Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1991 Jul;85(1):121–127. doi: 10.1111/j.1365-2249.1991.tb05692.x

Immunological tolerance induced by liver grafting in the rat: splenic macrophages and T cells mediate distinct phases of immunosuppressive activity.

S Yoshimura 1, S Gotoh 1, N Kamada 1
PMCID: PMC1535718  PMID: 1829989

Abstract

In the rat combination DA into PVG, liver grafts are not rejected but induce donor-specific transplantation tolerance. We have examined the immunosuppressive properties of spleen cells from PVG recipients of DA liver grafts at various times post-grafting. The results indicate the development of two phases of cell-mediated suppressor activity, which appear to be mediated by separate spleen cell populations. Mitomycin-C-treated spleen cells taken from animals between 5 and 28 days post-grafting were able to suppress rat mixed lymphocyte reactions (MLRs). These 'early' suppressor cells were glass adherent and absent from populations purified by passage through nylon wool or G10 Sephadex columns. Suppression of MLR by purified glass adherent cells was not specific for either stimulator or responder haplotypes and was blocked by indomethacin. Nylon wool purified T cells were not suppressive at this time. Spleen cell suppressor activity declined to background levels after 35 days post-grafting. However, spleen cells from long-term surviving liver graft recipients (20 weeks or more) were again able to suppress MLR; the 'late' suppressor cells were nylon wool non-adherent and suppression was specific for the donor (DA) MHC type. We conclude that liver grafting in this combination generates early and late phases of suppression among spleen cells, that the early phase is produced by macrophages and mediated by prostaglandins and that the late phase is dependent on allospecific suppressor T cells.

Full text

PDF
121

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber W. H., Hutchinson I. V., Morris P. J. The role of suppressor cells in maintaining passively enhanced rat kidney allografts. Transplantation. 1984 Nov;38(5):548–551. doi: 10.1097/00007890-198411000-00024. [DOI] [PubMed] [Google Scholar]
  2. Batchelor J. R., Phillips B. E., Grennan D. Suppressor cells and their role in the survival of immunologically enhanced rat kidney allografts. Transplantation. 1984 Jan;37(1):43–46. doi: 10.1097/00007890-198401000-00013. [DOI] [PubMed] [Google Scholar]
  3. Glaser M. Indomethacin-sensitive suppressor cells regulate the cell-mediated cytotoxic response to SV 40-induced tumor-associated antigens in mice. Eur J Immunol. 1980 Jul;10(7):489–495. doi: 10.1002/eji.1830100702. [DOI] [PubMed] [Google Scholar]
  4. Goodwin J. S., Bankhurst A. D., Messner R. P. Suppression of human T-cell mitogenesis by prostaglandin. Existence of a prostaglandin-producing suppressor cell. J Exp Med. 1977 Dec 1;146(6):1719–1734. doi: 10.1084/jem.146.6.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gordon D., Bray M. A., Morley J. Control of lymphokine secretion by prostaglandins. Nature. 1976 Jul 29;262(5567):401–402. doi: 10.1038/262401a0. [DOI] [PubMed] [Google Scholar]
  6. Greene W. C., Fleisher T. A., Waldmann T. A. Soluble suppressor supernatants elaborated by concanavalin A-activated human mononuclear cells. I. Characterization of a soluble suppressor T cell proliferation. J Immunol. 1981 Mar;126(3):1185–1191. [PubMed] [Google Scholar]
  7. Hall B. M. Mechanisms maintaining enhancement of allografts. I. Demonstration of a specific suppressor cell. J Exp Med. 1985 Jan 1;161(1):123–133. doi: 10.1084/jem.161.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hall B. M., Pearce N. W., Gurley K. E., Dorsch S. E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J Exp Med. 1990 Jan 1;171(1):141–157. doi: 10.1084/jem.171.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Humes J. L., Bonney R. J., Pelus L., Dahlgren M. E., Sadowski S. J., Kuehl F. A., Jr, Davies P. Macrophages synthesis and release prostaglandins in response to inflammatory stimuli. Nature. 1977 Sep 8;269(5624):149–151. doi: 10.1038/269149a0. [DOI] [PubMed] [Google Scholar]
  10. Hutchinson I. V. Suppressor T cells in allogeneic models. Transplantation. 1986 May;41(5):547–555. doi: 10.1097/00007890-198605000-00001. [DOI] [PubMed] [Google Scholar]
  11. Kamada N., Calne R. Y. A surgical experience with five hundred thirty liver transplants in the rat. Surgery. 1983 Jan;93(1 Pt 1):64–69. [PubMed] [Google Scholar]
  12. Kamada N., Davies H. S., Roser B. J. Fully allogeneic liver grafting and the induction of donor-specific unreactivity. Transplant Proc. 1981 Mar;13(1 Pt 2):837–841. [PubMed] [Google Scholar]
  13. Kamada N., Davies H. S., Wight D., Culank L., Roser B. Liver transplantation in the rat. Biochemical and histological evidence of complete tolerance induction in non-rejector strains. Transplantation. 1983 Apr;35(4):304–311. [PubMed] [Google Scholar]
  14. Kamada N., Shinomiya T. Serology of liver transplantation in the rat. I. Alloantibody responses and evidence for tolerance in a nonrejector combination. Transplantation. 1986 Jul;42(1):7–13. doi: 10.1097/00007890-198607000-00002. [DOI] [PubMed] [Google Scholar]
  15. Kamada N., Shinomiya T., Tamaki T., Ishiguro K. Immunosuppressive activity of serum from liver-grafted rats. Passive enhancement of fully allogeneic heart grafts and induction of systemic tolerance. Transplantation. 1986 Dec;42(6):581–587. doi: 10.1097/00007890-198612000-00002. [DOI] [PubMed] [Google Scholar]
  16. Kamada N., Teramoto K., Baguerizo A., Ishikawa M., Sumimoto R., Ohkouchi Y. Cellular basis of transplantation tolerance induced by liver grafting in the rat. Extent of clonal deletion among thoracic duct lymphocytes, spleen, and lymph node cells. Transplantation. 1988 Jul;46(1):165–167. doi: 10.1097/00007890-198807000-00034. [DOI] [PubMed] [Google Scholar]
  17. Kamada N. The immunology of experimental liver transplantation in the rat. Immunology. 1985 Jul;55(3):369–389. [PMC free article] [PubMed] [Google Scholar]
  18. Koga Y., Taniguchi K., Kubo C., Nomoto K. Peritoneal adherent cell inhibit the generation of cytotoxic T lymphocytes with prostaglandin-mediated system. Cell Immunol. 1982 Jan 1;66(1):195–201. doi: 10.1016/0008-8749(82)90170-8. [DOI] [PubMed] [Google Scholar]
  19. Kurland J. I., Bockman R. Prostaglandin E production by human blood monocytes and mouse peritoneal macrophages. J Exp Med. 1978 Mar 1;147(3):952–957. doi: 10.1084/jem.147.3.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lancaster F., Chui Y. L., Batchelor J. R. Anti-idiotypic T cells suppress rejection of renal allografts in rats. Nature. 1985 May 23;315(6017):336–337. doi: 10.1038/315336a0. [DOI] [PubMed] [Google Scholar]
  21. Lichtenstein L. M., Gillespie E., Bourne H. R., Henney C. S. The effects of a series of prostaglandins on in vitro models of the allergic response and cellular immunity. Prostaglandins. 1972 Dec;2(6):519–528. doi: 10.1016/s0090-6980(72)80040-6. [DOI] [PubMed] [Google Scholar]
  22. Miyahara S., Yokomuro K., Takahashi H., Kimura Y. Regeneration and the immune system. I. In vitro and in vivo activation of lymphocytes by liver regeneration and the role of Kupffer cells in stimulation. Eur J Immunol. 1983 Nov;13(11):878–883. doi: 10.1002/eji.1830131104. [DOI] [PubMed] [Google Scholar]
  23. Murgita R. A., Goidl E. A., Kontianen S., Wigzell H. alpha-Fetoprotein induces suppressor T cells in vitro. Nature. 1977 May 19;267(5608):257–259. doi: 10.1038/267257a0. [DOI] [PubMed] [Google Scholar]
  24. Padberg W. M., Lord R. H., Kupiec-Weglinski J. W., Williams J. M., Di Stefano R., Thornburg L. E., Araneda D., Strom T. B., Tilney N. L. Two phenotypically distinct populations of T cells have suppressor capabilities simultaneously in the maintenance phase of immunologic enhancement. J Immunol. 1987 Sep 15;139(6):1751–1757. [PubMed] [Google Scholar]
  25. Peck A. B., Murgita R. A., Wigzell H. Cellular and genetic restrictions in the immunoregulatory activity of alpha-fetoprotein. III. Role of the MLC-stimulating cell population in alpha-fetoprotein-induced suppression of T cell-mediated cytotoxicity. J Immunol. 1982 Mar;128(3):1134–1140. [PubMed] [Google Scholar]
  26. Rollwagen F. M., Stutman O. Culture-generated suppressor cells: evidence for an adherent cell component. Cell Immunol. 1981 Nov 1;64(2):371–380. doi: 10.1016/0008-8749(81)90488-3. [DOI] [PubMed] [Google Scholar]
  27. Stenson W. F., Parker C. W. Prostaglandins, macrophages, and immunity. J Immunol. 1980 Jul;125(1):1–5. [PubMed] [Google Scholar]
  28. Stout R. D., Fisher M. Suppression of lymphocyte proliferative responses: characterization of the suppressor and kinetics of suppression. J Immunol. 1983 Apr;130(4):1573–1579. [PubMed] [Google Scholar]
  29. Veit B. C. Immunoregulatory activity of culture-induced suppressor macrophages. Cell Immunol. 1982 Sep 1;72(1):14–27. doi: 10.1016/0008-8749(82)90279-9. [DOI] [PubMed] [Google Scholar]
  30. Yamaguchi A., Kamada N. Mechanisms in passive enhancement of cardiac and renal allografts by serum from liver-grafted rats. Immunology. 1991 Jan;72(1):79–84. [PMC free article] [PubMed] [Google Scholar]
  31. Yokomuro K., Miyahara S., Takahashi H., Kimura Y. Regeneration and the immune system. II. Suppressor activities of lymphocytes activated in vivo by liver regeneration and their genetic control. Eur J Immunol. 1983 Nov;13(11):883–889. doi: 10.1002/eji.1830131105. [DOI] [PubMed] [Google Scholar]
  32. Yoshimura S., Kamada N. Effect of cyclosporin A on liver regeneration following partial hepatectomy in the mouse. Transplant Proc. 1989 Feb;21(1 Pt 1):911–912. [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES