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SUMMARY

Recombinant IL-2 (rIL-2) has been used alone or in combination with other chemotherapeutic
agents to enhance host defences against cancer. Prolonged administration of high doses, required for
clinical efficacy, may precipitate serious dose-limiting toxicity. rIL-2-induced ‘vascular leak
syndrome’ leads to hypotension, renal insufficiency, respiratory disturbances and other organ
dysfunctions. Serial measurements of serum cytokines and the acute phase protein C-reactive protein
(CRP) were performed on nine patients who received high-dose i.v. continuous therapy with rIL-2.
The influence of these immunological parameters upon alterations in patients’ weight and serum
albumin, as indicators of toxicity, was assessed. All patients experienced weight increases during the
cycle (3-11% of total body weight). The serum levels of tumour necrosis factor (TNF-o) and CRP
were highly predictive of alterations in patients’ weight (both P <0-001), while no correlation was
found with IL-6 and weight change. Serum albumin fell linearly throughout the infusion cycle, but
this showed no correlation with variations in serum levels of IL-6, TNF-«, or CRP. The complement
components C3 and C4 were significantly reduced at the end of the infusion, suggesting a possible role
for this cascade system in mediating these clinical changes. The strong association between serum
TNF-a and weight change, not previously documented, further supports the hypothesis that TNF-a

is a key mediator in the pathogenesis of the ‘vascular leak syndrome’.
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INTRODUCTION

IL-2 is a 15-5-kD cytokine produced by T lymphocytes in
response to an antigenic or mitogenic stimulus [1]. Increased
production of this cytokine amplifies the immunological re-
sponse to such a challenge. IL-2 stimulates the activation,
proliferation and differentiation of various T and B lymphocyte
subsets [2], it potentiates the cytotoxicity of natural killer (NK)
and lymphokine-activated killer (LAK) cells [3], and induces the
release of a number of other cytokines including IL-1, IL-2,
IL-4, IL-5, IL-6, tumour necrosis factor-alpha (TNF-«), and
interferon-gamma (IFN-y) [4,5]. Early animal studies docu-
mented that IL-2, given by the i.p. route, induced regression of
experimentally induced liver tumours, both immunogenic and
non-immunogenic [6]. With the development of recombinant (r)
DNA technology, rIL-2 has been administered to patients with
advanced cancer. However, responses in man to date have been
shown to be less beneficial and more selective [7].

The early studies in man used high doses of rIL-2 delivered
as bolus or continuous infusions. However, such therapy is

Correspondence: D. J. Deehan, Department of Surgery, Medical
School Buildings, Polwarth Building, Aberdeen AB9 2ZD, UK.

366

associated with a significant morbidity. The development of a
‘vascular leak syndrome’ is one of the more severe and common
side effects identified with this form of anti-cancer therapy [8].
This is related to a systemic decrease in peripheral vascular
resistance, and increased vascular endothelial cell permeability
leading to the extravasation of intravascular fluid and albumin.
Such fluid shifts, if sustained, increase body weight, lead to the
development of significant peripheral oedema and prominent
effusions into anatomical compartments, and may precipitate
organ damage. Pulmonary dysfunction is a recognized adverse
event, with a few patients developing hypoxia secondary to
adult respiratory distress syndrome (ARDS) [9].

The pathogenesis of this systemic disorder, however, is
poorly understood. Recombinant IL-2 is known to induce the
production and release of a number of cytokines, IL-1, TNF-«,
IL-6 from monocytes/macrophages, and elevated serum con-
centrations of these cytokines are found in patients receiving
rIL-2 [10,11]. TNF-« causes human endothelial cells in vitro to
become elongated, overlap with each other and rearrange their
actin filaments, thereby increasing vascular permeability [12].
Elevated circulating concentrations of IL-5 increase the periph-
eral circulating eosinophil levels. The latter cells, when exposed
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to TNF-a, produce superoxide radicals which are directly toxic
to endothelial cells. In vitro experiments have found that T cells,
when stimulated with rIL-2, express surface receptors for
complement breakdown products and are capable of cleaving
the central C3 component of the complement cascade [13].
Subsequent generation of active C3a and CS5a metabolites, by
interacting with mast cells and causing the release of histamine
and kinins, can also increase vascular permeability. Increased
vascular endothelial cell expression of a number of intercellular
adhesion molecules (endothelial leucocyte adhesion molecule-1
(ELAM-1), intercellular adhesion molecule-1 (ICAM-1)) is also
found with systemic rIL-2 therapy [14]. These surface receptors
enhance leucocyte-endothelial interactions, and the released
products of these activated cells may disrupt the inter-endothe-
lial junctions.

