Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Feb;106(Suppl 1):203–216. doi: 10.1289/ehp.98106s1203

Effects of micronutrients on metal toxicity.

M A Peraza 1, F Ayala-Fierro 1, D S Barber 1, E Casarez 1, L T Rael 1
PMCID: PMC1533267  PMID: 9539014

Abstract

There is growing evidence that micronutrient intake has a significant effect on the toxicity and carcinogenesis caused by various chemicals. This paper examines the effect of micronutrient status on the toxicity of four nonessential metals: cadmium, lead, mercury, and arsenic. Unfortunately, few studies have directly examined the effect of dietary deficiency or supplementation on metal toxicity. More commonly, the effect of dietary alteration must be deduced from the results of mechanistic studies. We have chosen to separate the effect of micronutrients on toxic metals into three classes: interaction between essential micronutrients and toxic metals during uptake, binding, and excretion; influence of micronutrients on the metabolism of toxic metals; and effect of micronutrients on secondary toxic effects of metals. Based on data from mechanistic studies, the ability of micronutrients to modulate the toxicity of metals is indisputable. Micronutrients interact with toxic metals at several points in the body: absorption and excretion of toxic metals; transport of metals in the body; binding to target proteins; metabolism and sequestration of toxic metals; and finally, in secondary mechanisms of toxicity such as oxidative stress. Therefore, people eating a diet deficient in micronutrients will be predisposed to toxicity from nonessential metals.

Full text

PDF
203

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhami V. M., Husain R., Husain R., Seth P. K. Influence of iron deficiency and lead treatment on behavior and cerebellar and hippocampal polyamine levels in neonatal rats. Neurochem Res. 1996 Aug;21(8):915–922. doi: 10.1007/BF02532341. [DOI] [PubMed] [Google Scholar]
  2. Albores A., Cebrián M. E., Bach P. H., Connelly J. C., Hinton R. H., Bridges J. W. Sodium arsenite induced alterations in bilirubin excretion and heme metabolism. J Biochem Toxicol. 1989 Summer;4(2):73–78. doi: 10.1002/jbt.2570040202. [DOI] [PubMed] [Google Scholar]
  3. Andersen O., Nielsen J. B., Sorensen J. A., Scherrebeck L. Experimental localization of intestinal uptake sites for metals (Cd, Hg, Zn, Se) in vivo in mice. Environ Health Perspect. 1994 Sep;102 (Suppl 3):199–206. doi: 10.1289/ehp.94102s3199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ando M., Shimizu M., Sayato Y., Tanimura A., Tobe M. The inhibition of vitamin D-stimulated intestinal calcium transport in rats after continuous oral administration of cadmium. Toxicol Appl Pharmacol. 1981 Dec;61(3):297–301. doi: 10.1016/0041-008x(81)90350-1. [DOI] [PubMed] [Google Scholar]
  5. Audesirk G., Audesirk T. The effects of inorganic lead on voltage-sensitive calcium channels differ among cell types and among channel subtypes. Neurotoxicology. 1993 Summer-Fall;14(2-3):259–265. [PubMed] [Google Scholar]
  6. Baczynskyj W. M., Yess N. J. U.S. Food and Drug Administration monitoring of lead in domestic and imported ceramic dinnerware. J AOAC Int. 1995 May-Jun;78(3):610–614. [PubMed] [Google Scholar]
  7. Barltrop D., Khoo H. E. The influence of dietary minerals and fat on the absorption of lead. Sci Total Environ. 1976 Nov;6(3):265–273. doi: 10.1016/0048-9697(76)90036-x. [DOI] [PubMed] [Google Scholar]
  8. Barton J. C. Active transport of lead-210 by everted segments of rat duodenum. Am J Physiol. 1984 Aug;247(2 Pt 1):G193–G198. doi: 10.1152/ajpgi.1984.247.2.G193. [DOI] [PubMed] [Google Scholar]
  9. Barton J. C., Conrad M. E., Harrison L., Nuby S. Effects of calcium on the absorption and retention of lead. J Lab Clin Med. 1978 Mar;91(3):366–376. [PubMed] [Google Scholar]
  10. Bauman P. F., Smith T. K., Bray T. M. The effect of dietary protein and sulfur amino acids on hepatic glutathione concentration and glutathione-dependent enzyme activities in the rat. Can J Physiol Pharmacol. 1988 Aug;66(8):1048–1052. doi: 10.1139/y88-171. [DOI] [PubMed] [Google Scholar]
  11. Belloni-Olivi L., Annadata M., Goldstein G. W., Bressler J. P. Phosphorylation of membrane proteins in erythrocytes treated with lead. Biochem J. 1996 Apr 15;315(Pt 2):401–406. doi: 10.1042/bj3150401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bithoney W. G. Elevated lead levels in children with nonorganic failure to thrive. Pediatrics. 1986 Nov;78(5):891–895. [PubMed] [Google Scholar]
  13. Blake K. C., Mann M. Effect of calcium and phosphorus on the gastrointestinal absorption of 203Pb in man. Environ Res. 1983 Feb;30(1):188–194. doi: 10.1016/0013-9351(83)90179-2. [DOI] [PubMed] [Google Scholar]
  14. Bogden J. D., Gertner S. B., Christakos S., Kemp F. W., Yang Z., Katz S. R., Chu C. Dietary calcium modifies concentrations of lead and other metals and renal calbindin in rats. J Nutr. 1992 Jul;122(7):1351–1360. doi: 10.1093/jn/122.7.1351. [DOI] [PubMed] [Google Scholar]
  15. Boischio A. A., Henshel D. S. Risk assessment of mercury exposure through fish consumption by the riverside people in the Madeira Basin, Amazon, 1991. Neurotoxicology. 1996 Spring;17(1):169–175. [PubMed] [Google Scholar]
