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Recently, a second pathway for the generation of potential oxidants with the reactivity of the
hydroxyl radical without the need for metal catalysis has been described. In response to various
inflammatory stimuli, lung endothelial, alveolar, and airway epithelial cells, as well as activated
alveolar macrophages, produce both nitric oxide ('NO) and superoxide anion radicals (02). 'NO
regulates pulmonary vascular and airway tone and plays an important role in lung host defense
against various bacteria. However, 'NO may be cytotoxic by inhibiting critical enzymes such as

mitochondrial aconitase and ribonucleotide reductase, by S-nitrosolation of thiol groups, or by
binding to their iron-sulfur centers. In addition, 'NO reacts with O2-at a near diffusion-limited rate
to form the strong oxidant peroxynitrite (ONOO-, which can nitrate and oxidize key amino acids
in various lung proteins such as surfactant protein A, and inhibit their functions. The presence of
ONOO- in the lungs of patients with acute respiratory distress syndrome has been demonstrated
by measuring levels of nitrotyrosine, the stable product of tyrosine nitration. Various studies have
shown that inhalation or intratracheal instillation of various respirable mineral dusts or asbestos
fibers increased levels of inducible nitric oxide synthase mRNA. In this presentation, we review
the evidence for the upregulation of 'NO in the lungs of animals exposed to mineral particulates
and assess the contribution of reactive nitrogen species in the pathogenesis of the resultant lung
injury. Environ Health Perspect 106(Suppl 5):1 157-1163 (1998). http.//ehpnetl.niehs.nih.gov/
docs/1998/Suppl-5/1 157-1 163zhu/abstracthtml
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Introduction

The most important function of the lung phagocytic alveolar macrophage, is found
is gas exchange. The gas exchange surface in varying numbers in the extracellular
is mainly composed of a single thin layer lining of the alveolar surface. These cells
of squamous epithelial cells, the alveolar patrol the alveolar surface and phagocytize
type I cells. Interspersed among these are inspired particulates such as bacteria,
the larger cuboidal alveolar type II cells anthracotic pigment, and particulates in
that produce the fluid layer that lines the cigarette smoke. The tight junctions
alveoli. A third cell type, the free-ranging between epithelial cells are organized so as
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to provide a high-resistance barrier to
fluid movement from the interstitial to
the alveolar space (1).

The alveolar epithelium is continuously
exposed to both endogenously and
exogenously derived sources of reactive oxy-
gen and nitrogen species. These reactive
species are formed as intermediates in mito-
chondrial electron transport systems and
microsomal metabolism of endogenous
compounds and xenobiotics, including
drugs and environmental pollutants and
various cytoplasmic sources. In addition,
neutrophils and other inflammatory cells
generate and release reactive oxygen species
via an NADPH-oxidase-dependent mecha-
nism that is mediated by membrane recep-
tor activation of protein kinase C and
phospholipase C (2). It has been shown
recently that overproduction of endogenous
nitric oxide ('NO) by alveolar macro-
phages, epithelial, interstitial, and endothe-
lial cells, as well as by inhalation of 'NO,
contributes to the alveolar epithelium's oxi-
dant burden by the production of reactive
oxygen-nitrogen intermediates (3,4).

Various studies have shown that
inhalation or intratracheal instillation of
respirable dusts such as silica, coal mine
dust, or asbestos increased mRNA levels
of inducible nitric oxide synthase (iNOS).
Herein, we consider the basic bio-
chemistry of reactive oxygen and nitrogen
species, review the evidence for the
upregulation of 'NO in the lungs of ani-
mals exposed to asbestos fibers, and assess
the contribution of reactive nitrogen
species in the pathogenesis of the resulting
lung injury.
Biochemistry of Reactive
Oxygen and Nitrogen Species
Reactive Oxygen Speces
Under normal oxygen tensions in humans,
approximately 98% of oxygen undergoes a
four-electron catalytic reduction to form
water by mitochondrial cytochrome c oxi-
dase. The remaining 2% of oxygen, how-
ever, may undergo sequential incomplete
reduction to form reactive oxygen species
such as superoxide anion radicals (02--)
and H202. Both 02-- and H202 are
relatively long-lived compounds in biologic
systems. H202 can directly cross cell mem-
branes by simple diffusion, and 02'-
crosses cell membranes via anion channels.
H202 is less reactive than 02' or hydroxyl
radical ('OH), but it can exert toxic effects
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more distal than either 02- or 'OH.
However, the limited reactivity with many
biological molecules and the low intracellu-
lar concentrations of 02-- and H202 (10
pM and 1-100 nM, respectively) have
raised questions about their toxicity per se
zn vivo.
A more potent reactive metabolite of

