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Hexachlorobenzene as a Possible Major Contributor to the Dioxin Activity of
Human Milk
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A dioxinlike compound is a compound that binds to the aryl hydrocarbon (Ah) receptor, results
in dioxinlike effects, and bioaccumulates. These are the three factors for including dioxinlike
chemicals in the toxic equivalency factor (TEF) concept. Risk assessment of dioxinlike com-
pounds is based on using these TEFs. Hexachlorobenzene (HCB) has all three features and
should therefore be induded in this TEF concept. Relative potency values express the potency of
a specific compound in comparison to 2,3,7,8-tetrchlorodibenzo-p-dioxin (TCDD), the most
potent dioxinlike compound, with a relative potency value of 1 For the estimation of the total
dioxin activity in an environmental biological sample, the TEF value of a compound is multi-
plied by the concentration in the specific matrix. This results in a certain amount of toxic equiv-
alents (TEQs) for this compound. The summation of all TEQs in a certain mixture gives the
total dioxin activity of this mixture. HCB binds to the AK receptor about 10,000 times less than
TCDD. HCB is also about 10,000 times less potent than TCDD based on in vktro cytochrome
P4501A induction and porphyrin accumulation. Using a relative potency value of 0.0001, HCB
could add 10-60% to the total TEQ in human milk samples in most countries. In a few coun-
tries such as Spain, Slovakia, and the Czech Republic, HCB levels in human milk expressed as
TEQ could contribute up to a factor of six to the total TEQ in.comparison to the contribution
of polychlorinated dioxins, dibenzofiuns, and biphenyls together, i.e., up to a daily intake of
about 1 ng TEQ/kg for a breast-fed infant. The HCB levels in human milk in these countries are
about the same as in India. Biochemical, immunological, and neurological alterations have been
observed in infants fed breast milk in countries with relatively low TEQ levels in human milk
Based on the above information, it is dear that HCB should be clssified as a dioxinlike com-
pound, that more studies are needed to reduce the uncertainty in the estimation of a relative
potency.value for HCB, and that epidemiological studies should be undertaken in infants fed
breast milk in countries with high HCB exposure levels. Furthermore, measurements o'f HCB
levels in human and environmental samples in conjunction with other dioilike compounds is a
prerequisite to estimate the total dioxin activity in these samples. KIy words breast milk, hea-
chlorobenzene, TEQ, toxic equivalents. Environ Healbh Perect 106:683-688 (1998). [Online
9 October 1998]
husp://ehpnetl.nicks.nib.gov/docs/1998/106p683-688vanbirgel s html

Hexachlorobenzene (HCB) was used as a
fungicide for crops such as wheat, barley,
oats, and rye (1). In the mid-1970s, most
countries discontinued the application of
HCB as a fungicide. In Tunisia, however,
HCB was still used in 1986 (2). HCB is also
generated as a by-product during the pro-
duction of carbon tetrachloride, trichloroeth-
ylene, tetrachloroethylene, and various pesti-
cides, such as pentachloronitrobenzene,
chlorothalonil, dacthal, pentachlorophenol,
atrazine, simazine, propazine, and maleic
hydrazide (1,3-5). Furthermore, HCB is
released into the environment by waste
incineration (1). Table 1 presents data on
the estimated production volume and
release in the environment of hexa-
chlorobenzene in the last few decades in var-
ious countries. The release of HCB from all
municipal incinerators in the United States
was estimated by the EPA to be between 57

and 454 kg/year as documented in 1986
(1). In the United States, the annual pro-
duction of hexachlorobenzene as a by-prod-
uct was estimated to be 4.1 x 106 kg as
published in 1986 (3). It was estimated that
about 77% of this amount was produced
during the manufacture of carbon tetra-
chloride, trichloroethylene, and tetra-
chloroethylene. No recent data are available
on the production volume of hexa-
chlorobenzene either on production as a
by-product or waste incineration.

The goals of this paper are to inform
scientists and regulators who work in the
field of dioxinlike compounds that hexa-
chlorobenzene should be classified as a
dioxinlike compound, stimulate discussion
on the impact of this classification, and
encourage further research based on
human and environmental exposure levels
to hexachlorobenzene.

