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Industrialized regions in Poland are characterized by high ambient pollution, including polycyclic
aromatic hydrocarbons (PAHs) from coal burning for industry and home heating. In experimental
bioassays, certain PAHs are transplacental carcinogens and developmental toxicants. Biologic
markers can facilitate evaluation of effects of environmental PAHs on the developing infant. We
measured the amount of PAHs bound to DNA (PAH-DNA adducts) in maternal and umbilical white
blood cells. The cohort consisted of 70 mothers and newborns from Krakow, Poland, an
industrialized city with elevated air pollution. Modulation of adduct levels by genotypes previously
linked to risk of lung cancer, specifically glutathione S-transferase Ml (GSTM1) and cytochrome
P4501A1 (CYP1A1) Mspl restriction fragment length polymorphism (RFLP), was also investigated.
There was a dose-related increase in maternal and newborn adduct levels with ambient pollution at
the women's place of residence among subjects who were not employed away from home
(p<0.05). Maternal smoking (active and passive) significantly increased maternal (p<0.01) but not
newborn adduct levels. Neither CYP1A1 Mspl nor GSTM1 polymorphisms was associated with
maternal adducts. However, adducts were significantly higher in newborns heterozygous or

homozygous for the CYP1A1 Mspl RFLP compared to newborns without the RFLP (p=0.04).
Results indicate that PAH-induced DNA damage in mothers and newborns is increased by ambient
air pollution. In the fetus, this damage appears to be enhanced by the CYP1A1 Mspl polymorphism.
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Introduction
Ambient air in certain industrialized regions
of Poland is heavily contaminated with
polycyclic aromatic hydrocarbons (PAHs)
(1). Krakow is an industrialized city with
high air pollution attributed to multiple
sources, especially coal burning for indus-
trial purposes and residential heating (2).
Pollution levels are highest in the center of
Krakow and decrease toward the periphery.
A previous study found lung cancer risk to
be significantly associated with residence in
the highest air pollution areas of Krakow,
controlling for age, smoking, and occupa-
tional exposures (2). For the current cohort,
we estimate that in the year preceding the
birth of the newborns (1991), the women
living in Krakow were exposed to annual
average ambient concentrations of respirable
particulates ranging from 37 pg/m3 for the
least exposed group to 78 pg/m3 for the
most exposed. The corresponding concen-
trations of benzota]pyrene, an indicator
PAH, were estimated to be 7 ng/m3 to 15
ng/m3, representing approximately 0.02%
of particulate matter (3).

PAHs readily cross the placenta (4,5).
Experimental bioassays have shown a num-
ber of PAHs to be transplacental carcino-
gens and developmental toxicants (6-11).
PAH-DNA adducts represent the net effect
of exposure, absorption, activation, detoxifi-
cation, and repair and thus are a better mea-
sure of the individual biologically effective
dose of PAHs than estimates of external
exposure (12,13). PAHs are rapidly distrib-
uted systemically (14), and comparable lev-
els of PAH-DNA adducts across many
tissues, including peripheral blood, have
been seen in experimental and human
studies (15,16). Depending on the degree
of damage or repair capacity, DNA adducts
can be repaired or lead to apoptosis or
mutations. A correlation has been observed
experimentally between carcinogenicity and
adduct formation for a series of mutagens
and carcinogens, induding PAHs (17-19).
A recent case-control study showed white
blood cell (WBC) PAH-DNA adduct levels
to be associated with increased risk of lung
cancer (16). Among the current cohort, we
reported an association between newborn
WBC PAH-DNA adduct levels and adverse
birth outcomes (20). Other studies have
seen associations between WBC adduct lev-
els and ambient PAH levels measured by
areawide (1) and personal (21) monitoring.