Experimental evidence for the participation of cytokines,
complement and altered expression of vascular endothelial
surface markers is convincing, but changes in immunological
variables correlate poorly with clinical findings. In this study,
the immunological, biochemical and clinical indices of nine
patients who received continuous i.v. infusion of rIL-2 in the
treatment of advanced colorectal cancer have been investigated.
The data have been examined for correlations between clinical
and laboratory findings.

PATIENTS AND METHODS

Patients

Nine patients with metastatic or locally advanced colorectal
carcinoma (Dukes C or D) were studied. All patients had an
ambulatory performance status (Eastern Cooperative Oncology
Group 0-1, Karnofsky >80%) with a life expectancy greater
than 3 months. Liver and renal function tests were within
normal limits, and platelet and leucocyte counts were above
120 x 10°// and 3 x 10°%//, respectively. No patient had received
systemic chemotherapy, radiotherapy or immunotherapy for
the 4 weeks before the rIL-2 infusion. All patients gave written
informed consent to participate in the study, which had been
approved by the Joint Ethical Committee of the Grampian
Health Board and Aberdeen University. Patients were moni-
tored in a surgical high-dependency unit and hourly recordings
of pulse, blood pressure, temperature and urine output were
documented.

Dosage of rIL-2

A constant i.v. infusion of rIL-2 (Proleukin, Eurocetus Corp-
oration, Amsterdam, The Netherlands) was administered for 5
days. Dosage was calculated according to the schedule, 18 x 10¢
U/m? per 24 h for the total of 120 h. No significant alteration in
rate of infusion was required due to severe toxicity.

Timing of sample collection and clinical recordings

Peripheral blood was collected without the use of a tourniquet at
times 0, 12, 24,48, 72,96 and 120 h from the start of the infusion.
Blood was allowed to clot and then spun at 1000 g for 10 min.
Serum was removed and stored at —80°C until required for
analysis.

Weight recordings
The weights of all patients were recorded daily using the same
scales, which were regularly calibrated.

Albumin and C-reactive protein

Serum concentrations of albumin were measured by dye binding
(bromocresol green) on a DAX-72 autoanalyzer (Bayer Instru-
ments, Basingstoke, UK) using Bayer reagents. C-reactive
protein (CRP) was measured by peak rate nephelometry on a
Beckman ICS Analyzer II (Beckman Instruments, High
Wycombe, UK).

Cytokine assays: IL-6 and TNF-o

Serum concentrations of IL-6 and TNF-a were determined
using the ‘sandwich’ ELISA with a commercially available assay
(Quantikine, British Bio-technology Ltd, Abingdon, UK).
Samples were analysed in duplicate and intraplate variation was
found to be less than 3%. Results were expressed as pg/ml. The
minimum detectable level for IL-6 was 3 pg/ml, and that for
TNF-a was 10 pg/ml.

Statistical analysis

Regression analyses of the data were performed using the SPSS
Windows package. All analyses considered the data to be non-
parametric, and analyses of grouped data were carried out with
log-transformed data using the paired r-test.

RESULTS

IL-6

Baseline IL-6 serum values were below 30 pg/ml in 8/9 patients.
In one patient, the basal level was excessively high at 151 pg/ml.
With the exception of this patient, serum levels rose to a peak by
12-48 h of commencing the infusion of rIL-2. Median peak level
was 42 pg/ml, and this was sustained in all eight patients until
cessation of therapy. In the patient with the high resting level,
IL-6 fell paradoxically with the infusion. The serum levels did,
however, remain above 30 pg/ml throughout therapy. The
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Fig. 1. Weight change with duration of rIL-2 infusion at each 24-h
period (mean +s.e.m.)
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Table 1. Correlation of serum cytokine (tumour necrosis factor-alpha (TNF-a), IL-6)
and acute phase protein (CRP) levels and weight change over following 24-h period

Significance
B SE. B Beta T P
TNF-a 1-53x10-2 429x 104 0-87 11-93 <0-001
CRP 418 x10-? 1-42x10-3 0-41 2:36 <0-001
IL-6 6:3x10-3 1-6x10-3 2-87x10-3 0-04 =0-39

maximum serum level of IL-6 attained by any patient during
therapy was 137 pg/ml. The median time to reach peak levels
was 48 h from start of therapy.

TNF-o

All patients studied exhibited a detectable serum level of TNF-«
at two or more time points. Two patients had a basal detectable
circulating concentration of TNF-o (18 and 32 pg/ml). Five
patients had no rise in serum concentration until 48 h into the
cycle. Median time to reach peak levels was 72 h. Maximum
serum concentration of TNF-a attained was 151 pg/ml.

CRP

Four patients had a basal CRP value of less than 15 mg/dl.
However, five patients had a resting serum concentration
greater than 50 mg/dl (range 51-135 mg/dl, median 93 mg/dl).
All but one patient exhibited an acute phase response to the
rIL-2 infusion with elevations in serum levels of CRP. In the
one exception, serum levels (including basal) did not rise above
10 mg/dl. This patient also had an uncharacteristic IL-6
response with an abnormally high basal level, which fell upon
commencement of therapy. Median time to reach peak serum
concentrations was 72 h, with maximum value attained being
277 mg/dl.

Weight of patients

There was a wide range in initial weights of the patients,
documented before the start of the rIL-2 infusion (57-2-81-4 kg).
All patients exhibited a weight gain; the range was 2-1-8-4 kg
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Fig. 2. Serum tumour necrosis factor-alpha (TNF-a) concentration
versus 24-h weight change.

(3-11%) (Fig. 1). Median increase was 4-6 kg, representing a
7-6% increase in weight over a 120-h infusion of rIL-2. Most
weight gain occurred late in the cycle. Median time to reach peak
weight increase was 96 h. Least weight change was found in one
patient with no significant acute phase protein or cytokine
response to the immunotherapy.

Influence of cytokine level upon weight (Table 1)

Serum TNF-a concentration at an individual time point was
compared with the change in weight of the patient over the
subsequent 24-h period. A plot of serum TNF-a versus weight
change for all time points in the nine patients (n =45) is shown in
Fig. 2. Regression analysis of these two variables found a
significant correlation (>=0-77, P <0-001). Dependency of the
two variables could be related by the equation:

Weight change (+ ve)=0-213+4(0-0152 x serum [TNF-a])

The serum level of CRP was also found to be a significant
predictor of a weight change, but less so than serum TNF-a
(r*=0-409, P <0-01). The interdependency of these variables is
shown in Fig. 3. The equation for predicting the relationship of
the two is:

Weight change (+ ve)=0-601 + (0-0059 x serum [CRP})

No improvement in the prediction of mass change could be
achieved by using the two variables together. In general, greatest
weight increase was found in patients with elevated serum
concentrations of both TNF-« and CRP.

There was little correlation between the serum level of IL-6
and corresponding change in weight over the following 24-h
period.
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Fig. 3. Serum C-reactive protein (CRP) concentration versus 24-h weight
change.
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Table 2. Correlation of serum cytokine (tumour necrosis factor-alpha (TNF-a), IL-6)
and acute phase protein (CRP) levels and albumin change over following 24-h period

B SE. B

Significance
Beta T (P)

TNF-a —1:5%x10-3
CRP 2:5%x10-3
IL-6 3-34x 103

2:03x10-3
3-6x10-3
6:1x10-3

—4-09 x10-2

—0-21
0-14 0-7
8-6x10-? 0-55

=0708
=0-416
=0518

Influence of cytokine level upon albumin change (Table 2)
All patients experienced a fall in the serum level of albumin
during the rIL-2 infusion. The median net fall over the 120-h
period was 6 g/l, with a range of 3-13 g//. The least change was
identified in the patient with a poor cytokine and acute phase
response, who also had a low albumin level (26 g//). Serum
albumin levels fell linearly during the rIL-2 infusions, as seen in
Fig. 4. However, albumin levels returned to pretreatment values
within 5 days of cessation of therapy.

No correlation was identified between variations in serum
albumin concentration and the circulating levels of IL-6, CRP
and TNF-q, either individually or in combination.

Complement levels

Circulating levels of the complement components C3 and C4 fell
progressively during the 120-h rIL-2 infusion. The C3 compo-
nent fell from a mean pretreatment level of 211 + 12-3 mg/dl to
a level of 165+ 11-:07 mg/dl at 120 h (P<0-05) (Fig. 5). The
complement component C4 fell from a baseline value of
39-1+3-7 mg/dl to post-treatment level of 27-2+3-4 mg/dl
(P<0-05) (Fig. 6). Both complement components (C3, C4)
returned to baseline levels within 10 days of cessation of
therapy.
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Fig. 5. Serum C3 component during rIL-2 infusion (meanz+s.e.m.)
(*P <0-05, comparing values at time 0 h and 120 h).
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Fig. 4. Serum albumin level during rIL-2 infusion (mean+s.e.m.)
(*P <0-05, comparing values at time 0 h and 120 h).

Fig. 6. Serum C4 component during rIL-2 infusion (mean+s.e.m.)
(*P <0-05, comparing values at time 0 h and 120 h).
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DISCUSSION

Immunotherapy with rIL-2, either alone or in combination with
a number of chemotherapeutic agents, has been used to induce
tumour regression in patients with advanced cancers [15]. The
best clinical and pathological response rates have been achieved
with renal carcinoma and malignant melanoma, and are of the
order of 35% [16). However, the administration of high-dose
therapy for prolonged periods, required to achieve such re-
sponses, has been associated with a significant level of morbidity
[7,17].

Alterations in haemodynamic homeostasis represent one of
the most serious and often dose-limiting toxicities [18]. Therapy
may cause increased systemic vascular permeability, with ‘third-
space’ fluid retention resulting in weight gain, peripheral
oedema and, if severe, can precipitate circulatory failure and
organ dysfunction. Invasive monitoring has identified minimal
changes in pulmonary capillary wedge pressure, but an increase
in left ventricular end-diastolic volume consequent upon low-
ered ejection fractions [19,20]. While rIL-2 is known to be a
direct myocardial depressant [21], this is not believed to be the
principal mechanism behind such altered haemodynamics, but
rather rIL-2-mediated decrease in peripheral vascular resis-
tance. The exact pathogenesis of this fluid shift into the
extravascular space is incompletely understood, but TNF-« is
believed to be an important mediator of this extravasation.
TNF-a is detected in high concentrations in the serum of
patients receiving rIL-2, when given either as a bolus or
continuous infusion [22]. In our study, persistent elevations of
serum TNF-o were documented. Also, we found a strong
correlation between serum levels of TNF-a at a given time point
and increase in weight over the ensuing 24 h. In vitro culture of
vascular endothelial cells with TNF-« leads to rearrangement of
intracellular cytoskeletal structure, with narrowing of cell shape
[12], and increased expression of a series of intercellular
adhesion molecules [23]. Altered shape may expose a greater
pore space for fluid transfer, and changes in the level of
expression of some adhesion molecules results in high local
accumulations of activated leucocytes. Furthermore, serum
from patients with adult ARDS, a condition not dissimilar to
that seen in patients with more severe toxicity from rIL-2, is
found to contain very high levels of TNF-a [24-26]. IL-2
stimulation of monocytes induces production of IL-18, both in
vitro and in vivo [27,28], and this cytokine is believed to augment
the vascular reactivity of TNF-a.

Both IL-1p8 and TNF-« are capable of inducing the vascular
expression of ELAM-1, selectins present on endothelial cells at
sites of inflammation [29]. Also, IL-2 induces an increased
expression of vascular cell adhesion molecules (vascular cell
adhesion molecule-1 (VCAM-1)) and ICAM-1 on endothelial
cells and dermal tissues [30]. These surface molecules are
believed to contribute to the vascular ‘leak’ by increasing the
adherence of a number of activated leucocytes to the endo-
thelium [31]. These trapped cells then release locally high
concentrations of various proinflammatory mediators, such as
C3a, C5a and superoxide radicals, which may disrupt the
endothelial intercellular junctions, leading to increased vascular
permeability. IL-2, therefore, probably mediates its vascular
effects through the combined actions of TNF-a and IL-18.
However, IL-18 is detected infrequently in the serum of
patients receiving rIL-2, possibly because most of it is

retained intracellularly and the serum half-life of IL-18 is less
than 12 h.

Immunotherapy with rIL-2 is found to induce a peripheral
blood eosinophilia [32]. The increase in this cell type occurs
towards the end of the infusion, with peak levels being attained
approximately 2-3 weeks after cessation of therapy. With the
associated lymphopenia, eosinophils may account for up to
50% of the peripheral blood leucocyte count. This effect is
mediated through IL-2 induction of IL-5 release from mono-
cytes. Incubation of eosinophils with TNF-a in vitro generates
large quantities of superoxide radicals which are capable of
inducing endothelial cell damage [33]. There is, however, a lack
of temporal correlation with the clinical effects, as weight
gain occurs during the infusion and resolves after cessation
[34].

Activation of the biologically active molecules of the
complement system results in the generation and release of a
number of reactive metabolites capable of decreasing vascular
resistance [35]. Activated components of the alternate (Ba), and
classical (C4d) pathways increase 8- and 4-8-fold at the end of a
5-day infusion of rIL-2, respectively, compared with pretreat-
ment values [13]. CD3* cells stimulated with IL-2 show
increased expression of receptors for breakdown products of
complement, and can cleave native C3 in vitro. A correlation has
also been found between plasma levels of C3a and weight gain
during rIL-2 infusion [36]. In our study, both C3 and C4 fell
significantly by the end of the infusion cycle. We did not attempt
to correlate changes in the levels of these components with the
clinical parameters, as they represent the net effect of consump-
tion and generation of the two mediators. It would appear that
in our patients activation of the complement pathway occurred
at such a rate that hepatic production was unable to match
consumption during the rIL-2 infusion. Confirmation of this
theory would require measurement of breakdown products and/
or formation of multimolecular complexes or detection of neo-
antigens in classical and alternate pathway components. We
were unable to perform these assays due to the lack of available
plasma, but hope to do so in a future study.

In our study, serum albumin was found to fall linearly
throughout the 120-h period of infusion of rIL-2. This is
unlikely to be due to the semi-starved state of the patients, as
previous workers have not found complete starvation over a
similar period of time to influence serum albumin levels
significantly [37). Neither was this fall secondary to a dilution
effect, as no significant variation in the mean peripheral blood
haematocrit was identified during the cycle (pre-cycle
0-3540-02; post-cycle 0-36+0-02). No correlation was identi-
fied, however, between serum levels of IL-6, TNF-x or CRP ata
certain time point and change in the circulating levels of albumin
over the following 24-h period.

Serum levels of IL-6 are elevated in patients with severe
burns [38] or sepsis [39], and correlate with the magnitude of the
trauma. Elevations in the serum concentrations of IL-6 in these
patients, corresponding to high TNF-a levels, reflect activation
of the monocyte. In our patients there was a variable elevation
of IL-6 with rIL-2 infusion, but no significant correlation with
weight gain. The role of other monocyte-derived mediators,
induced by the administration of rIL-2, needs to be investigated.
Serum concentrations of prostaglandin E, (PGE,) have been
found to rise from baseline (<30 pg/ml) to excessively high
levels (200-500 pg/ml) during rIL-2 infusions (authors’ unpub-
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lished work), and this eicosanoid may, by inhibiting activation
of the monocyte, limit or ameliorate such toxicity.

A weaker (but significant) correlation was found between
weight increase and the serum concentration of CRP. CRPis an
acute phase reactant produced by the liver in response to
elevated monocyte production of IL-1, TNF-a and IL-6. IL-6 is
considered the final mediator in the induction of hepatic
production. CRP is a co-factor with IL-2 in the generation of
LAK cells. It is also an opsonin for pathogenic bacteria, and
high circulating concentrations can activate the classical arm of
the complement system [40]. This correlation, however, may be
an epiphenomenon, as the effect of CRP on the vascular
endothelium is unknown. T lymphocytes isolated from patients
who received infusions of rIL-2 had increased surface ex-
pression of receptors for both breakdown products of comple-
ment and CRP [41]. CRP may synergize with rIL-2 in stimulat-
ing the activity of T (CD3+) cells which cleave the mature C3
component of complement. In this way, CRP is capable of
activating complement via two related pathways. The activation
of complement generates high concentrations of C3a and C5a
which are able to increase vascular permeability. CRP may
further activate leucocytes, locally chemoattracted and adher-
ent to endothelial cells, to generate and release large quantities
of locally vasoreactive intermediates.

This study has shown a significant correlation between the
serum levels of TNF-a and CRP and increases in body weight, in
patients undergoing immunotherapy with rIL-2 infusion. To the
best of our knowledge, this is the first documentation of such
correlations. This lends indirect support to the postulate that
TNF-a may be the key mediator in the etiology of the vascular
leak syndrome. However, it has yet to be seen whether
reductions in patient serum levels of TNF-a could ameliorate
this toxicity from rIL-2 administration and lead to safer
therapy.
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