Estimation of Dioxin Activity
of Mixtures of Dioxinlike
Compounds
A dioxinlike compound is a compound that
binds to the aryl hydrocarbon (Ah) recep-
tor, results in dioxinlike effects, and bioac-
cumulates. These are the three factors for
inclusion of dioxinlike chemicals in the
toxic equivalency factor (TEF) scheme
(6,7). Risk assessment of dioxinlike com-
pounds is based on using these TEFs. TEFs
are consensus values based on the available
data on relative potency values on a specific
compound and are protective in nature.
Relative potency values express the potency
of a specific compound in comparison to
2,3,7, 8-tetrachlorodibenzo-p-dioxin
(TCDD), the most potent dioxinlike com-
pound, with a relative potency value of 1.
For the estimation of the total dioxin activi-
ty in a certain matrix, the TEF value of a
compound is multiplied by the concentra-
tion in the specific matrix. This results in a
certain amount of toxic equivalents (TEQs)
for this compound based on the dioxin
effect of the chemical. The summation of
all TEQs in a certain mixture gives the total
dioxin activity of this mixture.

Is HCB a Dioxinlike
Compound?
For HCB to be dassified as a dioxinlike com-
pound, it should bind to the Ah receptor, result
in dioxinlike effects, and bioaccumulate. HCB
has an affinity for the Ah receptor 10,000 times
less than TCDD (8). This is in the same range
as the mono-ortho-substituted polychorinated
biphenyls (PCBs) 2,3,3',4,4'-pentachloro-
biphenyl (PCB 105), 2,3',4,4',5-pentachloro-
biphenyl (PCB 118), and 2,3,3',4,4',5-hexa-
chlorobiphenyl (PCB 156) (9).
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Table 1. Data on the production and release of hexachlorobenzene in the environment

Location Production (kg) Production (kg TEQ)a Reference
Global production 1978-1981 1 x 107 1000 (66)
U.S. production in 1973 3 x 105 30 (32)
U.S. production as a by-productb 4.1 x 106 413 (3)
Spain (one company) 1.5 x 105 15 (32)
Germany (forthe production 1.5x 106 150 (1)
of the rubber auxiliary PCTC,
discontinued in 1993)
Germany as a by-product in 1980 >5x 106 >500 (66)
°Using a relative potency of 0.0001.
bAbout 77% of this is produced during the manufacture of carbon tetrachloride, trichloroethylene, and tetrachloroethylene.

Exposure to HCB results in dioxinlike
effects such as induction of hepatic
cytochrome P4501A1 (CYPlAI) and
P4501A2 (CYP1A2) activities, hepatic
porphyrin accumulation and excretion,
alterations in thyroid hormone levels and
metabolism, alterations in retinoid levels,
liver damage, reduction in reproduction,
splenomegaly, increase in mortality, neu-
rological alterations, teratologic effects,
and immunotoxic effects (8,10-21). Some
of these effects cannot be classified as
unique for TCDD-like compounds, such
as porphyrin accumulation and a decrease
in circulating thyroid hormone levels,
because it has been shown that multiple
mechanisms are involved in these respons-
es (22-25). HCB is a mixed-type inducer,
having also the properties of phenobarbi-
tal-like effects such as induction of hepatic
cytochrome P4502B (CYP2B) activity
(15,20). This property, in addition to the
dioxinlike property of PCBs, may be
responsible for a higher efficacy in hepatic
porphyrin accumulation after exposure to
mono-ortho-substituted PCBs in mice
(26). For the decrease in circulating thy-
roid hormone levels, it has been shown
that multiple mechanisms are involved
after exposure to HCB, one existing of an
increase in the metabolism of thyroxin by
glucuronidation and one of binding of a
metabolite of HCB (pentachlorophenol)
to the transport protein of thyroxin
(transthyretin) (27). HCB is a rodent car-
cinogen, with the liver, thyroid, adrenals,
and parathyroid gland as major target
organs (28-31). The no-observed-effect-
level (NOEL) was estimated to be 0.38
mg/kg/day for neoplastic liver nodules and
adrenal pheochromocytomas in female rats
in a two-generation study (1,30). The
NOEL for parathyroid adenomas in male
rats in the same study design was estimat-
ed to be 0.29 mg/kg/day (1,30). The range
of NOELs for both biochemical and toxi-
cological effects ranged from 0.05 to 0.07
mg HCB/kg/day (1). The range of lowest
observed effect levels (LOELs) for bio-
chemical and toxicological effects in pigs,
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monkeys, rats, mice, dogs, and mink
divided over 12 studies ranged from 0.1 to
0.7 mg/kg/day (1). These tight ranges in
various species for both NOELs and
LOELs indicate that the effects by HCB
are receptor mediated.
TCDD has been shown to cause

tumors at multiple sites in rats, mice, and
hamsters (32). HCB has also been shown
to be a tumor promotor in rats, with the
liver as a target organ (33). In humans, an
excess in soft-tissue sarcoma and thyroid
neoplasms was observed in males exposed
to HCB in ambient air in the Flix cohort
in Spain (34). This cohort was rather small
and the excess in tumors were based on
three and two cases for soft-tissue sarcoma
and thyroid neoplasms, respectively.
TCDD has been classified as a human car-
cinogen by the International Agency for
Research on Cancer (32).

The bioaccumulation of HCB can be
found in the long half-life in various
species (ranging from weeks to years), the
high log octanol/water partition coefficient
(5.5), and the biomagnification of HCB in
various studies in natural aquatic ecosys-
tems (1). For example, the (whole body)
half-life of HCB in male Wistar rats has
been reported to be 20 days (35). In male
Sprague-Dawley rats and male white rab-
bits, the half-life was calculated to be 24
days and 32 days, respectively (36). For
TCDD, the half-life in rats has been
reported to range from 12 to 31 days (37).
In rhesus monkeys, the half-life for HCB
has been estimated to be 2.5-3 years (38).
The half-life ofTCDD in adipose tissue of
rhesus monkeys was about a year (39). No
data on the half-life of HCB in humans are
available. The half-life of TCDD in
humans has been reported to range from 5
to 11 years (40-42).

Metabolites found in rats after exposure
to HCB include pentachlorophenol, tetra-
chloro-1,4-hydroquinone, and diverse tetra-
and trichlorophenols (43). Another major
pathway is the conjugation of HCB with
glutathione (43). This conjugate is further
metabolized by cleavage of the glycine and

glutamate residues in order to be converted
into pentachlorophenyl-N-acetyl-L-cysteine.
A portion of the mercapturate is eliminated
unchanged via the urine (44,45). Another
portion is further metabolized by deavage of
the C-S bond to produce pentachloroben-
zenethiol (PCBT), pentachlorothioanisol,
tetrachloro-1,4-benzenedithiol, tetra-
chlorobenzenethiol, pentachlorobenzene,
and other minor metabolites (46).
Accidental human exposure to HCB result-
ed in detectable metabolites of HCB in the
urine. Pentachlorophenol and a sulfur deriv-
ative were the major detectable metabolites.
The sulfur derivative yielded PCBT after
hydrolysis (45). PCBT concentrations in the
urine correlated strongly with serum HCB
concentrations, especially in males (45).
These results indicate that the metabolism
of HCB in humans resembles that of HCB
in rodents.

In summary, HCB can be classified as a
dioxinlike compound similar to mono-
ortho-substituted PCBs.

Which Studies Can Be Used to
Determine a Relative Potency
Value?
The World Health Organization (WHO)
uses a tiered approach for estimating TEF
values, giving long-term in vivo studies the
preference over short-term in vivo studies,
which have a priority over in vitro studies or
structure-activity considerations (7,47).
Unfortunately, no in vivo studies designed
for estimating a TEF value are available.
The porphyrinogenic potency of HCB was
estimated to be 1,400 times less than
TCDD based on the concentration of the
compounds in the liver in a 45-week gavage
study with TCDD in female CD-COBS
rats and in a 112-day diet study with HCB
in female rats of the inbred Agus strain
(48,49). However, it is not appropriate to
compare the effect of HCB and TCDD in
two different experimental designs (7,47).
In addition, it can be expected that the por-
phyrinogenic effect of HCB is caused by
multiple mechanisms, making it difficult to
use this end point for the estimation of a
TEF value. The available in vitro data were
derived from a study of HCB and TCDD
in chicken hepatocytes (50). The median
effective concentrations (EC50s) for HCB
and TCDD in this system were determined
for ethoxyresorufin Odeethylase (EROD)
activity and accumulation of uroporphyrin.
The uroporphyrin accumulation in this spe-
cific system was not dependent on the rate-
limiting enzyme 8-aminolevulinic acid syn-
thetase, suggesting that only an Ah recep-
tor-mediated mechanism was involved.
Based on the EC50s of these two end
points, the relative potency for HCB was
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estimated to range from 0.00006 to 0.0002
(Table 2). In another study in which HCB
was compared to TCDD, binding to the
Ah receptor was reported to be 10,000
times less than TCDD (8). From all these
data together, it can be estimated that HCB
has a relative potency value of 0.0001
(Table 2).