Genetic differences in detoxification
capabilities may modulate PAH-induced
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carcinogenesis (12). CYPlAI is an induc-
ible enzyme system that catalyzes the bio-
transformation of PAHs to phenolic
products and epoxides (22,23). These can
be further biotransformed by epoxide
hydrolase and other enzymes to reactive
metabolites capable of binding to DNA
(24). A MspI restriction fragment length
polymorphism (RFLP) has been identified
in the 3' noncoding region of the CYPIAJ
gene (the CYPIAJ MspI RFLP). It seg-
regates in linkage disequilibrium with a
polymorphism in exon 7 that results in an
Ile -+ Val substitution in the catalytic
region. Both CYPJAI polymorphisms have
been associated with lung cancer risk in
some, but not all, studies (25-31).

GSTM1 codes for an enzyme involved
in the detoxification of PAHs via conju-
gation of activated metabolites with glu-
tathione. An estimated 30 to 60% of
populations are deleted at this locus (32).
The GSTM1 null genotype has been
associated with increased risk of lung
cancer (16,33-35) albeit not consistently
(36-38). Previous evaluations of the asso-
ciation between the CYPIAI and GSTM1
polymorphisms and carcinogen-DNA
adduct levels have provided conflicting
results (39-43).

The current study extends previous
research in Poland (1) by investigating the
association between ambient air pollution
and PAH-DNA adduct formation in
mothers and newborns. The study also
evaluates whether the CYPJA1 MspI RFLP
modulates adduct levels in maternal and
newborn WBCs and whether GSTM1
influences maternal adduct levels. GSTM1
is expressed rarely and only at low levels in
fetal tissues (44) and was not hypothesized
to affect DNA damage in the newborn.

Materials and Methods
Study Subjecs and Data Collection

Field studies were conducted during the
winter of 1992 under the direction of W.
Jedrychowski (Jagiellonian University,
Krakow, Poland). The cohort consisted of
70 mother-newborn pairs from Krakow.
Samples of umbilical cord blood and pla-
cental tissue were collected immediately
after birth and a sample of maternal blood
was obtained within 2 days postpartum;
biologic samples were processed and stored
as described previously (3).
A detailed validated questionnaire

administered to the mother within 2 days
postpartum included information on
smoking (active and passive), residential

and employment histories, use of coal stoves
for residential heating, dietary sources of
PAHs, and residential or occupational expo-
sures to PAHs and inducers of CYPIAI (3).
All interviews were conducted by two
trained interviewers from the College of
Medicine, Jagiellonian University. Coded
questionnaire data were sent to Columbia
University (New York, NY). Assessment of
smoking status was based on questionnaire
data as described previously (3). Current
smokers were defined as having smoked one
or more cigarettes/day for 6 months or more
during their lifetimes and were smoking up
to delivery. Ex-smokers were defined as hav-
ing smoked one or more cigarettes/day for 6
months or more during their lifetimes but
having quit 1 month or more prior to deliv-
ery. Ex-smokers were further divided into
those who had quit prior to and those who
quit during pregnancy. Plasma cotinine (a
marker of recent cigarette smoke exposure)
was used to verify questionnaire data as
described previously (3).

Daily ambient monitoring data were
provided for Krakow for the period 1991 to
1992 by the Division of National Sanitary
Inspection (Krakow) (15 monitoring sta-
tions) and by the U.S. Environmental
Protection Agency (5 monitoring stations).
Each Krakow woman's exposure to ambient
particulates < 10 pm in aerodynamic diame-
ter (PM1o) was estimated by taking the
average of PM1o measurements (in micro-
grams per cubic meter) reported at the
monitoring station dosest to her residence
for the year prior to her delivery date.
Ambient particulate data were available for
69 of70 subjects from Krakow.

