, L. D., Q. Y. Zhang, J. Y. Riou, and B. G. Spratt. 1994. Interspecies recombination between the *penA* genes of *Neisseria meningitidis* and commensal *Neisseria* species during the emergence of penicillin resistance in *N. meningitidis*: natural events and laboratory simulation. J. Bacteriol. 176:333– 337
- Dowson, C. G., T. J. Coffey, C. Kell, and R. A. Whiley. 1993. Evolution of penicillin resistance in *Streptococcus pneumoniae*; the role of *Streptococcus mitis* in the formation of a low affinity PBP2B in S. pneumoniae. Mol. Microbiol. 9:635–643.
- Falush, D., C. Kraft, N. S. Taylor, P. Correa, J. G. Fox, M. Achtman, and S. Suerbaum. 2001. Recombination and mutation during long-term gastric colonization by *Helicobacter pylori*: estimates of clock rates, recombination size, and minimal age. Proc. Natl. Acad. Sci. USA 98:15056–15061.
- Go, M. F., V. Kapur, D. Y. Graham, and J. M. Musser. 1996. Population genetic analysis of *Helicobacter pylori* by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure. J. Bacteriol. 178:3934–3938.
- Goodwin, A., D. Kersulyte, G. Sisson, S. V. Vanzanten, D. E. Berg, and P. S. Hoffman. 1998. Metronidazole resistance in *Helicobacter pylori* is due to null mutations in a gene (*rdxA*) that encodes an oxygen-insensitive NADPH nitroreductase. Mol. Microbiol. 28:383–393.
- Israel, D. A., N. Salama, U. Krishna, U. M. Rieger, J. C. Atherton, S. Falkow, and R. M. Peek, Jr. 2001. *Helicobacter pylori* genetic diversity within the gastric niche of a single human host. Proc. Natl. Acad. Sci. USA 98:14625– 14630.
- Jeong, J. Y., A. K. Mukhopadhyay, J. K. Akada, D. Dailidiene, P. S. Hoffman, and D. E. Berg. 2001. Roles of FrxA and RdxA nitroreductases of *Helicobacter pylori* in susceptibility and resistance to metronidazole. J. Bacteriol. 183:5155–5162.
- Jeong, J. Y., A. K. Mukhopadhyay, D. Dailidiene, Y. Wang, B. Velapatino, R. H. Gilman, A. J. Parkinson, G. B. Nair, B. C. Wong, S. K. Lam, R. Mistry, I. Segal, Y. Yuan, H. Gao, T. Alarcon, M. L. Brea, Y. Ito, D. Kersulyte, H. K. Lee, Y. Gong, A. Goodwin, P. S. Hoffman, and D. E. Berg. 2000. Sequential inactivation of *rdxA* (HP0954) and *frxA* (HP0642) nitroreductase genes

Editor: J. T. Barbieri

causes moderate and high-level metronidazole resistance in *Helicobacter* pylori. J. Bacteriol. **182**:5082–5090.

- Kersulyte, D., H. Chalkauskas, and D. E. Berg. 1999. Emergence of recombinant strains of *Helicobacter pylori* during human infection. Mol. Microbiol. 31:31–43.
- Kuipers, E. J., D. A. Israel, J. G. Kusters, M. M. Gerrits, J. Weel, A. van der Ende, R. W. van der Hulst, H. P. Wirth, J. Hook-Nikanne, S. A. Thompson, and M. J. Blaser. 2000. Quasispecies development of Helicobacter pylori observed in paired isolates obtained years apart from the same host. J. Infect. Dis. 181:273–282.
- Kwon, D. H., J. A. Pena, M. S. Osato, J. G. Fox, D. Y. Graham, and J. Versalovic. 2000. Frameshift mutations in *rdxA* and metronidazole resistance in North American *Helicobacter pylori* isolates. J. Antimicrob. Chemother. 46:793–796.
- Ochman, H., J. G. Lawrence, and E. A. Groisman. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304.
- Salaun, L., C. Audibert, G. Le Lay, C. Burucoa, J. L. Fauchere, and B. Picard. 1998. Panmictic structure of *Helicobacter pylori* demonstrated by the comparative study of six genetic markers. FEMS Microbiol. Lett. 161:231– 239.
- Shen, P., and H. V. Huang. 1986. Homologous recombination in *Escherichia coli*: dependence on substrate length and homology. Genetics 112:441–457.
- Suerbaum, S., J. M. Smith, K. Bapumia, G. Morelli, N. H. Smith, E. Kunstmann, I. Dyrek, and M. Achtman. 1998. Free recombination within *Helicobacter pylori*. Proc. Natl. Acad. Sci. USA 95:12619–12624.
- Tankovic, J., D. Lamarque, J. C. Delchier, C. J. Soussy, A. Labigne, and P. J. Jenks. 2000. Frequent association between alteration of the *rdxA* gene and metronidazole resistance in French and North African isolates of *Helicobacter pylori*. Antimicrob. Agents Chemother. 44:608–613.
- 21. Tomb, J. F., O. White, A. R. Kerlavage, R. A. Clayton, G. G. Sutton, R. D. Fleischmann, K. A. Ketchum, H. P. Klenk, S. Gill, B. A. Dougherty, K. Nelson, J. Quackenbush, L. Zhou, E. F. Kirkness, S. Peterson, B. Loftus, D. Richardson, R. Dodson, H. G. Khalak, A. Glodek, K. McKenney, L. M. Fitzegerald, N. Lee, M. D. Adams, and J. C. Venter. 1997. The complete genome sequence of the gastric pathogen *Helicobacter pylori*. Nature **388**: 539–547.
- 22. van der Ende, A., E. A. Rauws, M. Feller, C. J. Mulder, G. N. Tytgat, and J. Dankert. 1996. Heterogeneous *Helicobacter pylori* isolates from members of a family with a history of peptic ulcer disease. Gastroenterology 111:638–647.
- van Doorn, L. J., C. Figueiredo, R. Rossau, G. Jannes, M. van Asbroek, J. C. Sousa, F. Carneiro, and W. G. Quint. 1998. Typing of *Helicobacter pylori* vacA gene and detection of *cagA* gene by PCR and reverse hybridization. J. Clin. Microbiol. 36:1271–1276.
- 24. van Doorn, L. J., C. Figueiredo, R. Sanna, A. Plaisier, P. Schneeberger, W. de Boer, and W. Quint. 1998. Clinical relevance of the cagA, vacA, and iceA status of *Helicobacter pylori*. Gastroenterology 115:58–66.
- Wang, Y., K. P. Roos, and D. E. Taylor. 1993. Transformation of *Helicobacter* pylori by chromosomal metronidazole resistance and by a plasmid with a selectable chloramphenicol resistance marker. J. Gen. Microbiol. 139:2485– 2493.