  16. Bolger P. M., Yess N. J., Gunderson E. L., Troxell T. C., Carrington C. D. Identification and reduction of sources of dietary lead in the United States. Food Addit Contam. 1996 Jan;13(1):53–60. doi: 10.1080/02652039609374380. [DOI] [PubMed] [Google Scholar]
  17. Boquist L., Boquist S., Ericsson I. Structural beta-cell changes and transient hyperglycemia in mice treated with compounds inducing inhibited citric acid cycle enzyme activity. Diabetes. 1988 Jan;37(1):89–98. doi: 10.2337/diab.37.1.89. [DOI] [PubMed] [Google Scholar]
  18. Borgoño J. M., Greiber R. Estudio epidemiológico del arsenicismo en la ciudad de Antofagasta. Rev Med Chil. 1971 Sep;99(9):702–707. [PubMed] [Google Scholar]
  19. Borgoño J. M., Vicent P., Venturino H., Infante A. Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of a treatment plant. Environ Health Perspect. 1977 Aug;19:103–105. doi: 10.1289/ehp.19-1637404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Bourgoin B. P., Evans D. R., Cornett J. R., Lingard S. M., Quattrone A. J. Lead content in 70 brands of dietary calcium supplements. Am J Public Health. 1993 Aug;83(8):1155–1160. doi: 10.2105/ajph.83.8.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bray T. M., Taylor C. G. Tissue glutathione, nutrition, and oxidative stress. Can J Physiol Pharmacol. 1993 Sep;71(9):746–751. doi: 10.1139/y93-111. [DOI] [PubMed] [Google Scholar]
  22. Bremner I. Cadmium toxicity. Nutritional influences and the role of metallothionein. World Rev Nutr Diet. 1978;32:165–197. [PubMed] [Google Scholar]
  23. Bremner I., Davies N. T. The induction of metallothionein in rat liver by zinc injection and restriction of food intake. Biochem J. 1975 Sep;149(3):733–738. doi: 10.1042/bj1490733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Bressler J. P., Goldstein G. W. Mechanisms of lead neurotoxicity. Biochem Pharmacol. 1991 Feb 15;41(4):479–484. doi: 10.1016/0006-2952(91)90617-e. [DOI] [PubMed] [Google Scholar]
  25. Bunn C. R., Matrone G. In vivo interactions of cadmium, copper, zinc and iron in the mouse and rat. J Nutr. 1966 Dec;90(4):395–399. doi: 10.1093/jn/90.4.395. [DOI] [PubMed] [Google Scholar]
  26. Büsselberg D. Calcium channels as target sites of heavy metals. Toxicol Lett. 1995 Dec;82-83:255–261. doi: 10.1016/0378-4274(95)03559-1. [DOI] [PubMed] [Google Scholar]
  27. Büsselberg D., Michael D., Platt B. Pb2+ reduces voltage- and N-methyl-D-aspartate (NMDA)-activated calcium channel currents. Cell Mol Neurobiol. 1994 Dec;14(6):711–722. doi: 10.1007/BF02088679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. COLEMAN J. E., VALLEE B. L. Metallocarboxypeptidases: stability constants and enzymatic characteristics. J Biol Chem. 1961 Aug;236:2244–2249. [PubMed] [Google Scholar]
  29. COTZIAS G. C., PAPAVASILIOU P. S. SPECIFICITY OF ZINC PATHWAY THROUGH THE BODY: HOMEOSTATIC CONSIDERATIONS. Am J Physiol. 1964 Apr;206:787–792. doi: 10.1152/ajplegacy.1964.206.4.787. [DOI] [PubMed] [Google Scholar]
  30. Castle L., Offen C. P., Baxter M. J., Gilbert J. Migration studies from paper and board food packaging materials. 1. Compositional analysis. Food Addit Contam. 1997 Jan;14(1):35–44. doi: 10.1080/02652039709374495. [DOI] [PubMed] [Google Scholar]
  31. Cebrián M. E., Albores A., Aguilar M., Blakely E. Chronic arsenic poisoning in the north of Mexico. Hum Toxicol. 1983 Jan;2(1):121–133. doi: 10.1177/096032718300200110. [DOI] [PubMed] [Google Scholar]
  32. Chan H. M., Kim C., Khoday K., Receveur O., Kuhnlein H. V. Assessment of dietary exposure to trace metals in Baffin Inuit food. Environ Health Perspect. 1995 Jul-Aug;103(7-8):740–746. doi: 10.1289/ehp.95103740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Chen R. W., Whanger P. D., Weswig P. H. Selenium - induced redistribution of cadmium binding to tissue proteins: a possible mechanism of protection against cadmium toxicity. Bioinorg Chem. 1975 Jan;4(2):125–133. doi: 10.1016/s0006-3061(00)81021-2. [DOI] [PubMed] [Google Scholar]
  34. Cherian M. G., Shaikh Z. A. Metabolism of intravenously injected cadmium-binding protein. Biochem Biophys Res Commun. 1975 Aug 4;65(3):863–869. doi: 10.1016/s0006-291x(75)80465-7. [DOI] [PubMed] [Google Scholar]
  35. Chetty C. S., Rajanna S., Hall E., Yallapragada P. R., Rajanna B. In vitro and in vivo effects of lead, methyl mercury and mercury on inositol 1,4,5-trisphosphate and 1,3,4,5-tetrakisphosphate receptor bindings in rat brain. Toxicol Lett. 1996 Sep;87(1):11–17. doi: 10.1016/0378-4274(96)03670-3. [DOI] [PubMed] [Google Scholar]
  36. Church H. J., Day J. P., Braithwaite R. A., Brown S. S. Binding of lead to a metallothionein-like protein in human erythrocytes. J Inorg Biochem. 1993 Jan;49(1):55–68. doi: 10.1016/0162-0134(93)80048-e. [DOI] [PubMed] [Google Scholar]
  37. Clarkson P. M. Nutrition for improved sports performance. Current issues on ergogenic aids. Sports Med. 1996 Jun;21(6):393–401. doi: 10.2165/00007256-199621060-00001. [DOI] [PubMed] [Google Scholar]
  38. Clarkson T. W. Mercury: major issues in environmental health. Environ Health Perspect. 1993 Apr;100:31–38. doi: 10.1289/ehp.9310031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Cousins R. J. Metallothionein synthesis and degradation: relationship to cadmium metabolism. Environ Health Perspect. 1979 Feb;28:131–136. doi: 10.1289/ehp.7928131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Crowe A., Morgan E. H. Interactions between tissue uptake of lead and iron in normal and iron-deficient rats during development. Biol Trace Elem Res. 1996 Jun;52(3):249–261. doi: 10.1007/BF02789166. [DOI] [PubMed] [Google Scholar]
  41. Cuadrado C., Kumpulainen J., Moreiras O. Lead, cadmium and mercury contents in average Spanish market basket diets from Galicia, Valencia, Andalucía and Madrid. Food Addit Contam. 1995 Jan-Feb;12(1):107–118. doi: 10.1080/02652039509374285. [DOI] [PubMed] [Google Scholar]
  42. DeMichele S. J. Nutrition of lead. Comp Biochem Physiol A Comp Physiol. 1984;78(3):401–408. doi: 10.1016/0300-9629(84)90567-x. [DOI] [PubMed] [Google Scholar]
  43. Dellinger J. A., Meyers R. M., Gebhardt K. J., Hansen L. K. The Ojibwa Health Study: fish residue comparisons for Lakes Superior, Michigan, and Huron. Toxicol Ind Health. 1996 May-Aug;12(3-4):393–402. doi: 10.1177/074823379601200311. [DOI] [PubMed] [Google Scholar]
  44. Dietz R., Riget F., Johansen P. Lead, cadmium, mercury and selenium in Greenland marine animals. Sci Total Environ. 1996 Jul 16;186(1-2):67–93. doi: 10.1016/0048-9697(96)05086-3. [DOI] [PubMed] [Google Scholar]
  45. Edelstein S., Fullmer C. S., Wasserman R. H. Gastrointestinal absorption of lead in chicks: involvement of the cholecalciferol endocrine system. J Nutr. 1984 Apr;114(4):692–700. doi: 10.1093/jn/114.4.692. [DOI] [PubMed] [Google Scholar]
  46. Engel R. R., Receveur O. Re: "Arsenic ingestion and internal cancers: a review". Am J Epidemiol. 1993 Nov 15;138(10):896–897. doi: 10.1093/oxfordjournals.aje.a116797. [DOI] [PubMed] [Google Scholar]
  47. Evans G. W., Majors P. F., Cornatzer W. E. Mechanism for cadmium and zinc antagonism of copper metabolism. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1142–1148. doi: 10.1016/0006-291x(70)90913-7. [DOI] [PubMed] [Google Scholar]
  48. Farias P., Borja-Aburto V. H., Rios C., Hertz-Picciotto I., Rojas-Lopez M., Chavez-Ayala R. Blood lead levels in pregnant women of high and low socioeconomic status in Mexico City. Environ Health Perspect. 1996 Oct;104(10):1070–1074. doi: 10.1289/ehp.961041070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ferm V. H. Arsenic as a teratogenic agent. Environ Health Perspect. 1977 Aug;19:215–217. doi: 10.1289/ehp.7719215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Flora S. J., Bhattacharya R., Sachan S. R. Dose-dependent effects of zinc supplementation during chelation of lead in rats. Pharmacol Toxicol. 1994 Jun;74(6):330–333. doi: 10.1111/j.1600-0773.1994.tb01368.x. [DOI] [PubMed] [Google Scholar]
  51. Forman M. R., Yao S. X., Graubard B. I., Qiao Y. L., McAdams M., Mao B. L., Taylor P. R. The effect of dietary intake of fruits and vegetables on the odds ratio of lung cancer among Yunnan tin miners. Int J Epidemiol. 1992 Jun;21(3):437–441. doi: 10.1093/ije/21.3.437. [DOI] [PubMed] [Google Scholar]
  52. Fox M. R. Cadmium bioavailability. Fed Proc. 1983 Apr;42(6):1726–1729. [PubMed] [Google Scholar]
  53. Fox M. R., Fry B. E., Jr Cadmium toxicity decreased by dietary ascorbic acid supplements. Science. 1970 Sep 4;169(3949):989–991. doi: 10.1126/science.169.3949.989. [DOI] [PubMed] [Google Scholar]
  54. Fox M. R. Nutritional influences on metal toxicity: cadmium as a model toxic element. Environ Health Perspect. 1979 Apr;29:95–104. doi: 10.1289/ehp.792995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Fullmer C. S., Edelstein S., Wasserman R. H. Lead-binding properties of intestinal calcium-binding proteins. J Biol Chem. 1985 Jun 10;260(11):6816–6819. [PubMed] [Google Scholar]
  56. Fullmer C. S. Intestinal interactions of lead and calcium. Neurotoxicology. 1992 Winter;13(4):799–807. [PubMed] [Google Scholar]
  57. Fullmer C. S. Lead-calcium interactions: involvement of 1,25-dihydroxyvitamin D. Environ Res. 1997 Jan;72(1):45–55. doi: 10.1006/enrs.1996.3689. [DOI] [PubMed] [Google Scholar]
  58. Funk A. E., Day F. A., Brady F. O. Displacement of zinc and copper from copper-induced metallothionein by cadmium and by mercury: in vivo and ex vivo studies. Comp Biochem Physiol C. 1987;86(1):1–6. doi: 10.1016/0742-8413(87)90133-2. [DOI] [PubMed] [Google Scholar]
  59. Ganther H. E., Goudie C., Sunde M. L., Kopecky M. J., Wagner P. Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna. Science. 1972 Mar 10;175(4026):1122–1124. doi: 10.1126/science.175.4026.1122. [DOI] [PubMed] [Google Scholar]
  60. Ganther H. E. Modification of methylmercury toxicity and metabolism by selenium and vitamin E: possible mechanisms. Environ Health Perspect. 1978 Aug;25:71–76. doi: 10.1289/ehp.782571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Girard M., Noël F., Dumont C. Varying mercury exposure with varying food source in a James Bay Cree community. Arctic Med Res. 1996 Apr;55(2):69–74. [PubMed] [Google Scholar]
  62. Goering P. L., Fowler B. A. Metal constitution of metallothionein influences inhibition of delta-aminolaevulinic acid dehydratase (porphobilinogen synthase) by lead. Biochem J. 1987 Jul 15;245(2):339–345. doi: 10.1042/bj2450339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Goering P. L. Lead-protein interactions as a basis for lead toxicity. Neurotoxicology. 1993 Summer-Fall;14(2-3):45–60. [PubMed] [Google Scholar]