O2-- that is generated in a variety of
biologic systems is *OH. 02-- directly
reduces H202 (generated from the simulta-
neous dismutation of 02-) to give 'OH, 02
and hydroxide ion (OH-; Haber-Weiss
reaction). In a modified Haber-Weiss reac-
tion (Fenton reaction), 02- reduces trace
metals (usually Fe3+, sometimes Cu2+) and
generates 2. The reduced form of the
metal then reacts with H202 tO generate the
initial oxidized form of the metal, OH-, and
*OH. In addition to simultaneous dismuta-
tion of 02'- H202 may also come from
superoxide dismutase (SOD)-catalyzed,
which may occur as the result of the induc-
tion of SOD without corresponding upreg-
ulation of catalase. The reactivity of OH is
so high and nonspecific that the site of
target reaction is confined to within a few
molecular radii of the site of its generation.

However, generation of OH by Fenton
reaction requires the interaction of three dif-
ferent species (02,-, H202, and Fe3+). In
the epithelial lining fluid, the concentrations
of reactive oxygen species are kept low due
to the presence of the enzymes, such as
SODs (CuZnSOD, found mainly in the
cytoplasm as well as in peroxisomes, and
MnSOD localized in the mitochondria),
catalase, localized in the peroxisoms along
with a number of nonenzymatic anti-
oxidants including vitamin E and high
concentrations of reduced glutathione and
ascorbate (5). Also, an extracellular form of
SOD (EC-SOD) has been localized in the
lung matrix and is thought to play a major
role in the scavenging of extracellular 2-
(6). Furthermore, most iron is chelated in a
noncatalytic form by transferrin and
ceruloplasmin in epithelial lining fluid.

Several factors may exacerbate
production of reactive oxygen species in
acute and chronic lung diseases. First,
increased oxygen concentration is
commonly required to alleviate hypoxemia.
Exposure of lung cells, subcellular
organelles, and tissue to hyperoxia (100%
02) increases mitochondrial H202
production 10- to 15-fold (7). Second, in
response to proinflammatory cytokines, acti-
vated neutrophils and macrophages migrate
to the lungs and release reactive oxygen
species by the membrane-bound enzyme

complex NADPH oxidase (8). Third,
under conditions of ischemia, decreased
perfusion, low oxygen tension, or trauma,
xanthine dehydrogenase, the innocuous
form of the enzyme, is converted to xan-
thine oxidase, which uses xanthine and
molecular oxygen to produce partially
reduced oxygen species. The results of sev-
eral studies suggest that xanthine oxidase
may be released from the intestine or liver
into the circulation and bind to pulmonary
endothelium, where it can serve as a locus
for the intense production of reactive
oxygen species (9).

Reactive Nltrogen Species
Although the formation of 'OH via the
Fenton reaction in vivo may still occur,
especially in situations where the intracel-
lular load of free iron has been increased
(10), a second pathway for the generation
of potential oxidants with the reactivity of
*OH without the need for metal catalysis
has recently been described (11).

*NO, a signal-transducing free radical, is
synthesized from the five-electron oxidation
of the guanidino nitrogen of L-arginine by
nitric oxide synthase (NOS). In this reac-
tion, 02 and NADPH act as cosubstrates,
whereas tetrahydrobiopterin, flavin
nudeotides FMN and FAD, and thiols serve
as enzyme cofactors. NG-hydroxy-L-arginine
is formed as a short-lived intermediate and
L-citrulline is the by-product (12). *NO
causes smooth muscle relaxation and
reduces platelet and neutrophil adhesion to
endothelium by activating soluble guanylate
cyclase and increasing cGMP (12). In addi-
tion, *NO is inactivated upon entering the
blood stream because of its rapid reaction
with hemoglobin (12). For these reasons,
inhaled 'NO has been advocated as a highly
selective pulmonary vasodilator. Pertinent
sources of pulmonary 'NO/peroxynitrite
(ONOO-) include activated macrophages
(3), alveolar type II cells (13), endothelial
cells (14), and airway cells (15). The Ca2+-
independent form of NOS, the enzyme
responsible for 'NO formation during
inflammation, has been immunolocalized to
human lung tissue obtained from patients
with pneumonia and sepsis (15). Both alve-
olar macrophages and type II cells can up
regulate their 'NO production when
exposed to diverse stimuli such as cytokines,
lipopolysaccharide, and interferon y (IFN-,y)
(13,16), raising the possibility of increased
'NO release into the epithelial lining fluid
during lung inflammation.

Because 'NO is a free radical, it will
react readily with other free radicals, either

detoxifying them or creating very toxic
reactive species. A detailed discussion
follows of the biochemical mechanisms by
which interaction of 'NO with biologic
targets alters their function.

The Dark Side of 'NO
Although 'NO defends the host against
infectious agents, its effects are nonspecific.
Overproduction of *NO may be cytotoxic
not only for microbes but also for the cells
and tissues that produce it (17). At high
concentrations, 'NO inactivates critical
enzymes by interacting with their iron-sul-
fur centers (18), causes DNA strand breaks
that result in the activation of the nuclear
enzyme poly-ADP-ribosyl transferase (18),
and inhibits both DNA and protein syn-
thesis (19,20). However, most of the toxic
effects of NO have been attributed to its
reaction with 02- with a rate constant of
about 7x 109 M-' sec71 to form ONOO-.
The protonated form of ONOO-, perox-
ynitrous acid (ONOOH), forms nitrogen
dioxide ('NO2) and an intermediate with
reactivity equivalent to the *OH derived
from the trans-isomerization of ONOOH,
as shown in Equation 1 (11):

02-+ 'NO->ONOO- + H+ -* ONOO
- ['OH . . 'NO2] [1]

ONOO- initiates iron-independent
lipid peroxidation and oxidizes thiols at
rates at least 1000-fold greater than that of
H202 at pH 7, damages the mitochondria
electron transport chain, and causes lipid
peroxidation of human low density
lipoproteins. ONOO--mediated thiol oxi-
dation occurs at physiologic pH and in
some cases may be irreversible, i.e., oxi-
dized sulffhydryl groups cannot be reduced
by physiologic reductants. In addition,
ONOO- nitrates phenolics, including
tyrosine and tryptophan residues in several
proteins (21). Using luminol-dependent
chemiluminescence, ONOO- production
has been demonstrated by human neu-
trophils (22), rat alveolar macrophages (3),
and bovine aortic endothelial cells (14).

It can be argued that the alveolar
epithelial lining fluid contains a number of
antioxidant substances such as SODs, cata-
lase, reduced glutathione, urate, etc. that
will limit the steady-state concentrations of
reactive oxygen and nitrogen species in
vivo. However, footprints ofONOO- have
been identified in a number of organs,
including lungs of infants who died with
respiratory failure (23). Furthermore,
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because of its high reactivity, ONOO- will
attack biologic targets even in the presence
of antioxidant substances (24). Recent
reports (25,26) indicate that physiologic
concentrations of carbon dioxide and bicar-
bonate enhance the reactivity of ONOO-
via the formation of the nitrosoperoxycar-
bonate anion (O= N - OOCO2-) and
increase the yield of nitration. Equally
important, bicarbonate reverses the inhibi-
tion of ONOO--induced nitration by
ascorbate and urate (26). Also, the reaction
of nitrite, the stable by-product of 'NO and
ONOO-, with hypochlorous acid forms
reactive intermediate species that are also
capable of nitrating tyrosine with maxi-
mum yield at pH 7.4 (27). The detection
of nitrotyrosine in the lungs of patients
with acute respiratory distress syndrome
(23), and lungs of rats exposed to endo-
toxin (28) or hyperoxia (23) indicates that
nitration reactions occur in vivo. Our
recent findings and those of others indicate
that in vivo injury to the alveolar epithe-
lium and pulmonary surfactant system, pre-
viously attributed to reactive oxygen
species, may be caused instead by reactive
oxygen-nitrogen intermediates such as
ONOO- (29,30).

