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The maintenance of cell number homeostasis in normal tissues reflects a highly regulated balance
between the rates of cell proliferation and cell death. Under pathologic conditions such as

exposure to cytotoxic, genotoxic, or nongenotoxic agents, an imbalance in these rates may
indicate subsequent risk of carcinogenesis. Apoptotic cell death, as opposed to necrotic cell death,
provides a protective mechanism by selective elimination of senescent, preneoplastic, or

superfluous cells that could negatively affect normal function and/or promote cell transformation.
The relative efficiency or dysfunction of the cell death program could therefore have a direct
impact on the risk of degenerative or neoplastic disease. Dietary restriction of rodents is a

noninvasive intervention that has been reproducibly shown to retard tumor development and most
physiologic indices of aging relative to ad libitum-fed animals. As such, it provides a powerful
model in which to study common mechanistic processes associated with both aging and cancer.
In a recent study we established that chronic dietary restriction (DR) induces an increase in
spontaneous apoptotic rate and a decrease in cell proliferation rate in hepatocytes of 1 2-month-old
B6C3F1 DR mice relative to ad libitum (AL)-fed mice. This diet-induced shift in cell
death/proliferation rates was associated with a marked reduction in subsequent development of
spontaneous hepatoma and a marked increase in disease-free life span in DR relative to AL-fed
mice. These results suggest that total caloric intake may modulate the rates of cell death and
proliferation in a direction consistent with a cancer-protective effect in DR mice and a cancer-

promoting effect in AL mice. To determine whether the increase in spontaneous apoptotic rate
was maintained over the life span of DR mice, apoptotic rates were quantified in 12-, 18-, 24- and
30-month-old DR and AL mice. The rate of apoptosis was elevated with age in both diet groups;
however, the rate of apoptosis was significantly and consistently higher in DR mice regardless of
age. In double-labeling experiments, an age-associated increase in the glutathione S-transferase-ll
expression in putative preneoplastic hepatocytes in AL mice was rapidly reduced by apoptosis
upon initiation of DR. Thus, interventions that promote a low-level increase in apoptotic cell death
may be expected to protect genotypic and phenotypic stability with age. If during tumor promotion
an adaptive increase in apoptosis effectively balances the dysregulated increase proliferation, the
risk of permanent genetic error and carcinogenesis would be minimized. Environ Health
Perspect 106(Suppl 1):307-312 (1998). http://ehpnetl.niehs.nih.gov/docs/1998/Suppl-1/
307-312james/abstract.html
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Introduction
Cell Number Homeostasis adult life. Cell number homeostasis depends
A dynamic equilibrium exists between the on an integrated balance between mitosis
opposing processes of cell birth and death and apoptosis such that during normal cell
in multicellular organisms to maintain con- turnover the rates of these two processes
stant parenchymal cell numbers throughout are counterbalanced and equivalent (1,2).
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Although less appreciated, the homeostatic
maintenance of this counterbalance addi-
tionally may contribute a critical defense
mechanism in the response to external stres-
sors and genotoxic and nongenotoxic agents.
The increased proliferation observed in pre-
neoplastic lesions is often accompanied by
a parallel increase in apoptosis (3,4). In
this pathologic context, the adaptive apop-
totic response may serve an important
protective role in countering aberrant
hyperplasia. The slow-growth phenotype
during tumor promotion is attributable to
the adaptive upregulation of apoptosis in
response to dysregulated proliferation
(5,6). Similarly, the synchronous wave of
apoptosis that follows the withdrawal of
liver mitogens or trophic factors is a reflec-
tion of the homeostatic response to reestab-
lish original cell number (7-9). Several
recent studies have demonstrated that pre-
existing initiated cells are preferentially
eliminated by apoptosis following with-
drawal of certain tumor promoters (10,11).
Interestingly, an increasing number of
tumor promoters appears to act by induc-
ing resistance to apoptosis in initiated cells
(12-14). Thus, it is apparent that mainte-
nance of cell number homeostasis is not
only essential for normal physiology but
additionally is an important adaptive defense
mechanism against aberrant hyperplasia.

Homeostatic Balance between
Apoptosis and Proliferation Lowers
Risk of Cell Transformation
Tissue hypertrophy or atrophy is the direct
result of chronic imbalance in rates of cell
proliferation and death (2). The loss of
homeostatic balance is an underlying factor
in the pathogenesis of numerous human dis-
ease states, including cancer. Although both
proliferation and apoptosis are elevated in
preneoplastic lesions, a marginal imbalance
favoring proliferation is reflected by the
slow-growth phenotype. The complemen-
tary increase in apoptosis that accompanies
proliferative stimuli ensures that the risk of
unrepaired DNA polymerase errors does not
go unchecked. At this stage, although prolif-
eration is increased, it is not uncontrolled
(15,16). By the preferential elimination of
initiated or preneoplastic cells, apoptosis
effectively attenuates the risk of cell transfor-
mation due to proliferation-related mutage-
nesis. Although increased proliferation
clearly is necessary, it may not be indepen-
dently sufficient for cell transformation, as
recently suggested by Farber (17).
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Recent evidence suggests that the
transition between tumor promotion and
tumor progression ultimately may depend
on the failure of apoptosis in the presence of
dysregulated proliferation; i.e., both aberra-
tions are essential for cell transformation
(18). The importance of proliferation as a
major risk factor may only become signifi-
cant when it is liberated from the con-
straints imposed by apoptosis, i.e., when it
becomes truly uncontrolled. Positive and
negative regulation of apoptosis occurs by
4rinduction of signals leading to pathways
of cell death and/or increasing cell sensi-
tivity to cell death and b) inhibition of
one or more of the several pathways leading
to an irreversible commitment to cell death.
Genetic or environmental perturbations that
lead to pathologic dysregulation of these
inducers and inhibitors of apoptosis disrupt
the dynamic balance between proliferation
and cell death.

Thus, permanent loss of homeostatic
equilibrium between cell proliferation and
death may be a critical determinant in the
transition from the reversible stage of tumor
promotion to the irreversible commitment
to tumor progression. Once apoptotic com-
petence is lost, the heritable oncogene-acti-
vated proliferative advantage effectively
precludes recovery of cell number homeosta-
sis and a point-of-no-return establishes the
malignant state. These relationships were
recently confirmed in a mouse model of
multistage tumorigenesis of islet P cells (19).
In this study the incidence of apoptosis was
increased in parallel with increasing prolifer-
ation during tumor promotion; however, the
transition to malignancy was associated with
a dramatic drop in apoptotic rate with no
further change in proliferation rate.

Although early attempts to understand
the mechanistic basis of the carcinogenic
process initially focused on increased prolif-
eration and the associated increased risk of
mutation as the major risk factor, recent
emphasis has shifted to inhibition or resis-
tance to apoptosis as the pivotal determi-
nant in cell transformation (20). Given the
homeostatic yin/yang responsiveness
between cell proliferation and cell death, the
two processes are, in fact, inseparable for the
understanding of both normal physiology
and pathologic processes. It is becoming
increasingly clear that dysregulation in one
process is only meaningful in the context of
the other. Thus, it may not be the rare cell
with a proliferative advantage that becomes
transformed but the rare cell with prolifera-
tive advantage that additionally acquires
apoptosis resistance.

It should be noted that the adaptive
increase in apoptotic rate that accompanies
dysregulated proliferation during tumor
promotion may act as a double-edged sword
by increasing the selection pressure for
apoptosis resistance. Because the apoptotic
cascade involves endonuclease-mediated
DNA strand breaks, it is conceivable that
errors in DNA synthesis associated with
strand break repair in the early stages of
apoptosis could result in point mutations
with survival advantages. Unrepaired DNA
strand breaks can promote DNA lesions
such as base deletions and frameshift
errors that could inactivate genes involved
in the apoptosis pathway (20). In addi-
tion, nonmutagenic mechanisms can pro-
mote apoptosis resistance. These include
hypomethylation and overexpression of
apoptosis-regulating genes such as bcl-2
(21) and/or loss of gap junctional commu-
nication (22). Although most experimental
evidence points to increased proliferation as
the primary stimulus for the compensatory
increase in apoptosis, recent reports suggest
that a primary increase in apoptosis can also
stimulate compensatory proliferation
(23,24). These results would suggest a bidi-
rectional responsiveness to either increased
apoptosis or to increased mitosis.

