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EDITORIAL REVIEW

Striking the right balance; the role of cytokines in mycobacterial disease
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Mycobacteria are intracellular parasites that have been the
scourge of man since the earliest days of recorded history. They
infect monocytic cells and, in susceptible individuals, cause
chronic inflammation and progressive scarring [1]. It is clear that
individual susceptibility to mycobacterial disease varies greatly,
and that some are relatively resistant. Such individuals eliminate
mycobacteria through a combination of innate and acquired
immunity, which involves bidirectional interactions between
macrophages and lymphocytes. However, protection is not only
dependent on the host, but also on the aggressiveness of the
mycobacterial strain involved.

Macrophages are the first line of defence against mycobac-
teria, and when infected rapidly become activated [2] and
synthesize proinflammatory cytokines, including tumour
necrosis factor (TNF), IL-hI and /1, IL-6 [3-5] and granulocyte-
monocyte colony-stimulating factor (GM-CSF) [6]. It is certain
that other cytokines are secreted as well, and so one must be
careful before assigning a definitive role to a particular cytokine.
Nevertheless, sustained synthesis of TNF, IL-2 and GM-CSF
[6-10] is associated with killing, whereas IL-la and IL-6 can
promote mycobacterial growth, at least of Myco. aNium [7,10].
Various mycobacterial products can activate macrophages.
Peptidoglycan and their fragments stimulate IL-1, IL-6 and
TNF production (reviewed in [I11). Lipoarabinomannan
(LAM) has the same effect [12,13], particularly in the presence of
interferon-gamma (IFN-T) [12]. It is also apparent that LAM
has differential effects on macrophages from different sources
[14].

Three lines of evidence emphasize the importance of TNF
(and possibly other macrophage-derived cytokines) in control-
ling mycobacterial infections. First, virulent strains ofmycobac-
teria induce less TNF synthesis than less virulent ones of the
same species [5,15]; second, LAM from different strains of
Myco. tuberculosis induce strikingly different levels ofTNF and
other cytokines [13]; and finally, administration of anti-TNF
antibodies to mice infected with bacille Calmette-Guerin (BCG)
inhibits hepatic granuloma formation and results in their death
from overwhelming infection [16]. Coincidently, this treatment
also inhibits hepatic TNF synthesis. These observations demon-
strate the importance of macrophage activation in the defence
against mycobacteria. This raises questions about the role of
IFN-y, a powerful macrophage activator which could provide a
link between innate and acquired T cell-mediated immunity,
which was shown many years ago to be important in defence
against mycobacteria [17].
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There is evidence for the involvement of IFN-y at an early
stage in the defence, especially from in vivo studies on mice
which have defined a genetic locus on chromosome 1 (variously
called Bcg, Ity, and Lsh [18,19]) which contains a gene (or genes)
that determines susceptibility to mycobacteria as well as other
intracellular parasites (reviewed in [20]). Macrophages from
resistant strains infected with an appropriate intracellular
pathogen, secrete factors that induce natural killer (NK) cells to
produce IFN-y, whereas macrophages from susceptible strains
lack this capacity [21]. The nature of the factors involved is not
certain, but TNF enhances the effect [22]. However, these
experimental data should not be over-interpreted, because
immune protection against BCG could be qualitatively different
from that to Myco. tuberculosis, as indicated by experiments
with 'CD8 knockout mice' that were shown to be resistant to
BCG and susceptible to Myco. tuberculosis [23].

Infected macrophages also present antigen to T helper cells.
Differences in CD4 T cell epitopic profiles are beginning to
emerge between normal purified protein derivative (PPD)-
positive individuals and patients with tuberculosis [24], and
might be expected to influence the pattern of cytokine secretion
and so influence resistance to the infection. This issue has
acquired special significance since the identification of CD4+ T
cell subsets with a propensity to secrete distinct cytokine
profiles: IFN-y, IL-2, IL- 12 in the case ofTh 1 cells, and IL-4, IL-
5 and IL- IO in the case ofTh2 cells [25]. Typically, human T cell
clones responding to PPD raised in vitro correspond to the Th 1
phenotype and produce IL-2 and IFN-y [26], but prior exposure
to IL-4 before cloning induces ThO and Th2 rather than Thl
cells [27]. This suggests that the situation is likely to be more
complicated in vivo, and this is supported by studies in humans.
These have shown that T cells from tuberculosis patients
synthesize IL-4 and IL-5 as well as INF-y and IL-2, when
stimulated in vitro [28], thus indicating the presence of Th 1 and
Th2 cells, or of lymphocytes with a much broader cytokine
repertoire, resembling the ThO cell of the mouse [29]. Studies of
T cells in the skin of subjects undergoing mycobacterial
reactions also suggest the presence of cells capable of producing
cytokines associated with both ThI and Th2 phenotypes [30].
The situation is further complicated by recent observations
showing that CD8+ T cells can also be separated into subtypes
according to their capacity to secrete different cytokines [31].

Much more needs to be known about defences against
mycobacteria, but the observations so far discussed demon-
strate an important role for TNF and IFN-y. However, in this
context as in others these cytokines can also contribute to
pathogenesis, as exemplified by two papers in this issue of
Clinical and E.xperimental Immunology.
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Cadranel et al. (page 51) report that peripheral blood
monocytes from patients express greater numbers of TNF
receptors than controls, and that a greater proportion of them
are complexed with TNF. This provides evidence for a general-
ized macrophage activation in TB, and of increased TNF
synthesis. These findings complement those ofOgawa et al. [32],
who had previously shown that patients' peripheral blood
monocytes produce more TNF. They also invite comparison
with the studies of TNF levels in mice infected with BCG [16].

Wangoo and colleagues (page 43) concentrate on the role of
IFN-y, and demonstrate that it stimulates alveolar macrophages
to produce platelet-derived growth factor B chain (PDGF-B),
but not transforming growth factor (TGF-/I). They also report
that supernatants from PPD-stimulated lymphocytes have the
same effect, and that this can be blocked by antibodies to IFN-;'.
PDGF and TGF-/3 have previously been localized to sites of
pulmonary fibrosis [33-37], and so Wangoo et al. use their data
to infer that PDGF, rather than TGF-fl, is responsible for the
progressive fibrosis which is so often the feature of tubercular
disease. This is an interesting hypothesis, but more experimental
information is needed in its support, because (i) the data refer to
the effect of IFN-' on isolated alveolar macrophages and not to
cytokines produced by the cells adjacent to the macrophages in
the lesion; and (ii) infected macrophages exposed to mycobac-
terial products might respond by producing a different set of
cytokines, including TGF-JJ.

Increased expression of PDGF in pulmonary fibrosis has
been demonstrated, but it is necessary to be cautious when
invoking a causal link between the two. Not least because
experimental precedents indicate that PDGF and TGF-fl can be
expressed simultaneously in models of fibrosis, with PDGF
having a relatively minor influence on matrix synthesis, as for
example in the Thy 1.1 model of experimental nephritis [38,39].

Nevertheless, it seems reasonably clear that TNF-Y and
lFN-' have a dual role in the immunity and pathology of
mycobacterial disease; and that different forms of T cell
immunity could determine the outcome. Still, the key issue
remains: which biochemical events lead to the elimination of
M!co. tuberculosis'? Unfortunately, none of the processes
described so far suggest a strong candidate for human tubercu-
losis.
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