  64. Goldstein G. W. Evidence that lead acts as a calcium substitute in second messenger metabolism. Neurotoxicology. 1993 Summer-Fall;14(2-3):97–101. [PubMed] [Google Scholar]
  65. Goldstein G. W. Lead poisoning and brain cell function. Environ Health Perspect. 1990 Nov;89:91–94. doi: 10.1289/ehp.908991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Gonzalez M. J., Aguilar M. V., Martinez Para M. C. Gastrointestinal absorption of inorganic arsenic (V): The effect of concentration and interactions with phosphate and dichromate. Vet Hum Toxicol. 1995 Apr;37(2):131–136. [PubMed] [Google Scholar]
  67. Goyer R. A. Nutrition and metal toxicity. Am J Clin Nutr. 1995 Mar;61(3 Suppl):646S–650S. doi: 10.1093/ajcn/61.3.646S. [DOI] [PubMed] [Google Scholar]
  68. Gresser M. J. ADP-arsenate. Formation by submitochondrial particles under phosphorylating conditions. J Biol Chem. 1981 Jun 25;256(12):5981–5983. [PubMed] [Google Scholar]
  69. Habermann E., Crowell K., Janicki P. Lead and other metals can substitute for Ca2+ in calmodulin. Arch Toxicol. 1983 Sep;54(1):61–70. doi: 10.1007/BF00277816. [DOI] [PubMed] [Google Scholar]
  70. Hammad T. A., Sexton M., Langenberg P. Relationship between blood lead and dietary iron intake in preschool children. A cross-sectional study. Ann Epidemiol. 1996 Jan;6(1):30–33. doi: 10.1016/1047-2797(95)00097-6. [DOI] [PubMed] [Google Scholar]
  71. Han S., Qiao X., Simpson S., Ameri P., Kemp F. W., Bogden J. D. Weight loss alters organ concentrations and contents of lead and some essential divalent metals in rats previously exposed to lead. J Nutr. 1996 Jan;126(1):317–323. doi: 10.1093/jn/126.1.317. [DOI] [PubMed] [Google Scholar]
  72. Harrington J. M., Middaugh J. P., Morse D. L., Housworth J. A survey of a population exposed to high concentrations of arsenic in well water in Fairbanks, Alaska. Am J Epidemiol. 1978 Nov;108(5):377–385. doi: 10.1093/oxfordjournals.aje.a112635. [DOI] [PubMed] [Google Scholar]
  73. Hayter J. Trace elements: implications for nursing. J Adv Nurs. 1980 Jan;5(1):91–101. doi: 10.1111/j.1365-2648.1980.tb00213.x. [DOI] [PubMed] [Google Scholar]
  74. Henke G., Sachs H. W., Bohn G. Cadmium-Bestimmungen in Leber und Nieren von Kindern und Jugendlichen durch Neutronenaktivierungsanalyse. Arch Toxikol. 1970;26(1):8–16. [PubMed] [Google Scholar]
  75. Hernandez-Avila M., Gonzalez-Cossio T., Palazuelos E., Romieu I., Aro A., Fishbein E., Peterson K. E., Hu H. Dietary and environmental determinants of blood and bone lead levels in lactating postpartum women living in Mexico City. Environ Health Perspect. 1996 Oct;104(10):1076–1082. doi: 10.1289/ehp.961041076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Hernandez M., Schuhmacher M., Fernandez J. D., Domingo J. L., Llobet J. M. Urinary cadmium levels during pregnancy and postpartum. A longitudinal study. Biol Trace Elem Res. 1996 Summer;53(1-3):205–212. doi: 10.1007/BF02784556. [DOI] [PubMed] [Google Scholar]
  77. Hill C. H. Interrelationships of selenium with other trace elements. Fed Proc. 1975 Oct;34(11):2096–2100. [PubMed] [Google Scholar]
  78. Hill C. H. Reversal of selenium toxicity in chicks by mercury, copper, and cadmium. J Nutr. 1974 May;104(5):593–598. doi: 10.1093/jn/104.5.593. [DOI] [PubMed] [Google Scholar]
  79. Ikingura J. R., Akagi H. Monitoring of fish and human exposure to mercury due to gold mining in the Lake Victoria goldfields, Tanzania. Sci Total Environ. 1996 Nov 18;191(1-2):59–68. doi: 10.1016/0048-9697(96)05178-9. [DOI] [PubMed] [Google Scholar]
  80. Jeng S. L., Yang C. P. Determination of lead, cadmium, mercury, and copper concentrations in duck eggs in Taiwan. Poult Sci. 1995 Jan;74(1):187–193. doi: 10.3382/ps.0740187. [DOI] [PubMed] [Google Scholar]
  81. Jiménez C., Romieu I., Palazuelos E., Muñoz I., Cortés M., Rivero A., Catalán J. Factores de exposición ambiental y concentraciones de plomo en sangre en niños de la Ciudad de México. Salud Publica Mex. 1993 Nov-Dec;35(6):599–606. [PubMed] [Google Scholar]
  82. Jugo S. Metabolism of toxic heavy metals in growing organisms: a review. Environ Res. 1977 Feb;13(1):36–46. doi: 10.1016/0013-9351(77)90002-0. [DOI] [PubMed] [Google Scholar]
  83. KOSTIAL K., VOUK V. B. Lead ions and synaptic transmission in the superior cervical ganglion of the cat. Br J Pharmacol Chemother. 1957 Jun;12(2):219–222. doi: 10.1111/j.1476-5381.1957.tb00123.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Kello D., Kostial K. Influence of age and milk diet on cadmium absorption from the gut. Toxicol Appl Pharmacol. 1977 May;40(2):277–282. doi: 10.1016/0041-008x(77)90098-9. [DOI] [PubMed] [Google Scholar]
  85. Kostial K., Simonović I., Pisonić M. Reduction of lead absorption from the intestine in newborn rats. Environ Res. 1971 Oct;4(4):360–363. doi: 10.1016/0013-9351(71)90035-1. [DOI] [PubMed] [Google Scholar]
  86. Kramer K. K., Zoelle J. T., Klaassen C. D. Induction of metallothionein mRNA and protein in primary murine neuron cultures. Toxicol Appl Pharmacol. 1996 Nov;141(1):1–7. doi: 10.1006/taap.1996.0253. [DOI] [PubMed] [Google Scholar]