PAH-DNAAdducsu
by Competit Enzyme-Linked
Immunosorbent Assay
DNA was extracted from maternal and
umbilical cord WBCs and PAH-DNA
adducts were measured by a competitive
enzyme-linked immunosorbent assay
(ELISA) with fluorescence end point detec-
tion essentially as described previously
(45). The antiserum was generated in a
rabbit immunized with benzo[a]pyrene
diol-epoxide (BPDE)-DNA but it recog-
nizes other structurally related PAH diol
epoxide-DNA adducts, including those
formed by benz[a]anthracene and chrysene
(46). Thus positive reaction with the anti-
serum may indicate the presence of multi-
ple PAH-DNA adducts in the sample;
values are expressed as the amount of
BPDE-DNA that would cause a similar
inhibition in the assay. The quantity of

DNA was adequate to measure PAH-DNA
adduct levels in 57 maternal and 58 umb-
ilical cord blood samples. These mea-
surements included adduct levels in 45
mother-newborn pairs.

CYP1A1 MspI RFLP
The polymerase chain reaction (PCR)-
RFLP method was used to determine
CYPIAI MspI genotype using DNA from
umbilical cord samples as described previ-
ously (3). High-molecular-weight genomic
DNA from placental villus (fetal) samples
was also digested with MspI and resultant
fragments were electrophoretically separated
and visualized by autoradiography following
hybridization with radiolabeled cDNA
probes as described (3). Determination of
the CYPIAJ MspI RFLP was completed on
61 umbilical cord DNA samples and 62 pla-
centa samples. For those subjects in which
the RFLP was determined by both methods,
concordance was 100%.

GSTM1 Genotype
DNA samples were genotyped by a PCR
method (32). Subjects were categorized as
either positive (+) or negative (-). For all
analyses, + and - control reactions were
run in parallel.

Plasma Cotinine
Levels of cotinine were measured in maternal
and umbilical cord plasma using gas
chromatography as previously described (3).

Sttscal Analys
PAH-DNA adduct levels in maternal and
newborn WBCs were log-transformed to
stabilize the variance and obtain a more
symmetrical distribution. For samples with
nondetectable adduct levels, a value of half
the detection limit was assigned prior to
transformation. Means and standard errors
are presented as untransformed values for
ease of interpretation. Associations were
examined by multiple linear regression
(a = 0.05). Regression models controlled
for cigarette smoking status, number of
servings per week of foods high in PAHs
during pregnancy, use of coal stoves for
residential heating, and home or occupa-
tional exposures to PAHs and other organ-
ics. Krakow subjects were divided into low,
medium, and high pollution groups based
on estimated average ambient PM1o levels
at the woman's place of residence during
the year prior to delivery. The difference in
adduct levels across pollution groups was
determined for all Krakow subjects and for
the subset of Krakow subjects (n = 25) not
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employed away from home during
pregnancy. Although sample size was lim-
ited, estimates of exposure for the latter
group are considered more reliable because
unemployed women spend more of their
time at their place of residence. Correlations
between biomarkers were assessed by
Spearman's rank order correlation test. Dif-
ferences in adduct levels in paired maternal
and newborn samples were assessed by the
Wilcoxon signed ranks test.

Results
Maternal age and smoking status are
reported in Table 1. Mean PAH-DNA
adduct levels were similar in paired mater-
nal (6.4 ± 1.4 per 108 nucleotides) and new-
born (6.2 ± 1.3 per 108 nucleotides) WBCs
(n= 45), but there was not a significant cor-
relation between maternal and newborn
adduct levels (r= 0.19, p= 0.2).

PAH-DNA adduct levels (unadjusted
means) in maternal and newborn WBCs
by ambient air pollution group, smoking
categories, and genotype are presented in
Table 2. Table 3 shows the results of mul-
tivariate analyses; Figure 1 presents
adjusted geometric mean adduct levels by
ambient pollution group for Krakow sub-
jects not employed away from home.
Estimated ambient concentrations of
PM1o for Krakow subjects at their place of
residence during the year prior to delivery
averaged 54 pg/m3 (range 31-97 pg/m3).
When all Krakow subjects were divided
into low, medium, and high pollution
groups based on the estimated PM1o lev-
els, no difference in adduct levels was seen
across pollution groups. When analyses
were restricted to Krakow mothers not
employed away from home, WBC adduct
levels were significantly increased in
women residing in the high as compared
to the low pollution group (p= 0.05).
Among the newborns of unemployed
women, WBC adduct levels were signifi-
cantly higher in newborns residing in both

Table 1. Age and cigarette smoking status of mothers
(n=70).
Mother's age, years 27.6 ± 5.3a
Current smokers 1 2b
Cigarettes/day during pregnancy, 8.6 (range 2-30)a
current smokers

Ex-smokers 20b
Nonsmokers 38b
ETS exposure, nonsmokers 22b
Passive cigarettes/day 9.6 (range 1-30)a
during pregnancy, nonsmokers

ETS, environmental tobacco smoke. aMean±standard
deviation (range). bNumber of subjects.

the middle (p= 0.05) and high (p= 0.03)
pollution areas as compared to the low
pollution area.

Maternal WBC PAH-DNA adduct
levels were significantly higher in current
smokers compared to both nonsmokers and
ex-smokers (Table 3), including ex-smokers
who quit during pregnancy (p< 0.01,
n= 11) as well as those who quit before
pregnancy (p< 0.05, n = 8). Among the
current smokers, no association was seen
between self-reported number of cigarettes
the women smoked per day during preg-
nancy and maternal adduct levels (Table
3). Among nonsmokers, maternal WBC

adducts were significantly higher in subjects
reporting environmental tobacco smoke
(ETS) exposure as compared to those
reporting no ETS exposure (Table 3). No
association was seen between maternal
adduct levels and self-reported number of
cigarettes per day of passive exposure dur-
ing pregnancy. Further, no association was
seen between maternal WBC adduct levels
and maternal plasma cotinine levels.

Contrary to results with maternal
WBC adduct levels, newborn WBC
PAH-DNA adduct levels were not asso-
ciated with either active or passive smok-
ing status of the mother or the number of

Table 2. White blood cell PAH-DNA adduct levelsa for Krakow mothers and newborns by ambient pollution group,
cigarette smoking status (active and passive), and genotype.

Exposure and genotype

Pollution group, Krakow total
Low
Medium
High

Pollution group, Krakow unemployedb
Low
Medium
High

Active smoking status
Nonsmoker
Ex-smoker
Current smoker

Passive smoking status, nonsmokers
ETS-
ETS +

CYP1A 1 Mspl RFLP
Mspl-/-
Mspl -/+, +/+

Maternal Newborn

5.9±2.1 (20)
7.6±2.7 (19)
7.1 ±2.1 (17)

5.6± 2.1 (17)
6.9±2.1 (20)
5.0±1.2 (20)

2.6±1.2 (5)
5.2 ±2.3 (8)

11.1 ± 5.3 (6)

6.9±1.7 (26)
3.0±0.5 (19)
12.4±4.5 (12)

3.3± 1.0 (10)
9.1 ±2.6 (16)

1.7 ±0.5 (6)
9.6±3.5 (9)
6.5± 2.0 (8)

5.6±1.2 (32)
5.9± 2.1 (19)
6.1 ±3.7 (7)

4.9± 1.8 (15)
6.1 ±1.7 (17)

7.1 ±1.7 (43)
4.9±1.2 (12)

4.8±1.0 (43)
8.7±2.8 (14)

aUnadjusted mean±standard error per 108 nucleotides (n). bExposure estimates are more reliable for this group
because they are based on data from monitoring stations nearest the residence.

Table 3. Multiple linear regression analyses.a
Maternal WBC
PAH-DNA levels

Infant WBC
PAH-DNA levels

Exposure and genotype Beta p-Value Beta p-Value

Ambient pollution
Ambient pollution group Krakow, totalb -0.04 0.91 0.09 0.84
Ambient pollution group Krakow, unemployedb 1.77 0.05 1.73 0.03

Cigarette smoke
Current versus nonsmoker 1.03 < 0.01 -0.20 0.70
Current versus ex-smoker 1.42 < 0.01 -0.38 0.50
Ex-smoker versus nonsmoker -0.33 0.27 -0.04 0.91
Cigarettes/day during pregnancy, current smokers 0.09 0.36 -0.01 0.97
Plasma cotinine, ng/ml <0.01 0.21 -0.01 0.14
ETS+ versus ETS-, nonsmokers only 1.09 0.01 0.23 0.60
Passive cigarettes/day during pregnancy, nonsmokers only <0.01 0.81 0.02 0.55

Genotype
CYPlA 1 Mspl-/+, +/+ versus CYPlA 1 Mspl-/- -0.13 0.72 0.81 0.04
GSTM1-/- versus GSTIM1+/+, +/- -0.02 0.95 - -

&Associations between PAH-DNA adduct levels, environmental exposures (ambient pollution and cigarette
smoke), and genotype (CYPlA 1 Mspl and GSTM1) were evaluated by multiple linear regression; models controlled
for smoking status, dietary PAH, use of coal stoves for residential heating, and home or occupational exposures to
PAH and other organics. bHigh versus low exposure to PM10.
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Figure 1. White blood cell PAH-DNA adductsa by level of air pollution in Krakow subjects not employed outside
the home. aGeometric means adjusted by smoking status, dietary PAH, use of coal stoves for residential heating,
and home or occupational exposures to PAH and other organics. (A) Mothers; (B) newborns. *p< 0.05 compared to
low-pollution group.

cigarettes the mother smoked per day
during pregnancy, nor was there an associ-
ation between newborn adduct levels and
either the number of cigarettes per day of
passive exposure the mother reported dur-
ing pregnancy or newborn plasma cotinine
levels (nanogram per milliliter).

With respect to the modulation ofWBC
PAH-DNA adduct levels by genotype, no

significant effect of either the mother's
CYPlA] MspI RFLP or the GSTM1 geno-

type on maternal WBC adduct levels was

apparent in maternal blood samples (Tables
2 and 3), nor was there an association
between the mother's CYPlAl MspI RFLP
or GSTM1 genotype and adduct levels in
the newborn. However, in blood samples
from the newborn, PAH-DNA adduct lev-
els were significantly higher in WBCs of
newborns who were heterozygous or

homozygous for the CYPlA] MspI RFLP
(MspI-I+,+I+) as compared to newborns
without the RFLP (MspI-I-) (p= 0.04).

Discussion
Coal-burning furnaces used for industry
and heating are a principal source of ambi-
ent pollution within Krakow. The heaviest
pollution is found in the older central
sections of the city. In the current study,
WBC adduct levels were significantly
increased in both mothers and newborns
residing in the most polluted area,

restricted to those women not employed
away from home during pregnancy. Expo-
sure estimates are most reliable for this
group because they are based on data from
monitoring stations nearest the women's
residence. Although limited by the small
sample size, this finding is consistent with a

prior case-control study from Krakow in
which a significant association was seen

between lung cancer risk and residence in

the high pollution area of Krakow (2).
Few prior studies have evaluated associ-
ations between ambient air pollution and
PAH-DNA binding in newborns. How-
ever, a significant association between air

pollution and WBC-DNA adduct levels
has been reported previously in adult
populations (1,21).

Active and passive smoking status of
the mother was also significantly associated
with PAH-DNA adduct levels in maternal,
but not newborn, WBCs. There are several
explanations for the fact that the relation-
ship between ambient air pollution and
adduct levels was similar for maternal and
newborn WBCs, whereas the relationship
between cigarette smoke exposures and
adduct levels differed for mother and new-

borns. Cigarette smoke may induce more

Phase I metabolism in the maternal than in
the fetal tissues, or induction of CYPIAJ
in placentas of smokers may modulate the
biologically effective dose to the fetus
(47,48). Consistent with our findings, pre-

vious studies of adult populations have
seen significant associations between active

smoking and WBC PAH-DNA adduct
levels (16,49,50), although results have not

been consistent (51). Several prior studies
using the 32P-postlabeling method, which
measures a broad spectrum of adducts
bound to DNA, have seen an association
between maternal smoking and adduct lev-
els in fetal samples (52-54). However,
studies using methodologies specific to
PAH-DNA adducts have not (52,55,56).

