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In this study we investigated estimation of occupational exposure to 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) based on a minimal physiologic toxicokinetic mode! in humans. Our purpose was
to obtain a mathematical tool for dose-response studies based on human data. We first
simplified an existing model of TCDD kinetics in humans and estimated its parameters (i.e., liver
elimination and background input of TCDD) using repeated measures of serum dioxin taken in
Vietnam veterans (Ranch Hand data and data from an unexposed reference group). We carried
out computer simulation and estimation of the model parameters both under a nonlinear
weighted least-squares model (naive pooled data approach) and under a nonlinear mixed-effects
model. The best parameter estimates were obtained with log-transformed data under a mixed-
effects model: liver elimination parameter k; =0.022 days™' (95% confidence interval [Cl] = 0.020,
0.024), and background input rate input =0.1251 pg/kg/day (95% Cl=0.071, 0.179). The dioxin
kinetic model and its estimated parameters were then used to provide dose estimates for a
cohort of workers with exposure to TCDD at chemical plants in the United States. First, the
model was used to estimate the rate of occupational intake of TCDD in a subset of the cohort
consisting of 253 subjects for whom one measure of serum TCDD was available. A model of
change in body-mass index over time was also identified for this subsample. The occupational
exposure rate was estimated by linear regression using the above values of kinetic parameters
and assuming an initial condition for serum TCDD of 7 ppt, i.e., the average level found in
unexposed workers. The estimate of the occupational exposure parameter was 232.7 pg/kg/day
(95% Cl 192, 273). This value can be applied to the full cohort to obtain for each cohort member
the time course of serum dioxin concentration from which exposure indices can be derived.
Sensitivity coefficients to model parameters (background input, k;, occupational exposure, and
the assumed TCDD concentration at hire) allow for a convenient recalculation of the serum TCDD
curve and of the derived exposure indices for different assumed values of the model parameters.
— Environ Health Perspect 106(Suppl 2):743-753 (1998).  http.//ehpnet1.niehs.nih.gov/docs/
1998/Suppl-2/743-753thomaseth/abstract.htm/
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Introduction

2,3,7,8-Tetrachlorodibenzo-p-dioxin
(TCDD) dose—response analyses based on
human data require the use of a kinetic

model for TCDD. The kinetic behavior

of TCDD has been studied in recent years
using different mathematical modeling
approaches, ranging from statistical
regression models to comprehensive
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descriptions of the biologic pathways
of TCDD.

Statistical regression models aim at
providing a black-box description of the
variables that influence TCDD kinetics.
These models generally assume a fixed half-
life for TCDD and additional covariates
account for deviations from the fixed half-
life model. One of the first attempts to
describe TCDD kinetics in humans, in
particular fractional clearance rates, was
based on a one-compartment, time invari-
ant, model. An estimate of 7.1 years (95%
confidence interval [CI] =5.8-9.6 years)
was obtained for the half-life of TCDD in
a group of 36 Ranch Hand (RH) veterans
(I). This estimate changed to 11.3 years
(95% CI=10.0-14.1 years) by extending
the study group to 337 veterans (2). A
mixed-effects modeling approach was later
adopted for describing TCDD elimination
rate as a linear function of individual
percent body fat, change in percent body
fat, and age (3). The reported unadjusted
estimated half-life is 8.7 years (95%
CI =8.0-9.5 years), although there was a
statistically significant increase with
increasing body fat but not with age or
relative changes in body fat. Regression
models incorporating one-compartment
first-order kinetics for TCDD have been
used also by others (4-6).

Physiologic models focus on mechanistic
relations between variables. Their scope is
often to provide a highly detailed descrip-
tion of the network of biochemical and
biophysical processes related to TCDD
(7-9). Animal experimental data are the
source of parameter values and of model
validation. The identification of physio-
logic models for TCDD in humans is
complicated by the difficulties in obtain-
ing the necessary observations to estimate
parameter values for the modeled pro-
cesses. Recently, a toxicokinetic model for
TCDD based on a minimal physiologic
construct has been proposed (10). The
model assumes a fixed fractional clearance
rate for hepatic TCDD degradation with a
daily TCDD intake proportional to body
weight (bw). The model accounts for varia-
tions in TCDD serum levels due to varia-
tions in body mass, even in the absence of
any change in the rate of dioxin intake or
elimination from the body. The model is
designed to describe long-term behavior of
dioxin, and it does not account for fast

dynamics nor for liver sequestration and
binding of TCDD (11). A diagram of the
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model is shown in Figure 1. The model
focuses on the dynamics of TCDD in the
lipid fractions, and it assumes a continuous
equilibrium of TCDD concentration
between liver lipids and the remaining
lipid compartments. The model requires
the estimation of lipid compartment vol-
umes of adipose tissue, liver, and other tis-
sues by means of anthropometric formulas
involving body weight and height (12) and
of assigned constants of fractional tissue
lipid content (13). The model parameters
can be estimated from repeated measures
of serum TCDD.

We begin by reviewing the model
presented by Dankovic et al. (10). Next,
we reformulate the model as a time-variant
compartmental model under the simplify-
ing assumption of constant body height.
In the reformulated model, the fractional
clearance and serum concentration of
TCDD depend on the individual time
course of body-mass index (BMI). We
then focus on estimating the model para-
meters from sparse data with the goal of
determining the characteristic population
kinetic parameters of TCDD, including
their interindividual variability. We then
extend the model to include occupational
exposure, and we estimate the resulting
additional parameter. Finally, we use the
model to obtain serum TCDD profiles

Intake

Adipose

kf

Figure 1. One-compartment representation of the
TCDD kinetic model. The model is based on the follow-
ing assumptions: &) dynamic equilibrium of TCDD con-
centrations between different body lipid distribution
volumes; b) first order elimination proportional to TCDD
liver content; and ¢) daily intake proportional to body
weight.
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over time and exposure indices (area under
the curve) for members of an occupational

cohort (14).
Materials and Methods
Subjects

Ranch Hand Data Set. Operation Ranch
Hand was the unit responsible for aerial
spraying of herbicides in Vietnam from
1962 to 1971 (7). Veterans are involved in
a 20-year prospective study. Descriptions of
the Ranch Hand data are presented by
Mickalek et al. (3) and Wolfe et al. (15).
The data set made available to us by
Michalek contained 2362 observations on
male subjects, 1008 of them pertaining to
exposed (U.S. Air Force veterans of
Operation Ranch Hand) and 1354 to unex-
posed (reference) subjects (U.S. Air Force
personnel who served in Southeast Asia but
who were not involved in herbicide spray-
ing operations). From both groups we
selected only observations with repeated
measures of serum TCDD. We adopted the
following data restrictions:

For the exposed subjects’ data set (RH),
we used only the observations from the
follow-up study, which is restricted to sub-
jects with a 1987 TCDD serum level
greater than 10 ppt (2). There are 279
observations with measurements taken in
1982, 1987, and 1992. One observation
had one nonquantifiable measurement,
which we discarded. One observation had a
nondetectable value as the third data point,
which we discarded as an outlier. This
leaves 277 exposed subjects with three data
points. Additionally, we included 65 RH

observations with two data points, taken in
1982 and 1987.

In the reference group there are 43
observations with two data points taken in
1987 and 1992. Reference subjects with
two serial TCDD measurements were not
selected based on any known criteria. In
particular, the availability of the second
data point was not dependent on the value
of the first, nor was the value of the first
measurement known to individuals who
volunteered for the second measurement
(16). Of the 43 observations 9 were sub-
jects with nondetectable values. After an
initial attempt at imputing these 9 values
from knowledge of the detection limits, we
discarded the observations as their detection
limit was very high in some cases, possibly
implying a low precision of the measure-
ment. One subject displayed a large varia-
tion between the two dioxin measurements
and was discarded as an outlier. This left 33
observations from the reference group.

A random sample of the RH data with
the 1987 serum TCDD less than 10 ppt
was offered an additional TCDD measure
in 1992 (16). There were 16 of these obser-
vations with detectable values. One addi-
tional observation also had the 1982 level
measured. These 17 subjects provide infor-
mation on background exposure input, and
thus they function as unexposed subjects.

Summary statistics for the restricted
data set are reported in Table 1.

NIOSH Subcohort Data. Estimation
of TCDD occupational exposure was
carried out on a subsample of 253 male
workers from the National Institute for
Occupational Safety and Health (NIOSH)

Table 1. Summary statistics of subset of Ranch Hand data and of a Vietnam veterans reference cohort used to

identify the MPTK model of TCDD.

Ranch Hand veterans

Reference Vietnam veterans

- exposed to TCDD? not exposed to TCDD?

n Mean SD  Median 25%-975% n  Mean SD  Median 2.5%-97.5%
Age,¢ 342 421 15 405 (32.7,57.7) 1 44 —_ - —
Age, 342 479 76 457 (37.4,629) 50 498 75 50 (40.0, 65.4)
Ages 277 524 14 50.8 (429,689) 50 55 74 5 (45.1,70.4)
BMI, 342 275 37 271 (21.3,35.8) 1 235 — - —
BMI, 342 285 42 278 (22.0,39.1) 50 285 42 2716  (221,393)
BMI, 2717 292 46 286 (219,398) 50 292 49 281  (225,434)
ladjy 342 635 628 410 (154,2263) 1 13.0 - - —
ladj, 342 517 621 318  (108,1937) 50 85 5.0 15 (2.6,25.1)
ladjy 277 306 362 189 (6.1,116.0) 50 5.4 25 49 (1.9,13.2)
logl/adj;) 342 384 074 in (2.73,5.42) 1 256 — @ — —
logl/adp) 342 357 080 346  (238,527) 50 198 057 202 (0.96,3.22)
loglladps) 277 307 077 294 (181,475 50 158 045 158 (0.61,257)

#Vietnam veterans who participated in Operation Ranch Hand with 1987 TCDD serum concentration > 10 ppt.
byietnam veterans who did not participate in Operation Ranch Hand, or Ranch Hand veterans with 1987 TCDD
serum concentration < 10 ppt. ®Subscripts 1, 2, and 3 refer to measurements made at the first (1982), second

(1987), and third (1992) sampling times, respectively.
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cohort (14,17) for whom a single measure
of serum TCDD was available, usually
taken long after termination of employ-
ment. Two data points for height and
weight are available, at hire and at the time
of the exam. The NIOSH cohort subsam-
ple of 253 workers contains 42 missing val-
ues for the measures of height and weight
at hire. BMI values at hire for these sub-
jects were imputed by the conditional
means (Buck’s) method (18). The method
estimates the missing values by a linear
regression on available predictors. The
predictors we used were BMI at the time
of the TCDD measure and the time inter-
val between hire and TCDD measure-
ment. We checked the results against the
estimate of occupational exposure obtained
from the complete data of 211 observa-
tions. Summary statistics for the NIOSH
subcohort are reported in Table 2.

NIOSH Cobort Data. Our purpose in
obtaining estimates of occupational expo-
sure to TCDD based on the minimal phys-
iologic toxicokinetic (MPTK) model was to
eventually obtain predicted serum profiles
of TCDD over time and other derived
exposure indices for the NIOSH cohort
(14). The cohort consists of 5172 male
workers employed at 12 chemical plants in
the United States. For the purpose of our
analysis, the following observations should
be excluded: set 1, =202 individuals with-
out detailed work history; set 2, n=983
with missing height or weight. Sets 1 and 2
are not mutually exclusive, leaving a total of
4053 subjects. In this study we show only
an example of application.

MPTK Modeling of TCDD

in Humans

The MPTK model of TCDD in humans
proposed by Dankovic et al. (10) provides
a concise description of time variations in
serum lipids concentration of TCDD in
terms of liver degradation and variations in
body lipids. The scope of the model is to
describe long-term kinetics of TCDD in
lipid fractions of several tissues by a mini-
mal physiologic model, with TCDD elimi-
nation as the main focus. The Dankovic

model does not account for phenomena
such as TCDD absorption, distribution,
binding to liver receptors, enzyme induc-
tion, and synthesis of binding proteins,
which occur on a much faster time scale
(hours to days) than TCDD elimination
(years in humans), nor for liver sequestra-
tion of TCDD (11,19). This reflects on
the assumption of an equilibrium between
TCDD in lipid fraction of blood, liver,
and adipose tissue. The model assumes that
on a long-term basis the proportion of
body mass represented by the adipose tis-
sue becomes the major source of variation
in TCDD kinetics across individuals and
within individuals over time, given that
adipose tissue in humans displays a much
larger variation than liver volume.

The model, shown in Figure 1, is based
on the assumption of a dynamic equilib-
rium of TCDD concentration between var-
ious body lipid compartments that form the
total distribution volume (7LV=total lipid
volume). The elimination of TCDD due to
liver degradation is assumed proportional to
the total amount present in the liver with
proportionality factor k¢« Moreover, a daily
TCDD intake (pg/kg/day) proportional to
body weight is assumed.

The distribution space of TCDD is
partitioned into three subcompartments:
adipose tissue, liver, and other tissues.
Adipose tissue volume (V,gipoce> grams) is
calculated according to Knapir( etal. (12) as:
Vzdipose = 1000 (126.4 bw/H2-0.13305)
bw, where bw is body weight in kilograms,
and H is height in centimeters; liver weight
(Miver grams) is calculated as 3.11% of lean
body mass (13); Vjye,=0.0311 (1000
bw — Vidipose); and finally the mass of
other tissues (Ve grams) is calculated
as Voher=1000 bw— Vadipose_ Viiver-
Table 3 shows the relative size of the lipid
compartments for different values of
body weight.

The actual distribution volumes (LV,
grams) of TCDD are lipids, and are calcu-
lated for the above tissue compartments
according to the International Commission
on Radiological Protection (13), as
80, 6.9, and 2.2% of their respective

Table 2. Summary statistics of the subset of the NIOSH cohort with serum TCDD measurements.?

At hire At TCDD measure
Mean  SD Median  2.5%-97.5% Mean SD Median 2.5%-97.5%
Age,years 285 76 26.2 (18.2, 46.9) 55.3 104 55.0 (37.9,74.9)
BMI 246 31 246 (19.4, 31.0) 27.1 43 21.3 (20.8, 37.8)
ladj — — — — 233.3 4511 76.2 (4.0, 2023)
log{/ad)) — — — — 429 1.58 433 (1.39,7.61)
an=253.
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Table 3. Distribution of total lipids in the model com-

partments by body weight.?

Body Adipose Other
weight, kg tissue, % Liver, % tissue, %
70 817 11 1.2

80 90.4 09 87

90 923 0.7 70

aExample for a body height of 170 cm.

volume/weight (V; grams). In particular:
LVadiposc_= 0.8 Vad.ipose’ LViiver=0.069 Viers
LViiher=0.022 Vipper.

The MPTK model of TCDD is there-
fore described by the following linear, time-
varying system with first-order dynamics:

AX() _ (, LVyele)
e (/‘f TLV () )X(')

+ intake(t)bw(t) (1]
X(1) = ladf(y) TLV(%) (2]
ladj(z) = X(t)I TLWz), [3]

where the time dependency of liver lipid
volume, total lipid volume, body weight,
and daily intake has been indicated explic-
itly. In Equation 1, X(#) represents the
total body TCDD in picograms (pg), with
initial condition at time # given by
Equation 2, which is calculated from the
first measured lipid-adjusted serum con-
centration (ladj(#) (ppt)). Using the first
data point as the initial condition makes it
possible to disregard the exposure history
before time % which then does not influ-
ence the TCDD dynamics after #. This
approach was necessary because the expo-
sure history for the RH individuals before
% was not available. Equation 3 represents
the prediction at time ¢ of the lipid-
adjusted TCDD concentration.

In the original model formulation (10),
daily intake of TCDD was characterized by
a parameter input describing background
exposure per kilogram body weight. When
applying the model to the NIOSH cohort,
individual occupational exposure to TCDD
is characterized as an additional daily intake
per kilogram body weight proportional to
the exposure time curve derived from the
individual work history. In particular,
intake(t) = input for the RH cohort, where
input is a constant parameter, and

intake(t) = input+ exposure u,(¢) [4]
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for the NIOSH cohort, where #,,,(?) is the
exposure function and exposure is the
unknown occupational exposure level
(pg/kg/day), which is assumed to be
unique for all exposed jobs. In the NIOSH
cohort, the exposure function is repre-
sented by a list of time instants {#,7,. . .,
t,} and by a list of weights {we,,. . ., we,}.
The weights we; take the values of 1 or 0
whether TCDD exposure has taken place
in the time interval [¢._, t] or not. In
mathematical terms, the exposure function
for the ith individual is defined as:

Uy (1) = wey(7) for ;_1<t<y
and #,,,(37)=0 fort <tpand > ¢, (5]

A Reformulation of the TCDD
Kinetics Model. A useful simplification of
the above model arises from the reasonable
assumption that the body height of an adult
subject does not change appreciably over
time. With this assumption it is possible to
rewrite the model equations taking into
account only the BMI. This simplification
can be useful in cases where individual body
weight and height are unknown and the
anthropometric characteristics need to be
assigned using population values. In particu-
lar, it is more convenient to fix prior distrib-
ution and time variation only to BMI rather
than to both body weight and H.

The simplification that restricts the
applicability of the model to adults is
based on the normalization of all quanti-
ties with respect to body weight (lower
case will be used for the corresponding
acronyms). For example, the average
grams of adipose tissue per kilogram body
weight are calculated as v,gipose(#) = 1000
(0.01264 BMI(2)-0.13305), where
BMI(z) is expressed in kg/m2. The deter-
mination of other normalized tissues and
lipid volumes is straightforward.

By defining x(z) as the average TCDD
amount per kg bw (pg/kg), i.e., x(¢) = X(2)/
bw(z), the final dynamic model becomes

(t) _ (|, Wie®) (a’BMI(t)/dt))
A (kf we T BMIe) S
+ intake(t) [6]
x(tg) = lad(10) tlA2) (7]
ladj(2) = x(£)/ tiz) [8]

where #i(t) = TLV(2)/bw(z).
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This simplified model was used to
analyze both the RH and the NIOSH
cohort data, using different descriptions of
daily TCDD intake as described previously.

Comparison with Other
Modeling Approaches
In the following we analyze the relation-
ship between the above MPTK model of
TCDD and another statistical, black-box,
model proposed in literature, in particular
the first-order kinetic model adopted by
Michalek et al. (3).

It can be first noted that the dynamic
Equation 6 has the following explicit
analytical solution:

() = x5, )E_Itog(‘)""

t—5
v
It e Ito

0

intake(s)ds, [9]

_y by (2) . (dBMI(¢)/ dz)

g =k BMI() [10]

f th(¢)

represents the time-varying fractional
clearance rate. Equation 9 follows from
Equation 6 because linearity of the system
has been assumed (20), i.e., the fractional
clearance of TCDD, g(#) given by Equation
10, does not depend on TCDD levels. The
right-hand side term of Equation 9 repre-
sents the convolution integral (20) of the
impulse response function

g(v)dr

he)=e o

with the system input intake(z) (Figure 2)
(impulse response functions for different
conditions are shown below).

Equation 9 is useful for understanding
the relationship of the MPTK model
with other modeling approaches based on
first-order kinetics. In particular, in
Michalet et al. (3) first-order kinetics has

been assumed

CH)=Ce™ (11]

where “C(#) is the TCDD concentration ¢
years after exposure, Cp is the initial
concentration, and A is a constant but
unknown decay rate” (3). Michalek et al.
(3) corrected the TCDD values for back-
ground levels by subtracting 4 ppt.
Parameter estimates were obtained after log

transforming the data, i.e., for the model
Equation 11 one obtains
log(Q(z)-4)=log(Gy)-Ae.  [12]
The relationship between the two
modeling approaches arises by ignoring
daily TCDD intake (i.e., intake(z) = 0) in
Equation 9, and by taking the measure-
ment Equation 8 into account. This yields
the following equation:

log(ladj(t)elv(2)) = log(ladj(z, )tlv(z,))

- j:o g(7)dr, (13]
which is similar to Equation 12, if one
considers the equivalence A=¢, with ¢
representing the average value of fractional
clearance, i.e., by putting z5=0

g=heoun [14]
In the interindividual variability of TCDD
clearance, a statistical model was used in
Michalek et al. (3), based on a mixed-
effects linear approach both without and
with adjustment for covariates. For the
unadjusted case the model was

lOg(C‘i(tg)—4)=|,1+’ti+ﬁltij+s,'j, [15]
where subcripts 7 and j represent the sub-
ject and the sampling time, respectively,
and (p and P,) represent the fixed popula-
tion effects, (ty and €;) the random effects.
The adjustment for covariates, x;;, was per-
formed using the following model in

Michalek et al. (3)

lOg(C',(ty) —-4) =+ T+ Bltij'" Bzx,j

+ B3x,'jt,'j + 8,:,‘. [16]

In the MPTK model (Equations 6-8),
individual clearance and its variations is
given by the integral term on the right-
hand side in Equation 13, which depends
on changes in BMI (Equation 10).
Interindividual variations of TCDD clear-
ance are therefore assigned a priori.
However, it must be stressed that this
MPTK model allows for changes over time
in measured lipid-adjusted TCDD concen-
tration (given by Equation 8) independently
from effective changes in total quantity of
TCDD; this is because of the time-varying
total lipid distribution volume.

The full model includes also daily
TCDD intake, which consists of background
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Figure 2. Model predictions (log serum TCDD concentration, ppt) and normal quantile plots of residuals (NLME
model with log-transformed data). (A, B) Second Ranch Hand data point; (C, D) third Ranch Hand data point.

exposure (input) and occupational expo-
sure (exposure u,,,(t)) obtained by replac-
ing Equation 4 with Equation 9. It follows
that k¢ is a nonlinear parameter while
input and exposure are linear parameters for
the function describing whole-body
TCDD kinetics. In particular, the combi-
nation of Equations 9 and 4 with the out-
put Equation 8 yields, for fixed functions
£(¢) and u,,,(¢), a linear relationship
between TCISD predictions and parame-
ters exposure, input, and even x(%). It is
therefore possible to predict individual
TCDD concentrations from BMI(z) and
work history by a linear model, once the
parameter k¢ has been fixed, i.e.,

ladj(2,pAkp) = ladj(29) y1(2,p;\kp)
+ input y,(5,p; kp)
+ exposure y3(1,p;| kp)
(17]
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where ladj(t,p}ky) represents the prediction
at time ¢ for a given personal data history
represented by p; (which includes BMI time
course, TCDD sampling times, and work
history), ladj(y) describes the initial TCDD
concentration, and 3, ¥, and y; are regres-
sion functions that can be obtained from
Equation 9.

Model Simulations

The model Equations 6 to 8 were imple-
mented and simulated using the software
PANSYM (2!). Numerical integration was
performed using a fourth-order Runge-
Kutta method with adaptive stepsize con-
trol. For the RH data sets, the time course
of BMI for each individual was assumed to
vary linearly between the sampling times,
given that measures were only 5 years
apart. For the NIOSH cohort, a model of
time-changing BMI was implemented as
discussed below. Simulations were carried
out for each individual of the RH veterans,

by assigning the first measured TCDD
concentration and by predicting with
numerical integration the second, and
when available, the third measured TCDD
concentration. In the NIOSH cohort, we
assigned an initial TCDD concentration of
7 ppt to each cohort member. Simulations
were carried out for each individual taking
into account their work history as a source
of the additional exposure input.

Parameter Estimation

Parameters in pharmacokinetic models are
usually estimated at the individual level
starting from a known test dose on the basis
of several repeated measures of the com-
pound of interest. These conditions are not
met by the RH data on TCDD, both
because there is lack of information on
intake due to exposure and because the
complexity and costs of dioxin assay pre-
clude the availability of data with frequent
repeated measures of TCDD. We carried
out simulation and parameter estimation at
the population level first by ignoring all
interindividual variability of TCDD clear-
ance—naive pooled data (NPD) approach
based on nonlinear weighted least squares
(NLWLS), as reported by Scheiner (22)—
and then by modeling interindividual varia-
tions with a nonlinear mixed-effects model.
Also, with the NPD approach the model
solutions were constrained to go through
the first data point, whereas error around
the initial condition could be modeled with
the mixed-effects model.

Naive Pooled Data Approach. The
model parameters k¢ and input were ini-
tially estimated by NLWLS according to
the NPD approach. This approach assumes
that the estimated model parameters ¢and
input are the same for all individuals.
Interindividual variability of TCDD clear-
ance is therefore attributed to changes in
BMI alone.

To determine the effects on parameter
estimates, we chose three different weight-
ing schemes: uniform weighting, reciprocal
of measurements, and reciprocal of squared
measurements. From a statistical point of
view, these weighting schemes are optimal
for the following assumptions on measure-
ment noise: constant variance; Poisson dis-
tribution of measurements; and constant
coefficient of variation, respectively. In
addition to the above weighting schemes,
we considered also the NLWLS problem
after log transformation of the data (and of
the model output) using uniform weighting

Nonlinear Mixed-Effects Approach.
To assess possible interindividual variability
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of TCDD kinetics, we considered a non-
linear mixed-effects (NLME) model. We
obtained simultaneous estimates of the pop-
ulation parameters k¢ and input as well as of
the variance of the random effects associated
with /ef and with the measured TCDD con-
centrations (including the first measure
which was used as initial condition for the
simulations). The parameter estimation was
carried out only with log-transformed dara.
The approach was based on linearization of
the model predictions (model output) for
propagating the variability of the random
effects as considered in (23). In particular,
we assumed the following model for the
fractional clearance parameter

kf(t) = kf" t’kf(t), elef(l) -~ N(0,0if), [18]

where 7 represents the i-th subject, k¢is the
population mean and 0%.is the unﬁnown
variance of the random effect. For mea-
surement noise, the following model was
assumed for the log-transformed data

2;;= loglladj(ke (i), input, 1,)]

+€i(ﬁ)) &(ﬂ)"MO,Gg) [19]

where z;; represents the j-th observation of
the concentration’s logarithm for subject 4.
The fixed effects parameters krand input,

and the variance of the random effects O‘if

and 6% were obtained by maximum
likelihood estimation.

The approximate covariance matrix of
parameter estimates was calculated from
the inverse of the Hessian matrix of the
optimal cost function. Precision of parame-
ter estimates was expressed either in terms
of their standard deviation, computed as
the square root of the corresponding diago-
nal element of the covariance matrix, or in
terms of percent coefficient of variations,
defined as 100 times the standard deviation
divided by the parameter value.

Estimation of Population BMI
Time Course

Availability of the time course of BMI is
necessary to solve the MPTK model of
TCDD. In the RH cohort, anthropomet-
ric measurements were available at inter-
vals of approximately 5 years, such that
linear interpolation of BMI measurements
was acceptable for reconstructing individ-
ual time courses. On the contrary, the two
values of BMI available for the NIOSH
subcohort were in several cases measured
decades apart. Therefore it was necessary
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to derive a model of BMI over time as a
function of age. Data from the First
National Health and Nutrition Examin-
ation Survey Epidemiologic Follow-up
Study (24) provided preliminary inform-
ation on mean and variance of the 10-year
change in BMI by 10-year groups of age at
baseline. The youngest group is the 25 to
34 years of age at baseline. To cover the
spectrum of age at baseline included in the
NIOSH cohort, we included information
on the additional decade 15 to 24 years of
age at baseline. We obtained data on this
age group from the Bogalusa Heart Study
Group (25).

The overall time course of BMI variation
resembles a descending staircase and the
resulting BMI time course is a parabolalike
piecewise linear function. However, this
description did not appear to model accu-
rately the BMI variations in the NIOSH
subcohort. Therefore, we preferred to
model time variations of BMI as a linear
function of age using the subgroup of sub-
jects with two BMI measurements. The
adopted model was therefore

dBMI

= Ol + Bamrs

20
. (20]

which yields the time course

BMI(r) = BMI(z,) + %uz _12)

+BBMI(t_t1)' (21]

Estimates of gy and Bpmy were
obtained by fitting the squared difference
between log-transformed BMI values
observed at time #, and values predicted
according to Equation 21. The estimated
values of agpyy and Bgymy were used in
Equations 20 and 21 to solve Equation 6
for the computation of the exposure
indices in the NIOSH cohort. In the sub-
sample used to determine the occupational
exposure parameter, we fixed the parameter
OgMmr to the above estimated value, and
individualized parameter Bgpy to meet the
second BMI measure.

Estimation of Occupational Exposure

Individual occupational exposure levels of
TCDD for a given work history, as avail-
able in the NIOSH cohort, were estimated
from plasma concentration measurements
taken one point in time. The estimation of
the occupational exposure parameter was

obtained via linear regression using
Equation 17.

We estimated initially only parameter
exposure, with both uniform weighting and
after log transformation of the data, while
ignoring the background exposure input.
This was based on a preliminary multiple
linear regression analysis in which the covari-
ate y; resulted the most important one for
predicting TCDD concentrations. Despite a
strong effect of measurement noise, we also
evaluated the approximate individual expo-
sure levels by the fraction ladj;/y;(2,p)ky),
where ladj; represents the measured TCDD
concentration in individual 7.

The second application of Equation 17
was the simultaneous estimation of para-
meters exposure and input with the initial
concentration ldj(y) fixed at 7 ppt. Again
both uniform weighting and log transfor-
mation of the data were employed. The
alternative approach of estimating all three
parameters gave unrealistic estimates of

ladj ().
Computation of Exposure Indices

Computation of TCDD exposure indices
from individual work histories was per-
formed on the basis of simulated TCDD
plasma concentration time courses as
described in the previous sections. In par-
ticular, given an individual work history
represented by Equation 5, and the time
history of BMI(#) and its derivatives given
by Equations 20 and 21, plasma TCDD
concentrations were determined according
to Equation 17 for fixed values of parame-
ters O = (ks input, exposure]. By dropping
the explicit dependency on individual work
history, BMI variations and parameters 0,
we define, following Thomas (26), the
general form of a cumulative exposure
index computed at time T for the #th sub-
ject, D{T;m), as a weighted integral of the
TCDD plasma concentration profile

D(T3m) =y f(T ~+,m)ladj(z, p; 1 0)ds,
[22]

where f(T-¢, ) is a suitable weighting
function parameterized by T, % represents
the time of hire, and T 'the time at risk.

Typical choices of f(7,7) are a) the
unweighted cumulative exposure with
Az,m) =1, and b) the lagged cumulative
exposure with f(1,m)=1 if 727, and
Arm=0ift<m

Sensitivities of Exposure Indices.
Given that exposure indices are:computed
using population estimates of the kinetic
parameters and of the occupational expo-
sure, it is important to know how sensitive
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the computed indices are with respect to
interindividual variations of the assigned
model parameters. For this purpose, we
observe that for a specific assigned model
parameter 6, the sensitivity of the exposure
index can be computed as

aDi(T;ﬂ') (T
Tj = Lof(T"t’”)
lad(t,,19)

90

J

[23]

For an efficient calculation it is useful to
determine first the sensitivities of TCDD
predictions. From Equation 17 we have

dladj(t, p;10)

— =y (2, (24]

dinput 72(6:2:19)

dladj(t, p,10) )

—_— - s D; . 5
dexposure y(epi10). 5]

The computation of the sensitivity
dladj(z, ,'IO)/a/ef requires more complex
calculations which were performed using

the software PANSYM (21).
Results
Parameter Estimation

Nonlinear Weighted Least-Squares.
Parameter estimates are dependent on the
weighting scheme and on log transforma-
tion of the data (Table 4). The best model
predictions and distribution of residuals
(not shown, see below) were obtained
with log transformation of the data, which
also yields the smallest background input
and the smallest value of the elimination
parameter k.