Physiologic Consequences
ofProtein Nitration
Several reports indicate that protein
nitration may lead to loss of function.
Nitration of tyrosine residues of human
IgG, but not rabbit IgG, abrogated their
Clq-binding activity (31). This was consis-
tent with the presence of a tyrosine residue
at the Clq receptor site of human but not
rabbit IgG. The inactivation of Escherichia
coli dUTPase and the occurrence of a tyro-
sine residue in a strictly conserved sequence
motif suggest the critical importance of this
residue for the function of the enzyme (32).
Nitration of tyrosine residues of al-
proteinase inhibitor resulted in selective loss
of elastase inhibitory activity but not chy-
motrypsin or trypsin inhibitory activity
(33). Tyrosine nitration also inhibits protein
phosphorylation by tyrosine kinases, which
may interfere with intracellular signal trans-
duction (34). Exposure of surfactant protein
A (SP-A) to tetranitromethane or ONOO-
led to nitration of a single tyrosine residue in
its carbohydrate recognition domain and
diminished the ability of SP-A to aggregate
lipids and bind to mannose (30,35).

The GCood Side of'NO
*NO can ameliorate tissue injury by:
a) activating guanylate cyclase with

subsequent induction of cGMP-dependent
effects such as reducing platelet and neu-
trophil adhesion to endothelium (36);
b) decreasing O2- steady-state levels,
especially under conditions favoring 02--
dependent OH formation (37); c) bind-
ing to the free coordination sites of
heme-bound iron, thus indirectly acting
as an iron chelator (38); d) inducing glu-
tathione (39); e) reacting with tyrosyl rad-
icals with a rate constant of 1 ± 0.3 x 109
M`.sec-', thus limiting the extent of
nitrotyrosine formation (40); and
f) inhibiting oxidant-induced membrane
and lipoprotein oxidation by annihilation
of lipid radical species, thus terminating
radical chain propagation reactions (41).
This last property may act as a two-edge
sword, as species resulting from the reac-
tion of NO with lipid peroxides may be
toxic themselves.

Reaction of'NOIONOO- with Thiols
The direct reaction of 'NO with thiol
groups is kinetically unfavorable and
requires the nearby presence of a strong
electron acceptor such as Fe3+. However,
*NO-derived species such as nitrosonium
ion (NO+) and ONOO- may readily react
with thiols to form nitrosothiols
(RS-NO). The detection of RS-NO in
human bronchoalveolar lavage in vivo and
their significant increase in the lungs of
patients with pneumonia or during
inhalation of 80 ppm 'NO (42) provide
evidence that such chemical modification
of protein thiols (i.e., addition of NO+)
do occur and may be a fundamental signal
transduction pathway. Nitrosylation of
the N-methyl-D-aspartate receptor in the
brain leads to decreased calcium transport
and neuroprotection (43). On the other
hand, nitrosylation of glyceraldehyde-3-
phosphate dehydrogenase stimulated the
apparent auto-ADP ribosylation and
inhibited enzymatic activity (18).

NO Modulation ofGene Expression
*NO both inhibits and activates gene
expression. 'NO decreases cytokine-
induced endothelial cell activation by
inhibiting nuclear factor kappa B (NF-
icB) expression and subsequently either
vascular cell adhesion molecule transcrip-
tion (44) or NOS-II expression itself
(45). 'NO affects not only NF-iKB func-
tion (in part by altering I-KBa [a isoform
of inhibitory subunit NF-icB] expression)
but other redox sensitive transcription fac-
tors including AP-1 components (46).
*NO may inhibit gene expression by