This estimated relative potency is only
based on in vitro experiments and therefore
does not include differences in pharmaco-
kinetic behavior between TCDD and
HCB. For compounds with a considerably
shorter half-life than TCDD, a marked
decrease in relative potency occurs immedi-
ately after in vivo administration; in repeat-
dose experiments, these compounds will
reach steady-state levels fairly quickly,
whereas TCDD will still accumulate.
TCDD will thus appear more potent over
time in comparison to these compounds.
This has been shown for 2,3,7,8-tetra-
chlorodibenzofuran, 3,3',4,4'-tetrachloro-
biphenyl, and 3,3',4,4'-tetrachloroazoben-
zene (7,51,52).

However, the available studies in the
literature on the half-life of HCB and
TCDD in rodents and nonhuman pri-
mates report similar half-lives for both
compounds (see above). This indicates that
there is little difference in pharmacokinetic
behavior between HCB and TCDD. Until
robust in vivo data are available, a relative
potency value for HCB of 0.0001 based on
in vitro experiments is probably a reason-
able basis to estimate the dioxin activity of
HCB in mixtures of dioxinlike com-
pounds.

Exposure to HCB
In the generalpopulation. HCB is detected
in fatty food items, especially those of ani-
mal origin, such as dairy products, meats,
and fish, but also in peanut products (1).
In many countries, the HCB concentration
in food declined from the mid-1970s to
the mid-1990s (1); however, in some coun-
tries, this trend has not been observed. In
the most recent survey, conducted during
1990-1991, mean HCB levels in the
United States were less than 1 ppb for all
products (1). In food surveys from coun-
tries such as Spain, Morocco, Mexico,
India, and the United Kingdom, higher
concentrations of HCB have been found
(1). HCB concentrations in potatoes in the
United Kingdom are quite high (3 ppb),
with the majority of HCB on the peel of
the potatoes (6 ppb) (53). These concen-
trations are similar to those in fish in the
United Kingdom, i.e., 6 ppb HCB (1).

The daily intake ofHCB by adults is esti-
mated to range from 0.0004 to 0.0030 pg
HCB/kg body weight in various countries,

based on HCB levels in air, water, and food
(1). This intake is mainly from the diet.
Using a relative potency value of 0.0001 for
HCB, this equals 0.04-0.3 pg TEQ/kg/day.
For comparison, the daily intake for poly-
chlorinated dibenzo-p-dioxins (PCDDs),
dibenzofurans (PCDFs), and PCBs in the
United States was estimated to range from
1.2 to 3.6 pg TEQ/kg/day (54). In an exten-
sive food survey in the Netherlands, the aver-
age daily intake from PCDDs, PCDFs, and
PCBs was 135 pg TEQ/day (55). Using a
body weight of 60 kg, this would equal 2.3
pg TEQ/kg/day.

In breast-fed infants. The daily intake
by infants via breast milk ranges from
<0.0 18 to 5.1 pg/kg body weight in various
countries (1). Using a relative potency value
of 0.0001 for HCB, this equals <1.8-510
pg TEQ/kg/day. The concentration of
HCB in breast milk samples covers a wide
range, with the highest concentration in
samples from Spain, the Czech Republic,
Slovakia, and India (Table 3). In the mid-
1970s, similar concentrations of HCB in
breast milk were reported in Austria and
France (Table 3). Lipid-adjusted HCB lev-
els range from 0.007 to 5 mg/kg human
milk. Using a relative potency value of
0.0001, these HCB values range from 0.7
to 500 ng TEQ/kg lipid. For comparison,
the concentration of PCDDs, PCDFs, and
PCBs together range from about 10 to 45
ng TEQ/kg lipid (Table 3). This indicates
that in most countries with lower HCB lev-
els in human milk the contribution ofHCB
to the total TEQ can add an additional
10-60% to the total TEQ (Canada,
Denmark, Faroe Islands, Germany, Japan,
Kazakhstan, the Netherlands, and the
United States). However, of most concern
are the high levels of HCB in human milk
in the Czech Republic, Slovakia, and Spain,
which are up to six times the dioxin activity
in human milk in comparison to the contri-
bution of PCDDs, PCDFs, and PCBs
together expressed as TEQ. For a breast-fed
infant consuming 150 ml milk/kg body
weight/day, this could be as high as 1 ng
TEQ/kg/day. The HCB levels in human
milk in these countries are about the same
as in India.

Are Effects in the Background
Population Associated with
Exposure to Dioxinlike
Compounds?
A change in thyroid hormone levels,
immunological parameters, subtle signs of
neurological dysfunctioning, a small delay in
psychomotor development, and a decrease
in birth weight in infants were correlated
with dioxinlike compounds and nondioxin-
like PCBs in breast milk in the Netherlands
(56-60). Based on a relative potency value
of 0.0001, HCB could add an additional
17% of the TEQ to the dioxin activity of
human milk samples in the Netherlands
(Table 3). This indicates that HCB very

likely played a minor role in these effects.
The levels of PCDDs, PCDFs, and PCBs in
human milk in the Netherlands are about
the same as in most countries (Table 3). In
Japan, effects on immunological parameters
and decreased thyroid hormone levels in
infants were correlated with levels of dioxin-
like compounds in human milk (61,62).
HCB could add an additional 10% of the
TEQ to the dioxin activity of human milk
samples in Japan (Table 3). Just as in the
study in the Netherlands, HCB very likely
played a minor role in the observed effects.
However, by including HCB in the TEF
concept, HCB could considerably add to
the total TEQ in some countries, leading to
higher TEQ levels than in countries such as

the Netherlands and Japan (Table 3).
Alterations in thyroid hormone levels are

associated with exposure to dioxinlike and
nondioxinlike compounds in breast-fed
infants. HCB has been shown to interfere
with thyroid hormone metabolism and
results in immunotoxic and neurologic effects
(1, 13,14,16,19,27,63,64). These results
strengthen that HCB could add an additional
TEQ dose because the same type of effects
occur in rodent models in response to other
dioxinlike compounds.

What is the Concentration in
Environmental Samples?
Little information is available on the concen-

tration of HCB in environmental samples in
conjunction with measurements of PCDDs,

Table 2. Relative potency estimates for hexachlorobenzene (HCB)
Relative potency

Effect TCDD HCB for HCB Reference

Binding affinity to the Ah receptor (nM) 0.18 2100 0.00009 (8)
EC50 for EROD induction 0.014-0.020 130-150 0.00009-0.0002 (50)
in chicken hepatocytes (nM)
ECO for accumulation of uroporphyrin 0.002-0.004 25-35 0.00006-0.0002 (50)
in chicken hepatocytes (nM)
Hepatic porphyrin - - 0.0007 (49)
accumulation in female rats

Abbreviations: Ah, aryl hydrocarbon; EC50, median effective concentration; EROD, ethoxyresorufin O-deethylase.
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PCDFs, and PCBs. Levels of HCB in bald
eagle eggs from the British Columbia coast
from 1990 to 1992 ranged from 0.012 to
0.025 mg/kg wet weight (65). Assuming
HCB has a relative potency of 0.0001, this
could be as high as 25 ng TEQ/kg wet
weight. For comparison, the concentration
of PCDDs, PCDFs, and PCBs (planar and
mono-ortho-substituted) ranged from 120 to
about 320 ng TEQ/kg in bald eagle eggs
from the same areas (65). This indicates that
HCB can contribute considerably to the
total TEQ in environmental samples.

Conclusions
Based on binding to the Ah receptor, the
dioxinlike effects, and the bioaccumulation
in higher trophic levels, HCB should be
classified as a dioxinlike compound. The
mechanism of action resembles that of
mono-ortho-substituted PCBs, which have
also phenobarbital-like properties and are
included in the TEF concept. Based on the
limited information available, it was estimat-
ed that HCB is about 10,000 times less
potent than TCDD. Using a relative poten-
cy value of 0.0001, HCB could add

10-60% to the total TEQ in human milk
samples in most countries. In a few coun-
tries such as Spain, Slovakia, and the Czech
Republic, HCB levels in human milk
expressed as TEQ could contribute up to a
factor of 6 to the total TEQ in comparison
to the contribution ofPCDDs, PCDFs, and
PCBs together. The HCB levels in human
milk in these countries are about the same as
in India. Biochemical, immunological, and
neurological alterations have been observed
in infants fed breast milk in countries with
TEQ levels in human milk that are not very
high. More studies are needed to reduce the
uncertainty in the estimation of a relative
potency value for HCB and epidemiological
studies should be undertaken in infants fed
breast milk in countries with high HCB
exposure levels. Furthermore, measurements
ofHCB levels in human and environmental
samples in conjunction with other dioxin-
like compounds is a prerequisite to estimate
the total dioxin activity in these samples.
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