  87. Kraus R. J., Ganther H. E. Synergistic toxicity between arsenic and methylated selenium compounds. Biol Trace Elem Res. 1989 Apr-May;20(1-2):105–113. doi: 10.1007/BF02919103. [DOI] [PubMed] [Google Scholar]
  88. Kreppel H., Liu J., Liu Y., Reichl F. X., Klaassen C. D. Zinc-induced arsenite tolerance in mice. Fundam Appl Toxicol. 1994 Jul;23(1):32–37. doi: 10.1006/faat.1994.1075. [DOI] [PubMed] [Google Scholar]
  89. Lagerkvist B. J., Ekesrydh S., Englyst V., Nordberg G. F., Söderberg H. A., Wiklund D. E. Increased blood lead and decreased calcium levels during pregnancy: a prospective study of Swedish women living near a smelter. Am J Public Health. 1996 Sep;86(9):1247–1252. doi: 10.2105/ajph.86.9.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Lai M. S., Hsueh Y. M., Chen C. J., Shyu M. P., Chen S. Y., Kuo T. L., Wu M. M., Tai T. Y. Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol. 1994 Mar 1;139(5):484–492. doi: 10.1093/oxfordjournals.aje.a117031. [DOI] [PubMed] [Google Scholar]
  91. Lauwerys R., Roels H., Buchet J. P., Bernard A. A., Verhoeven L., Konings J. The influence of orally-administered vitamin C or zinc on the absorption of and the biological response to lead. J Occup Med. 1983 Sep;25(9):668–678. doi: 10.1097/00043764-198309000-00015. [DOI] [PubMed] [Google Scholar]
  92. Le X. C., Cullen W. R., Reimer K. J. Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. Clin Chem. 1994 Apr;40(4):617–624. [PubMed] [Google Scholar]
  93. Lee T. C., Ho I. C. Differential cytotoxic effects of arsenic on human and animal cells. Environ Health Perspect. 1994 Sep;102 (Suppl 3):101–105. doi: 10.1289/ehp.94102s3101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Lee T. C., Ho I. C. Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol. 1995;69(7):498–504. doi: 10.1007/s002040050204. [DOI] [PubMed] [Google Scholar]
  95. Levander O. A., Baumann C. A. Selenium metabolism. VI. Effect of arsenic on the excretion of selenium in the bile. Toxicol Appl Pharmacol. 1966 Jul;9(1):106–115. doi: 10.1016/0041-008x(66)90035-4. [DOI] [PubMed] [Google Scholar]
  96. Levander O. A. Metabolic interrelationships between arsenic and selenium. Environ Health Perspect. 1977 Aug;19:159–164. doi: 10.1289/ehp.7719159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Levander O. A. Nutritional factors in relation to heavy metal toxicants. Fed Proc. 1977 Apr;36(5):1683–1687. [PubMed] [Google Scholar]
  98. Lucas S. R., Sexton M., Langenberg P. Relationship between blood lead and nutritional factors in preschool children: a cross-sectional study. Pediatrics. 1996 Jan;97(1):74–78. [PubMed] [Google Scholar]
  99. MASUHARA T., MIGICOVSKY B. B. Vitamin D and the intestinal absorption of iron and cobalt. J Nutr. 1963 Jul;80:332–336. doi: 10.1093/jn/80.3.332. [DOI] [PubMed] [Google Scholar]
  100. Mahaffey K. R. Nutrition and lead: strategies for public health. Environ Health Perspect. 1995 Sep;103 (Suppl 6):191–196. doi: 10.1289/ehp.95103s6191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Maitani T., Saito N., Abe M., Uchiyama S., Saito Y. Chemical form-dependent induction of hepatic zinc-thionein by arsenic administration and effect of co-administered selenium in mice. Toxicol Lett. 1987 Nov;39(1):63–70. doi: 10.1016/0378-4274(87)90257-8. [DOI] [PubMed] [Google Scholar]
  102. Maldonado-Vega M., Cerbón-Solorzano J., Albores-Medina A., Hernández-Luna C., Calderón-Salinas J. V. Lead: intestinal absorption and bone mobilization during lactation. Hum Exp Toxicol. 1996 Nov;15(11):872–877. doi: 10.1177/096032719601501102. [DOI] [PubMed] [Google Scholar]
  103. Marchioro M., Swanson K. L., Aracava Y., Albuquerque E. X. Glycine and calcium-dependent effects of lead on N-methyl-D-aspartate receptor function in rat hippocampal neurons. J Pharmacol Exp Ther. 1996 Oct;279(1):143–153. [PubMed] [Google Scholar]
  104. Miller G. D., Massaro T. F., Massaro E. J. Interactions between lead and essential elements: a review. Neurotoxicology. 1990 Spring;11(1):99–119. [PubMed] [Google Scholar]
  105. Mills C. F., Dalgarno A. C. Copper and zinc status of ewes and lambs receiving increased dietary concentrations of cadmium. Nature. 1972 Sep 15;239(5368):171–173. doi: 10.1038/239171a0. [DOI] [PubMed] [Google Scholar]
  106. Mills E. L., Gutenmann W. H., Lisk D. J. Mercury content of small pan fish from New York State waters. Chemosphere. 1994 Sep;29(6):1357–1359. doi: 10.1016/0045-6535(94)90266-6. [DOI] [PubMed] [Google Scholar]
  107. Mitchell R. A., Chang B. F., Huang C. H., DeMaster E. G. Inhibition of mitochondrial energy-linked functions by arsenate. Evidence for a nonhydrolytic mode of inhibitor action. Biochemistry. 1971 May 25;10(11):2049–2054. doi: 10.1021/bi00787a013. [DOI] [PubMed] [Google Scholar]
  108. Moon J. The role of vitamin D in toxic metal absorption: a review. J Am Coll Nutr. 1994 Dec;13(6):559–564. doi: 10.1080/07315724.1994.10718447. [DOI] [PubMed] [Google Scholar]
  109. Morrison J. N., Quarterman J., Humphries W. R. The effect of dietary calcium and phosphate on lead poisoning in lambs. J Comp Pathol. 1977 Jul;87(3):417–429. doi: 10.1016/0021-9975(77)90031-7. [DOI] [PubMed] [Google Scholar]
  110. Moxon A. L. THE EFFECT OF ARSENIC ON THE TOXICITY OF SELENIFEROUS GRAINS. Science. 1938 Jul 22;88(2273):81–81. doi: 10.1126/science.88.2273.81. [DOI] [PubMed] [Google Scholar]
  111. Mushak P., Crocetti A. F. Risk and revisionism in arsenic cancer risk assessment. Environ Health Perspect. 1995 Jul-Aug;103(7-8):684–689. doi: 10.1289/ehp.95103684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Mykkänen H. M., Wasserman R. H. Gastrointestinal absorption of lead (203Pb) in chicks: influence of lead, calcium, and age. J Nutr. 1981 Oct;111(10):1757–1765. doi: 10.1093/jn/111.10.1757. [DOI] [PubMed] [Google Scholar]
  113. Nath K. A., Croatt A. J., Likely S., Behrens T. W., Warden D. Renal oxidant injury and oxidant response induced by mercury. Kidney Int. 1996 Sep;50(3):1032–1043. doi: 10.1038/ki.1996.406. [DOI] [PubMed] [Google Scholar]
  114. Nehru B., Iyer A. Effect of selenium on lead-induced neurotoxicity in different brain regions of adult rats. J Environ Pathol Toxicol Oncol. 1994;13(4):265–268. [PubMed] [Google Scholar]
  115. O'Flaherty E. J. Modeling bone mineral metabolism, with special reference to calcium and lead. Neurotoxicology. 1992 Winter;13(4):789–797. [PubMed] [Google Scholar]
  116. PARIZEK J. The destructive effect of cadmium ion on testicular tissue and its prevention by zinc. J Endocrinol. 1957 Apr;15(1):56–63. doi: 10.1677/joe.0.0150056. [DOI] [PubMed] [Google Scholar]
  117. PATTERSON C. C. CONTAMINATED AND NATURAL LEAD ENVIRONMENTS OF MAN. Arch Environ Health. 1965 Sep;11:344–360. doi: 10.1080/00039896.1965.10664229. [DOI] [PubMed] [Google Scholar]
  118. Panemangalore M., Bebe F. N. Effects of low oral lead and cadmium exposure and zinc status of heme metabolites in weanling rats. Int J Occup Med Environ Health. 1996;9(2):141–151. [PubMed] [Google Scholar]
  119. Park S. T., Lim K. T., Chung Y. T., Kim S. U. Methylmercury-induced neurotoxicity in cerebral neuron culture is blocked by antioxidants and NMDA receptor antagonists. Neurotoxicology. 1996 Spring;17(1):37–45. [PubMed] [Google Scholar]
  120. Parízek J., Ostádalová I. The protective effect of small amounts of selenite in sublimate intoxication. Experientia. 1967 Feb 15;23(2):142–143. doi: 10.1007/BF02135970. [DOI] [PubMed] [Google Scholar]
  121. Petering H. G., Johnson M. A., Stemmer K. L. Studies of zinc metabolism in the rat. I. Dose-response effects of cadmium. Arch Environ Health. 1971 Aug;23(2):93–101. doi: 10.1080/00039896.1971.10665962. [DOI] [PubMed] [Google Scholar]
  122. Petering H. G. Some observations on the interaction of zinc, copper, and iron metabolism in lead and cadmium toxicity. Environ Health Perspect. 1978 Aug;25:141–145. doi: 10.1289/ehp.7825141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Pounds J. G., Long G. J., Rosen J. F. Cellular and molecular toxicity of lead in bone. Environ Health Perspect. 1991 Feb;91:17–32. doi: 10.1289/ehp.919117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Rabinowitz M. B., Kopple J. D., Wetherill G. W. Effect of food intake and fasting on gastrointestinal lead absorption in humans. Am J Clin Nutr. 1980 Aug;33(8):1784–1788. doi: 10.1093/ajcn/33.8.1784. [DOI] [PubMed] [Google Scholar]
  125. Rabinowitz M. B., Wetherill G. W., Kopple J. D. Magnitude of lead intake from respiration by normal man. J Lab Clin Med. 1977 Aug;90(2):238–248. [PubMed] [Google Scholar]
  126. Rahman M., Axelson O. Diabetes mellitus and arsenic exposure: a second look at case-control data from a Swedish copper smelter. Occup Environ Med. 1995 Nov;52(11):773–774. doi: 10.1136/oem.52.11.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Ramos O., Carrizales L., Yáez L., Mejía J., Batres L., Ortíz D., Díaz-Barriga F. Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels. Environ Health Perspect. 1995 Feb;103 (Suppl 1):85–88. doi: 10.1289/ehp.95103s185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Rimbach G., Brandt K., Most E., Pallauf J. Supplemental phytic acid and microbial phytase change zinc bioavailability and cadmium accumulation in growing rats. J Trace Elem Med Biol. 1995 Jul;9(2):117–122. doi: 10.1016/S0946-672X(11)80020-9. [DOI] [PubMed] [Google Scholar]
  129. Rimbach G., Pallauf J., Brandt K., Most E. Effect of phytic acid and microbial phytase on Cd accumulation, Zn status, and apparent absorption of Ca, P, Mg, Fe, Zn, Cu, and Mn in growing rats. Ann Nutr Metab. 1995;39(6):361–370. doi: 10.1159/000177886. [DOI] [PubMed] [Google Scholar]
  130. Rojas-López M., Santos-Burgoa C., Ríos C., Hernández-Avila M., Romieu I. Use of lead-glazed ceramics is the main factor associated to high lead in blood levels in two Mexican rural communities. J Toxicol Environ Health. 1994 May;42(1):45–52. doi: 10.1080/15287399409531862. [DOI] [PubMed] [Google Scholar]
  131. Romieu I., Carreon T., Lopez L., Palazuelos E., Rios C., Manuel Y., Hernandez-Avila M. Environmental urban lead exposure and blood lead levels in children of Mexico City. Environ Health Perspect. 1995 Nov;103(11):1036–1040. doi: 10.1289/ehp.951031036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Rothe S., Gropp J., Weiser H., Rambeck W. A. Der Einfluss von Vitamin C und Zink auf die durch Kupfer erhöte Rückstandsbildung von Cadmium beim Schwein. Z Ernahrungswiss. 1994 Mar;33(1):61–67. doi: 10.1007/BF01610579. [DOI] [PubMed] [Google Scholar]
  133. RoyChoudhury A., Das T., Sharma A., Talukder G. Dietary garlic extract in modifying clastogenic effects of inorganic arsenic in mice: two-generation studies. Mutat Res. 1996 Apr 4;359(3):165–170. doi: 10.1016/s0165-1161(96)90263-0. [DOI] [PubMed] [Google Scholar]
  134. Ruff H. A., Markowitz M. E., Bijur P. E., Rosen J. F. Relationships among blood lead levels, iron deficiency, and cognitive development in two-year-old children. Environ Health Perspect. 1996 Feb;104(2):180–185. doi: 10.1289/ehp.96104180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Sargent J. D. The role of nutrition in the prevention of lead poisoning in children. Pediatr Ann. 1994 Nov;23(11):636–642. doi: 10.3928/0090-4481-19941101-12. [DOI] [PubMed] [Google Scholar]
  136. Sauer J. M., Waalkes M. P., Hooser S. B., Baines A. T., Kuester R. K., Sipes I. G. Tolerance induced by all-trans-retinol to the hepatotoxic effects of cadmium in rats: role of metallothionein expression. Toxicol Appl Pharmacol. 1997 Mar;143(1):110–119. doi: 10.1006/taap.1996.8050. [DOI] [PubMed] [Google Scholar]
  137. Schrauzer G. N., White D. A., McGinness J. E., Schneider C. J., Bell L. J. Arsenic and cancer: effects of joint administration of arsenite and selenite on the genesis of mammary adenocarcinoma in inbred female C3H/St mice. Bioinorg Chem. 1978 Sep;9(3):245–253. doi: 10.1016/s0006-3061(78)80005-2. [DOI] [PubMed] [Google Scholar]
  138. Shakman R. A. Nutritional influences on the toxicity of environmental pollutants: a review. Arch Environ Health. 1974 Feb;28(2):105–113. doi: 10.1080/00039896.1974.10666447. [DOI] [PubMed] [Google Scholar]
  139. Shivapurkar N., Poirier L. A. Tissue levels of S-adenosylmethionine and S-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks. Carcinogenesis. 1983 Aug;4(8):1051–1057. doi: 10.1093/carcin/4.8.1051. [DOI] [PubMed] [Google Scholar]
  140. Shubat P. J., Raatz K. A., Olson R. A. Fish consumption advisories and outreach programs for Southeast Asian immigrants. Toxicol Ind Health. 1996 May-Aug;12(3-4):427–434. doi: 10.1177/074823379601200314. [DOI] [PubMed] [Google Scholar]
  141. Silbergeld E. K., Sauk J., Somerman M., Todd A., McNeill F., Fowler B., Fontaine A., van Buren J. Lead in bone: storage site, exposure source, and target organ. Neurotoxicology. 1993 Summer-Fall;14(2-3):225–236. [PubMed] [Google Scholar]
  142. Simmonds M. P., Johnston P. A., French M. C., Reeve R., Hutchinson J. D. Organochlorines and mercury in pilot whale blubber consumed by Faroe islanders. Sci Total Environ. 1994 Jun 13;149(1-2):97–111. doi: 10.1016/0048-9697(94)90008-6. [DOI] [PubMed] [Google Scholar]
  143. Simons T. J. Cellular interactions between lead and calcium. Br Med Bull. 1986 Oct;42(4):431–434. doi: 10.1093/oxfordjournals.bmb.a072162. [DOI] [PubMed] [Google Scholar]
  144. Simons T. J. Lead-calcium interactions in cellular lead toxicity. Neurotoxicology. 1993 Summer-Fall;14(2-3):77–85. [PubMed] [Google Scholar]
  145. Simons T. J., Pocock G. Lead enters bovine adrenal medullary cells through calcium channels. J Neurochem. 1987 Feb;48(2):383–389. doi: 10.1111/j.1471-4159.1987.tb04105.x. [DOI] [PubMed] [Google Scholar]
  146. Simons T. J. The role of anion transport in the passive movement of lead across the human red cell membrane. J Physiol. 1986 Sep;378:287–312. doi: 10.1113/jphysiol.1986.sp016220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Six K. M., Goyer R. A. Experimental enhancement of lead toxicity by low dietary calcium. J Lab Clin Med. 1970 Dec;76(6):933–942. [PubMed] [Google Scholar]
  148. Skerfving S. Interaction between selenium and methylmercury. Environ Health Perspect. 1978 Aug;25:57–65. doi: 10.1289/ehp.782557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Snaith S. M., Levvy G. A. Purification and properties of alpha-D-mannosidase from rat epididymis. Biochem J. 1969 Aug;114(1):25–33. doi: 10.1042/bj1140025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Stonard M. D., Webb M. Influence of dietary cadmium on the distribution of the essential metals copper, zinc and iron in tissues of the rat. Chem Biol Interact. 1976 Dec;15(4):349–363. doi: 10.1016/0009-2797(76)90140-x. [DOI] [PubMed] [Google Scholar]
  151. Szinicz L., Forth W. Effect of As2O3 on gluconeogenesis. Arch Toxicol. 1988;61(6):444–449. doi: 10.1007/BF00293690. [DOI] [PubMed] [Google Scholar]
  152. Tanaka M., Yanagi M., Shirota K., Une Y., Nomura Y., Masaoka T., Akahori F. Effect of cadmium in the zinc deficient rat. Vet Hum Toxicol. 1995 Jun;37(3):203–208. [PubMed] [Google Scholar]
  153. Tandon S. K., Dhawan M., Kumar A., Flora S. J. Influence of selenium supplementation during chelation of lead in rats. Indian J Physiol Pharmacol. 1992 Jul;36(3):201–204. [PubMed] [Google Scholar]
  154. Thompson D. J. A chemical hypothesis for arsenic methylation in mammals. Chem Biol Interact. 1993 Sep;88(2-3):89–14. doi: 10.1016/0009-2797(93)90086-e. [DOI] [PubMed] [Google Scholar]
  155. Tseng W. P., Chu H. M., How S. W., Fong J. M., Lin C. S., Yeh S. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst. 1968 Mar;40(3):453–463. [PubMed] [Google Scholar]
  156. Tsuda T., Inoue T., Kojima M., Aoki S. Market basket and duplicate portion estimation of dietary intakes of cadmium, mercury, arsenic, copper, manganese, and zinc by Japanese adults. J AOAC Int. 1995 Nov-Dec;78(6):1363–1368. [PubMed] [Google Scholar]
  157. Urano S., Matsuo M. A radical scavenging reaction of alpha-tocopherol with methyl radical. Lipids. 1976 May;11(5):380–383. doi: 10.1007/BF02532844. [DOI] [PubMed] [Google Scholar]
  158. Urieta I., Jalón M., Eguilero I. Food surveillance in the Basque Country (Spain). II. Estimation of the dietary intake of organochlorine pesticides, heavy metals, arsenic, aflatoxin M1, iron and zinc through the Total Diet Study, 1990/91. Food Addit Contam. 1996 Jan;13(1):29–52. doi: 10.1080/02652039609374379. [DOI] [PubMed] [Google Scholar]
  159. Vahter M., Berglund M., Nermell B., Akesson A. Bioavailability of cadmium from shellfish and mixed diet in women. Toxicol Appl Pharmacol. 1996 Feb;136(2):332–341. doi: 10.1006/taap.1996.0040. [DOI] [PubMed] [Google Scholar]
  160. Vahter M., Marafante E. Effects of low dietary intake of methionine, choline or proteins on the biotransformation of arsenite in the rabbit. Toxicol Lett. 1987 Jun;37(1):41–46. doi: 10.1016/0378-4274(87)90165-2. [DOI] [PubMed] [Google Scholar]
  161. Valentine J. L., Cebrian M. E., Garcia-vargas G. G., Faraji B., Kuo J., Gibb H. J., Lachenbruch P. A. Daily selenium intake estimates for residents of arsenic-endemic areas. Environ Res. 1994 Jan;64(1):1–9. doi: 10.1006/enrs.1994.1001. [DOI] [PubMed] [Google Scholar]
  162. Valentine J. L., He S. Y., Reisbord L. S., Lachenbruch P. A. Health response by questionnaire in arsenic-exposed populations. J Clin Epidemiol. 1992 May;45(5):487–494. doi: 10.1016/0895-4356(92)90097-7. [DOI] [PubMed] [Google Scholar]
  163. Victery W., Miller C. R., Zhu S. Y., Goyer R. A. Effect of different levels and periods of lead exposure on tissue levels and excretion of lead, zinc, and calcium in the rat. Fundam Appl Toxicol. 1987 May;8(4):506–516. doi: 10.1016/0272-0590(87)90136-9. [DOI] [PubMed] [Google Scholar]
  164. Vigh P., Mastala Z., Balogh K. V. Comparisons of heavy metal concentration of grass carp (Ctenopharyngodon idella Cuv. et Val.) in a shallow eutrophic lake and a fish pond (possible effects of food contamination). Chemosphere. 1996 Feb;32(4):691–701. doi: 10.1016/0045-6535(95)00354-1. [DOI] [PubMed] [Google Scholar]
  165. WORKER N. A., MIGICOVSKY B. B. Effect of vitamin D on the utilization of zinc, cadmium and mercury in the chick. J Nutr. 1961 Oct;75:222–224. doi: 10.1093/jn/75.2.222. [DOI] [PubMed] [Google Scholar]
  166. Wagner S. L., Maliner J. S., Morton W. E., Braman R. S. Skin cancer and arsenical intoxication from well water. Arch Dermatol. 1979 Oct;115(10):1205–1207. [PubMed] [Google Scholar]
  167. Wang C. T., Chang W. T., Huang C. W., Chou S. S., Lin C. T., Liau S. J., Wang R. T. Studies on the concentrations of arsenic, selenium, copper, zinc and iron in the hair of blackfoot disease patients in different clinical stages. Eur J Clin Chem Clin Biochem. 1994 Mar;32(3):107–111. doi: 10.1515/cclm.1994.32.3.107. [DOI] [PubMed] [Google Scholar]
  168. Wang C., Bhattacharyya M. H. Effect of cadmium on bone calcium and 45Ca in nonpregnant mice on a calcium-deficient diet: evidence of direct effect of cadmium on bone. Toxicol Appl Pharmacol. 1993 Jun;120(2):228–239. doi: 10.1006/taap.1993.1107. [DOI] [PubMed] [Google Scholar]
  169. Washko P., Cousins R. J. Role of dietary calcium and calcium binding protein in cadmium toxicity in rats. J Nutr. 1977 May;107(5):920–928. doi: 10.1093/jn/107.5.920. [DOI] [PubMed] [Google Scholar]
  170. Wasserman R. H., Fullmer C. S. Vitamin D and intestinal calcium transport: facts, speculations and hypotheses. J Nutr. 1995 Jul;125(7 Suppl):1971S–1979S. doi: 10.1093/jn/125.suppl_7.1971S. [DOI] [PubMed] [Google Scholar]
  171. Webber C. E., Chettle D. R., Bowins R. J., Beaumont L. F., Gordon C. L., Song X., Blake J. M., McNutt R. H. Hormone replacement therapy may reduce the return of endogenous lead from bone to the circulation. Environ Health Perspect. 1995 Dec;103(12):1150–1153. doi: 10.1289/ehp.951031150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Wilber C. G. Toxicology of selenium: a review. Clin Toxicol. 1980 Sep;17(2):171–230. doi: 10.3109/15563658008985076. [DOI] [PubMed] [Google Scholar]
  173. Winneke G., Lilienthal H., Krämer U. The neurobehavioural toxicology and teratology of lead. Arch Toxicol Suppl. 1996;18:57–70. doi: 10.1007/978-3-642-61105-6_7. [DOI] [PubMed] [Google Scholar]
  174. Winski S. L., Carter D. E. Interactions of rat red blood cell sulfhydryls with arsenate and arsenite. J Toxicol Environ Health. 1995 Nov;46(3):379–397. doi: 10.1080/15287399509532043. [DOI] [PubMed] [Google Scholar]
  175. Wormworth J. Toxins and tradition: the impact of food-chain contamination on the Inuit of northern Quebec. CMAJ. 1995 Apr 15;152(8):1237–1240. [PMC free article] [PubMed] [Google Scholar]
  176. Yess N. J. U.S. Food and Drug Administration survey of methyl mercury in canned tuna. J AOAC Int. 1993 Jan-Feb;76(1):36–38. [PubMed] [Google Scholar]
  177. Zaldívar R., Villar I., Wetterstrand W. H., Robinson H. Epidemiological, dietary, toxicological and clinical nutrition studies on low-income population groups from a geographical area with endemic chronic arsenic poisoning. Zentralbl Bakteriol B. 1978 Sep;167(3):242–247. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES