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A SHORT time ago Nernst' puit forward a physical theory of the electric
excitation of living tissues, and subjected it to a mathematical treat-
ment. An electric current passing through a tissue containing
membranes impermeable to the dissolved ions will set up differences
of concentration at and near the membranes. He supposes that these
differences of concentration, when sufficiently large, cause an excitation:

by solving the diffusion equation -y=kaY, he arrives at a formula,
at aX2'

i /t = const., connecting i the least current reqjired to excite with its
duration t: and a formula, i/ /n = const., connecting i the least
amplitiude of an alternating current with its frequency n. The theory,
however, as Nernst himself recognises, fits the facts only to a limited
degree. For

(i) i V/t is constant only for very short durations of current, i tending
to a constant finite value for higher values of t:

(ii) i/v/n is not absolutely constant, but decreases for increasing
values of n:

(iii) he gives no method of treating the phenomenon long known to
physiologists that slowly increasing currents are much less effective
than rapidly increasing currents, even though the former be made to
reach considerably higher values. In general terms he refers to this
fact as an accommodation of the protoplasm to the changes of concen-
tration set up.

1 Nernst. Gott. Nachr. Math. Phys. Kl. p. 104. 1899; and Arch. f. d. ges. Physiol.
cxxiL p. 275. 1908.



THEORY OF ELECTRICAL EXCITATION.

Lapicquel, following Nernst, has given some valuable conceptions
of the nature of electric excitation. He evolves a theory which, he
gives reason to suppose, will explain the existing gaps in Nernst's
theory. Unfortunately he was unable to integrate the partial differential
equation above for the required boundary conditions, and thus could not
compare experimental results with deductions from his theory. By an
ingenious idea he used a hydrodynamical model to show qualitatively
the sort of results his hypothesis would give: these agreed well with
experimental observations. Mr Keith Lucas, feeling that the lack of
a rigid mathematical treatment was a serious drawback to a purely
physical hypothesis, suggested to ine that I should attempt a new
mathematical consideration of the theory, both to test the validity of
Lapicque's views, and to replace the incomplete hypothesis of Nernst.
With a slight change in the mathematical method this attemnpt has
been successful, and the formulae given below for the concentrations
produced by various forms of current will, I believe, be of service in
the theory, whether the additional hypothesis which I have found it
necessary to introduce (in order to explain certain facts of which
Nernst's treatment gave no account) is found on later consideration to
be sufficient or not. Nernst, in his theory, postulates two membranes
impermeable to the dissolved ions. When a current is sent in it is not
carried through the space between these membranes, but in the tissues
outside it. A certain difference of potential will however exist between
the membranes, and hence the positive ions will tend to go in the
direction of the current, the negative ions in the opposite direction.
Hence changes of ionic concentration will occur at the membrane.
Nernst in his treatment of the problem deals with only one of the
ions, which he supposes to be the one which is effective as regards
excitation, and for simplicity he assumes that the distance between the
membranes is so great that for all practical purposes it may be regarded
as infinite. This is, apriori, unlikely to be a justifiable assumption, as we
know that living matter is possessed of a very complicated microscopic
structure. The change I have adopted in tracing the consequences of
the theory is in making no assumption as to the distance between these
membranes. I have supposed (Fig. 1) that in the stimulated tissue there
exist two membranes AB and CD distant a from one another: that the
ions between AB and CD cannot pass through the membranes: and that
initially, before the passage of a current, y the concentration of the ion

I Lapicque. C. R. Soc. de B0ol. LXIII. p. 37. 1907. Journal de Physiol. et de Path.
g6n. ix. p. 565. 1907, ibid. p. 620, x. p. 601. 1908, xi. p. 1009. 1909.
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192 A. V. HILL.

which is effective as regards excitation is the same everywhere and has
the value y = c. Then if a current i be sent through the tissue a difference
of potential will be set up between AB and CD, and there will arise
an increase in the concentration y of the positive ion near AB, and
a decrease near CD. Finally, as the current continues to pass, a steady

A c~~~~~~~c
+1

+ 4+
+ 4 ,

+ +
+ + + - - -

-~x+ - +

+

B XDi~ D

Fig. 1.

state will be set up between AB and CD in which the forward
transference of the ions by the current will be compensated by their
backward diffusion. At YX, a plane half-way between the two
membranes, the concentration y must.(from considerations of symmetry)
be unchanged: i.e. if y be the concentration of the ion considered at a
point distant x from AB, then at x = la, y = c.

The general effect of having the two membranes closer together is as follows. The
concentration of the ion is unchanged at a point half-way between the membranes: thus
for a given change of concentration at the membrane the gradient of concentration along
the line BD is greater the smaller the distance between the membranes. But the ", back
diffusion," the tendency of the high concentration to be destroyed by diffusion backwards,
is governed by the gradient of concentration, and is therefore greater when the distance
between the membranes is less. Thus with closer membranes a greater current is required
for a given time to produce the same effect. This is exactly what is required to make
Nernst's theory more nearly accord with the facts.

According to Nernst's theory an excitation occurs when the
concentration y at AB reaches a certain value above normal. If the
theory be worked out on these lines by the method given below the
theoretical deductions accord exactly with experience both for constant
and for alternating currents. Unfortunately it still gives no sort of
explanation of the phenomena observed with currents increasing
progressively with the time.

Lapicquel in his latest hypothesis introduices a function which
1 Lapicque. Journal de Physiol. xi. p. 1009, spec. p. 1011. 1909.
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I propose to call 4, defined as follows: the concentration at a distance
b from the membrane being called Yb, and that at the membrane yO,

=YbI.sYo
[b is assumed to be constant for any one tissue.]

Then, according to Lapicque, 4) decreases, as the current goes on
passing, from its initial value 1, and when it has reached a certain
value m less than I an excitation occurs: expressed in words, when
the concentration at P has fallen to a certain fraction of that at AB
some mechanism is released which constitutes an excitation.

This hypothesis advanced by Lapicqu e can also be made to fit the
facts observed for constant and alternating currents: but it can be
shown by rigid mathematical analysis that if it does so for constant
currents then any progressive current however slowly increasing will
finally stimulate the tissue if kept up long enough. This is contrary
to observation, anid therefore Lapicque's as well as Nernst's
hypothesis must be either modified or abandoned. I have consequently
introduced another hypothesis, which is really that of Nernst slightly
elaborated. For currents of short duration it reduces to that of
Nernst: for currents of longer duration (" progressive currents,"
currents increasing "logarithmically") the effect of the time being
large is that other terms come in which modify the results obtained
from Nernst's theory. This theory agrees with all the results so far
obtained, and has the advantage of giving some further insight into the
physical nature of the excitation, and of the resulting propagated
disturbance. In particular it may be of considerabje importance in
theories of the transmission of a nervous impulse across a synapse in
the central nervous system: and in giving a physical basis for the
physiological facts generally known by such terms as Weber's or
Muller's Law.

There is another advantage in the mathematical method now
introduced, viz. that certain constants can be determined for any tissue
of which each has a definite physical meaning. The comparison of
these constants for different tissues, and for the same tissue under
different conditions, may lead to results of considerable interest both to
the zoologist and the physiologist. The simplest of these constants is
a the size of the structure of the tissue in question, which can be
determined very easily from a few observations with constant currents.
This particular method of analysing a tissue into its fundamental parts
is being applied by Keith Lucas in another paper.
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MATHEMATICAL CONSIDERATION.