various mechanisms: first, it can result in
DNA deamination and strand breaks with
the activation of the nuclear enzyme poly-
ADP-ribose synthetase (PARS) (18). This
activated PARS catalyzes the attachment of
ADP-ribose units to nuclear proteins with
resultant depletion of energy stores.
Second, stimulated macrophages produce
enough 'NO to inhibit ribonucleotide
reductase, the enzyme that converts ribonu-
cleotides to the deoxyribonucleotides neces-
sary for DNA synthesis (47). Third, key
thiols of numerous transcription factors
critical for DNA binding (e.g., zinc-finger
proteins) can be modified by 'NO and
ONOO- (48). Fourth, 'NO may inhibit
mitochondrial respiration by interacting
with iron-sulfur centers and inactivation of
critical enzymes (such as mitochondrial
aconitase, NADH:ubiquinone oxidoreduc-
tase), leading to energy depletion and
decreased protein synthesis (49). However,
in other studies, 'NO directly enhanced
gene activity by eliciting nuclear transloca-
tion of NF-KB (50) and of the AP-1 sub-
units c-fos, andjunB (46).

Involvement ofReactive Oxygen and
Niltrogen Species in Asbestos-Induced
Lung Injury
Mineral dust particles such as silica, coal
dust, and asbestos, when inhaled in
sufficient quantities, can induce pulmonary
injury (51). Three varieties of asbestos have
been used commercially in North America
and Europe for most of this century:
chrysotile (a serpentine asbestos that has the
chemical formula 3MgO. 2SiO2 2H20),
and the amphiboles crocidolite (Na2O0
Fe203. 3FeO. 8SiO2. H20) and amosite
(7FeO. 7MgO *8SiO2* H20). Although
both silica and asbestos dusts have long been
known to induce interstitial pulmonary
fibrosis, the effects of asbestos are more
complex because of its capacity to induce
both pleural and parenchymal fibrosis (pari-
etal pleural plaques, visceral pleural fibrosis,
and asbestosis) and/or neoplasia (malignant
pleural mesothelioma and bronchogenic car-
cinoma) (51). Although it is generally
acknowledged that all commercial types of
asbestos can induce lung cancer, there has
been a long-standing debate regarding the
relative potential of different mineralogic
types of asbestos (chrysotile vs amphiboles)
to cause pleural injury (52,53).

The ability of mineral dusts to induce
pulmonary injury is dependent upon a
number of variables, including the
physicochemical and surface properties of
the mineral particles, their solubility and
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biodurability, the duration and severity of
dust exposure, the efficacy of pulmonary
particle clearance mechanisms, and vari-
able host susceptibility factors. Using a rat
tracheal organ culture system, it has been
demonstrated that exposure to cigarette
smoke enhanced the uptake of amosite
asbestos fibers by tracheal epithelial cells
(54,55). Cigarette smoke-enhanced
uptake of amosite fibers was abrogated by
the iron chelator deferoxamine and by
scavengers of reactive oxygen species such
as SOD and catalase. These findings sug-
gest that reactive oxygen species (which are
known to be present in tobacco smoke)
may be implicated in the uptake of
asbestos fibers by airway epithelium.

There is considerable evidence, based
on both clinical and experimental studies,
that alveolar macrophages play a key role in
mediating the tissue responses to inhaled
mineral particles, as these phagocytic cells
are recruited to the sites of particle deposi-
tion (56,57). Although this has been
shown with respect to asbsestos fibers as
well as nonfibrous particulates such as silica
and coal dust (58-60), it is conceivable
that fiber geometry may play a role in
mediating the biologic effects of asbestos in
this regard. Inhalation of crocidolite or
chrysotile asbestos fibers stimulated the
recruitment of macrophages to the rat
pleural space (61). A number of studies
have demonstrated that both in vitro and
in vivo asbestos exposure upregulate alveo-
lar macrophage functional activity (62,63),
as evidenced by increased synthesis of
arachidonic acid metabolites (leukotrienes
B4 and C4, 5-hydroxyeicosatetraenoic acid,
and prostaglandins E2 and F2a). Asbestos
fibers activate both rat and human alveolar
macrophages to secrete the proinflamma-
tory cytokines tumor necrosis factor alpha
(TNF-a) and interleukin-l (IL-i) (64,65).
Inhalation of asbestos fibers also upregu-
lates TNF-a secretion by rat pleural
macrophages (61).

Particulate exposure induces the
generation of reactive oxygen species in
alveolar macrophages and other cells in
the respiratory tract. Both chrysotile and
crocidolite stimulate the in vitro produc-
tion of O2- by human alveolar
macrophages (58). A similar observation
was noted in crocidolite-exposed rat alveolar
macrophages (66) and chrysotile-exposed
guinea pig alveolar macrophages (67), an
effect involving the opening of calcium ion
channels within the macrophage (67).

It has been postulated that asbestos
fibers also may induce the formation of

OH and H202 via the Fenton reaction
(68). The potential in vivo significance of
these observations was underscored by a
study that demonstrated that the adminis-
tration of polyethylene glycol-conjugated
catalase via an osmotic pump inhibited the
development of crocidolite-induced pul-
monary inflammation and interstitial fibro-
sis in a rat inhalation model of asbestosis
(69). The ability to induce the formation
of reactive oxygen species is not unique to
asbestos fibers, as this property has also
been shown for silica (70) and coal mine
dust (59).

Evidence for the involvement of reactive
oxygen species in the pathogenesis of
asbestos-induced injury is the upregulation
of antioxidant enzyme gene expression and
induction of antioxidant enzyme activity.
Total SOD activity increased in hamster
tracheal epithelial cells exposed for several
days to either crocidolite or crysotile
asbestos (71). Lungs of rats exposed to
crocidolite asbestos showed increases in
the activity of all measured antioxidant
enzymes, including catalase, glutathione
peroxidase, and total SOD, with minor
variations in the extent and time course of
these increases (72). These elevations in
enzyme activities correlate with induction
of gene expression for these enzymes, with
MnSOD exhibiting the most dramatic
increases in steady-state mRNA levels.
Elevations in MnSOD gene expression
were even observed 10 to 14 days after ces-
sation of exposures (72). In addition, ele-
vations in MnSOD mRNA correlated
with increases in immunoreactive protein
after 20 days of exposure. Message levels
ofCuZnSOD, glutathione peroxidase, and
catalase were also upregulated (72).
Immunocytochemical localization studies
in crocidolite-exposed rats demonstrate
that MnSOD protein is expressed in the
mitochondria of alveolar type II cells.
Other lung cell types such as fibroblasts,
alveolar macrophages, or endothelial cells
contain little or no detectable immunore-
active protein (73), supporting the
hypothesis that type II cells are more resis-
tant to certain types of oxidative stress
because of induction of MnSOD or other
antioxidant enzymes.

Although Fenton reactions may be
implicated in asbestos-induced injury, they
are not sufficient to account for the similar
fibrogenic effects of crocidolite and
chrysotile, as crocidolite has approximately
18 times the elemental iron concentration
of chrysotile (60). Conceivably, other
reactive species also may play a role.

Attention has focused recently on the
putative role of reactive nitrogen species
in this regard. One study demonstrated
that both crocidolite and chrysotile
asbestos fibers upregulated the production
of 'NO by cultured rat alveolar
macrophages in the presence of IFN-y
(74). Furthermore, the interaction of
asbestos fibers and IFN-,y was synergistic
in stimulating *NO production (74). In
contrast, carbonyl iron, a nonfibrogenic
particulate, did not induce 'NO forma-
tion (74). In another study, intratracheal
instillation of the pneumotoxic dusts-
silica and coal mine dust-into rats caused
more inflammation and *NO formation
(when normalized for equal numbers of
particles) than similar administration of
carbonyl iron or titanium dioxide particles
(75). Collectively, these observations indi-
cate that it is both the physical and chemi-
cal makeup of the mineral particle that
may define its capacity to induce 'NO
production. Also, because cytokine secre-
tion is an integral component of the in
vivo inflammatory response to mineral
dusts (64,76), upregulation of iNOS
within alveolar macrophages may occur
both directly (i.e., from contact with the
offending dust) and indirectly (i.e., via
IFN-y and TNF-a induction). This is of
importance not only in the context of
bronchoalveolar inflammation but also in
the setting of pleural space inflammation,
as a recent study in the rat has shown that
inhalation of either crocidolite or
chrysotile asbestos stimulates the secretion
ofTNF-a as well as the formation of *NO
by pleural macrophages (77).

