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Abstract
Background: Identifying functional elements, such as transcriptional factor binding sites, is a
fundamental step in reconstructing gene regulatory networks and remains a challenging issue,
largely due to limited availability of training samples.

Results: We introduce a novel and flexible model, the Optimized Mixture Markov model
(OMiMa), and related methods to allow adjustment of model complexity for different motifs. In
comparison with other leading methods, OMiMa can incorporate more than the NNSplice's
pairwise dependencies; OMiMa avoids model over-fitting better than the Permuted Variable Length
Markov Model (PVLMM); and OMiMa requires smaller training samples than the Maximum Entropy
Model (MEM). Testing on both simulated and actual data (regulatory cis-elements and splice sites),
we found OMiMa's performance superior to the other leading methods in terms of prediction
accuracy, required size of training data or computational time. Our OMiMa system, to our
knowledge, is the only motif finding tool that incorporates automatic selection of the best model.
OMiMa is freely available at [1].

Conclusion: Our optimized mixture of Markov models represents an alternative to the existing
methods for modeling dependent structures within a biological motif. Our model is conceptually
simple and effective, and can improve prediction accuracy and/or computational speed over other
leading methods.

Background
Biological sequences, including DNA, RNA and proteins,
contain functionally important motifs, such as transcrip-
tion factor binding sites (TFBS), RNA splice sites, and pro-
tein domains. With the increasing-availability of genome
sequences, identification of such functional motifs not
only plays important roles in gene finding and function
prediction but also is a fundamental step in reconstructing
gene regulatory networks and in revealing gene evolution-
ary mechanisms [2-6].

A commonly used model for motif identification is the
Weight Matrix Model (WMM) proposed by Staden [7],
also called the Position Weight Matrix (PWM) or Mono-
nucleotide Weight Matrix (MWM). A PWM is usually gen-
erated from a set of aligned instances of known motif
sequences, using the observed position-specific base fre-
quencies and/or prior information. Stormo and Fields [8]
showed that the PWM score of a motif is proportional to
the total binding energy contributed by individual bases.
PWM has been used by many motif identification pro-
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grams, e.g., Matlnspector [9] and Match [10], and per-
forms reasonably well for motif identification. While a
PWM can capture both nucleotide preferences at each
position and different levels of position specificity, it does
not account for functional dependencies between posi-
tions. Recent studies [11-15] indicate that there are often
important interactions between positions, adjacent as
well as non-adjacent, within a motif. The inability of the
PWM to capture such dependencies is a limitation as the
PWM model often produces a large number of false posi-
tives in a genome-wide scan [16].

Many models have been developed to incorporate posi-
tion dependencies. Motif models, such as the Dinucle-
otide Weight Matrix Model (DWMM) [17] and the Weight
Array Model (WAM) [18], can incorporate dependencies
between adjacent positions. To incorporate further
dependencies of non-adjacent positions, Ponomarenko et
al. [19] extended DWMM by introducing the Oligonucle-
otide Weight Matrix model, which includes a comprehen-
sive set of oliogonucleotide matrices classified into 5
biological function categories. A WAM could also be
extended to a high order WAM in principle, e.g., win-
dowed 2nd order WAM [2]. However, the exponentially
increased number of parameters of these models makes
them impractical due to insufficient training data. To
address the weaknesses of WAM in incorporating long-
range interactions, Burge and Karlin [2] proposed the
Maximal Dependence Decomposition (MDD) model,
which has a binary tree structure formed by a set of condi-
tional WAMs. While the MDD model can capture non-
adjacent dependencies through the conditional WAM
models, it still requires a rather large number of training
sequences, which are partitioned into smaller subsets to
train all conditional WAMs. To alleviate the requirement
of a large training set, Cai et al. [20] developed a Bayesian
tree to model dependencies within RNA splice sites; Ell-
rott et al. [21] suggested a position order optimized
Markov chain model, which reorders motif positions to
bring distant but dependent positions into near neigh-
bors. More recently, several other models have been devel-
oped, including Bayesian networks for modeling protein-
DNA binding sites [22], Maximum Entropy Model (MEM)
for splice site identification [23], Permuted Variable
Length Markov Model (PVLMM) for finding transcription
factor binding sites and splice sites [24]. For a biological
motif with position dependencies, these models can show
improvement in prediction accuracy over the models that
assume independence. Incorporating position dependen-
cies can also improve the accuracy of de novo motif discov-
ery [25].

In this paper, we present a new and flexible motif model,
the OMiMa, to incorporate position dependencies within
a motif. OMiMa can not only adjust model complexity

according to motif dependency structures but also mini-
mize model complexity without compromising predic-
tion accuracy. As an integrated part of OMiMa, we also
introduce the Directed Neighbor-Joining (DNJ) method
to optimally rearrange positions to minimize Markov
order. We then describe and discuss the methods for
selecting the best model. We implement our model into
the OMiMa system that is freely available to the public.

Results
Mixed Markov models

Let Xi be the discrete random variable associated with

position i in a biological motif X of length w. For DNA
sequences, Xi takes values from set B = {A, C, G, T}; and

for protein sequences, Xi takes values from 20 different

amino acids. Xi follows a multinomial distribution. Let

 = Xi-k...Xi-1 and  = xi-k...xi-1, where k = 0,..., w - 1;

upper case X (Xi) is a random variable and lower case x (xi)

is a particular value. The  denotes an empty sequence

and Pr(  = ) = 1. Additionally, let X-j = Xw-j, x-j = xw-j,

where j = 0...w - 1. If one uses the kth order Markov model
(Mk), the probability of observing a motif sequence x is

just the product of conditional/transition probabilities.

Let  be a kth order Markov model of a linear chain, and

 be a kth order Markov model of a circular chain. The

probability of a motif sequence is given by equation (1)
for a linear chain and equation (2) for a circular chain,
respectively.

Compared to a linear Markov chain, a circular Markov
chain incorporates additional dependencies that may
contain subtle signals that allow the model to distinguish
true motifs from false ones, especially when false motifs
are similar to true motifs.

Suppose a motif X can be divided into m independent
sub-motifs, that is X = Y1,... Ym and each sub-motif is mod-

eled as an independent Markov chain, that is

, then the probability of the sequence

(x) given the Markov models is:
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These independent Markov models, each of which is posi-
tion-optimized for its corresponding sub-motif, form an
Optimized Mixture of Markov models (OMiMa). An
example of OMiMa is illustrated in Figure 1. However, for
short motifs such as transcription factor binding sites, we
can use a simple mixture of Markov models consisting of
only one 0th order and one kth order chain (Figure 2). For
convenience, we refer such a mixture model as 'a 0-k mix-
ture model'. Since the kth order Markov chain of 'a 0-k mix-
ture model' can be either linear or circular, we also use
terms 'a 0-k mixture linear model' and 'a 0-k mixture circular
model' to distinguish them. In the following, we describe
methods for the general mixture Markov model, while we
use the simple 0-k mixture model for our testing.

Conceivably, the different parts of a motif could have dis-
tinct roles in the interaction with their partners. Motif
positions involved in the same role can be highly depend-
ent, whereas those involved unrelated roles are likely
independent. A mixture of Markov models seems an ideal
fit by modeling different signals with different sub-mod-
els. A 0th order Markov chain can effectively model strong
signals such as those embedded in highly conserved posi-
tions where the probability of a certain base occurring is
almost one. In addition, positions where base composi-
tion contributes little or nothing to motif function need
no more complex model than a 0th order Markov model.
On the other hand, a higher order Markov model is neces-
sary for detecting subtle dependency signals that can be
essential for distinguishing true motifs from false ones.

Motif dissection
To apply the mixture of Markov models to a motif, the
first step is to dissect the motif into several independent

Pr( | ) Pr( | )X x Y y= = =
=
∏M MX i i Y
i

m

i
1

The graphic representation of a mixture of Markov modelsFigure 1
The graphic representation of a mixture of Markov models. A graphic representation of a mixture of Markov models. 
On the top is a motif of length 14 bases. On the left, 6 positions, which are independent of each other and all other positions, 
form a 0th order Markov chain. In the middle, 3 positions form a linear chain of 1st order Markov model. On the right, the 
remaining positions that closely depend on each other form a circular chain of the 2nd order Markov model.
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sub-motifs, each of which is modeled as a Markov chain.
For a given set of sequences of a motif, we employ chi-
square tests to find significant pairwise dependencies
between positions within the motif (see also [21]). Based
on pairwise dependencies, motif positions are grouped
into independent sets, each forming a Markov chain. The
outline of our procedure for grouping motif positions is
described in the following steps.

1. Calculate base frequencies for each position, and find
highly conserved positions where the observed frequency
of a certain base (almost) equals 1. These conserved posi-
tions then are put into set H as defined below.

where f(i, x) is the frequency of base x at position i, and B
is the set of bases.

2. Place remaining positions in the set M, and calculate
pairwise chi-square values for every pair of positions in M.
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The graphic representation of the 0-k mixture model for TFBSFigure 2
The graphic representation of the 0-k mixture model for TFBS. The simple mixture of Markov models for TFBS. 
Since TFBS are short (5–16 bases), a mixture model consisting of the 0th order and 1st/2nd order Markov chains is generally ade-
quate for predicting new binding sites. The sub-motif formed by independent positions is modeled by a 0th order Markov order 
model. The sub-motif forming by the remaining positions is modeled by either a 1st or 2nd order Markov chain, which can be 
either linear (break at dotted arrows) or circular.
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where Bi and Bj are the sets of bases observed in positions
i and j, respectively; O(xi, xj) and E(xi, xj) are the observed
and expected counts of pair (xi, xj), respectively. E(xi, xj) is
the product of observed base frequencies xi and xj. The
degrees of freedom of this test is (|Bi| - 1) × (|Bj| - 1),
where |Bi| and |Bj| are the number of different bases in sets
Bi and Bj, respectively.

3. Based on the above χ2 tests, find all positions that show
little dependence on any other positions in M, and move
them to the set I, as defined by

Here pi,j is the p-value corresponding to , and α is the

significance level, e.g., 0.05.

4. The remaining positions in M are further grouped into
subsets by iterating the following rules:

(a) Set s = 1.

(b) Calculate θi = ∑j∈M,j≠i δ(pi,j <α) for each position i in M,
where δ is a 0/1 indicator function. Find the largest θi, and
move position i and all positions j that pi,j <α from M into
a new set Cs.

(c) For each remaining position, check if it significantly
depends on any position in Cs. If it does, then move it
from M into Cs.

(d) If M is not empty, update s = s+1 and go back to step
(b).

Step 4 above essentially groups positions into independ-
ent subsets, each potentially forming a functional unit.
For the special 0-k mixture model, we simply set M = C1 at
this step.

Markov chain optimization
The next step is to arrange the positions in each subset
into a Markov chain. Since the positions in sets H and I are
independent of each other, they can be arranged in their
natural order to form a 0th order Markov chain. The posi-
tions in H can also be treated differently from those in set
I in motif identification by requiring a perfect match for a
true site. Sets Cs are different. The position arrangement
for each set Cs needs to be optimized so that the Markov
model can account for most dependencies while minimiz-
ing the Markov order. For a given set Cs, we use the
median (Ks) of θ (θ = {θj, j ∈ Cs}) as the maximum order
of its potential Markov model. We then optimize position
arrangement for the kth order Markov chain (k = 0,..., Ks)

by the Directed Neighbor-Joining (DNJ) method
described below.

The neighbor-joining (NJ) method proposed by Saitou
and Nei [26] is a well-known distance method for phylo-
genetic tree reconstruction. The principle of the NJ
method is to find pairs of operational taxonomic units
that minimize the total branch length at each stage of clus-
tering. Our DNJ method is based on the exactly same prin-
ciple. The only major difference is that DNJ needs to
consider the direction in joining two nearest neighbors to
form a new node while NJ does not. Instead of producing
a phylogenetic tree as the NJ method does, DNJ method
creates a chain structure, which arranges closely depend-
ent positions as the nearest neighbors. The DNJ method
for constructing a kth order Markov chain from a given
subset (Cs) of motif positions is described in the following
steps (see Figure 3 for an example).

1. For a given set Cs, put each position in the set into a dif-

ferent vector. Here a vector is represented by a letter, an
arrow at the top of the letter may be used to indicate the

direction of a vector, e.g., a stands for either  or . If 

= (1, 2, 3), then  = (3, 2, 1),  = (1, 2, 3, 3, 2, 1), and

 = (1, 2, 3, 1, 2, 3). Initially, each vector has only one
position.

2. Create an initial distance matrix (d) whose elements are
d(u, v) = pi,j, where i is the position in vector u, j is the posi-
tion in vector v, and pi,j is the p-value of chi-square test
described above.

3. Convert the distance matrix d to the transformed dis-
tance matrix D, whose elements are D(u, v), by the follow-
ing conversion function (see [26]):

Where V is the number of vectors under consideration,
and its value decreases by 1 in each iteration.

4. Find the minimum D(u, v) in D. Then a new vector x is
formed by joining vector u and v according to Algorithm
1 [see Additional file 1] for a kth order Markov chain.

5. Update the matrix d by replacing u and v by x. The dis-
tance of x to other remaining vector y is defined by:

d(x, y) = (d(u, y) + d(v, y) - d(u, v))/2
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6. Go back to step 3 if the number of vectors in Cs is larger
than 2, otherwise join the last two vectors according to
Algorithm 1.

The order of positions in the final vector is the optimized
linear chain for Markov model. Joining the first position
to the last position in the vector forms a circular chain. A
linear chain could be further optimized by forming a cir-

cular chain first from the final vector, then breaking the
circular chain between positions with the weakest
dependency, e.g., between positions i and j where pi,j is the
largest or the log-likelihood of the corresponding linear
chain model is maximized. DNJ not only optimizes posi-
tion order for linear chain models but also improves cir-
cular chain models, particularly when the order of Markov
model is low, e.g., 1st or 2nd order Markov models.

Illustration of the DNJ method for Markov chain optimizationFigure 3
Illustration of the DNJ method for Markov chain optimization. An example of the DNJ method to optimize the 2nd 

order Markov chain.
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Model selection
Many different mixtures of Markov models can be formed
from the combination of different Markov chains. It is
essential to choose the model that minimizes prediction
error. In model selection, we first fit each model using
maximum likelihood smoothed by a Dirichlet prior [see
Additional file 1], then compute either the Akaike infor-
mation criterion (AIC) [27] or the Bayesian information
criterion (BIC) [28]. The model with the minimum value
of AIC or BIC is selected as the potential best model. Min-
imizing AIC is the same as choosing the model with the
minimum prediction error or loss, while minimizing BIC
is equivalent to choosing the model with the largest pos-
terior probability. Nonetheless, AIC and BIC have a simi-
lar form:

-2·loglik + λ·DF

where λ = 2 for AIC and λ = log(N) for BIC (N is the
number of sequences); loglik is the maximized log likeli-
hood of data given the model; DF is the degrees of free-
dom (number of free parameters). We replace DF with the
effective degrees of freedom (EDF) in calculating AIC or
BIC of the mixture of Markov models, which enables an
appropriate model to be selected (see sub-section Effective
degrees of freedom). There is no clear better choice between
AIC and BIC for model selection. AIC tends to choose a
model too complex as N → ∞, while BIC tends to choose
a model too simple when N is small. In our test on 61 dif-
ferent TFBS datasets, whose sample sizes range from 20 to
130, we preferred AIC to BIC for picking an appropriate
model.

Effective degrees of freedom
Let B be the set of bases (|B| denotes the number of differ-
ent bases in B), e.g., for DNA sequences B = {A, C, G, T}
(|B| = 4). For a motif of length w, the DF for a k order
Markov model is (|B|k - 1) × (w - k) for a linear Markov
chain; and (|B|k - 1) × w for a circular chain model. That is,
the DF increases exponentially as the order of Markov
chain increases. As a result, AIC or BIC often pick a sim-
pler mixture model than the best model, especially when
|B| is large. Tested on 61 human regulatory motifs from
the Transfac database (ver. 7.4) [29], we found that both
AIC and BIC selected the 0th order Markov models for all
61 DNA regulatory motifs when using the DF. To avoid
picking overly simple models, we used the EDF described
below to calculate AIC and BIC.

Generally, only a subset of bases from B appears in a par-
ticular position of a set of biological motifs. The more
conserved a position, the fewer bases are in the subset. The
EDF for a model is related to the observed bases in train-
ing samples. For example, suppose that one would like to
estimate nucleotide frequencies occurring in a position in

a set of DNA training motifs. If only base A is observed in
the position, then one needs to estimate only the fre-
quency of A, the remaining parameters, i.e., the frequen-
cies of C, G, T, can be derived from any prior information.
Therefore, the actual DF is one in this case. For our mix-
ture of Markov models, the EDF is defined as the number
of parameters that are direct estimates of the observed
bases in a training motif set. Let bi be the base set observed

in a position i of a training set of motifs. Additionally, let
hk be the sequence of motif positions in the kth order

Markov chain,  be the motif position in the ith element

of hk, and ∑|hk| = w ( |hk| is the number of positions in hk

), then we define the EDF for the kth Markov chain as

where  if i - k ≤ 0;  and  are for

linear and circular chains, respectively. The total EDF for a
mixture Markov model is just the sum of EDFs of all indi-
vidual chains. For example, the total EDF for the special 0-
k mixture model equals to the EDF sum of the 0th and the
kth order chains.

Performance assessment
We test the effectiveness of our method on TFBS data and
the donor splice sites, where training data for OMiMa are
a set of sequences of a motif. For prediction results, we use
the following abbreviations for empirical quantities: TP (#
true positives), TN (# true negatives), FP (# false posi-
tives), FN (# false negatives), Ac (Accuracy), Sn (sensitiv-
ity), Sp (specificity), and Mc (Matthews correlation
coefficient). Sn, Sp, Ac, and Mc are defined as:

Matthews correlation coefficient [30], also called Phi (cor-
relation) coefficient, has a value between -1 and 1, with 1,
0, and < 0 indicating a perfect prediction, a random pre-
diction, and a worse than random prediction, respec-
tively.
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OMiMa can use two ways to score a motif site x: log-like-
lihood and log-likelihood ratio, which are defined by

where Ms is the signal model trained by true motif sites,
and Mb is the background model or false signal model
trained by background sequences or false motif sites. A
sequence x is predicted as a positive site if the score of x is
larger than a certain threshold. We select a cutoff thresh-
old using one of the following three criteria: balanced sen-
sitivity and specificity, the maximum prediction accuracy,
and the maximum Matthews correlation coefficient. Each
potential threshold yields an estimated true positive rate
and a false positive rate. The plot of true positive rates
against false positive rates generates a Receiver Operating
Characteristic (ROC) curve, which can be used for com-
paring and selecting the best model.

We used a three-symbol notation 'k-m-s' to distinguish
different models, where 'k' stands for a 0-k mixture
Markov model, 'm' is either 'L' or 'C' to indicate whether
the kth order chain is linear ('L') or circular ('C'), and 's' is
either 0 or 1 to indicate whether log likelihood score (0)
or log-likelihood ratio score (1) is used. For example, '1-
L-l' stands for a 0–1 mixture of linear Markov models that
uses log-likelihood ratio to score a motif site.

Effectiveness of DNJ method for optimization

To assess the ability of our DNJ method for optimizing a
Markov chain, we compared the DNJ method with ran-
dom permutation method. In this evaluation, we used a
0-k mixture model (k = 0, 1, 2) (Figure 2) to model tran-
scription factor binding sites from the Transfac database.
For each TFBS, we first fitted a 0-k mixture model
(denoted as MDNJ) with its kth order Markov chain opti-

mized by the DNJ method. We calculated the log-likeli-
hood of the data given the model MDNJ (log

Pr(data|MDNJ)). Second, with the same data, we fitted a

new 0-k mixture model (denoted as MR), which is the

same as MDNJ except that the positions in its kth order chain

are ordered by random permutation, and calculated
logPr(data|MR). This step was repeated 1,000 times, so we

have 1,000 log-likelihoods of the randomly permuted

models . We then calculated the empiri-

cal p_value of the DNJ-optimized model as follows:

where δ is an indicator function with value 1 if condition
is true, and 0 otherwise. The smaller the p_value, the better
the DNJ optimization is; and p_value = 0 means the DNJ-
optimized model performs better than any one of the
1,000 randomly permuted models. The p_value approxi-

mates the probability of observing log Pr(date| ) larger

than (log Pr(data|MDNJ).

Fifty-three human transcription factors, whose binding
sites contain at least four dependent positions by the χ2

test given by equation (3), are selected for this evaluation
(Table 1). The assessment was performed on four 0-k mix-
ture models: 1st order linear chain, 1st order circular chain,
2nd order linear chain, and 2nd order circular chain.

Results suggest that DNJ method performed remarkably
well in optimizing the 1st order linear Markov chains, that
in 49 out 53 cases, the DNJ optimized models were the
best or close to the best (Figure 4a). The optimization for
the 2nd order linear chains was slightly worse than that for
the 1st order linear chains, partially because the DNJ
method relies only on the pairwise dependencies between
two single positions. Nevertheless, most of the DNJ opti-
mized models were still close to the best [see Additional
file 1 Figure 1a]. Although our DNJ method was designed
for optimizing linear Markov chains, it still worked well in
optimizing the 1st order circular Markov chains (Figure
4b). However, the DNJ method did not perform well in
optimizing the 2nd order circular Markov chains [see Addi-
tional file 1 Figure 1b].

We used AP1 (activating protein 1) transcription factor
binding sites (Transfac ID V$AP1_Q4_01) as an example
of how DNJ optimization can improve performance of a
0–1 or 0–2 mixture model. We plotted the histogram of

the log-likelihood per instance given a model , log

Pr(data| )/N, where N is the number of sequences in

the data set, and i = 1,..., 1000 for 1,000 mixture models
of randomly permuted Markov chains. The histogram rep-
resents a simulated null-distribution of log-likelihood per
instance given a mixture model. Then we mapped the
location of the likelihood per instance given DNJ opti-
mized model, (log Pr(data|MDNJ)/N, in the histogram. For

the transcription factor V$AP1_Q4_01, we found that for
the 0–1 mixture model of either linear or circular struc-
ture, DNJ optimized models are better than any models
from 1,000 random permutations (Figure 5).

Theoretically, the optimal model can be found by exhaus-
tively searching through all possible models. An exhaus-
tive search is not always possible in practice, however, as
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Table 1: The optimized 1st order Markov chains for TFBS. The optimized arrangement of dependent positions within TFBS for the 1st 

order Markov model. N and ND are total number of motif positions and the number of positions significantly dependent, respectively.

ID# Name N ND Position order

1 V$AP1_Q4_01 8 8 7-3-1-2-0-6-5-4
2 V$AP1_Q6_01 9 8 2-3-1-4-5-7-8-6
3 V$AP1_Q2_01 12 9 4-3-5-6-7-10-11-9-1
4 V$CDPCR1_01 10 9 3-4-2-9-6-5-7-8-1
5 V$ATF_01 14 8 1-0-10-9-11-2-13-12
6 V$CHOP_01 13 10 5-4-6-7-9-10-0-8-11-12
7 V$CDPCR3_01 15 10 3-0-1-8-9-13-4-6-2-5
8 V$CDPCR3HD_01 10 5 1-8-9-2-7
9 V$CREB_Q2_01 14 8 1-11-12-0-2-3-9-8
10 V$CREB_Q4_01 11 6 7-6-1-8-9-10
11 V$CREB_Q3 6 4 4-5-1-0
12 V$CEBP_Q3 12 9 8-9-5-6-4-11-3-2-10
13 V$CEBPB_01 14 4 0-13-11-3
14 V$E2F_Q4_01 11 4 1-8-7-0
15 V$E2F_Q6_01 12 8 8-3-7-0-2-11-9-10
16 V$E2F1DP1_01 8 5 3-4-0-6-7
17 V$E2F1DP2_01 8 5 5-6-7-3-4
18 V$E2F4DP1_01 8 4 3-4-0-1
19 V$E2F4DP2_01 8 5 4-3-7-1-0
20 V$ETS_Q4 12 8 11-2-5-10-4-3-0-1
21 V$ELK1_02 14 4 10-11-2-3
22 V$FAC1_01 14 12 12-6-10-11-13-4-9-8-5-1-0-7
23 V$FOXD3_01 12 11 1-3-8-7-9-10-11-2-0-4-6
24 V$FOXO1_02 14 11 8-9-10-12-7-6-2-0-11-1-3
25 V$HNF4_Q6 9 7 4-3-2-6-8-1-7
26 V$HNF1_Q6 18 15 3-11-12-1-4-8-13-5-9-0-6-16-14-2-10
27 V$HNF3_Q6 13 11 1-10-7-5-3-4-12-9-0-2-8
28 V$E2F1DP1RB_01 8 5 1-7-3-0-4
29 V$IRF7_01 18 13 3-2-0-16-15-17-1-7-6-8-14-9-12
30 V$LUN1_01 17 8 8-9-10-7-12-11-14-13
31 V$MZF1_01 8 4 0-1-4-5
32 V$MYC_Q2 7 4 4-5-3-1
33 V$NFAT_Q4_01 10 4 6-8-9-5
34 V$NFKAPPAB_01 10 4 5-7-9-2
35 V$NKX22_01 10 6 9-8-6-1-0-7
36 V$OCT_Q6 11 10 8-2-0-10-5-3-9-6-4-7
37 V$PAX_Q6 11 10 10-6-7-0-9-3-1-5-4-2
38 V$PAX6_01 21 21 15-17-16-18-6-8-19-13-11-3-2-1-0-20-7-10-4-9-5-14-12
39 V$PBX1_02 15 10 6-12-2-0-3-1-11-13-14-4
40 V$RSRFC4_Q2 17 6 6-7-0-13-2-3
41 V$RSRFC4_01 16 8 6-7-9-1-2-13-12-8
42 V$STAT5A_01 15 7 8-12-1-13-0-4-5
43 V$SOX9_B1 14 9 1-13-0-2-11-5-3-10-4
44 V$SRY_01 7 4 4-6-0-1
45 V$SRY_02 12 4 1-3-11-4
46 V$STAT5A_02 24 16 7-12-20-15-16-17-18-19-22-1-21-13-5-6-9-23
47 V$SP1_Q2_01 10 7 7-3-8-0-4-9-5
48 V$SP1_Q4_01 13 13 0-2-11-12-6-1-3-10-9-8-7-4-5
49 V$SP1_Q6_01 10 10 3-5-8-9-0-7-4-2-6-1
50 V$USF_Q6_01 12 8 3-11-4-5-7-2-1-8
51 V$XBP1_01 17 9 13-5-3-4-15-11-10-12-0
52 V$ZID_01 13 8 6-7-4-8-12-10-9-11
53 I$DRI_01 10 7 6-9-8-7-0-1-2
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the search space can be very large. The number of possible
Markov chains is the factorial of the length of the Markov
chain and dramatically increases as the length of chain
increases. For example, the computational time for a
motif of 15 bases (15! = 1.307674e + 12) can be practi-
cally unacceptable. Our DNJ method can deal with such
long motifs because of its computational efficiency.

TFBS identification
One interesting application of our mixture model is TFBS
identification. In this assessment, we used a couple of
examples to show how OMiMa can improve prediction
accuracy when there are position dependencies within a
TFBS. We first tested our method on simulated data where
the exact dependency structure of a TFBS is known. We
tested whether OMiMa can capture such dependency and
optimize the Markov model accordingly. Next, we tested
our method on real motif data for AP1. In both examples,
we compared OMiMa performance to PWM, PVLMM, and
the 1st order Markov model (1stMM) with its motif posi-
tions in the natural order. PVLMM, run on Microsoft Win-
dows, is based on the variable length Markov model
(VLMM) [31,32]. Except for its order and depth parame-
ters, PVLMM was run under its default settings in all com-
parisons.

Simulated TFBS prediction
Many TFBS are palindromic sites bound by heterodimers/
homodimers (e.g.,: Jun-Fos, Myc-Max, Max-Max and p50-

p50). The sequences in two half sites of a palindromic
TFBS are usually not perfectly complementary, and the
strong binding to one half site may compensate for weak
binding to the other. We simulated two imperfect palin-
dromic TFBS (named A and B) of length 12 bases. For each
TFBS, the bases in each position were generated from the
uniform distribution (the frequency of each base is 0.25).
The base in one half site and its reverse complementary
base in the other half were generated using the probabili-
ties listed in Table 2. Therefore, there are only pairwise
position dependencies in the simulated TFBS. The posi-
tion pair 0–11 has the strongest dependency, whereas the
pair 5–6 has the weakest dependency (they are independ-
ent). Overall, motif A has stronger position dependencies
than motif B. The false sites of TFBS were simulated from
the uniform distribution of four nucleotides without any
constraints of base pairing between the two half sites. The
simulated data of each TFBS consist of a training set with
150 true sites, and a testing set with 150 true sites and 150
false sites. Using these simulated training sets, OMiMa
found all true dependencies significant at level α = 0.05
(see Table 2). For both TFBS, OMiMa was also able to
arrange the positions of each dependent pair to be the
nearest neighbors in their 0–1 mixture models: (See table
7)

In our simulation, the positions 5 and 6 were generated
independently from all other positions, so they should be
in the 0th order chains. However, based on OMiMa's pair-

The performance of the DNJ optimized 0–1 mixture modelsFigure 4
The performance of the DNJ optimized 0–1 mixture models. The performance of the DNJ optimized 0–1 mixture 
models of TFBS. The y-axis is 1-p_value measuring performance of the DNJ optimized models relative to the randomly per-
muted models. The values on x-axis are the ID numbers of 53 TFBS in the first column of Table 1. (a) 0–1 mixture linear mod-
els, (b) 0–1 mixture circular models.
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wise χ2 tests for the training data, the position pair 5–8
(with p-value = 0.03) in TFBS A, and the position pair 6–
10 (with p-value = 0.04) in TFBS B were declared depend-
ent. That is why the positions 5 and 8 were arranged
together in the model for TFBS A, and positions 6 and 10
were together for TFBS B. We compared the prediction
results of OMiMa's 0–1 mixture model with those of
PWM, 1stMM and the 1st order PVLMM (with depth 1).
Results (Table 3) showed that OMiMa outperformed all
other models, and PVLMM performed better than IstMM
and PWM. Additionally, we used smaller training sets to
access the performance of these methods on the same test-
ing set. Smaller training sets, in sizes ranging from 15 to
150, were independently sampled (without replacement)

from the original 150 sites for training. Results suggested
that OMiMa performed consistently better than the other
methods, regardless the size of a training set (Figure 6)
[see Additional file 1 Figure 2].

AP1 TFBS prediction
We chose human AP1 TFBS (see Figure 7a) for this evalu-
ation because of its relatively large number of known sites.
In total, we had 119 true sites and 5950 false sites. The
true sites were extracted from Transfac database (Transfac
ID V$AP1_Q4_01), and false sites were randomly sam-
pled from the non-coding regions of the human genome.
Our χ2 tests on the 119 true sites suggested that all posi-
tions showed some level of dependency with the neigh-
boring pairs 0–2, 4–5, 5–6, and 4–6 showing strong
dependencies (p-value < 1.0e-6). Noticeably, the posi-
tions 4, 5 and 6 are also the most conserved positions, so
we expect that PWM would be reasonable good model for
the TFBS. We randomly split both the true sites and false
sites into 10 roughly equal-sized parts, and used a 10-fold
cross validation to compare the performance of OMiMa's
0–1 mixture model with the others. OMiMa had advan-
tage over the other three models in predicting TFBS that
do not have strong long-range dependencies (Table 4).
Results also showed the first order PVLMM did not per-
form better than 1stMM and PWM. We found that the first
order PVLMM arranged the position pair 5–6, which
showed the strong dependency, differently from OMiMa
and 1stMM. In only 3 out 10 times, PVLMM arranged
positions 5 and 6 as direct neighbors, while OMiMa did in
9 out 10 times, and 1stMM did naturally all times. This is

Modeling TFBS V$AP1_Q4_01Figure 5
Modeling TFBS V$AP1_Q4_01. The performance of the optimized model of TFBS V$AP1_Q4_01. The histogram is the 
log-likelihood score distribution of 1,000 randomly permuted mixture models. The red reference line indicates the relative 
performance of the DNJ optimized model (a) 0–1 mixture linear model (b) 0–1 mixture circular model.
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Table 2: Simulation of two palindromic TFBS. Simulation of two 
palindromic TFBS A and B. The first 2 columns are the 
complementary positions of the palindromic TFBS. The 3rd and 
4th columns are simulation parameters, which specify the 
probabilities of forming a complementary base pair. The last 2 
columns are the p-values of OMiMa's pairwise χ2 tests of position 
dependency for the simulated data.

Position pair Complementary 
Prob.

p-value

1st 2nd A B A B

0 11 0.99 0.90 4.88e-88 3.84e-63
1 10 0.95 0.85 6.62e-72 2.66e-56
2 9 0.90 0.75 3.84e-69 2.25e-35
3 8 0.65 0.65 1.44e-19 5.89e-24
4 7 0.50 0.50 2.00e-07 3.05e-03
5 6 0.25 0.25 3.35e-01 1.43e-01
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one possible reason why PVLMM performed slightly
worse.

Donor splice site recognition
The transcription of most higher eukaryotic genes
involves RNA splicing, in which primary transcripts
become mature mRNA by removing introns. The donor or
5' splice sites and the acceptor or 3' splice sites on the
boundaries of exons and introns provides critical signals
for precise splicing. Therefore, splice site recognition has
been widely used by gene finding tools such as GENES-
CAN [2] and GENIE [33] for gene prediction. The splicing
process starts with U1 snRNP binding to the donor site via

base-pairing of U1 snRNA. The base pairing between U1
snRNA and the donor site, however, need not be perfectly
complementary in all positions [34,35]. Both experimen-
tal and computational evidence suggest that there are
mutually dependent positions within the donor site: a
mis-matched pair of U1 snRNA and the donor sites at one
position can be compensated for by a matching base pair
at another position, and vice versa [2,24,36,37]. Modeling
such dependency structure within the donor site has been
used to improve donor site prediction [2,23,24,33]. We
used two independent datasets of human donor sites to
assess the performance of OMiMa in comparison with
leading competitors.

Comparison with NNSplice and PVLMM

The test dataset of human donor splice sites (Reese data)
was from [38]. This dataset has 6246 donor sites (1324
real and 4922 false) of length 15 bases from -7 to +8
around the conserved 'GT' dinucleotide. The dataset con-

sists of a training set (containing  of data) and a testing

set (the remainder), which were previously used to assess
the performance of NNSplice [33]. We used the same par-
titions for training and testing in the following compari-
sons.

First, we tested whether OMiMa which uses either AIC or
BIC, can correctly pick the best model based on ROC anal-
ysis. We fitted a set of 0-k mixture models, in which the kth

order chains are either linear or circular and k ranges from
0 to 3, with the training data. We subsequently applied the
fitted models to predict splice sites in testing data. The per-
formances of different models were compared and evalu-
ated by ROC analysis (Figure 8). In addition, we
compared the maximum accuracy (Ac) and the maximum
Matthews correlation efficient (Mc) achieved by each
model (data not shown). The best models were 0–1 mix-
ture models (Figure 8). Both the linear and circular mod-
els performed about the same. The best models picked by
ROC analysis are consistent with those selected by
OMiMa (AIC criterion). The selected models were further
confirmed by a six-fold cross validation.

Using the best model selected above, we then compared
OMiMa with NNSplice and PVLMM. NNSplice is based
on a complex neural network model and is trained by
both true sites and false sites. Since both OMiMa and
NNSplice used the same training and testing data, their
prediction results can be directly compared. We compared
OMiMa's 1-L-1 and 1-C-1 models with the first order
PVLMM (with depth 1) as all have similar model com-
plexity. The results of NNSplice were reported at the NNS-
plice Web site [39]. We found that OMiMa had
comparable prediction accuracy to NNSplice and PVLMM

5
6

Performance comparison on the simulated palindromic TFBSFigure 6
Performance comparison on the simulated palindro-
mic TFBS. The performance comparison of different meth-
ods for predicting the simulated palindromic TFBS A. The x-
axis shows the number of motif sequences used for training. 
The y-axis is the Matthews correlation coefficient of each 
method in predicting the same testing dataset (150 false and 
150 true sites, respectively). The figure shows that OMiMa 
performed significantly better than the other methods, 
regardless the number of training samples.
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Table 3: Performance evaluation using simulated palindromic 
TFBS. Performance comparison of OMiMa (1-L-0) with PWM, 
1stMM, and PVLMM (order 1 and depth 1) for predicting two 
simulated TFBS A and B. The performance was measured as the 
maximum Mc achieved by each model.

Motif PWM 1stMM PVLMM OMiMa

A 0.306 0.414 0.807 0.914
B 0.253 0.428 0.647 0.794
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(Table 5). In addition, OMiMa is much more computa-
tionally efficient than NNSplice and PVLMM [see Addi-
tional file 1].

Comparison with MEM and PVLMM
Given enough training data, we can use more complicated
models than the 0–1 mixture model to improve predic-
tion accuracy. In this evaluation, we test whether 0-k mix-
ture models can compete with the MEM on a much larger
dataset. This large donor site dataset (Yeo data), used to
assess performance of the MEM, was from [40]. The data-
set, extracted from 1821 non-redundant human tran-
scripts, has 8,415 real and 179,438 decoy sites in the
training set, and 4,208 real and 89,717 in decoy sites in
the testing set. Each real site has length 9 bases from -3 to
+6 around the conserved 'GT' of donor splice sites recog-
nized by U-2 type spliceosome. The decoy sites are any
other sequence segments in the exons and introns match-
ing the pattern N3GTN4. So a decoy site can have the
exactly same sequence as a real site. We applied this orig-
inal training and testing sets to assess performance of

OMiMa, where we used only log-likelihood ratio scoring.
In addition, we ran a 3-fold cross-validation, in which the
number of sites in new training and testing sets are
roughly the same as those in the original ones [see Addi-
tional file 1 Table 2]. The top 4 models selected by AIC are
3-C-1, 3-L-1, 2-C-1 and 2-L-1, respectively, consistent with
the ROC analysis. To find the top 4 sub-models of
PVLMM by ROC analysis, we used a series of Markov
orders and/or depths (1 ≤ order ≤ 4 and order ≥ depth) to
predict the same data sets. For convenience, we use nota-
tion "P:k-d" to denote a PVLMM of order k and depth d.
We adopt notation in [23] for sub-models of MEM.

Briefly, the notation has the form "meKsD" or "meKxD",
where "me" stands for maximum entropy; "K" is a
number for the marginal order or the maximum length of
an oligomer in consideration; "D" is the skip number or
maximum skip number determining which positions the
bases of an oligomer are from; "s" stands for skip number
and "x" for the maximum skip. For example, model
"me5s0" considers all marginal distributions of p(xi), p(xi,
xi+1), p(xi, xi+1, xi+2), p(xi, xi+1, xi+2, xi+3), p(xi, xi+1, xi+2, xi+3,
xi+4).

Comparison of the top 4 performers from each model
class suggested that OMiMa performed comparably with
MEM and better than PVLMM (Table 6) (all models' per-
formances suffered on this data set because about 98%
real sites appeared at least once in the decoy set). One
advantage of OMiMa over MEM is that, for the models
with similar performance, OMiMa's models generally
have fewer parameters and thus require fewer training
samples. Our test showed that OMiMa was able to retain
similar performance of MEM even when trained by only

Table 4: TFBS V$AP1_Q4_01 prediction. Comparison of OMiMa 
(1-L-0/1-C-0), PWM, 1stMM, and PVLMM (order 1 and depth 1) 
for AP1 TFBS prediction. The performance results are the 
average values of 10-fold cross validation.

Model Sn Sp Mc

PWM 0.857 0.997 0.860
1stMM 0.839 0.998 0.870
PVLMM 0.789 0.999 0.847
1-L-0 0.866 0.998 0.882
1-C-0 0.874 0.998 0.884

The sequence logos of AP1 TFBS and the donor siteFigure 7
The sequence logos of AP1 TFBS and the donor site. Sequence logos of the AP1 TFBS and the donor splice site. The 
height of bases represents the information content at each position of a sequence motif. (a) the logo of AP1 TFBS. Note that 
the positions 4 and 6 of AP1 TFBS are not perfectly conserved. (b) the logo of donor splice site. The positions 0 and 1 are per-
fectly conserved. The logo plot was created by WebLogo [45].
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60% data of MEM's original training sets [see Additional
file 1 Table 3].

Biological explanation
To compare OMiMa's fitted donor site models to biologi-
cal knowledge about dependencies among positions, we
examined the best donor models for the first donor data-
set (Reese data) and for the second donor dataset (Yeo
data). For convenience, let us mark the invariant 'GT'
nucleotides in the boundary of exon/intron as the posi-
tions 0 and 1 of the donor site, respectively (see Figure
7b). First, based on 1,116 real donor sites in the Reese
original training data, the 0–1 mixture model was selected
as the best model with the following 1st order chain.

-2 5 -1 3 4 -3 -7 -6 -5 -4 7 6 2

We found that this position arrangement is supported by
the following biological evidence of base-pairing between
U1 snRNA and the donor site: (a) 5'/3' compensation
effect: a base pair at position -1 can prevent an aberrant
splicing caused by a mis-matched pair at position 5 [37];
(b) Adjacent base-pair effect: a matching base pair at posi-
tion 3 is rare in the absence of a matching base pair at
position 4 [2,41]; (c) A matching base-pair at the non-
conserved positions 6 and 7 can compensate for a mis-
matched pair at position 2 [42]. Interestingly, the model

also arranged non-conserved positions (-4, -5, -6, -7, 6, 7)
together as it did for the other more conserved positions.
Second, based on 8,415 real donor sites of the Yeo origi-
nal training sites, the 0–3 mixture model was the best
model. The optimized position order of its 3rd order chain
was:

2 5 -1 4 -2 3 -3

We can see that this model is consistent with the above
evidence (a) and (b). In addition, it is well supported by
experimentally verified position dependencies of position
4 on the positions -1, -2, 3 and 5 [37], and the computa-
tionally confirmed dependency of position -3 on position
-2 due to the adjacent base-pair effect [2].

Discussion
The prediction accuracy of a probabilistic model is largely
determined by the effectiveness of the model in character-
izing a biological motif. Since there is large variation of
the signals embedded in biological motifs, an effective
model can be as simple as a consensus sequence or as
complex as a fully connected network model. In this
paper, we described a mixture of Markov models to allow
adjustment of model complexity for different motifs.
Also, we extended the traditional linear chain Markov
model to the circular chain Markov model, which can bet-

Comparison of different 0-k mixture models for donor splice site predictionFigure 8
Comparison of different 0-k mixture models for donor splice site prediction. Comparison of different 0-k mixture 
models for donor splice site prediction by ROC curves. Based on the Area Under Curve (AUC) criterion, the figure indicates 
that: (a) For training data, the best models were 3-L-1 and 3-C-1 while the worst model is 0-L-1 (same as 0-C-1). (b) For test-
ing data, the best models were 1-L-1 and 1-C-1 while the worst models are 3-L-1 and 3-C-1.
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ter represent position dependencies within a motif in
some cases. We presented a novel method, DNJ, for effi-
ciently optimizing position arrangement of a non 0th

order Markov chain to incorporate most dependencies.
We described methods for calculating the EDF and for
selecting the best mixture Markov model. We imple-
mented these methods in our motif finding OMiMa sys-
tem, which is freely available. Finally, we demonstrated
from different aspects in several examples that OMiMa
can improve motif prediction accuracy in biological
sequences.

The interaction of biological macromolecules, such as
transcription factors bound to DNA sites, usually involves
several highly dependent positions functioning as a unit.
Many methods including Markov chains, Bayesian trees,
and neutral networks have been used to model depend-
ency structures within a motif. The Markov model is the
simplest yet can be very powerful when it is optimized.
Our results showed that the optimized Markov models
performed better than the neural network model and
PVLMM, and comparably with MEM for splice site predic-
tion. The optimized Markov model can incorporate both
local and non-local dependencies into the model, which

enables it to compete with tree or network models in pre-
dicting short biological motifs. We also showed that the
optimized Markov model can be an excellent motif pre-
dictor. Moreover, it is also computationally efficient due
to its simplicity.

Model complexity, measured by parameter number, is an
important issue in motif modeling. The more complex a
model, the more data are needed for adequate training.
For many biological motifs, however, the number of
known (experimentally determined) sites is small. This
limits the usage of complex models, such as higher order
Markov models, Bayesian trees, network models or MEM,
even though these models in some cases can perform bet-
ter than the simpler models given enough training data.
For a standard Markov model, the number of its parame-
ters increases exponentially as its Markov order increases.
Without sufficient training data, it is difficult to accurately
estimate all model parameters, even using more robust
methods (e.g. interpolated Markov chains [43,44]). As a
result, lack of sufficient training data often makes it
impractical to train a higher order Markov model. On the
other hand, a low order Markov model may perform
poorly by failing to incorporate more distant dependen-
cies. Several motif models and methods have been devel-
oped to address this issue. One of these models is the
variable length Markov model (VLMM), whose Markov
orders (also called context lengths) can vary among differ-
ent positions. VLMM can effectively reduce Markov model
complexity when the variation of actual context lengths is
large. VLMM, however, is not the best choice to incorpo-
rate long-range dependencies. The position optimized
Markov model (POMM) [21] is able to incorporate
important distant dependencies without increasing
Markov chain order. However, the effectiveness of this
model largely depends on the optimization routine.

More recently, Zhao et al. [24] described the PVLMM in an
attempt to combine advantages of both VLMM and
POMM. The disadvantage of PVLMM is that the number
of possible permutations is the factorial of motif length,
which makes it more computationally expensive. In addi-
tion, the random permutation method used by PVLMM
for optimization is more likely to overfit the model, e.g.,
incorporating non-significant dependencies into the
PVLMM model that can reduce its prediction power. The
optimized mixture of Markov models we presented here
tries to inherit advantages of these existing models while
avoiding their disadvantages. In OMiMa, we replace
VLMM with a mixture of several lower order Markov mod-
els, which are subsequently optimized to account for
long-range dependencies.

In comparison with other leading methods, OMiMa can
incorporate more than the NNSplice's pairwise dependen-

Table 5: Comparison OMiMa with NNSplice and PVLMM for 
donor site prediction. Comparing two OMiMa models (1-L-1 and 
1-C-1) with NNSplice's neural network model and PVLMM 
(order 1 and depth 1) for donor splice site prediction.

Network PVLMM 1-L-1 1-C-1

Ac maximized Ac 0.951 0.927 0.955 0.954
Sn 0.904 0.793 0.928 0.947
Sp 0.963 0.963 0.962 0.955

Mc maximized Mc 0.857 0.786 0.869 0.869
Sn 0.942 0.889 0.938 0.952
Sp 0.951 0.934 0.959 0.954

Table 6: Comparison of OMiMa PVLMM and MEM for donor site 
prediction. Comparing OMiMa with PVLMM and MEM for donor 
splice site prediction. The table shows Matthews correlation 
efficients (Mc) of top 4 models from each model class. The splice 
site data and results of MEM models were from Yeo and Burge 
[23]. In the 3-fold cross validation, the sample sizes for both 
training and testing sets are approximately equal to those of the 
original partition by Yeo and Burge.

MEM PVLMM OMiMa

sub-model Mc sub-model Mc (Org./3-CV) sub-model Mc (Org./3-CV)

me2x5 0.659 P:2-2 0.629/0.631 3-C-1 0.658/0.663
me2x4 0.655 P:3-2 0.626/0.632 3-L-1 0.654/0.657
me2x3 0.653 P:4-2 0.625/0.630 2-C-1 0.647/0.657
me5s0 0.653 P:4-3 0.622/0.628 2-L-1 0.643/0.653
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cies; OMiMa avoids model over-fitting better than the
PVLMM; and OMiMa requires smaller training samples
than the MEM. These are primarily reasons that OMiMa
showed superior performance, in terms of prediction
accuracy, required size of training data or computational
time, over other leading-methods in our results.

With any model selection procedure, the possibility of
choosing a model that drastically over- or underfits is a
concern. OMiMa employs AIC and BIC, two standard cri-
teria, that are widely used because they tend to avoid
extreme over- or underfitting. Both have theoretical sup-
port [27,28]. In our application, neither criterion worked
well when using the DF (results not shown); but both,
particularly AIC, performed well when using EDF. We
found that models selected by AIC using EDF were con-
sistent with models selected by cross-validation and by
ROC analysis.

Our OMiMa approach has two features that can be limita-
tions when the size of the training data is small. First, the
chi-square test that partitions motif positions into those
with dependencies and those without dependencies will,
like any statistical test, make mistakes, and its statistical
power to detect dependencies will suffer with small train-
ing samples. Although the test will not always provide a
correct partition, our approach should adapt to strong or
weak dependencies overall and improve prediction when
dependencies are strong. In addition, weakly dependent
positions mistakenly placed in the set with no dependen-
cies are often adequately modeled by a 0th order chain,
whereas independent positions mistakenly assigned to
the set with dependencies will be placed by the DNJ algo-
rithm in locations with the least impact on the kth order
chain. Second, the EDF that we used in model selection is
an estimate based on the training data. For degenerate
sites, the estimate should be accurate with even small
training samples; whereas for conserved sites a larger
training sample might reveal additional bases and change
the EDF. Still, such additions should be minimal and
would generally induce small changes in the EDF, so we
expect little impact on model selection. Any methods that
employ chi-square techniques to test for dependent sites
face similar limitations. Nevertheless, OMiMa with its rel-
atively small parameter space should adapt to small train-
ing datasets better than many competitors. Of course, any
motif finding algorithm would do better with larger train-
ing samples.

OMiMa places no limit on the length of sequences that it
can scan, and it could be used to find TFBS in any
sequenced organism as long as a training motif set is avail-
able. The larger the genome evaluated, the more false pos-
itives are likely to be declared. Although OMiMa's
prediction accuracy will help, other approaches to reduc-
ing false positives will be needed. Cross-species compari-
sons and relative location compared to transcription start
sites have been used to reduce false positives and could be
used with OMiMa too. Furthermore, OMiMa's ability to
accurately and quickly identify splice sites should be easy
to incorporate into probabilistic gene-prediction pro-
grams where correct prediction of splice sites is critical.

Conclusion
Our optimized mixture of Markov models represents an
alternative to the existing methods for modeling depend-
ent structures within a biological motif. Unlike existing
methods, our model is conceptually simple and effective,
which has advantages in a large scale motif prediction. In
particular, with its ability to minimize model complexity,
our method can work effectively even with limited train-
ing data. The optimized mixture of Markov models is
implemented in our computational tool OMiMa, which
can use a variety of mixture models for motif prediction.
OMiMa, in which most parameters are configurable, is
freely available to all users.
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Table 7: 

TFBS 0th chain 1st chain

A 6 7-4-1-10-3-8-5-0-11-9-2
B 5 2-9-6-10-1-8-3-7-4-11-0
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