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Based on adaptive control of thought-rational (ACT-R), a cognitive
architecture for cognitive modeling, researchers have developed
an information-processing model to predict the blood oxygenation
level-dependent (BOLD) response of functional MRI in symbol
manipulation tasks. As an extension of this research, the current
event-related functional MRI study investigates the effect of rel-
atively extensive practice on the activation patterns of related
brain regions. The task involved performing transformations on
equations in an artificial algebra system. This paper shows that the
base-level activation learning in the ACT-R theory can predict the
change of the BOLD response in practice in a left prefrontal region
reflecting retrieval of information. In contrast, practice has rela-
tively little effect on the form of BOLD response in the parietal
region reflecting imagined transformations to the equation or the
motor region reflecting manual programming.

I t has been a major challenge to understand how different brain
regions are involved in the performance of a complex task.

Anderson et al. (1) examined the performance of two variations
of symbol manipulation tasks: an algebraic transformation task
studied by Anderson et al. (2) and an abstract symbol manipu-
lation task studied by Blessing and Anderson (3). Information-
processing models that predict the latency patterns in these tasks
exist in the adaptive control of thought-rational (ACT-R) cog-
nitive architecture (4). These models require activity in an
imaginal buffer to make changes to the problem representation,
in a retrieval buffer to hold information from declarative mem-
ory, and in a manual buffer to hold information about motor
behavior. Activity in the imaginal buffer predicted the blood
oxygenation level-dependent (BOLD) response of functional
MRI (fMRI) response in a left, posterior parietal region [Brod-
mann areas (BA) 39/40]; activity in the retrieval buffer predicted
the BOLD response in a left prefrontal region (BA 45/46); and
activity in the manual buffer predicted activity in a motor region
(BA 4/3).

This prior study (1) looked at performance of participants over
a brief period. The goal of the current study was to explore the
change of the brain activation patterns with learning, especially
in those three regions. Numerous studies have reported that,
with practice, the participants’ accuracy will increase and reac-
tion time will decrease. Even though the accuracy reaches
asymptotically high levels, the reaction time will still decrease
gradually in a negatively accelerated manner; that is, each unit
of practice produces a smaller and smaller improvement in
performance (compare ref. 5). Newell and Rosenbloom (6)
surveyed 16 experiments across rather a broad range of fields,
from perceptual-motor skills to memory to problem solving, and
postulated a ubiquitous power-law of learning (compare ref. 7):

T � A � BN�� A � � 0, B � 0, 1 � � � 0

where, T is the reaction time, A is the intercept, B is the amount
of the latency that can be reduced by practice, N is the number

of the units of practice, and � is an exponent that reflects
learning rate. A, B, and � are parameters varied among different
kinds of experiments. Since then, abundant experiments have
offered positive evidence to support this theory (compare ref. 7).
On the other hand, before and after Newell and Rosenbloom (6),
there were other theories to explain the negative acceleration in
practice, such as exponential learning function (e.g., refs. 8 and
9) and mixtures of different power functions (e.g., refs. 10 and
11). It is beyond the scope of this article to deal with these
arguments. The most important thing is that all of these argu-
ments agree that reaction time decreases gradually in a nega-
tively accelerated manner with practice.

In ACT-R, practice increases the base-level activation of
information in memory, and this increase produces a power-law
decrease in retrieval time. We predicted that this decrease in
retrieval time would be reflected in a decrease in prefrontal
activation. On the other hand, we did not expect an effect of
practice on either the manual portion of the task reflected in the
motor region or the representational portion of the task re-
flected in the parietal region. This expectation that the effect of
practice would show up in decreased prefrontal activation is
consistent with other studies of practice in memory retrieval-
related tasks (12, 13). We will present an ACT-R model of this
task in detail after describing the experiment and the results.

Experiment
The task of this experiment is similar to experiment 2 in
Anderson et al. (1), which was adapted from the paradigm of
Blessing and Anderson (3). Participants in this experiment
performed an artificial algebra task in which they had to solve
‘‘equations.’’ For example, suppose that the equation to be
solved was

② �③ 4 7 ② 5

where solving means isolating the � in the left side of the7. The
circled numbers represent operators, and the other numbers are
operands. Several transformation rules are involved to move an
operator or an operator-operand pair from one side of7 to the
other side. In this case, the first step is to move the ③ 4 over to
the right, inverting the ③ operator to a ② , the equation now looks
like:

② � 7 ② 5② 4

Then the ② in front of the � is eliminated by converting ② s on
the right side into ③ s. So that the ‘‘solved’’ equation looks like:

� 7 ③ 5③ 4

Abbreviations: BOLD, blood oxygenation level-dependent; fMRI, functional MRI; BA, Brod-
mann areas; ROI, region of interest; ACT-R, adaptive control of thought-rational.
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Participants were asked to perform these transformations in
their heads and just key out the final answer. This involved keying
a thumb press (denoted ‘‘1’’) to indicate that they had solved the
problem and then keying on a data-glove of 3, 5, 3, and 4
(mapped onto the fingers of the hand) in this example. The
experiment varied the number of transformations required to
solve the equation: 0, 1, or 2 as in the above example, which were
called the complexity conditions.

The data were collected from eight participants (right-handed,
native English speakers, six males/two females, aged from 19 to
27, average 23.4) who participated in a 5-day experiment. On the
day before day 1, there was a pre-scan session that lasted about
45 min. Participants were introduced to the set of transformation
rules, practiced finger-to-key mappings, and practiced actual
problem solving. To acquaint participants with the new set of
rules, the early part of practice involved producing detailed
step-by-step solutions on the computer screen. They first prac-
ticed 12 two-transformation problems, and then 24 problems
consisting of 8 for each complexity condition. In the later part
of practice, participants practiced 12 more problems (4 from
each complexity condition) producing only the final solution
while solving the equation in their heads, which is the actual
procedure used in the experiment.

On the next 5 days, participants performed 10 blocks (days 1
and 5, which were the scanning sessions) or 15 blocks (days 2, 3,
and 4, which were behavioral sessions) of problems. Each block
consisted of a different set of problems. The length of a block was
fixed at 5.5 min, in which a series of problems were presented.
The trial procedure was the same on all days and is illustrated in
Fig. 1. The trial began with a prompt, which was a column of two
rectangles. The upper rectangle showed an indication of the
complexity of the upcoming problem, such as ‘‘1-step,’’ and the
lower rectangle was empty at this period. After 1.5 s, the upper
rectangle was filled with the given expression. Participants were
instructed to solve the problem mentally, remember the answer,
and then press the thumb key when they were ready to key in the
final solution. The thumb key press provided a measure of the
plan time. If the plan time exceeded 18 s, the trial was scored as
incorrect. After the thumb key press, the given expression in the
upper rectangle disappeared, and the participants were to press
keys as soon as possible for each of four symbols in the answer
(the time limitation for each key was �1 s). The correct answer
appeared in the lower rectangle as the participants typed, even
when they typed in a wrong answer or missed the time limitation
for the key. The full answer remained on the screen for another
1.5 s, followed by a 6-s rest period with a visual stimulus as a
column of two empty rectangles. Because the plan time was
variable, the length of a trial (and therefore the number of trials
in a block) depended on the performance of the subject, with the

maximum as 27 s (18 scans): the faster the plan time, the more
opportunities to solve equations. Participants were instructed to
try to solve as many equations as possible.

Event-related fMRI data were collected by using a single-shot
spiral acquisition on a General Electric 3T scanner, 1,500-ms
repetition time, 18-ms echo time, 70° f lip angle, 20-cm field of
view, 28 axial slices per scan with 3.2-mm thick, 64 � 64 matrix,
and with anterior commissure-posterior commissure on the
eighth slice from the bottom. Images acquired were analyzed by
using the NIS system (http://kraepelin.wpic.pitt.edu/nis/).To ex-
plore the practice effect on the BOLD signal, we needed some
way to compare the BOLD signal in day 1 and day 5. For this
purpose, all of the images were cross-registered to a common
reference brain by minimizing signal intensity difference, after
which functional images were set to a standard mean intensity,
smoothed (6-mm full-width half-maximum 3D Gaussian kernel),
and pooled across participants to improve signal-to-noise ratio.

Results
Behavior. Subjects’ interkey times after the thumb key were brief
and constant (means � 294.34 ms, SD � 132.96 ms), and
therefore we will concentrate our analysis on the latency of the
thumb key, which reflects planning time. Mean accuracy across
the days was 86.8%, and mean latency of correct trials was 2,858
ms. Fig. 2 shows the decrease in average latency of planning time
from day 1 to day 5. Subjects showed both strong effects of
practice (P � 0.001 for accuracy, P � 0.0001 for the latency of
planning time) and complexity (both P � 0.0001). Fig. 2 also
shows best-fitting power functions to the three conditions,
assuming a constant intercept (A) of 855 ms and exponent (�)
of 0.414 for each condition. Separate scale parameters (B) were
estimated for each condition: 912 ms for the 0 transformation
condition, 2,845 ms for the 1 transformation condition, and 5,539
ms for the 2 transformation condition. These B parameters
reflect the amount that can improve due to speed up in the three
conditions. The values A, �, and Bs were estimated to minimize
the squared deviations of fitted functions to observed functions.

fMRI. In exploratory analysis, regions of interest (ROIs) were
selected according to the interaction term in a 6 conditions � 12
scans ANOVA. Six conditions came from two levels of practice
(days 1 and 5) and three levels of the complexity of trials. The
12 scans consisted of 2 scans before presentation of the equation
and the 10 scans afterward (see Fig. 1). To have a conservative
test that dealt with non-independence of scans, we used the
Greenhouse-Geisser correction of assigning only 5 degrees of
freedom to the numerator in the F-statistic for the interaction
term. The interaction was examined in each voxel. To ignore the
small particles, we selected regions that met the criteria of a

Fig. 1. The protocol of a scan trial. In the response, 1 represents the thumb
press.

Fig. 2. Mean latency of planning time (thumb key pressing) as a function of
practice time (days) for three transformation conditions.
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minimum of 15 contiguous voxels with significant interaction at
P � 0.01. According to Forman et al. (14), the probability of false
positive should be much lower than 0.01. Fig. 3 and Table 1 give
the seven regions that achieve this level of significance, which are
consistent with the major regions reported in experiment 2 of
Anderson et al. (1).

We paid more attention to the confirmatory analysis, in which
we focused on three ROIs: a left motor area (BA 4/3), a left
poster parietal area (BA 39/40), and a left prefrontal area (BA
45/46) (see Fig. 4). Each region was defined as 100 voxels (5
wide � 5 long � 4 deep), �16 � 16 � 13 mm3. The centers of
these regions were set based on our previous work (1). This
method gives the analysis the advantage of working with a priori
defined regions. Nonetheless, the motor area overlaps substan-
tially with the ROI 1 in Table 1 from the exploratory analysis.
The posterior parietal region overlaps substantially with the ROI
3 in the exploratory analysis. It is well known that lateral
posterior parietal areas (BA 7�40�39) are involved in visual-
spatial mental imagery (compare ref. 15). Recently, Hirsch et
al.** found evidence for common activity associated with im-
agery without external stimuli in two sensory modalities, visual
and tactile, within both left and right hemispheres in the inferior
parietal lobule (BA 40) among other areas in the left frontal
lobes. Reichle et al. (16) found greater activation in this area
when participants engage in an imagery strategy during language
processing and that this is more concentrated in the left parietal
regions. Perhaps it is concentrated on the left because of its
connection with symbolic processing in their task, which is
consistent with the task in our experiment. The posterior parietal
region that we chose is lower than the posterior superior parietal
lobe (PSPL) of Dehaene et al. (ref. 17; mean maxima �22, �68,
56) and more medial than their angular gyrus (AG; mean
maxima �41, �66, 36). Our prefrontal particle is close to ROI
6 in the exploratory analysis. It is somewhat ambiguously located
with respect to the ventral dorsal distinction, because it is across
BA 45 and BA 46 along the inferior frontal sulcus. However, the
retrieval function that we attribute to it is clearly more in keeping
with the kinds of functions attributed to ventrolateral prefrontal
cortex (18–20).

Fig. 5 displays the behavior of these three regions on day 1 and
day 5 (percent change of BOLD response relative to the baseline
defined by the average BOLD response of scans 1 to 3), along
with the predictions of the ACT-R model to be presented. The
motor region gives basically identical BOLD functions whose
onset varies with the timing of the response. Thus, the BOLD

function rises later when there are more transformations and the
effect of practice on the motor particle is only to move the peaks
together and forwards, which reflects shorter plan latencies after
practice. The parietal particle is thought to reflect the mental
imagery involved in transforming the equation. It is quite
responsive to the number of transformations, but the effect of
practice on the parietal particle is minimal, which is consistent
with the idea that there is relatively little change in the imaged
transformations. There is considerable reduction in left prefron-
tal cortex, which is thought to reflect retrieval of the facts about
the new algebra. The prefrontal particle also shows a strong
effect of number of transformations (note that the function is
almost flat in the condition of no transformations).

ACT-R Modeling
ACT-R. The ACT-R theory, a model of cognitive architecture (4),
has made itself open to brain-imaging data in its current 5.0
version by postulating an association of its components with
brain regions. It is possible to make a priori predictions about the
level of activation in these regions. According to the theory, the
external world and the internal system interact through a set of
cortical buffers that hold information. Particularly important for
the current experiment are the imaginal buffer, the manual
buffer, and the retrieval buffer. The imaginal buffer holds a
representation of the equation. The manual buffer, based on the
EPIC system of Meyer and Kieras (21), is involved in program-
ming finger actions on the data-glove. The retrieval buffer
requests information from declarative memory and holds the
retrieval results. The ACT-R 5.0 specifies when these buffers will
be active during the performance of a task and for how long.
Anderson et al. (1) described how to combine this information
with the function of the BOLD response to an event to predict
the BOLD signal. In the beginning of the next section we will
review this methodology briefly.

**Hirsch, J., Pratt, A., Mueller, B. & Park, C.M. (2002) Soc. Neurosci. Abstr., 714.1 (CD-ROM).

Fig. 3. Activation map for slice 3 to slice 14 with a significant interaction between scan and six conditions (two of practice levels � three of transformation
levels). Only regions with 15 or more contiguous voxels and P � 0.01 (degrees of freedom � 5) are shown. See Table 1 for identification of regions. The anterior
commissure-posterior commissure line is six slices below slice 14 in this figure. Right side of the image is the left side of the brain.

Table 1. ROI, locations of centroid, and significances

ROI
Voxel
count

Center
Talairach

coordinates
Max F
(avg F)

Left motor (BA 4�3) 123 �36, �24, 49 7.98 (4.73)
Cingulate gyrus (BA 32�34) 62 1, 2, 47 6.00 (4.35)
Left posterior parietal (BA 39�40) 165 �21, �61, 41 6.82 (4.74)
Precuneus (BA 7) 96 4, �64, 39 7.37 (4.55)
Right posterior parietal (BA 40) 61 28, �63, 42 5.49 (4.15)
Left prefrontal (BA 45�46�9) 72 �42, 19, 26 6.08 (4.30)
Polar frontal (BA 10) 19 �2, 58, 16 4.74 (3.03)
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The Prediction of BOLD Signal. A number of researchers (e.g., refs.
22–24) have proposed that the BOLD response to an event varies
according to the following function of time, t, since the event:

B�t� � tae�t

where estimates of the exponent, a, have varied between 2 and
10. This is essentially a gamma function that will reach maximum
at t � a time units after the event.

It was proposed that, while a buffer is active, it is constantly
producing a change that will result in a BOLD response accord-
ing to the above function. The observed fMRI response is
integrated over the time that the buffer is active. Therefore, the
observed BOLD response will vary with time as

CB�t� � M �
0

t

i�x�B� t � x
s �dx

where M is the magnitude scale for response, s is the latency
scale, and i(x) is 1 if the buffer is occupied at time x, and 0
otherwise. Note, because of the scaling factor, that the prediction
is that the BOLD function will reach maximum at roughly t �
a � s seconds.

Fig. 6 shows the activity of the ACT-R buffers solving an
equation

③ � 7 ② 3⑤ 4

that involves a single transformation to reach the solution

� 7 ② 4⑤ 3

Fig. 4. An illustration of the three left ROIs for modeling. The Talairach
coordinates of the left motor area is (�37, �25, 47), of the left posterior
parietal lobe is (�23, �64, 34), and of left prefrontal region is (�40, 21, 21).

Fig. 5. The ability in day 1 (Left) and day 5 (Right) of the manual buffer to predict the left motor particle, of the imaginal buffer to predict posterior parietal
particle, and of the retrieval buffer to predict the left prefrontal particle.

4954 � www.pnas.org�cgi�doi�10.1073�pnas.0431053100 Qin et al.



The encoding begins with the identification of the 7 sign and
then the encoding of the symbols to the right of this sign. Then,
it begins the process of encoding the elements to the left of the
sign and their elimination to isolate the �. In the example in Fig.
6, six operations are required to encode the string and an
additional two operations to perform the transformation. Each
of these requires activity in the imaginal buffer. There are 5 such
operations in the case of zero transformations and 10 in the case
of two. With respect to retrievals in Fig. 6, two pieces of
information have to be retrieved for the transformation that
must be performed. One piece is the operation to perform
(‘‘f lip’’ in Fig. 6) and the other is the identity of the terms to
which to apply this operation (argument position in Fig. 6).
There are five retrieval operations in the case of two transfor-
mations and none in the case of zero transformations. In all
cases, there are final five motor operations, but their timing
varies with how long the overall process takes.

The assumption is that the BOLD response in our left parietal
particle will reflect the timings of activity in the imaginal buffer,
the BOLD function in our left prefrontal particle will reflect the
timings of the activities in the retrieval buffer, and the BOLD
function in the motor particle will reflect the timing of the
activities in the manual buffer. As developed in Anderson et al.
(1), the timings of all of the buffer activities except the retrieval
buffer are already constrained by the theory. The timing of the
retrieval operations in the retrieval buffer remains a free pa-
rameter to be estimated to fit the latency data. Once the timings
of the buffer actions are all set, we can predict the BOLD
functions by estimating the magnitude parameter M, the expo-
nent a, and the latency scale s for each brain region. The
estimates of these parameters and the measurement of the
quality of the prediction are given in Table 2. Note that the same

parameters are being used to predict performance on both day
1 and day 5.

We assumed that, in the circumstance of the current experi-
ment, the practice will not change the procedure of the infor-
mation processing, but the latencies of the retrievals were faster
on day 5 than day 1. According to the base-level activation
learning mechanism in ACT-R, we assume a power-law function
describing speed up of the retrieval process with an exponent of
0.414 (estimated from Fig. 2); after 5 days of practice, the time
for retrieval should be 5�0.414 � 0.514 of what it originally was.
The retrieval time was estimated as 0.650 s on day 1 and 0.334 s
on day 5. Although we had two separate retrieval times for day
1 and day 5, there is only one degree of freedom in their
estimates, because one is constrained to be 0.514 of the other.
Note also that we predict the amount of decrease in the BOLD
function for the prefrontal region on day 5 as a parameter-free
prediction derived from our fit to the latency function in Fig. 2.

Conclusions
This experiment replicated the findings of Anderson et al. (1)
with respect to the involvement of the three cortical areas in this
task but extended the study by looking at the effect of practice
on the BOLD function and latency. As in past research, we
confirmed a power-law speed up in the latency to answer the
problems. The base-level activation learning mechanism pro-
posed in ACT-R can predict the decrease of the latency of
retrieval with practice, which in turn predicts well the change of
BOLD response in the prefrontal area. Therefore, we were able
to predict the behavior of these three regions with the ACT-R
model. Specifically, first, motor area tracks activity of manual
buffer. The form of the BOLD function is not sensitive to
cognitive complexity or practice. The effect of these variables is
to move identical BOLD functions forward or backward in time
according to the timing of the response. Second, parietal area
tracks activity in the imaginal buffer. The form of the BOLD
function is sensitive to cognitive complexity but not practice. The
only effect of practice is to somewhat compress the differences
between the peaks of the different functions. Third, prefrontal
area tracks activity of the retrieval buffer. The form of the BOLD
function is sensitive to cognitive complexity and decreases with
practice. We were able to predict the decrease in the BOLD
function according to the same parameter that predicted the
decrease in latency. This is strong evidence that the speed up
reflects a decrease in retrieval time.

Along with Anderson et al. (1), this study shows that, with the
guidance of a strong information-processing model and well-
trained participants, one can not only interpret but also predict
the BOLD response in various regions of the brain. It also shows
that connecting an information-processing model like ACT-R
with fMRI data will benefit research in both fields.

Fig. 6. The approximate time line for the buffer activity in the ACT-R model
for solving an equation.

Table 2. Parameters and the quality of the BOLD
function prediction

Imaginal Retrieval Manual

Scale (s) 1.634 1.473 1.353
Exponent (a) 4.379 4.167 4.602
Magnitude

M �(a � 1)* 2.297 1.175 1.834
Chi-square† 86.85 73.18 74.02

*This is a more meaningful measure because the height of the function is
determined by the exponent as well as M.

†In calculating these chi-squares, we divided the summed deviations by the
variance of the means calculated from the condition-by-subject interaction.
The chi-squares measure has 69 degrees of freedom (72 observations minus
3 parameters). None of these reflect significant deviations.
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The technique by which the ACT-R model was fit to the
BOLD function reflects some relatively new ideas. The basic
methodology is not specific to ACT-R and can be used to fit a
variety of models. The mathematics in this analysis is basically
the same as what underlies the frequent image-analysis tech-
nique of correlating the BOLD signal with the temporal profile
created by convolving the trial structure with a hypothetical
hemodynamic function. Among the differences/elaborations are:
(i) The temporal structure generated by an ACT-R model (or
any information-processing model) is more fine-grained, gener-
ated from the internal operations of different components of the
cognitive architecture. (ii) Each condition has a natural baseline,
which is, in this study, defined by the beginning of the trial before

the BOLD function has begun to rise; hence, there is no need to
subtract out some neutral control condition. (iii) There is the
additional assumption that the magnitude of the response re-
flects the duration of activation of that component. Combined
with point ii, the theory becomes subject to strong parametric
tests. (iv) There is an association of different regions of the brain
with different components of the cognitive architecture. (v) One
can estimate the parameters a and s of the BOLD function for
a specific region rather than having to fit a single assumed BOLD
function to all regions.
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