The equation' connecting the concentration y and the time t with
x the distance from AB of the point considered is the well known
equation,

ay=k5a......... (A),

where k is the diffusion constant.
At AB the force tending to concentrate the ions in the immediate

neighbourhood of AB is proportional to i, vi say, where v is a constant
which varies inversely as the valency of the effective ion, but does not
involve k. This force has to overcome the tendency of the inequalities
of concentration to dissipate themselves by diffusion backwards: this

tendency at AB is measured by-/k y. Similarly we may treat of the

conditions at CD. Hence we have the boundary conditions

-kaa,vi, atx=Oandx=a.................... (B).
Initially at t = 0

y=-c a constant ................. (C).
We have to solve equation (A), with boundary conditions (B), and

initial condition (C).

Constant Currents.

The first case to be treated is that of a constant current. This is
the simplest mathematically, and of the most importance because the
majority of the experiments have been done with constant currents.

The conditions we have to satisfy are as follows.

At x= 0 and x= a, @>- k-h, where i is the constant current: andax=
at t=0 y=c.

1 Nernst. Arch. f. d. ges. Physiol. CXXII. p. 284. 1908. Hoorweg (Pfiuger's
Archiv, CXIX. p. 412. 1907) introduces another differential equation for the diffusion. As
he does not take into account the distance between the membranes, and as (in order to use
this equation) he makes the assumption (for which he gives no sufficient grounds) that
although AC is infinite nevertheless AB is small, his theory has not been considered here.
Moreover he has introduced various supplementary hypotheses of a physiological nature,
which would be out of place in a modification of Nernst's theory which is professedly
purely physical.
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THEORY OF ELECTRICAL EXCITATION.

Now

y=c k (-2) + EAre acoSCo X"Ic\~~2I a

satisfies the differential equation, and aY-k" at x=0 and x=a.ax= k
ri'rrx XaFor sin rx =0 at x =O and x = a. Further y = c atx= We have

a
thus only to make it satisfy the initial condition at t = 0,

c=c-k(x-) +zArcosr2 .

To make it do this, multiply by cos r7xdx and integrate from
a

0 to a. This gives
a vi // aX r7rXAr C= k J tX - cos_ dx

vira / a\ . r+rx a2 rrx]a
k~Lr2ff2 si + 2 cos-

=~~ ~~ak2a 2 olt

if r is even Ar=0,

ifr is ocld Ar= 4vi alff1Sodd A= ~ k r2,f2
Hence the solution of the equation is

vi la 4vi a I -On (1-k-(2n)' 21)x
Z7 ) C-j)- (21)2os .......(D).

Now the series inside the E; is very convergent: for
-k 2n-1)w'

(i) as n increases e a' decreases rapidly, the terms being in
order the 1st, 9th, 25th, 49th ...... powers of a number less than one.

(ii) as n increases I decreases rapidly.(2n- 1)2
It will be shown later that experimental results agree very well with a

formula which negtects everythingbut thefirst term ofthe series inside the E.
The constants of such calculations give directly e- W/ to a close degree
of accuracy. From this can be deduced the order of magnitude of the

second term of the series, ete k 3/a cos9 The actual calculation

shows that for quantities of the size involved in these experiments the
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196 A. V. HILL.

second and all subsequent terms are absolutely negligible. Hence we
may write,

vi/a \4vi a -klT,t irxY=C+V/-x)-ka2e Cos ......................(E).

I shall return to this later in a discussion of the experimental results.

Alternating Currents.

Let us suppose that an alternating current of frequency n/27r is sent
into the tissue:

i=i osin (nt+E).

The mathematical treatment of this case is somewbat difficult, so it
seemed better only to give the solution. Its correctness can be tested
by substitution in the differential equation, and in the boundary
conditions.

The solution is

a vi0 1 E +k+ i-'lY=C- a vT e aCos nt+f+*+ --}
4/2p k {1+2e-Pcosp+e2P}L 4 a

a-xwP oa t+f+ +P(aA)}] acosr-rx (F)

where p=a #, *=tan-l L+eP csip
and the A's are to be so chiosen that at t= 0 y = c. The A's may be

rrwxfound by multiplying by cos dx and integrating from 0 to a. Ina

this case it can be shown that they all involve a factor -i, which means

that for moderately high frequencies they are small. Furthermore in a
very short time all the terms of the Fourier series become zero: hence
we may consider only the particular integral and write,

a v_o -[ a _t+E + + + [-P}x
2p k 1+2e co+cosp+e-L2p4a

-e a COS {nt+e + +4 P(a )} (F)
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Progressive Currents.

Let us assumne that i increases proportionally to the time, i.e. we
have as one condition, that at x = 0 and x = a,

- V= - Xt, where X is a constant.

The other condition is, as before, at t = 0 y = c.

a~~~~~

For the particular integral y-tXt =0n = a +w (), where

9b" (x) k a$ )

whic valnishes at x eqas it must do froressybmetry.~~~~~~~Further

ax X- -

6k[3 -2) +a]
and for this to equal- -tat x = O and x = a we nust have s 3a2/4.

Hence the solution of the equation is,

y=c X -x_.a)_ X~ -(_a) _3 a2(.-a ]+ A,se a os a

Initially this must equal c, and therefore as before we have,

6Ar . a = Xk | Cos rrX -odda2 dx

3 3 a a rr / a1 2 a a2 r7r=-t-2) -a,V 2JJrsin a +3V 2-4 a2 Coss2o
- - / ~~~~~a\a3 .r7rxT 6a r7rXl

(n-6 e an;;-

-6) 2) 33r44 C -j

r a47r(1 J)r),

..Ar=O ifriseven,
4a3

Ar= 4 if r is odd.

Hence the solution of the equation is,

y=+k2 - U_6k {(~2) 43(x 2-)

+ 4a3 0; 1 ek a3 t cO,(2n-1) 7rx
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This series is even more convergent than the previous one (for
constant currents), so we may safely write,

Y=c+t (2-x)I6 6Xk {k 2) 4 2 + k4a e a

In the experiments on progressive currents usually at the end of a
certain time the progressive current is made constant at the value it
has then reached. Let us suppose that this occurs at time top so that
we have now as our boundary conditions for the integral of the

diffusion equation after the time to, (i) at x=O and x = a, LY Xto
and (ii) at t= toI
,Y=c+Xto (_a-a) -2 {(x-')'- a(- _)}

2 4a' 12(fl7

+-X 4a3- 1 e-k as to (2n-1) 7rx

k
471' (2n-1)4"Cos

A solution of the differential equation is,

and this satisfies the condition

4=-.Xto at x=O and x=a.rx
At t =to,

- 2rto rirX
y=C+Xto x)+ Ar e a COS ...................(iii).21 ~~~~a

This relation (iii) must be the same as the relation (ii) above. But
from (G) above, at t= 0,

vA / aX3 3 2 / a X 4a3X 1 (2n-1)wx
c=c-k{ v 2)4a( 2) +k r4 (2n-1)4 a

Substitute the value of 6 {Qc - - a' (a - )}Xso obtained, in

(ii) above, and we find

Y=C+Xto (21-x)-«4E(2nlC (2n -1) {1x a2 } .

From (iii) and (v), equating coefficients of cos ( ) wx we find,
4=0 if r is even,

_r_e = _
a3 I

{ (2n -1)2 ir2d
A, e4O 1aGe' a2 'ifris odd.
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THEORY OF ELECTRICAL EXCITATION. 199

So that subsequent to the time when the progressive current has
been made constant,

Y=~2-o 2 2)
X 4a3 -k t -k 2 (t- to) (2n - ln) -rx
k r4 1(2n -J) o

a ..( )

As before this may be written, because of the rapid convergency for
any but very short times,

/a \ 3 -k X -k-2('y=c+XtOt2-~X)4a e ai to .- Cos a7rX s()\2+ /t kri / a

The solution up to time t = to is given by (H): after time t =to
by (L).

Condenser Discharge.
If V be the potential to which a condenser of capacity C is charged,

and if B be the resistance through which the discharge takes place,
V - CtCB
R

Putting CR- p2 the solution of this case is,
V+V 1 e-2t sin (-y=c+k R t a\ 2mPta-Z

p cos (p at
-k VE k(2 -22) 2~7r2 tc(2n- 1) 7rx (M

This series is, as before, very convergent: we may therefore write,
vV 1 -p .'a ) 4v V a k-2t '7rx

Y=C+k o(R S snp 2 kR 2 a2p2 a cos- ...(N).

Logarithmic Current.
For a current increasing logarithmically,

i=i0 (1 -6e~lp2t).
The solution of this case is,

y=c-~{(X~~)~~O'sin 0

1 (2n-1)'-a'~~2~(2n-1)'ir2 2n - ) r
y=c-PH.432 _ 1k- 4ii- 4t (2na

1 (2n-1)4 - a2,62 (2n, - 1)2 72 eaYtCB(2 )o

14PE. XL.
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as can be seen by substituting in the differential equation and the
required conditions.

Because of the rapid convergency of the series we may write,

- in't /32 _-
Y=C VO (a -xq) I*e- l2t 2(4a3Z _2_k cos0 a. (Q).~~~COS% 4.-- 7r2a2/32a

CONSIDERATION OF THE EXPERIMENTAL RESULTS.

Constant Current.

According to Nernst'sl theory of electric excitation, if a current i
acts for a time t then for excitation to occur i Vt must exceed a certain
limit. This is only true for very short times. It fails absolutely to
explain why i never falls below a certain minimum even though t is
increased indefinitely. Lapicque's hypothesis, still involving the.
conception of one membrane infinitely distant from all others, gives
results more in accordance with facts: but the calculation in his case is
complicated. By the formulae given above for the concentration at any
point, at any time, one can give a simple mathematical formula where-
by to test either of these theories. It will be seen that the conception
introduced of two membranes fairly close together makes either theory
exactly fit the facts for constant currents.

According to N ernst an excitation occurs when (y - c), the excess
of the concentration above normal, exceeds a certain limit, at or near
the membrane. Let us assume that it must exceed it at a point distant
b from the membrane. Then from (E) above we have,

Pt/a \ 4vi a irb e- t2
k \2 j k i2r a

This has to reach a value m (say) before an excitation can occur:
hence the liminal current strength is connected with the time by a
relation,

via 4vi a rb -k!St
m= k2-b k C°8--e a

m

(V A4v a 7rb -ki
v2--b - acos-e

which may be written,

1 Nern st. Arch. f. d. ges. Physiol. cxxI. p. 301. 1908.
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THEORY OF ELECTRICAL EXCITATION. 201

where X, /A, 6, are constants given by
4a cos- -k 2

a(a ) ( )

According to Lapicquel an excitation occurs when c - 1b reaches
a certain limit, m' say.

Here we have
via 4vi a 7b -k7-t

m' -k _2 b

k ;2 COS-
\k2 F2eac+V& a_4vi a e-k ipt

This reduces, on multiplying up and separating out the terms in i,
to

1- 1A'Ot'

where X', m', 6, are constants given by

v{m')-+bk a(m%Jc+b)
V _{la--+ b} 2 e- e+ a

Later in the paper another hypothesis is introduced to account for
the phenomena observed with progressive currents. This, with constant
currents, reduces to the hypothesis advocated by Nernst, so that all
three hypotheses lead, in the case of constant currents, to an equlation

i=xI1- JAOt'
connecting the liminal current i with the time it is allowed to pass.
X, i., and 6 are constants defined above: it is noticeable that 6 is less
thau 1, and therefore that Ot decreases as t increases.

Further these constants X, I, 6, can be compared for different
tissues, and for the same tissues under different conditions. This
method provides a very delicate instrument for the analysis of the
tissues.

Below are tabuilated results calculated from this formula side by
side with the experimental results of several observers, and in some
cases with numbers calculated by the methods of N ernst and
Lapicque. Similar agreement has been obtained between calculation
and experiment for a large number of cases which are not given here.

Lapicque. Journal de Physiol. xi. p. 1009. 1909.
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202 A. V. HILL.

The improvement resulting from the introduction of the two membranes
into the mathematical treatment is obvious on comparing the results:
and the most satisfactory agreement between calculation and experi-
ment leaves little doubt of the validity of the physical view of nervous
excitation originally suggested by Nernst.

The times in the tables below are given in the units used in the original papers. In
the formulas given for the calculation, t is in all cases given in seconds: this enables
comparisons to be carried out directly between the constants.

I. Nernst. Arch.f. d. ges. Physiol. cxxii. p. 302. Table IX. 1908.
52-1

=1 (-933) (.453)10Mte-
t 6 8 10 12 16 20
i obs. 147 124 110 94 81 73
i calc. 152 122 105 94'4 80'3 71'5
i calc. by Nernst 136 119 106 97 84 75

II. Nernst. Ibid. Table X.
._ 69X5
1- ('82) (-362)l1OOt

t 4 6 8 10 12 14
i obs. 185 142 123 112 103 97
i calc. 175 143 120'5 111 102 5 96
i cale. by Nernst 177 145 126 112 102 95

III. Nernst. Ibid. p. 304. Lapicque's observations.

t 0'33
i obs. 270
i Cale. 266
i calc. by Nernst 270
i calc. by Lapicque 265

110
1- ('92) ( 256)10oot'
0'60 1 1'5 2

187 155 126 115,
185 144 125 117
191 155 126 110
189 155 116

30
62
61
61

20
86
84
79

2'5
112'5
113'5
98

IV. Keith Lucas. This Journal, xxxvi. p. 115 (a). 1907.

t
i obs. 41
i cale. 4]

'0052 '007
L 36
L 356-

25
1 - ('833) (.865)1000t'

'010 *014 '017 '021
31 28 27'5 26
31 28 26-8 26

40
57
56'5
53

40
77
75.5
56

3
112
111'8
90

111

'024
5'5
15 6

OD

52'1
0

69'5
0

Go

110
0

00

25

V. Keith L ucas. This Journal, xxxv. p. 320. 1907.

t '00043 QC
i obs. '245 '17
i Calc. '244 '20

'086
1 - ('730) (.758)l1OOt'

1087 '0017 '0035
'9 '152 '119
1 '158 '119

'0070 co

'091 '086
'096 '086

2'
2,
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VI. Keith Lucas. This Journal, xxxvi. p. 132. 1907.
36

1 - (x761) (.525)1000t'

t *000175 00035 *000525 *000875 *0017 0035 '0052 0070 *01 *017
i obs. 129 *92 *75 *58 *48 *41 39 *38 *37 *37
i calc. 1'12 *92 *79 *64 *48 39 *37 *36 *36 *36

VII. Lapicq u e. Journal de Physiol. ix. p. 629. 1907.
35

1- 903(.440)1000t9
t 1 2 3 4-5 6 7.5 9
i obs. 175 115 91 76 66 62 58
i cale. 175'1 115'4 91'4 75'8 66'8 62'6 59-6
i /t 175 162-5 164-2 161 161'2 169'7 174

VIII. Lapicque. Journal de Physiol. ix. p. 631. 1907.
103

1 -.860(.373)10mt
t 1 2 3 4*5 6 7.5 9
i obs. 270 185 154 125 115 112 111
i calc. 270 185 152 128'4 117 111'3 108
i%Jt 270 261 266 265 282 306 333

Progressive Currents.

The stumbling block of all physical theories of the nature of electric
excitation has been that they give no explanation of the phenomena
observed with currents increasing slowly to their full value. The
ftndamental fact observed is that currents increasing at less than a
certain rate never cause an excitation however long they are continued:
even though they finally reach a very considerable value. Nernst's
hypothesis that it is merely the concentration near the membrane
which determines an excitation takes no account of this: for according
to formula (H) above,

y- c=Xt(2 - x)+other terms.

Thus (y-c) increases indefinitely as the current goes on increasing,
and thus according to Nernst an excitation should occur. Nernst'
indeed considers this difficulty and refers it in very general terms to
an " accommodation " which takes place in the protoplasm to the slowly
produced changes of concentration set up by progressive currents. The
word accommodation was unfortunate as it gave the impression that he

1 Nernst. Arch. f. d. ges. Physiol. cxxii. p. 280. 1908.
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was referring back to some physiological factor the gaps in a theory
which was purely physical. The rate of accommodation he says is
proportional to (y - c): what he probably intended therefore is just
such a hypothesis as I have given below, though he never made it
definite nor introduced it quantitatively into his equations. By the
accommodation he refers to he probably means a change of equilibrium
of the reversible chemical or physical coinbination between the salts
and the protoplasm, under the action of the increased concentration of
the salt ions: this would go on, among other things, at a rate pro-
portional to (y-c). The hypothesis I arrived at independently to
explain the phenomena of progressive currents can be stated in a very
general way almost in the same terms as Nernst uses.

Lapicquel in his latest theory shews, (by his hydrodynamical
model) that his function ' = YbIy, has a definite minimum as the time
increases, and that this minimum is lower the greater the value of X,
i.e. the faster the current increases. He goes on to say that if this
minimum is not so low as the value which has to be reached for stimu-
lation to occur, then the current corresponding to that rate of increase
X will never stimulate, however long continued: while if the minimum
is lower than this value then that progressive current will cause an
excitation. I have been able mathematically to confirm his statement
that his function ' has a minimum as the time increases. Above, (H),
is given the value of y for a progressive current: hence

7r2
C+Xt b+ ( 2(a

- b\_a3 X 4a3 -k- t irb
-m+-- - e Coszt,=Lb 2i 2k {b23( 12} k a4

3o/s,t a X a3 X 4a3 -k-te+Xt- - e2 2k12+k 4e

This quantity I have calculated at different times for certain
arbitrary values of the constants

a=1, k=1, b=-=.1666, c=OO1.

The calculation is not given for times so small that there is an error
greater than 3 0/o resulting from the neglect of all but the first term of
the Fourier series. At and after t = -03 the error is less than 1 0/o

The following values of ' are plotted in Fig. 2. It is easily'seen that
' falls to a minimum (which is lower the greater the value of X), and
then rises again to the common asymptote of all the curves.

I Lapicque. Journal de Physiol. xi. p. 1009 etc. 1909.
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THEOlRY OF ELECTRICAL EXCITATION. 205

A='666 A='8 X=1O A=2 X=3

1'000 1'000 1'000 1'000 1-000
'536 '502 '462 '3575 '314
'459 '433 '404 '3365 '310
'439 '420 '399 '3535 '336
'443 '428 '413 '380 '368
'452 '441 '430 '404 '396

'447
'477 '470 '463 '442

'478
'501 '496 '490 '480 '477

- '540
- '569
- '591 -

'606 '605 '603 '602 '601
'621

- - '633 -

- - '639
- '643 _

Fig. 2.

TABLE. Value of 4 for

A= 2 A= *333

1'000 1'000
'763 *672
'672 *577
'617 '533
'588 '516
'572 '510
'564 '511
'561 '517
'560 '522
'562 '528
'579 -

'618 '612

Time A= '1

0 1o000
*02 *862
'03 '790
*04 *737
'05 *700
*06 *673
'07 *654
'08 *643
*00 *633
*1 *627
'15 '619
*2 *620
*25 '628
'3 *633
'4 '641
'5 '646
*6 *649
.7 -

A= '5

1'000
'592
'505
'474
'469
'473

'491

'509

'607
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This asymptote, the value of qb when the current is continued for a
relatively very long time, is at a height in my calculations of *6667.
More generally it is the

ab
2 2bLimit q, i.e. -= 1 -2

t=00 a a

Lapicque's theory, to take a particular numerical case, is that c has
to reach the value *51 and then the stimulation occurs. It is thus seen
from the figure that all currents whose rate of increase is greater than
-333 reach this value of 0: while all currents whose rate of increase is
less than *333 never reach this value of 0 however long they are
continued.

Thus far therefore Lapicqu e's theory holds. Unfortunately the
considerations given below show that his simple and attractive hypothesis
must be abandoned.

For a constant current the least current that will stimulate if
allowed to pass for a time t is, according to Lapicque's theory,

-c(1 -in)
V

2=N a

This equation is shown above to accord very well with experimental

facts, if b - a1-m) and -Cos b are assumed to be positive.
Hence if Lapicque's theory holds these quantities are undoubtedly

positive, for otherwise the equation would be, not i= l _ but

i= -1tXl This latter is not in accordance with facts.

Now for progressive currents, at an infinite time, the asymptotic
2b

value of p is 1 - -. But from abovea

b-2(1-m)>O, i.e. n>1- 2b:

therefore the value of f which must be reached for stimulation to occur
lies above the value which f reaches at some titne or other for every
current however slowly increasing. Put graphically, the horizontal line
which each curve has to meet for stimulation to occur, is above the
asytnptote of the curves, and therefore every curve reaches it. Hence
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on Lapicque's theory every progressive current however slowly in-
creasing will finally stimulate; since this is not the case we must
either modify or abandon the theory.

Again in (L) above is given the forimula connecting the concentration

with the time in the case of a current which has reached a value k Xto
V

by increasing slowly, (= 2Xt) and has then remained constant at that

valtue. After a certain time e -kW2(t °t) has become zero, so we may put

=c+Xto(2 - -

Thus Lapicque's hypothesis that =Eb never reaches a certain
minimum m means that

C+Xt02b)
2 is >M)

C +X)to2

i.e. c+XtD (-b) >mc+mXtO 2

i.e. c (1-m)>Xto a{m a2-ab}
But this means

a a
m2 2+b

k
k c(1-m)-

i.e. k xto= < Xv a am--2+b22

which is the value of the least constant current that will excite.
Thus if Lapicque's hypothesis holds for constant currents i the

current finally reached is not so great as the smallest current which
will stimulate. We know however that a current may be increased
slowly and then kept constant at a value mauy times greater than
the liminal value, without an excitation occurring. According to
Lapicque's hypothesis the only currents which will not stimulate
when their full value is arrived at slowly are those currents wlich
would not stimulate anyhow. This we know to be untrue, so we must
turn elsewhere for a theory.

It seemed inevitable that no reasonably simple function of the
concentration alone can be made to condition the stimulation in a way
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which will accord with the facts known about progressive currents.
What is needed is some opposing time factor, which has little effect
during times of short duration (as in stimulation by a constant current),
but very considerable effects during the longer times involved in the
action of progressive currents. Two such hypotheses I have considered.
The first which I have had to abandon owing to mathematical difficulties
was that the membranes are to a certain extent permeable by the salts,
and therefore that the ions in the neighbourhood of the menmbrane were
being lost by going through the membrane. For short times this effect
would be inconsiderable, for longer times it might modify in toto the
effects observed. The hypothesis involves the boundary condition

i= (y-C)-kayatx=O and x=a,

instead of the simple condition

a= a
V a~

As I could not obtain a solution with this condition, and as
Professor Forsyth (who was kind enough to give me his advice) was
unable to give me much hope of doing so, the hypothesis has not been
further considered. A strong objection to it is given below (p. 223).
The second theory I have considered accords with all the facts hitherto
observed, and has the advantage of giving a further insight into the
actual processes which determine an excitation.

It may be profitable to take an analogy before proceeding to describe the present
theory in detail. Let us suppose a long cylinder filled with a mixture of 02 and H. gas.
At any one point the temperature of the cylinder is raised. We know that the action
02+ 2H2 -- 2H20 (vapour) goes on very slowly at ordinary temperatures. When the
temperature is raised it goes on more quickly and at a certain temperature the mixture
combines explosively: an explosion occurs when the heat produced by combination is no
longer conducted away as fast as it is produced. When once the explosive stage is
reached, i.e. when once the rate of combination exceeds a certain limit the explosion takes
place and travels as a wave down the tube. At any given temperature the rate of com.
bination is proportional to (tension of 02) (tension of H2)2. If now we raise the
temperature very slowly to the explosive temperature, just before the latter is reached the
combination 02 + 2H2 -- 2H20 goes on at an appreciable rate. Thus considerable
quantities of 02 and H2 may be transformed into water vapour, and the tension of each
may correspondingly fall. Now when finally the temperature which was originally that
of an explosion is reached the rate of combination which is proportional to [02] [H2]P may
be nowhere near what it would have been if that temperature had been reached quickly:
for there will be very little 02 and H2 left to combine. Thus if we reach the explosive
temperature too slowly the explosion will never occur at all. This I believe to be an
exact analogy to the effects of slowly increasing currents.

1 Cf. Keith Lucas. This Journal, xxxvii. p. 477. 1908.
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Suppose a nervous impulse to be started by the rate of breakdown
of some substance' in the tissue exceeding a certain limit, M say. The
amount of substance at any time t being St we shall have two re-
lations:

(1) the rate of breakdown, - dS, is proportional to the amount still
present at that moment:

_dd-t CC St.

(2) the rate of breakdown is conditioned by the degree of concentration
set up by the current, and is proportional either (a) to the excess of the

concentration of some ion over the normal concentration,- dt X Qi-c)

or (,B) to the difference in concentration between two given points,
dSt X (yO3-Yb).

[These possibilities (a) and (fi) lead to exactly the same type of results: in fact (a) is a

particular case of (f), when b=a. For simplicity I have used (a).]

Hence we shall have
_dSt=yS& C),

dtwhere fy is some constant:
i.e. - logSt =-y (-c) ..............(1).

Let us consider the consequences of this theory applied to constant
Currents. Here the concentration at any time is given by

.4v a -k, t 7rbb 1 a2Cos.-=tt-)k2ek a

Hence integrating the equation (1) above we find,
1 St kv( ) .4va '7rb /(1 t)-log8 = izp--b, t-iF;~---cos- I1-e

1 [Compare the "receptive substances" of Prof. Langley. The compound whose

breakdown is measured by - dS may be of any nature, physical or chemical. It is not

necessary, or possible to make specific assumptions as to its nature, except that the fact
that its stability is affected by changes (+ or -) in the concentration of the ions suggests
that it actually combines with the ions in question. The action of paralysing poisons
might possibly be by rendering the breakdown complete (hence the initial stimulating
effect of some of these) by replacing the ions which normally complete the compound, and
then preventing the possibility of further breakdown by the stability of their own com-
bination with the substance.]
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dSt [v (a )
.4v a -k 2t rb

z.e.~ so--tSy 1k-b - 7-k- W2 e Cos-

Y (2-b) t_. 4va' Cos,.b (i -k-2t)-i4yj-b) t~~2VCO7r4 ~ a2

xe

Now for constant currents, t the time required to reach an excitation
is small. Then if fy is not large we have the second term e", which is
1, so that

dSt r.V /a 4v a -k 12-tdt=soL,k2-Jzk a Cos

Now by hypothesis - dSt has to exceed a certain limit M beforedt-
stimulation occurs: hence the liminal current is given by

i .v /a \.4v a-ik!e t 7,b
='I Z CosS-oyk k/ 2 a I

f k ,rb
4a cos - r2

i.e. i l-d where ASOV a =
all

XAO-a =e

This equation has been shown above to hold with considerable
accuracy.

Application of the new theory to progressive currents. For progressive
currents the concentration (see (H) above) is,

{a \a 3 3 a + ;k 4a3 -k-2t ,$a ~~~~~Cos-~Sfc=Xt(2X) 6k( 2) 4 2 k 7 e

Integrating as before,

8 [ t2 /a t/ a\3 3 a\ X 4a6 arX -k tat
lg

=

'Y 2 t2 } +6k tt-2 ~42$ 2}+ W6 COS- 1-e a2)YOg =y L 4t2a2 4

dS a{a \ X {/ a\3 3 X*.4a3 -k ,rt

a-1c 4COo--kt)
.-.dt=SylXt2-$)628V-22 k) -4a2t-)+ aC-J

_ t2(a_Z -6 xa2 -3a2 _ta2 _
V 6 co a (1e A2

xe
Now in the case of progressive currents X is small and t is large

(compared with the quantities used in the experiments on constant
currents), while Xt is finite.

Hence in - jt we may neglect, in the first term, all except

Xt (la - x), and in' the second all but -ify Xt2 (ja - ), and nevertheless
obtain results which are almost exactly correct. This is not the case
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when we consider currents increasing very rapidly, for then X is no

longer small: the only cases however at present of interest are when X

is small (" progressive currents "), and when X is very large (" constant
currents" whose values are arrived at almost instantaneously). With
the condition that X is small we have

dS yA2a
-s?w = soyxt( _x)ct 2 (2-i

Excitation will occur when this quantity exceeds a certain limit M.

In the figure (Fig. 3) are given some curves for the value of dS the-

dt'9

It

Tig.E 3

Fig. 3.

quantity which has to exceed a certain limit for excitation to occur, for
different values of X, the rate of increase of the exciting current. It
will be seen that each of these curves shows a definite maximtum, and
that the maximum is higher the faster the current increases (i.e. the
greater the value of X). The hypothesis I have advanced is that (to

take a numerical case) the value of-dS has to reach a value greater
than 140 if excitation is to occur. The vertical height of the figure

'V~~~~~~~~~~~~~~~~~~~~~Il

t. tS~~~1

211

os1 /5S
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is represented by 200. It is then seen that all progressive currents
whose rate of increase is less than 2 never cause excitation: that the
current whose rate of increase is 2 exactly causes it: and that all
currents whose rate of increase is greater than 2 cause it.

Hence we have a perfectly rigid explanation of the fact that there
is a certain rate of increase of a progressive cturrent, below which no
excitation can occur.

Much work has been done by Luicas' and others in tracing a
connexion between the rate of increase of a current and the least value
which must be reached if an excitation is to occulr. Unfortunately none
of the observers have taken the precaution to cut off the current
immediately it has reached its full value: the current has been made
constant and then been allowed to pass for some arbitrary (and pre-
sumably inconstant) time before it has been cut off. For rapidly
increasing currents this fact is of the utmost importance for it means
that for cases where X is large what they have observed is almost
entirely the least constant current which will cause excitation. This
current has been allowed to pass for a relatively long time, and there-
fore has itself caused the excitation which they have observed. For
more slowly increasing currents this fact is of much less importance, and
we may assume in order to test the experimental results that the
current has been cut off immediately at the end of its increase. In this
case we have the relation

Y80oy (2 - ") XteY (2 )

connecting the time and the rate of increase of the current which just

causes excitation. But k Xt is the current i which is reached in time t:
V

hence we may write
B=ie-ait,

where B and a are two constants. I have calculated below the values
of i for values of t, with certain arbitrary values ofB and a.

t 0 8 19 29 38 56 71 85 98 109 119
i 125-75 127-5 130 132-5 135 140 145 150 155 160 165

t 128 137 144 151 158 163 166 168 1705 172 175
i 170 175 180 185 190 195 197-5 200 202-5 205 207-5

The numbers are plotted in the figure: the dotted line represents
the minimum gradient necessary to excite. The figure is obviously like

1 Keith Lucas. This Journal, xxxvi. p. 253. 1907.
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those given by Lucas', except near t=O, the vertical axis, where
according to his observations the curve becomes horizontal. For this
there are two reasons, both explained above: (1) the method of calcula-
tion involves the assumption that X is not large: for observations near
t = 0 X is large and therefore the method of calculation is no longer quite
rigid: (ii) his observations were taken without the precaution of
shutting off the current directly the full value of the current was
reached. Until the results of experiments with this precaution taken

.200

Ito~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o

140

{lD ~~~~~~~~/,
fao

I-~~~~~~~~~~~~~~~~3

40 ,/

10

0 so loo
TIME t

Fig. 4.

/So zoo

are available it is of no use calculating results and comparing them
with the experimental facts. The general results of such experiments
can be seen at present, and qualitatively these fit the formula given
above well. The concordance observed between the experimental results
is probably due to the fact that about equal intervals of time have
always elapsed between the reaching of the full value, and the breaking
of the current.

1 This Journal, xxxvi. p. 260 etc. 1907.
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Alternating Current.

For an alternating current i = io sin (nt + e) it was shown above (F)
that

a vio 1 Pxpy-c=-_ a t e iCcos (t+ e+ . +,YX _ x
2p k A11/i+2e Pcosp+e[-e2P 4 a

a-xP-e a cos(+++

where * is an auxiliary angle which does not in the least concern the

argument and p = a n/ : 2n is the frequency. As the absolute value

of the frequency does not come in, we may for simplicity take n as the
frequency.

Now if we consider the changes of concentration so near to the
membrane that x may be put small compared with a, and if we suppose

a-x
n the frequency is rather large, then we may neglect e P a as being
too small to have any effect and write,

a vi0o e acos (t+,+ + -rP)
Yc=p k V1+2e-Pcosp+e2 4 a

Now (y - c) is on the whole as often + as -, for

cos (nt+e+l,+ a

is as often + as-. Hence over any finite time (say several times the
period of the current) the average value of (y - c) is zero, and therefore

dt- which is proportional to (y -c) has an average value of zero, and

therefore S is relatively unaltered.

Hence since, for excitation, - dt = ryS (y - c) has to be greater than
a certain limit, (y - c) has to be greater than a certain limit. But the
maximum value of.(y - c) is when the time is such that the cosine =-1.
Hence

xvio a ePa 1
k 2p V1+2e-PcosP+e-2P

must be > a certain limit, h say. Putting in the value of p we find the
liminal current io to be connected with the frequency by the relation,

V io 1

1+2e 2k cosa |(2k) +e
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Jn hvfk1 +2eaVk cosa 2'Qk) +e- a%n.

Now Nernst', by his method of calculation, finds that io/Vn should
be constant. As a first approximnation this is true experimentally, and
his formuila can be derived from the one above by putting a = so. It is
noticeable however on looking at the figures which he quotes that io/A/n

1-7

16

1.s

1.3

12

I .

1.0
50 100 150'

FR(EQ/tCY ,

Fig. 5.

200

is not constant but exhibits regular divergencies from a constant value:
io/V/n always decreases as n increases, and then after awhile with higher
values of n begins slightly to increase again. To test whether this was
the case with the formula deduced above I have calculated the value of

/1+2ea2k osa V(n) +e-2a/2k

for a particular arbitrary value of ,a _*2306. The numbers for

different values of n are given below.

1 Nernst. Arch, f. d. ge8. Physiol. cxxii. p. 285. 1908.

i.e.
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n 0 1 4 9 16 25

V 1 +2e f2k os /(2k) a + e 22k 2 1P812 1P617 1-448 1-302 1-184

36 46-6 49 64 81 100 121 169 196

1-092 1P040 1-046 1-07 1P0835 1-090 1'084 1'0685 1P059

In the figure (Fig. 5) are plotted these valuies. It is seen that i/v/n
falls at first rapidly as n increases: then rises again slowlv to a
maximum, after which it remains almost constant with a slight tendency
to decrease. This is exactly what is observed experimentally. This is
really one of the strongest pieces of evidence in favour of the validity of
the whole method of calculation above, and of the physical theory first
suggested by Nernst.

[For the variations of il/vn the following figures for i/v/n may be quoted from
Nernst's paper. I have not been able to give parallel columns of calculated figures
because of the complexity of the equation involved, but the general effect is obvious. If
the arbitrary value of a/v/k taken for the figure had been taken smaller the changes of
i/,/n would be much less noticeable for increasing n,
n 100 200 600 1000 100 300 600 1000 571 830 1200 1846 3660

i/v/n 3-8 3-2 3-1 3-2 2-7 2-1 2-3 2-2 1P81 1P83 1P75 1-69 1P56

n 105 136 785 960 2230 920 1030 1120 1285 1350 1400 1430
i/v/n 78 75 77 77 81 1P87 1P74 1P77 1P70 1-69 1P67 1P66

n 857 1600 3430 3950 4280 5740 460 760 940 1120 1410 2040
i/v/n 172 169-2 159 153 150 150 1P31 1P09 1P04 1P16 1P14 1P24
n 2700 3570

i/v/n 1P21 1P22]

Logarithmic Currents.
Lapicquel finds that the liminal current necessary to secure

stimulation is less when the current increases linearly than when it
increases "logarithmically," i.e. when i = io {I - e- t}. Of course this
must depend on the rate at which the "logarithmic" current reaches its
value, for if /32 is very large i = io from the beginning and we have the
case of a constant current: which we know to be more effective than a
progressive one in causingf excitation. For the case of a " logarithmic"
current inot instantaneously established we have from (P) above,

o (a ) i I -2Stl a 2
x

cos/,32

for after a very short time the terms inside the E are all zero.
I tJourn. de Physiol. xi. p. 1044, 1909,
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Hence integrating the equation-ddt log S= (y(-C) 8;

S ~~~~~~~~~Sini3(%x')
lo S vio (a )t vz'o 1(I f2tI ii e (2logY= -

Cs1

2

dS fvio '~ violI (2)giving - SOY -k 2i-o 1 -k°, e___(2__

-d t--- (I-ek2k1a

Comparing these with the values of log g- and -dd found for

progressive currents on p. 210 we see that if at time t the " progressive "
current be made constant, and the "logarithmic " current be then
practically at its full value we have for the progressive current which
has reached a value io

dtoy-k 2 -w) lleligbleterms1 et2k( ) +negligible terms
while for the logarithmic current

dSrv-/a[-Q -Yx)ngiil em]81 (2--) +negligible terms

The only difference between these is that the exponential in the

v,a) ~ VS az -vi0 (aG

first case is e Y2 2)and in the second case e Y k(2)
The first is greater than the second, for they are both less than 1,

and the second is the square of the first. Hence at the time t when

dSS.

both currents are practically fully established the value of dt
greater for the "progressive " than for the "logarithmic." This agree.s
with Lapicque's experimental observation that the "logarithmic"
current needs a higher thresholdl value to obtain excitation than the
progressive " current.

The connection between the least slope of a progressive current and the
ricinav strength of a constant current.

From (E) above (putting for simplicity x= 0, i.e. considering the
concentrations at the membrane) the liminal strength of a constant
current is found to be, by puttingth= oo proportional to e. ForThe-fist is reaterthan te secod, fortheyaebothlessta15

andtheseondisthesqareof hefirt.Hene t te imethe
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excitation by progressive currents we have on p. 211 the condition that
a t2

a t -tX .xa -te2 2

must exceed a certain limit. Xt= where i is the current finally
reached. Hence

vi -la",.tab- e t

k
must exceed a certain limit, n say. Now the liminal slope is the
tangent from the origin to the curve whose equation is obtained
by equating this quantity to m (see Fig. 4), and is therefore given

di iby d We have

m=(a k)ie4 k................(i).

Taking Jogarithms and differentiating we find
Ildi yV( di+\
z dzt 4 k (td7tz )=O

i.e. dt - t4 a
4 ak)i

di iinto which putting dt = we have,

I - ity vak = 4y at vk it

2 /k\i.e. it=- (-.

Putting this into (i) above, after squiaring we find,

i2=rn2e (k).
Hence

-m2e y (k)
t 2\aV,

Thus the least slope is directly proportional to , which constants

are affected by temperature changes, or by passing to other tissues.
Thus an increase of k as by a rise of temperature, or a decrease of a as
by passing from one tissue to another, or possibly a decrease (to 1/2) of
v by placing the tissue in a solution of a divalent salt, all tend to increase
the least slope of a progressive current. They will have exactly the
same effect on the liniial constant current, which is also proportional
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to -. The divergencies fromi an exact relation between these two

quantities may be due to the fact that the other quantities (e.g.
m2 and fy) change also. This explains however why the least slope of a
progressive current always runs parallel at any rate to the liminal
strength of a constant current'.

Summation of Stimuli.

The case of induction shocks is simpler to carry out experimentally,
that of short constant currents is simpler mathematically. The object
of the inquiry below is to trace the factor to which "summation of
stimuli" can be credited qualitatively and quantitatively: so for
simplicity I have taken the case of short constant currents, as this
factor will be the same in either case. The fundamental observation2
is that two induction shocks, each (say) 5 °/o below the liminal strength
necessary for excitation, will cause excitation if sent in consecutively at
less than a certain interval t2 apart: and it is suggested that this time
t4, the " summation time," is a measure of the rate at which the excita-
tory process dies away. Below the variations of t2, for different tissues,
and for the same tissue under different conditions, are shown 'to be
connected directly with k the diffusion constant and a the size of the

structure of the tissue in question: t2 has to increase if decreases, and

vice vers&, so that increase of the diffusion constant (as by raising the
temperature), or decrease of the distance apart of the mdmbranes of the
tissue (as by passing to a different tissue) will decrease the summation
time of two stimuli. Thus the summation time for two stimuli, each
n 0/0 below the liminal current strength, is a very simple function of the
physical constants of any tissue, and may be used as a means of
comparing different tissues, and the same tissue under different
conditions.

Suppose a constant current i is sent into a tissue for a time 4: and
that i is less than the least current necessary to stimulate in time 4 in
the ratio p: 1. The concentration at any point is, at the end of the
time tl, (See (D) above),

(2n-1)'2 W

viZa \ 4via 1 (- a 2 (2n-1) .rxy=c k2- )kxT-C2(2n 1)2 e a Cos 3 ...... W.()-k IkW2(2n -)2 a

1 Keith Lucas. This Journal, xxxvii. p. 471. 1908.
2 Keith Lucas. This Journal, xxXIx. p. 461. 1910.
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Then the current is broken, and the ions begin to return to their
normal position and concentration. A solution of the diffiusion equation
-for the time subsequent to the break is

'~-k 2yrt r
y=B+EAre acOS . ..........................(ii).

a

Also at x=0 and x= a, :y = 0 (the condition that no current isax
passing): and at t = 0 y must equal the quiantity above, (i).

Now in (D) if we put t= 0 we have the relation,
vita \ 4vi a X 1 (2n-1),rx
T -k (2n -)2COS a

vita 4vi a 1 (2n-1)7rsxz.e. k 2 ) 2(2_)cos ak~~2 (2n -1)2 0
a

Inserting this in (i) and equating (i) to (ii) we find on equating

coefficients of cos (2n -1)7T that (ii) becomes
a

4vi a X k_(2n-1) t,)e k a2n1)2r2t (2n-l1) irxy-c+2 k 2(-e COS a 1)

which on putting t t2 gives the concentration at the end of a pause in
the current of length t2. Now at the end of the pause the current i is
sent in again for a time t4: we have for the time beginning now,

r2ifk2rVrx
-x 2A COeS2 r7r . (iv).y=B8+Vki(2-t)-EA're aCOS- . ...........................(i)k 2 a~~~~~~a

For this satisfies the diffusion equation, at x=0 and x = aa=-
and at t =0 it has to be equal to the concentration in (iii) at the end of
time t2;

ft-f22 (2n-1Y2 if2
y=c+ a k t,(l--a) k a, t2co (2,, -l) -rxY=c+k ;~ ~ a t1e~ a2 OB a

... (v).
Putting in

k4vi aXn1(2--l)1r2
k\-xJk r2 1(2n -1)205 a

and equating coefficients of cos ( a-) T in (iv) and (v), we find that
the concentration at the end of the time t4, i.e. at the end of the passage
of the constant current, is

vi a\ 4vi a 1
y=C+kt2-X}- k f21(2n-1)2

r -k(2n-j)p t2 - k(2 127r-+t, -k
(2n -I t, (2n -1) Yrxx41- a' +e a2 e, a2 COSfl.l)f
J ~~~~a
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which, owing to the rapid convergency of this series, we may write

y +k( -x 4kz a -e~k a2 tl( -e~k W2 t, -1-~k W2 Vt2+0 7rla+j(~x 4~: 2 _a a cs'~(vi).
Now t2 is by hypothesis the "summation time," i.e. y -c has risen

to a value just sufficient to stimulate: while i is only pio where p is a
fraction and io is the least current that will stirnulate in time t1 if sent
in only once. If(y - c) has to reach a value m for stimulation to occur
we know that

k
m-

v

a_ a-e
-kXWa_4ae -kat,

2 ~2
if we consider the concentration at the membrane, i.e. put x 0.

Hence
k

pm-
V

2 _;2 e

But i just stimulates when sent in a second time: i.e. (y - c) in (vi)
reaches the value m: hence

k
m-

a 4a -kiit,/ _-k t2 -ki t laea(- a+e eka-e
Equating these last two values of i we have,

aak7r2
ti k t k

7if2 if72a a -k-2t, {a 4a -k- t, /1 -k-2 t2 k2 (t2+tl))4=;2e p - --2e i1-e a e

ir2 tif-2 if2
z.e. (1-P)==-2e a)

8
(1-p+pe k a-22pe_k a2 (t2+tl)

if2
-k -t (t+2Now e a' 2 is considerably greater than e k .2(t2+tl) Hence if we

increase
a2

we decrease e a , and decrease the second term, for the

i Sf2 if2 V ldecrease of pekat2 iS much greater than the increase of -pe a 2+.
Hence in order to keep the right-hand side constant we must decrease
ta considerably. Hence the summation time is decreased either (a) by
increasing the diffusion constant, or (p8) by decreasing the distance
between the membranes of the tissue.

Thus we have a reason for the conclusion which Lucas, reached
experimentally that (i) the summation interval, (ii) the time it is

1 loc. cit.



necessary to pass the least exciting constant current and (iii) the least
rate of increase of a progressive current, are all seen to run parallel, and

are intimately connected with one physical factor, -a: which is really

measure of the rate at which diffusion tends to equalise concentration
differences at the membranes.

Excitation at Break of Constant Current.

According to the theory advanced above as to the nature of electric
excitation one can explain how the break of, or a pause in, a constant
current causes an excitation. Further one can predict the form of the
curve relating the liminal strength of a constant current to the duration
of a short pause which causes an excitation. Any theory which pretends
to explain the excitation physically should be able to account equally
for its occurrence at break and make, as these are both equally obvious
and important. Nernst' supposes that the protoplasm which has
become "accommodated" to the presence of an excess of ions in its
neighbourhood is excited when the break of the currett causes a
diminution in the concentration of the ions. This is in effect an
additional hypothesis, viz. a lowering of the concentration of the ions is
supposed to be as efficacious for causing excitation as an increase in the
concentration. The hypothesis I have described above, on the other
hand, will apply directly to this case, so we obtain a solution of this
important fact withouit any multiplication of hypotheses.

In Fig. 1 the current i is supposed to be passing from CD to AB.
If now it conitinue passing for some considerable time the unstable
substance at the end CD where the current enters will take up a new
equilibrium with the ions in its immediate neighbourhood, according to
the scheme

ions + unstable substance : comilpound......... (i.
Since the concentration of the ions at this end is largely diminished

the equilibrium will have gone -. Now the current is broken and the
ions return to their normal position, i.e. the ions referred to in (i) have
their concentration largely increased, (not instantaneously of course, but
gradually,) and hence the action goes --. This is exactly what the
theory supposes to happen when a current is sent into the tissue, and if
the rate at which the action goes is greater than a certain limit then
excitation occurs. This also explains why excitation at make occurs at

1 Nernst. Arch.f. d. ges. Physiol. cxxii. p. 281. 1908.
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the cathode, and at break occurs at the anode: for the action takes place
at the ends AB and CD respectively (Fig. 1).

At the moment when the current was broken we have for the
concentration at any point. (putting t= co in (E) above),

y=c+vi/k(Pa-x).

A solution of the equation aaY=a I 2, which satisfies this initial

condition, and the further one that no current is passing is, (cf. p. 220),
4vi a X 1 ~k(2n-1)2 r2 24via k~~a t 2(n -l1),rxy k21(2n-1)2 a

Now for excitation the change of y must in a given time t exceed a

certain limit, for then as before - d-t will exceed the limit required for
excitation, (cf. p. 209). Hence

y - [c+ vi/k (ja -x)]
must exceed a certain limit, and therefore (neglecting all but the first
term of the series),

vi za \ 4vi a '-k-2 rX
-k 2-

-
+ kE W-2 e a2 Cosa-

must exceed a value, say m, at or niear x= a.
This gives,

X

where X, ,, and 9 have exactly the same values as those given on
page 201 if we measure b from the other end of the box (Fig. 1).

This explains why Lucas' obtained exactly similarrelations in the
case of either a short passage or a short pause of a constant current.

The suggestion above (p. 208) that the effects observed with progressive currents are
due to the gradual diffusion of the ions considered through the membranes seems to be
negatived by the ready explanation which the other theory gives of the effects of short
pauses in a constant current, in fact of the excitation at break. This explanation would
not be possible if the diffusion of the ions through the membranes were of much account:
for at break there would be no possibility of a large return to normal of the concentration,
because the concentration has been kept down by a steady diffusion across the membrane.

My heartiest thanks are due to Mr Keith Lucas for the ever
ready information and suggestions which he has given me as to the
papers and experimental observations of himself and others: and to
Mr C. G. Darwin for his kindness in looking through and criticising
the matheematical treatment, of the problem.

I Lucas. This Journal, xxxv. p. 313. 1907.
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Mechanical and Chemical Stimulation.
The theory provides an explanation of these methods of excitation. A mechanical

stress, or an increase of the osmotic pressure outside the space ABCD by the presence of
some chemical body, may lead to a concentration of the fluid inside ABCD. The ion
which effects an excitation will not be separated electrically from its complementary ion,
but its increase of concentration will cause a change in the equilibrium between itself and
the unstable substance S. This might lead to an excitation. The theory given above
seems to me therefore to give, or at any rate to suggest, an explanation of all the
phenomena in excitation of which I am at present aware. Mr W. B. Hardy has
suggested to me that in case of any phenomena being observed which do not accord with
the theory, various other physical effects may be introduced to account for them. For
example, AB and CD may not be membranes, but portions of colloidal matter in com-
bination with one of the dissolved ions. These ions would tend to diffuse outwards, and
so there might be formed an electric double layer held together by electrical attraction,
tending to separate by diffusion of the ions forming the outer layer. When the current is
passed the concentration of these ions at AB is increased; and consequently the tendency
to diffuse out is not so strong. The result would be a higher degree of combination
between ions and colloid, following the above mathematical treatment. Now colloidal
matter in living organisms is in what may be called a "critical state": it is in that
position where very small changes in the external conditions may have almost infinite
effects on the internal equilibrium and state of the tissue. Hence the extreme sensibility
of living matter to very small changes of condition ("stimuli"), especially in higher
animals where the temperature of the body is constant at that of the " critical state " of
the tissue colloids. This conception of a double electric layer gives an interesting
explanation of mechanical excitation. A very slight mechanical stress will ehange the
curvature of the surfaces of the colloidal body AB: this will change the difference of
potential between the two layers, and may cause at certain points a very large alteration
in the equilibrium of ion and coiloid, leading to excitation.

Another factor which may possibly be of importance has been entirely omitted from
the theory: no mention has been made of endosmotie, effects. An electric current passing
down the nerve will transport water across the membrane by electric endosmose. The
direction in which it is transported depends on the sign of the charge on the water in the
double electric layer between water and colloid. Thus electric endosmose may, on making
the current, tend to lower or raise the concentration of the salts in the neighbourhood of
a membrane, by passing water in one direction or the other. Whether these and other
physical effects are of importance remains for future work to decide, but they should be
borne in mind when phenomena are observed which do not accord with the theory in its
simpler form.


