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We used a focal infectivity assay with HeLa H1-JC.37 cells to directly compare susceptibilities of simian
immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) to protease inhibitors.
SIVmac239 was inhibited by indinavir, saquinavir, and ritonavir, with 50% effective concentrations (means �
standard deviations) of 39 � 8, 55 � 3, and 13 � 5 nM, respectively. The corresponding values for inhibition
of HIV-1 were 66 � 4, 47 � 10, and 25 � 14 nM, respectively.

The development of protease inhibitors as potent antiretro-
viral drugs enabled the first successful drug combinations used
for highly active antiretroviral therapy (HAART) (9, 12, 13),
and protease inhibitors remain a major component of AIDS
therapy. HAART provides long-term suppression of plasma
human immunodeficiency virus type 1 (HIV-1) loads to unde-
tectable levels (12, 13, 30) and increased CD4�-T-cell counts
(9, 19, 23) in many patients. However, major problems remain,
including the emergence of multidrug-resistant virus, latency
or persistence, and residual replication of HIV-1, even in pa-
tients on suppressive HAART (5, 6, 8, 17, 34, 44). Memory T
cells have been identified as one site that harbors latent HIV-1
(10, 46), but it is likely that there are other sites. The sites of
residual replication have not been determined and represent a
major impediment to eradication of HIV-1 in patients (5, 18).
New therapeutic strategies will be necessary to better control
or eradicate HIV-1 infection. A highly relevant and predictive
animal model of HAART would greatly facilitate development
of innovative therapeutic strategies.

Although protease inhibitors have been successful in
HAART, they have not been extensively studied in the avail-
able animal models of AIDS: feline immunodeficiency virus
(FIV) infection of cats or simian immunodeficiency virus (SIV)
infection of rhesus macaques. Both of these models have been
used extensively for studies of nucleoside analogs (14, 15, 26,
31, 39, 41). However, FIV is not susceptible to the protease
inhibitors used in AIDS therapy (36). SIV is susceptible to
protease inhibitors that inhibit HIV-1 (1, 3, 25), but direct
comparisons of these two viruses by using the same cell line
with a quantitative infectivity assay have not been made. The
proteases of HIV-1 and SIV have similar biochemical proper-
ties (11, 27), but there are substantial differences in several
amino acids in the active sites (47). The SIV protease was in-

hibited by one preclinical inhibitor, SB203386, but the Ki for
inhibition was 10 times higher than the Ki for inhibition of the
HIV-1 protease (20). In the work reported here, we directly
compared the in vitro susceptibilities of SIVmac239 and HIV-1
to three Food and Drug Administration-approved protease
inhibitors: indinavir, saquinavir, and ritonavir.

For these comparisons, we used a focal infectivity assay
(FIA) (4, 32) with a cell line, HeLa H1-JC.37, that is permis-
sive to infection by both SIV and HIV-1 (21, 33). These cells
naturally express CXCR4 and have been engineered to express
human genes for CD4 and CCR5 (33). Conditions for the FIA
were recently described (29). The viruses used in these studies
were SIVmac239 and HIV-1 NL4-3, provided by Paul Luciw
(University of California, Davis); SIVmac251, provided by
Koen Van Rompay (University of California, Davis); and
RT-SHIV (made with a 5�-half clone obtained from Joseph
Sodroski [Dana-Farber Cancer Institute, Harvard Medical
School] [40] and the 3�-half clone of SIVmac239 [24, 35]).
Virus stocks were prepared and stored as previously described
(29, 41). Indinavir, saquinavir, and ritonavir used in these stud-
ies were provided by Raymond F. Schinazi (Emory University,
Decatur, Ga.) and by Mohamed Nasr (Division of AIDS,
National Institute of Allergy and Infectious Diseases). Schinazi
also provided 3�-azido3�-deoxythymidine (AZT) and 2�,3�-di-
deoxy-3�-thiacytidine (3TC).

For initial validation of the FIA with SIVmac239, we
compared it with two p27 antigen-based assays that utilize
either CEMx174 cells or peripheral blood mononuclear cells
(PBMC), both of which have previously been used for studies
of drug susceptibility of SIV (41–43). The dose-response curves
for inhibition of SIVmac239 by indinavir, saquinavir, and
ritonavir that were obtained with these three assays are shown
in Fig. 1. The concentrations required to inhibit focus forma-
tion or p27 production by 50% (EC50) were determined di-
rectly from the linear portions of those plots. The results are
summarized in Table 1. For each drug, the dose-response
curves and EC50 values obtained with the three assays were
similar. With any of the drugs, there was no more than a
twofold difference in the EC50 values among the three assays.

We used the FIA with HeLa H1-JC.37 cells to directly com-
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pare the susceptibilities of SIVmac239 and HIV-1 to these
three protease inhibitors. Assay conditions were identical ex-
cept that foci of HIV-1-infected cells were detected with the
HIV-1-specific antibody 22-6 (16), whereas foci of infection by
SIV or RT-SHIV were detected with SIV-specific antibodies
in serum from SIV-infected rhesus macaques (29). SIV and
HIV-1 were very similar in their susceptibilities to each of the
three inhibitors (Table 2). All statistical analyses were per-
formed according to the ANOVA analysis of variance. The
difference in EC50 values between SIVmac239 and HIV-1 were
not significantly different (P � 0.05), except for indinavir (P �
0.005). With all three drugs, the EC50 values obtained with
these two viruses were different by no more than twofold. As
controls, two nucleoside analogues, AZT and 3TC (Table 2),
which are known to inhibit HIV-1 and SIV (2, 7, 28, 38),
were evaluated. SIVmac239 and HIV-1 were more similar in
susceptibilities to protease inhibitors than to AZT. We also
evaluated the susceptibilities of uncloned SIVmac251 and
RT-SHIV to these three protease inhibitors (Table 2). Both
of these viruses were inhibited by all three protease inhibi-
tors, with EC50 values being similar to those obtained with
SIVmac239. There was no more than a twofold difference in
EC50 values between SIVmac239 and either of these two vi-
ruses.

Our data demonstrate that SIVmac239 and HIV-1 are very
similar in their susceptibilities to three protease inhibitors that
are approved for use in AIDS therapy. These comparisons
were made from infections of a single cell line under identical
conditions. This precludes differences in cellular uptake or
metabolism of drugs, enabling direct comparisons of drug sus-
ceptibilities of the two viruses. The SIV-rhesus macaque model
has been widely used to study nucleoside inhibitors (26, 41, 45),
and our in vitro data suggest that this model may be more
broadly useful for studies of HAART combinations that in-

FIG. 1. Dose-response curves comparing the susceptibilities of
SIVmac239 to indinavir ■ , saquinavir {, and ritonavir Œ in three
different assays. (A) Susceptibility of SIV in HeLa cells determined by
the FIA. (B) Susceptibility of SIV in CEMx174 cells determined by p27
enzyme-linked immunosorbent assay. (C) Susceptibility of SIV in
PBMC determined by p27 enzyme-linked immunosorbent assay. The
values are means of at least three experiments (� standard deviations).
EC50 values were determined from the best-fit line of the linear por-
tion of the graph. Data were plotted as percentages of control (no
drug) versus inhibitor concentration.

TABLE 1. Inhibition of SIVmac239 by protease inhibitors
determined with three drug susceptibility assaysa

Protease
inhibitor

Mean EC50 � SD (nM)

HeLa H1-JC.37 CEMx174 PBMC

Indinavir 39 � 8 37 � 7 30 � 4
Saquinavir 55 � 3 49 � 6 38 � 8
Ritonavir 13 � 5 16 � 2 26 � 10

a The assays used were the FIA with HeLa H1-JC.37 cells and p27 assays with
CEMx174 cells or PBMC. For the three assays, the mean EC50 values were
determined from at least three separate experiments.

TABLE 2. Comparison of drug susceptibilities of SIVmac239,
HIV-1, SIVmac251, and RT-SHIVa

Inhibitor
Mean EC50 � SD (nM)

SIVmac239 HIV-1 SIVmac251 RT-SHIV

Indinavir 39 � 8 66 � 4 45 � 3 52 � 5
Saquinavir 55 � 3 47 � 10 55 � 9 63 � 10
Ritonavir 13 � 5 25 � 14 25 � 4 24 � 2
AZT 470 � 40 120 � 40 NDb ND
3TC 550 � 50 360 � 60 ND ND

a These comparisons were made using the FIA. Mean EC50 values were de-
termined from at least three separate experiments.

b ND, not determined.
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clude protease inhibitors. There have been attempts to study
HAART combinations that include protease inhibitors in SIV-
macaque models (22, 37); however, the efficacy of mono-
therapy with a protease inhibitor was not demonstrated at the
dose used in those studies. Our data suggest that drug combi-
nations that include Food and Drug Administration-approved
protease inhibitors can be studied in the SIV-rhesus macaque
model. This may enable the study of complications in HAART
that are difficult or impossible to investigate in humans, such as
more detailed analysis of reservoirs and sites of residual rep-
lication in tissues.

As expected, RT-SHIV was similar to SIV in susceptibility to
these three protease inhibitors. This is important because RT-
SHIV is susceptible to nonnucleoside reverse transcriptase in-
hibitors whereas SIV is not. The RT-SHIV–rhesus macaque
model offers an opportunity to study HAART with combina-
tions of drugs that include all of the classes currently approved
for use in therapy of HIV-1.

We plan to characterize mutations in the SIV protease that
confer resistance to each of these protease inhibitors. This will
provide important structure-function comparisons of the SIV
and HIV-1 proteases. If drug-resistant SIV mutants are similar
to clinically important HIV-1 mutants, then the model will be
useful for evaluation of the virulence and pathogenicity of
protease inhibitor-resistant mutants.
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