Nonlinear Mixed-Effects Approach.
The parameter estimates obtained from log-
transformed data with the nonlinear mixed-
effects model are also reported in Table 4.
The random effect associated with the
assignment of the first data point was taken
into account in the analysis. Given the log
transformation, 6 2 is an estimate of the
squared coefficient of variation of TCDD
concentration measurements, which is then
25.9%. This value is likely to be overesti-
mated and may reflect also interindividual
variability of k5 whose estimate, quantified
by 67, resulted on the contrary to be very
small.” Nevertheless, the population mean
estimate of kfis close to the values obtained
with NL\W{S and log transformation.

Table 4. Parameter estimates of k;(days™") and input (pg/kg/day).

Method k CV. % 95% CI Input CV, % 95% Cl

w=19 0.02433 43 (0.022, 0.026) 0.4998 238 (0.267,0.733)

w=1/22 0.02855 39 {0.026, 0.031) 0.2395 238 (0.128, 0.351)

w=1/72 0.03411 33 (0.032, 0.036) 0.1700 176 (0.111,0.228)

w=1and log 0.02182 49 (0.020, 0.024) 0.1139 28.6 (0.050, 0.178)
transformation?

NCME and log 0.02199 48 (0.020, 0.024) 0.1251 219 (0.071,0.179)
transformation?

Nonlinear weighted least-squares with weight w. ®Maximum likelihood estimates under the nonlinear mixed

effects model. Estimates of random effects variances: ci,: 29105 and oif =0.0671.

Model predictions and normal quantile
plots of residuals are shown in Figure 2,
separately for the second and third RH data

Table 5. Parameter estimates of occupational expo-
sure (pg/kg/day) obtained via ordinary least-squares
and individual estimates.

points (although the fit was done simulta-  Method Exposure  CV,%  95%Cl
neously on all'data points). No u.ientxﬁable Least-squares” 2801 53 (251.309)
pattern was evident in plots of residuals ver- |east.squares 3332 76  (284,383)
sus fitted values for this model (not shown).  +log transformation?

These plots did not differ appreciably from  Individual estimates® ~ 351.6° - (45, 7066)

those obtained under the NLWLS model
and log transformation. The parameter esti-
mates obtained with the NLME model and
log transformation were used as reference
values in the subsequent analyses.
Estimation of Occupational Exposure.
Estimates of the occupational exposure
parameter were obtained by using Equation
17 with k=0.02199, corresponding to
the value obtained with the nonlinear
mixed-effects model and log-transformed
dara, and by fixing the initial condition
of TCDD ladj(#y) =7 ppt (average level in
an unexposed reference group of 79
workers) (17). The estimates obtained
from the model ladj(z,p;1kf) = ladj(z,)
y1(5p] /ef) + exposure %(t,p;lk{ (Equation
17) are shown in Table 5 for goth uniform
weighting and after log transformation of
the data. In the same table we report the
median and the 2.5 to 97.5 percentile
interval of individual exposure levels.
Although this is a rough estimate of indi-
vidual TCDD exposure, because it is par-
ticularly sensible to measurement errors, it
suggests that individual exposure levels are
highly variable. Moreover, since the
median value of this estimate is closer to
the estimate obtained with log transforma-
tion of the data, it can be assumed once
more that this latter estimation approach is
preferable to ordinary least-squares.

#Linear model /adj(t,p;|k¢) = ladj(to)| ya(t.p; fks) + expo-
sure\ys(t,p;\ky) (Jadj(to)=7 ppt). ®ladji/ys(t;.p; k).
“Median. %2.5-97.5 percentiles.

Results of simultaneous estimation of
exposure and input parameters are reported
in Table 6. Compared to Table 5, the esti-
mate of exposure obtained with uniform
weighting and with log transformation do
not differ as widely.

The value of exposure used for comput-
ing exposure indices in the whole NIOSH
cohort is the one reported in Table 6
obtained with log transformation. This
choice was based on model predictions and
on normal quantile plots of residuals
(Figure 3), and it yielded the smallest para-
meter values, particularly regarding the
input parameter. However, even the value
of 0.45 for the input parameter would not
be consistent with the assumed average
population concentration of 7 ppt for
unexposed subjects. In fact, assuming zero
occupational exposure, the value of 0.45
would yield an average TCDD concentra-
tion of 10.3 ppt in the NIOSH subcohort
instead of the postulated 7 ppt. We slightly
adjusted this parameter to maintain an
average concentration of 7 ppt. Therefore,
for subsequent calculations we fixed back-

ground énput at 0.293 (pg/kg/day).

Table 6. Parameter estimates of occupational exposure (pg/kg/day) and background input (pg/kg/day).

Method Exposure CV, % 95% Cl Input CV, % 35% Cl
Least-squares 262.1 6.7 (227, 297) 2.12 52.6 (-0.11, 4.35)
Least-squares and log 2327 89 (192, 273) 0.45 193 (0.28, 0.63)
transformations?
8Linear model: /adj(t,p;|k¢) = ladj(to)\ yi(t.pilke) + input yo(t.p;|ks) + exposure y(t.pilk¢) (ladj(to) =7 ppt.
Environmental Health Perspectives = Vol 106, Supplement 2 = April 1998 749
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Figure 3. (A) Model predictions {log serum TCDD con-
centration, ppt) and (B) normal quantile plots of residu-
als for the NIOSH data (linear regression model with
log-transformed data).

Estimation of Population BMI
Time Course

We obtained the following estimates:
opmi=—3.755X 1073+£0.9%x1073 (xSE)
(kg/m?/year?), and Bppy = 0.26907 + 0.04
(kg/m?/year). A comparison of the model
predictions (Equations 20 and 21) with sur-
vey data regarding the rate of change of BMI
over time and the corresponding variations
from baseline is depicted in Figure 4.

Example of Calculation

of Exposure Indices

Figure 5 shows an example of application
regarding the calculation of the time
course of two exposure indices: serum
dioxin concentration and its time integral
(area under the curve). Each of these
indices was calculated starting from age at
hire and ending at age last observed. We
also computed the sensitivities of these
exposure indices to parameters: occupa-
tional exposure, background inpuz, k¢, and
the assumed serum TCDD concentration
at hire (initial condition). The sensitivities
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d BMI(t) / dt, kg/mZ/year

0 20 30 40 5 60 70 8
Time, years

A BMI(t), kg/m?

0 T T T T T T 1

0 20 30 4 5 6 70 80
Time, years

Figure 4. (A) Time variation of BMI as a function of
age at baseline according to Williamson et al. (24),
and Berenson and Wattigney (25) (---) and estimated
from the NIOSH subcohort (—). (B) Absolute BMI
changes over time, starting at age 15 years, obtained
by integration of the corresponding curves of panel A.

make it convenient to recalculate the expo-
sure indices for different assumed values of
the model parameters, without having to
run additional model simulations. As an
example, we report the recalculation of the
cumulative exposure for a sizable variation
(=30%) of k¢ and the corresponding
approximation based on sensitivities. The
approximation is fairly good for the nonlin-
ear parameter ky. This approach yields exact
results for deviations of any magnitude for
the remaining linear parameters.

Discussion

We estimated occupational exposure to
TCDD for members of the NIOSH cohort
(14). Calculations were based on the kinetic
model for TCDD proposed by Dankovic et
al. (10). We first revised the model and
worked out a simplified form based on the
time course of BMI. We then carried out
estimation of the parameters of this model
(liver elimination constant k¢ (days™) and
background input (pg/kg/day)) using data
with repeated measures of serum TCDD
taken over time (RH data and data on an
unexposed reference group). Second, we
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Figure 5. (A) Simulated TCDD concentration over time
with corresponding exposure during work history for
one subject of the NIOSH cohort; (B) estimated time
course of BMI based on the measured value at time of
hire (@) and estimated population time course; (C) sim-
ulated cumulative exposure over time using nominal
parameter values (—), and with a perturbation of
—30% of parameter k, while maintaining the other
parameters fixed (---). The dotted line in C represents
the linear prediction of the perturbed cumulative expo-
sure based on parameter sensitivities ().

used the best estimates of the model parame-
ters to estimate the occupational input rate
in a subset of the NIOSH cohort for which
single measures of serum TCDD were avail-
able. The occupational input rate thus
estimated was then assumed to hold for all
exposed jobs in the NIOSH cohort lead-
ing to a characterization of the time course
of serum TCDD in individual cohort
members, thus providing the basis for the
calculation of exposure indices.

The MPTK Model
The model in Dankovic et al. (10) provides

a concise description of long-term TCDD
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elimination and is based on a minimal
physiologic structure which includes the
effects of variations in BMI. The model
does not account for liver sequestration or
binding of TCDD. Liver accumulation of
TCDD may be of lesser relevance in the
range of concentrations encountered in the
RH group (Table 1). It may, however, be
of importance for a sizable portion of the
NIOSH data (Table 2). There is some evi-
dence that human hepatocytes may be less
sensitive than rat hepatocytes to the pro-
tein-inducing effect of TCDD (27). In the
presence of a relevant liver sequestration of
TCDD, its omission from the model
might produce biased predictions, which,
however, we did not observe.

The model displays a variation in
TCDD kinetics through its dependency on
changes in body mass and therefore in the
lipid content of body compartments. This
gray-box approach avoids the inclusion of
covariates for statistical adjustment, for
example the interplay of statistical covari-
ates (body mass at a particular time, change
in body mass over time and age) translates
into a time-varying volume of distribution
for TCDD. The MPTK model requires
estimation of a smaller number of parame-
ters than a statistical model with covariates
and interaction terms. In addition, esti-
mated parameters have a direct interpreta-
tion; and the availability of sensitivity
indices to variations in model parameters
constitutes a useful diagnostic tool.
Prediction of TCDD serum profile over
time and of derived quantities are straight-
forward even in presence of complicated
exposure patterns such as work histories.

Estimates obtained under the nonlinear
mixed effects model (kr=0.02199 days™!,
95% CI=0.020, 0.024; inpur=0.1251
pg/kg/day, 95% CI=0.071, 0.179) were
very consistent with the nonlinear
weighted least-squares estimates obtained
on log-transformed data and displayed the
best behavior of model predictions and of
model residuals. Nonetheless, the model fit
was better for the second RH data point
than for the third (Figure 2). With the
NLME model we were also able to take
into account the random effect associated
with the assignment of the first data point.
Estimates obtained under this model were
used in subsequent calculations.

All estimates were obtained at the
population level due to the sparse nature of
the serum TCDD data used to fit the
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model. An analysis based on individual
estimates (not shown) could only be per-
formed for fixed values of the input para-
meter and it provided a similar estimate of
kg albeit with a high dispersion.

Given the low values of TCDD mea-
sured in 1992 in many subjects and the
reasonable precision in input estimates, the
background subtraction approach, as con-
sidered by Michalek et al. (3), was not
investigated. The reason for this was that
by fixing an arbitrary lower bound for
TCDD concentrations, we would have had
to discard many subjects to maintain the
final values positive, to be able to imple-
ment different weighting schemes, or to
take the logarithm of the data.

Observations with nondetectable levels
were excluded from our analysis. The
exclusion affected nine observations in the
reference group and three observations in
the RH group, with the 1997 level less
than 10 ppt. These observations would
have provided additional information to
estimate the background input parameter.
However, imputing a value for these obser-
vations was complicated by the variability
of the detection limit across measurements.
This prevented the use of methods based
on the assumption of a common detection
limit (28).

Some of the data used to estimate para-
meters in the MPTK model were the
results of selection: for the exposed RH
observations, the follow-up data on serum
TCDD were available if the 1987 level was
greater than 10 ppt. On the other hand a
sample of RH veterans with 1987 serum
TCDD less than 10 ppt was offered an
additional measure in 1992. There were no
selection criteria for the availability of serial
measurements in the unexposed reference
group. In the context of our modeling
approach it was not possible to take into
account these complex selection criteria
from which the data arose. On the other
hand, an analysis of the exposed Ranch
Hand data based on a statistical model (3)
did take the selection criteria into account
following a data-conditioning approach.
To assess potential biases in our analysis,
we carried out a comparison of the predic-
tions of the MPTK model and of the
model in Michalek et al. (3). By taking
hypothetical subjects with constant percent
body fat over time and by setting the back-
ground input =0, one can compare the
apparent half-life of TCDD between the
two models. Results in Table 7 show that
within the conditions defined above the
agreement between the two approaches is

Table 7. Apparent half-life of TCDD over different
body weights?: comparison of two studies.

Serum TCDD half-life, years

Thomaseth
Body weight, Body fat,  Michalek and Salvan
kg? %b etal.(3) (this study)
70 17.3 765 7.68
80 217 9.01 9.85
90 26.1 1.0 12.3

#Body height = 170 cm. Percent body fat equals 1.264
BMI-13.305(72).

o

Figure 6. (A) Simulated TCDD serum concentration
time courses for an individual with initial bw of 70 kg
(height 170 cm) and final bw after 20 years remaining
constant (—, apparent half-life t;,,=7.7 years) or
changing linearly to 60 kg (———, t;,2=9.0 years), or to
80 kg (—-—, t/,=6.7 years). (B) Simulated TCDD serum
concentration time courses for an individual with initial
bw of 90 kg (height 170 cm) and final bw after 20 years
remaining constant (—, apparent half life t;,=12.3
years) or changing linearly to 80 kg (-——, t;,,=14.6
years), or to 100 kg (—-—, ;2= 10.5 years).

excellent. It is therefore possible that the
bias due to not accounting for data selec-
tion features may not be severe. On the
other hand, one structural feature of the
MPTK model is its ability to account for
the effect of changes in BMI over time, as
shown in Figure 6, in which different
assumptions on the time course of BMI
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have a clear impact on the apparent half-life
of TCDD. Figure 6 shows that higher values
of BMI are associated with longer TCDD
half-lives, whereas an increase/decrease in
BMI in the same individual is accompanied
by a decrease/increase in the apparent half-
life of TCDD. This last effect, which is a
distinctive feature of the model by Dankovic
et al. (10) is due to a change in volumes of
distribution. The curves in Figure 6 also rep-
resent system impulse responses following
Equation 9, with (%) = 100 and intake=0.
The nonlinear mixed-effects approach
used here may provide optimistic estimates
of parameter variance. Other computation-
ally intensive approaches (29) may provide
a more realistic assessment of parameter
variability at the population level.

Estimation of Occupational
Exposure to TCDD

The estimation of the occupational intake
rate was conducted by applying the MPTK
model with kr=0.02199 to the NIOSH
subcohort of 253 workers. We showed theo-
retically that there is a linear relation
between TCDD serum concentration, occu-
“pational exposure, background #nput, and
initial TCDD serum concentration. On the
other hand, the relation to kris nonlinear.
Estimates of the occupational exposure para-
meter were sensitive to data transformation.
We selected the estimates based on log-
transformed data, which yielded an occupa-
tional exposure rate of 232.7 pg/kg/day
(95% CI=192, 273). This choice was
accompanied by the value of the input esti-
mate, which was the closest value compatible
with the observed average concentration of
7 ppt in absence of occupational exposure,
and was supported by model predictions
and residual plots. The estimate of back-
ground input of 0.45 pglkg/day was further

adjusted to maintain a prediction of 7 ppt

THOMASETH AND SALVAN

(imput = 0.293 pg/kg/day). The need for this
adjustment may indicate that parameter
estimation in the NIOSH subcohort might
benefit from the availability of an additional
serial measurement of serum TCDD.

While estimating occupational expo-
sure in the NIOSH subcohort we had to
assume that the occupational exposure
intake of TCDD was identical across
exposed jobs, given that a job-exposure
matrix was not available. This has the
effect of introducing a nondifferential mis-
classification of exposure, because of the
absence of a relation with the outcome
(disease) status. Although this has been tra-
ditionally associated with the introduction
of a bias towards the null in the risk esti-
mates (30), we feel that the direction of
the bias is actually unknown, given that
predicted serum TCDD is a continuous
function of several variables and given the
multivariate structure of the risk estimation
models in which the TCDD exposure
indexes eventually will be used (31).

The model fit to the NIOSH data
showed a higher dispersion than observed
in the RH data. This may be due to a com-
bination of the following factors: a higher
exposure level in the NIOSH cohort than
in the RH group, differences in popula-
tions with possible effects on TCDD kinet-
ics, the availability of a single TCDD
measurement, and the assumption of a
unique exposure level for all exposed jobs,
as discussed above.

To account for BMI changes over time
in the NIOSH subcohort, we did not rely
on simple linear interpolation between the
two data points, as we did with the RH
data, for which the measurements were
taken at relatively short time intervals. In
fact, in the NIOSH subsample there is a
large time difference between the first (at
hire) and the second (several decades later)

BMI measures. We selected a model struc-
ture for BMI changes over time that was
compatible with BMI changes observed in
survey data (24). We then estimated the
parameters of this model using the data
from the NIOSH subcohort. Given the
important effects of BMI changes over
serum TCDD kinetics time, we believe
that the ad hoc model of BMI change
should be more reliable than the use of
general population survey data.

Computation of Exposure Indices
Finally, we calculated the time course of
serum TCDD and of its area under the
curve (cumulative dose) for individual
members of the NIOSH cohort. This step
was carried out with fixed values of the
occupational exposure, background input, ke
parameters, and of the assumed TCDD
concentration at hire. In addition, this step
requires knowledge of BMI at hire and of
the complete work history. Each tabulated
time of serum TCDD and of the area
under the curve is also accompanied by
sensitivity coefficients to occupational
exposure, background input, kg, and the
assumed TCDD concentration at hire.
These sensitivity coefficients can be used
to obtain alternative values for the expo-
sure indices for different values of the
parameters, without having to rerun the
kinetic model simulations. The exposure
indices thus recalculated are precise for siz-
able variations of /ef (within 30%); they
are, however, exact for deviations of any
magnitude for the remaining parameters.
We believe that the information on para-
meter sensitivities is very valuable in the
dose—response analyses since it makes it
convenient to build exposure indices for
different values of the model parameters
and then to evaluate the robustness of the
risk estimates.
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