The interactive responsiveness
between cell birth and death implies that
regulatory gene coordination must exist
between the two signal transduction path-
ways (25,26). Consistent with this possi-
bility, several cellular proteins including
c-myc, p53, E2F, and the viral protein
EIA have dual functions as positive regu-
lators of both cell proliferation and cell
death. with the final outcome dependent
on the local micro-environment (15,27).
The retinoblastoma tumor suppressor
gene product pRb may function as a nega-
tive regulator of both proliferation and
apoptosis by binding with c-myc, E2F,
and EIA (28). Gene products conferring
resistance to apoptosis include bcl-2, bcl-
xl, c-abl, and insulinlike growth factor
(IGF)-II (15,29,30). Overexpression of
these genes appears to block a late-stage
step in the apoptotic pathway and per-
mits cell survival without stimulation of
proliferation. Finally, the mutated form
of the oncogene H-ras, a well-established
enhancer of proliferation, recently has
been implicated as a repressor of apoptosis
(29,30). Continued research on these
common pathways should further con-
firm multiple levels of coordinated gene
interaction in the homeostatic control of
cell numbers.

Dietary Restriction, Apoptosis,
and Cell Number Homeostasis
Dietary restriction (DR) is a well studied
intervention that retards tumor develop-
ment and extends maximum life span rela-
tive to ad libitum (AL)-fed animals
(31-34). Cancer incidence increases pro-
gressively with age; thus, the hormonal and
metabolic alterations associated with
chronic DR provide a model system in
which to study mechanistic processes com-
mon to both cancer and aging (35).

Because apoptosis appears to
preferentially eliminate preneoplastic,
senescent, or DNA-damaged cells, agents,
or conditions that promote apoptosis
would be expected to negatively affect
tumor development (10). In a recent series
of studies, we tested the hypothesis that a
relative increase in the basal rate of apopto-
sis with DR may contribute to the mecha-
nisms of tumor resistance and prolongation
of life span by promoting natural selection
at the cellular level. Spontaneous rates of
apoptosis and proliferation were quantified
in liver sections from 12-month-old DR
and AL-fed male B6C3F1 mice, a murine
strain with increased genetic susceptibility
to developing spontaneous liver tumors by
18 months of age (36). The DR group
received 60% of the AL consumption of an
NIH-31 open-formula diet supplemented
with vitamins to ensure equal micronutri-
ent consumption between groups. The
12-month-old age group was selected for
immunohistochemical analysis because it
represents a preneoplastic stage at which
evaluation of cell proliferation and cell
death rates may be predictive of subsequent
tumor development. To ensure that ani-
mals from both dietary groups were meta-
bolically and hormonally synchronized in
terms of food-induced circadian rhythms,
mice from both groups were fasted for
24 hr before being euthanized at the same
time of day.

Visualization of apoptotic bodies (ABs)
was facilitated by TdT-mediated dUTP
digoxigenin nick end-labeling (TUNEL)
using the Apoptag detection system
(Oncor, Gaithersburg, MD). In Figure 1, a
representative liver section demonstrates
the utility of the TUNEL method to facili-
tate the identification of ABs. Two hun-
dred fields (-50,000 hepatocytes) per
animal were counted and the apoptotic
activity expressed as the number ofABs per
100 hepatocytes (percentage incidence).
Proliferating hepatocytes in S phase were
quantified by immunohistochemical analy-
sis of proliferating cell nuclear antigen
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Figure 1. Representative example of immunohisto-
chemical staining of a phagocytized apoptotic body in
a liver section from a diet-restricted B6C3F1 mouse.
Sample counterstained with methyl green (x340).

(PCNA) using a standard biotin-avidin
peroxidase detection system. Results were
expressed as the relative incidence of
PCNA-positive cells in 200 fields (50,000
hepatocytes). Because of the very low
frequency of ABs in normal liver, 15 mice
per group were evaluated to increase the
precision of the mean.

Both apoptotic and proliferative activ-
ity in liver sections from 12-month-old DR
and AL-fed mice are presented in Figure 2.
The increase in the spontaneous level of
hepatocyte apoptosis and decrease in pro-
liferative activity in the DR mice relative to
those in AL-fed mice were associated with
a significantly lower incidence of sponta-
neous hepatoma over a 36-month period,
as shown in Table 1. The results suggest
that caloric intake may modulate the basal
turnover rates of cell death and birth in a
direction consistent with a cancer-protec-
tive effect in the DR mice and a cancer-
promoting effect in AL-fed mice. An
increase in the elimination of potentially
neoplastic, diseased, or damaged cells by
apoptosis in the DR animals would effec-
tively create a cohort of healthier, more
robust cells with improved functional sta-
tus relative to that in the AL-fed counter-
parts. This natural selection (survival of the
fittest) at the cellular level would tend to
promote a disease-free increase in life span
that has been documented to be associated
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Table 1. Numbers of B6C3F1 mice with hepatocellular
tumors as a function of age and diet (n= 14 mice/inter-
val/group).