Recent studies using human lung
epithelial (A549) cells indicate that
crocidolite treatment results in the forma-
tion of 8-hydroxy-2'-deoxyguanosine (8-
OHdG) in DNA, synthesis of mRNA for
iNOS, and increased intracellular nitrite
production (10). Aminoguanidine (AG),
an NOS inhibitor, reduces intracellular
nitrite and prevents 8-OHdG formation
in DNA of crocidolite-treated cells.
Addition of the 'NO donor diethyltri-
amine NONOate with AG and crocido-
lite results in recovery of 8-OHdG (10).
Thus, the participation of *NO in the oxi-
dation of DNA may be important for the
carcinogenicity of asbestos. This fact also
may be pertinent in the context of pleural
injury, as a recent study demonstrated
that the addition of either chrysotile or
crocidolite asbestos fibers to cultured rat
pleural mesothelial cells, when combined
with IL-i1 , significantly stimulated the
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formation of *NO (77). Notably, this
effect was greater after chrysotile than after
crocidolite exposure and was not observed
after carbonyl iron challenge.

In addition to the diverse modulating
effects of NO per se, the results of our
recent study indicate that asbestos inhala-
tion induces iNOS in lung inflammatory
and epithelial cells, which results in
ONOO- formation in vivo (78). Rats were
exposed intermittently over 2 weeks to
either filtered room air (sham-exposed) or
to chrysotile or crocidolite asbestos fibers,
and were sacrificed at 1 or 6 weeks after
exposure. At 1 week, significantly greater
numbers of alveolar and pleural macro-
phages from asbestos-exposed than from
sham-exposed rats demonstrated iNOS
protein immunoreactivity. Alveolar macro-
phages from asbestos-exposed rats also gen-
erated significantly greater nitrite than
macrophages from sham-exposed rats.
Significant amounts of nitrotyrosine, a
marker of ONOO- formation, was seen in

lungs from chrysotile- and crocidolite-
exposed rats at 1 and 6 weeks. Staining was
most evident at alveolar duct bifurcations
and within bronchiolar epithelium, alveo-
lar macrophages, and the visceral and pari-
etal pleural mesothelium. Lungs from
sham-exposed rats demonstrated minimal
immunoreactivity for nitrotyrosine.
Significandy greater quantities of nitrotyro-
sine were also detected by quantitative
enzyme-linked immunosorbent assay in
lung tissues from asbestos-exposed than
from sham-exposed rats (chrysotile: 84 ± 12
pmol/mg protein; crocidolite: 59 ± 5; sham
(filtered air): 31 ±3.6; numbers are
means ± 1 SEM; n= 3). In addition, Saleh
et al. (79) reported the existence of signifi-
cant amounts of nitrotyrosine and iNOS in
macrophages, neutrophils, and alveolar
epithelial cells of patients with idiopathic
pulmonary fibrosis and proposed that
ONOO- may be responsible for the gener-
ation of fibrosis. Apoptotic mechanisms
also may be implicated in asbestos-related

injury, as ONOO- can mediate apoptosis
(80), and asbestos fibers induce apoptosis
in pleural mesothelial cells (81).

In summary, existing evidence suggests
that when stimulated with inflammatory
agents, alveolar macrophages and lung
epithelial cells of humans and rats produce
02-- and *NO in vivo and in vitro. These
two agents react very rapidly to form
ONOO-, a potent oxidizing and nirating
species. Significant levels of nitrotrotyrosine
have been identified in the pleura and lung
parenchyma of rats that inhaled either
chrysotile or crocidolite asbestos fibers.
Nitrotyrosine formation alters important
functions ofa number of proteins, including
inhibition of protein phosphorylation by
tyrosine kinases, which may interfere with
intracellular signal transduction. The induc-
tion of reactive nitrogen species by both
chrysotile and crocidolite fibers in vivo may
provide an alternative mechanism of
asbestos-induced injury to that believed to
be induced by Fenton reactions.
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