Prior evaluations of effects of ETS
exposure on DNA damage are limited and
most have not seen an association (57-60).
However, we previously reported a signifi-
cant increase in PAH-albumin adducts (a
surrogate for PAH-DNA adducts) in chil-
dren exposed to ETS (61). ETS exposure is

high in Poland. A recent study of
nonsmoking women from Poland found
that the majority were exposed to ETS
either at home or the workplace and that
urinary cotinine was detected in 92% of
nonsmoking women sampled (62). In the
current study, 58% of the nonsmoking
women reported ETS exposures.

To our knowledge, this is the first study
to evaluate the association between the
CYPIAI MspI RFLP and DNA damage in
fetal samples. WBC adduct levels were sig-
nificantly higher among newborns who were
heterozygous or homozygous for the
CYPIAI MspI RFLP compared to newborns
without the RFLP. However, in maternal
samples no association was seen between
PAH-DNA adduct levels in maternal WBC
and either GSTM1 or CYPIA1 genotypes of
the mother. Results of the relationship
between adduct levels and the CYPIA1 MspI
RFLP and related exon 7 polymorphism (an
Ile -* Val substitution in the catalytic region)
in other adult populations have been con-
flicting (39,41); however, an association
between WBC PAH-DNA adduct levels
and the exon 7 polymorphism was recently
seen among smoking U.S. study subjects
(42). Our results suggest that the CYPlAl
MspI RFLP may be associated with greater
DNA damage in fetal than maternal tissues.
A possible mechanism for this difference in
susceptibility is lack of fetal expression of
GSTM1 (44), an enzyme system that facili-
tates conjugation and excretion of reactive
PAH metabolites. Another is lower DNA
repair efficiency in the fetus relative to the
adult (63-65), rendering the fetus more sen-
sitive to the effects of the genotype.

Some, but not all, prior studies have
shown an association between lung cancer
risk and both the CYPIAJ MspI RFLP and
exon 7 polymorphism (25,26,31). However,
the mechanism(s) by which the polymor-
phisms could increase DNA adducts and
lung cancer risk have not been elucidated
(66). A possible mechanism is higher
CYPlAI inducibility or enhanced catalytic
activity of the valine-type CYPlAI enzyme
(67). The exon 7 polymorphism has been
associated with increased CYPlAl activity
(68,69), but not consistently (70). It is also
possible that the polymorphisms are linked
in certain populations to other mutations
important in CYP1A1 inducibility (66).

Another novel feature of the current
study is the measurement ofWBC PAH-
DNA adduct levels in mother-newborn
pairs. Experimental bioassays indicate that
transplacental exposures to PAHs are gen-
erally an order of magnitude lower than
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maternal exposure (4,5). Therefore, the
finding that levels in the newborns were
similar to those in the mothers was not
anticipated and suggests the possibility of
increased susceptibility of the developing
fetus to DNA damage. We separately ana-
lyzed PAH-DNA adduct levels from

mothers and newborns in Limanowa, a
rural area outside of Krakow where ambi-
ent pollution levels are lower but home use
of coal for heating is significantly greater.
Among the 67 mother-newborn pairs
from Limanowa, mean adduct levels in the
newborns significantly exceeded those in

the mothers (9.0 ± 1.3 vs 5.6± 0.9 per 108
nucleotides) (71).

In conclusion, the evidence of signifi-
cant genetic damage in newborns associated
with environmental PAHs raises concern
about carcinogenic risks from in utero
exposure to this widespread contaminant.
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