Dietary group
Age, months

12 18 24 30 36

AL 0 4 3 5 8
DRa 0 0 0 3 0

p40%.

Dietary Restriction, Aging,
and Apoptosis

To determine whether the increase inApop isi, Prolifration,
AB3sl0 nuclei PCNA+JlOcells spontaneous apoptotic rate was maintained

over the life span of DR mice, we quanti-
parison of the rates of apoptosis (apop- fied apoptotic rates in 12-, 18-, 24-, and
I0 nuclei) and proliferation (PCNA-posi- 30-month-old DR and AL B6C3F1 mice
hepatocytes) in livers of 12-month-old
0% DR B6C3F1 mice. Note relative (37) The rate of apoptosis was elevated
idence of apoptotic bodies and decrease with age in both diet groups; however, the
ve nuclei in livers of DR mice. Data are rate of apoptosis was significantly and con-
:M for the 14 mice in each dietary group. sistently higher in the DR mice regardless

of age. It has been speculated that in addi-
tion to preferential elimination of preneo-

n a variety of mammals and plastic cells, apoptosis provides a cellular
ir organisms. defense mechanism to subvert the tendency
the differences in rates between of senescent cells to undergo transforma-
n and cell death with DR and tion (38). Thus, the increase in sponta-
tissue-size homeostasis (liver neous apoptotic activity in the livers of

chin groups and liver weight/g aging DR B6C3F 1 mice may contribute to
it between groups) was remark- the mechanism of tumor resistance and life
at over the life span of the mice, span extension.
in Table 2. Therefore, we pos- In a third study liver sections from
low-level or single-cell necrotic aging AL-fed and DR B6C3F1 male mice
must occur in livers of AL-fed were evaluated immunohistochemically for
hat total cell death and prolifer- pi-class glutathione S-transferase (GST)-
approximate balance. Although positive putative preneoplastic cells (39). A
quantify, single cells exhibiting progressive increase in GST-II labeling
lorphology such as swelling, occurred from 18 to 36 months of age in
f cytoplasmic membrane, and the AL-fed mice and was associated with a
nosis were histologically visible high incidence of GST-II-positive sponta-
-tions from AL-fed mice and neous liver tumors. Expression of GST-II
:istent in livers of DR mice. An was negligible in DR mice in all age groups
necrotic cell death in AL mice and was associated with a significant
lain the constant liver weights decrease in tumor incidence. To determine
ecrease in apoptotic cell death. whether DR induces apoptosis in GST-II-
important distinction because positive hepatocytes, 24-month-old AL-fed
.11 death is considered to be a mice were introduced to 40% DR. After
response to severe toxicologic 1 week of restriction a decrease in GST-II
associated with the active and expression was associated with a 3-fold
al elimination of initiated or increase in frequency of apoptotic bodies,
ic cells (7). as detected by in situ TUNEL assay

Table 2. Changes in liver weights and body weights of B6C3F1 mice with age and diet.a

Age
12 months 18 months 24 months 30 months

AL DR AL DR AL DR AL DR

Body weight, g 38.3 ± 0.29 26.5 ± 0.14 37.9 ± 0.33 26.1 ± 0.14 39.3 ± 0.32 27.4 ± 0.17 32.3 ± 0.39 23.5 ± 0.10
Liver weight, g 1.628 ± 0.018 1.070 ± 0.064 1.666 ± 0.013 1.142 ± 0.006 1.593 ± 0.018 1.188 ± 0.013 1.477 ± 0.020 1.059 ± 0.007
Liver weight/body weight 0.042 ± 0.0002 0.040 ± 0.0001 0.044 ± 0.0002 0.043 ± 0.0002 0.041 ± 0.0002 0.043 ± 0.0003 0.045 ± 0.0002 0.045 ± 0.0003

"Values are the means ± SEM in nontumor-bearing mice.
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optotic cell death microenvironment depends on availability
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Under pathologic conditions, apoptotic
elimination of superfluous or DNA-dam-
aged cells may be the most energetically

hat the genes for efficient alternative for the calorically
otic pathway are restricted animal.
cell as a default Although the mechanistic basis for the
nally and actively divergent effects of caloric intake on prolif-
ence of essential eration and apoptosis is not known, the
iicroenvironment expression of the IGF-I receptor and its lig-
optosis as a result ands (insulin, IGF-I, and IGF-II) are
f survival factors potential candidates because they clearly

are modulated by caloric intake. DR in
rodents reduces circulating levels of
insulin, IGF-I, and IGF-II (42), whereas
AL feeding has been associated with insu-

TT linemia (43). These mitogenic factors are
involved in normal liver growth and,

m _ importantly, function as survival factors
that confer resistance to apoptosis both
in vitro and in vivo (41,44). A decrease in
IGF-~1R levels has been associated with
increased apoptosis and inhibition of
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Figure 3. The increase in apoptotic activity after initia-
tion of 40% DR in 24-month-old B6C3F1 mice. Data are
the mean ± SEM from four animals (p< 0.01, AL vs DR).

Positive
effects

1 Parenchymal cell number
Loss of function
Starvation
Death

T Longevity
1 Cancer
JL Autoimmune disease
1 Oxidative stress

tumorigenesis (45). Studies are now in
progress to correlate alterations in IGF
family members with the incidence of
apoptosis in the DR model.

Caloric Restriction, Apoptosis,
and Honnetic Effects
In studying the toxicologic implications of
adaptive biologic responses, it is useful to
consider the spectrum of caloric intake in
terms of positive and negative physiologic
effects. A U-shaped curve can be con-
structed in which both insufficient and
excess energy intake are associated with
negative physiological effects, as indicated
in Figure 5. Between these two extremes, a
range of restricted caloric intake has been
associated with positive (hormetic) effects
such as increased longevity (32,46) and
reductions in tumorigenesis (31,36),
autoimmune disease (47,48), and oxida-
tive damage (49,50). Similarly, a U-
shaped curve over the range of apoptotic
response can be created. A low-level
chronic increase in the background level of
apoptosis would be protective (32,35),
whereas excessive cell death would nega-
tively affect total cell numbers and func-
tional capacity (51). Negative effects such
as insufficient apoptotic cell death or
induction of resistance to apoptosis would
also be incurred at the opposite extreme.
Thus, agents or conditions that lower
apoptotic activity below the protective

T Cancer
T Autoimmune disease
I Oxidative stress

Figure 4. Representative example of GST-l1-positive
apoptotic bodies in liver section from a 24-month-old
mouse 1 week after initiating DR. Alkaline phos-
phatase stain is red (x700).

Figure 5. Hypothetical U-shaped curve over the spectrum of caloric intake from insufficient to excessive calories,
emphasizing negative physiologic effects at both extremes and positive or hormetic effects within a range of
restricted caloric intake.
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threshold would tend to accelerate the
accumulation of age-associated genetic
lesions and neoplasia. These relationships
are diagrammed as a hormetic U-shaped
curve in Figure 6, with positive, cancer-
protective effects occurring in the range of
cell number homeostasis.

Conclusion
The homeostatic balance between cell
proliferation and apoptosis in the mainte-
nance of constant cell numbers may pro-
vide a hormetic effect by minimizing the
consequences of proliferation-related
mutagenesis during tumor promotion.
The adaptive increase in apoptosis that
accompanies the oncogene-activated dys-
regulation in proliferation selectively elim-
inates potentially preneoplastic cells in
hyperplastic foci. Acquired resistance to
apoptosis appears to be a pivotal event in
the transition to malignancy.

Cell number
homeostasis

(cancer protection)
Positive A=P
effects |

3|Apoptosis

Negative|
effects

A<<P A>>P

Malignancy Neurodegeneration
Metastasis AIDS

Autoimmune disease Osteoporosis
Kidney failure

Figure 6. Hypothetical U-shaped curve over the range of apoptotic activity demonstrating negative effects when
the rate of apoptosis (A) is much less than the rate of proliferation (P) and also when the apoptosis rate chronically
exceeds the proliferation rate. Within the range of cell number homeostasis, when rates of apoptosis and prolifer-
ation are in equilibrium, the risk of neoplasia is minimized.
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