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The distinct electronic states of assemblies of metallic quantum
dots are discussed in a simple approximation where each dot is
mimicked as an ‘‘atom’’ that carries one valence electron. Because
of their large size, the charging energy of the dots, I 5 energy
required to add another electron, is much smaller than for ordinary
atoms. The Coulomb blocking of charge migration is therefore
easier to overcome. For the theory, however, this is a challenge,
because ionic states, which are typically higher in energy, come
down, so the density of electronic states is high, and special
methods need to be adapted. Quantum dots are prepared by wet
chemical methods and accordingly are not quite identical. They will
have a size distribution that can be narrow (when the dots can be
assembled into an ordered array) or broad. Other sources of
disorder are packing imperfections, which are characteristic of a
wider size distribution, ligand deformations, and chemical uneven-
ness. Two experimental control parameters are the size of the dots
and the spacing between them. We discuss the combined effects of
the low charging energy and disorder and examine the distinct
electronic phases that can be realized.

Quantum dots are clusters of atoms (or molecules) that are
small enough that their electronic states are discrete (1–4);

they can be prepared with a variety of compositions and covering
ligands. The study of the properties of individual dots is an active
subject in its own right. Here we examine the electronic structure
of assemblies of metallic dots, where the dots are packed close
enough that they are interacting (see ref. 5 for a general overview
of building assemblies with quantum dots). For the purpose of
our discussion, the dots are regarded as ‘‘atoms.’’ The key point
is that they are ‘‘designer’’ atoms, because their electronic
properties can be controlled through the synthetic method that
is used to prepare the dots. Of direct concern to us are the size
of the dot and the nature of the ligands used to passivate the dots
so that they do not coalesce. The energy required to remove or
add an electron to the dot is determined by its size. The ligands
control how closely the dots can be packed and hence the
strength of the coupling, because of electron transfer, between
adjacent dots. An important parameter is the energy cost, I, of
adding an electron to a dot. The large size of the dots means that
the Coulomb repulsion of the added electron is low. Unlike most
ordinary atoms, dots have a high capacity for accommodating an
additional electron. Another experimental control parameter is
the ability to compress an assembly of dots (4, 6) and thereby
change the distance between them.

Quantum dots are prepared by wet chemical methods and so
are not quite identical. In particular, the dots will have a variable
size. The size distribution can be made narrow (e.g., 10%) but
can also be broad. Designer atoms are therefore different than
ordinary atoms; the latter are identical and in particular have the
same ionization potential. A lattice of quantum dots is inherently
disordered in that, because the dots are not identical and have
a variable ionization potential, the sites of the lattice are not
equivalent. This can be the case even when a scanning tunneling
microscopy (STM) probe of such a lattice shows an ordered array
(6). When the size distribution of the dots is broad, the STM scan
of the lattice shows it to be geometrically distorted (7). Other

sources of disorder that can be introduced are chemical uneven-
ness (8), in that the dots do not have an identical chemical
composition or in that the ligands are not the same. The essential
point is that there is always minimal disorder because of distri-
bution in size, and that additional disorder can be built in.

We discuss the electronic structures possible for an array of
atoms with the essential properties that we indicated: the sites of
the array are not quite equivalent, and the charging energy of a
site is atypically low. In other words, we examine the electronic
isomerism made possible by the special properties of the dots.

A simple approximation is to regard each dot as having one
valence orbital. In the isolated metallic dot, the least-bound
electron occupies this orbital. Because this electron is largely
confined to the volume of the dot, its energy is expected to scale
roughly with the size of the dot, as for a particle in square-well
potential. When another dot is nearby, the valence electron can
tunnel from a given dot to its near neighbor and thereby couple
the dots together. All the other electrons of the dot are placed
in its core, and the core is frozen. This approximation is
equivalent to the p electron approximation of molecular orbital
theory, which has been successfully used to discuss extended
structures (9). It is also equivalent to the ‘‘tight-binding’’ ap-
proximation of solid-state theory (10). When the dots are fairly
compressed and therefore are strongly interacting, this picture
offers a starting point, because the coupling of the dots is strong
enough to overcome the charging energy. We have used this
approximation before (11) to demonstrate that, on compression,
an assembly of designer atoms can undergo a transition from a
localized to a delocalized electronic state. We have further
suggested that this transition can be seen in a spectroscopic
experiment (4, 5, 11). The theoretical variable that controls this
transition is the strength of the coupling between the dots vs. the
inherent disorder in the energy of the valence orbital (which is
caused by the fluctuation in their size). The corresponding
experimental variable is the separation between the dots, which
determines the strength of the coupling. In this paper, we add
one more physical variable, the charging energy, which must be
taken into account once the dots are further apart and therefore
are only weakly coupled. By preparing dots of different sizes and
of different metallic elements, the measured charging energy
(12) can be varied by over an order of magnitude, e.g., from 0.5
eV to 0.025 eV (1 eV 5 1.602 3 10219 J).

One can identify the two coupling regimes that are discussed
above with the names of Anderson (13, 14) and Mott (10),
respectively. However, these labels refer to limiting behaviors
where only one factor is important. The fascination of designer
arrays is that typically they are in an intermediate regime and,
most importantly, that the strength of different couplings can be
tuned. Under the best of circumstances, this can be done
continuously, as when compressing the array (4, 5). Otherwise it
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can be done in discrete steps, e.g., by changing the ligands or by
changing the extent of packing disorder.

Theory
Three energies are used to characterize electronic states of the
array of quantum dots, and all three are subject to fluctuations.
(i) The energy a of the valence orbital of an isolated dot. a
depends on the size of the dot and hence will vary from site to
site of the array. The mean value of a can be taken as the zero
of energy, so that what really matters is the size, Da, of the
fluctuations. (ii) The repulsion, I, of two valence electrons (of
opposite spins) when they are on the same site. The magnitude
of this repulsion depends on the radius R of the dots, and values
all the way down to a few millivolts have been measured. Taking
a full account of this term makes a demand on the computational
machinery, because this is a term that depends on where two
electrons are rather than on the mean field that a valence
electron sees because of all other valence electrons. In principle,
there is also an electrostatic repulsion between electrons that are
on different sites. The same formalism that allows for the
charging capacity of a dot can incorporate this term, too, but it
is smaller and so will not be explicitly discussed. (iii) The strength
b of the interdot coupling caused by the overlap of the wave
function of adjacent sites. b increases exponentially as the
interdot distance D decreases, and so it is experimentally con-
tinuously tunable when the lattice can be compressed or by
discrete amounts when the size of the ligands is changed.

The experimental reality that the mean values of the three
energetic parameters, a, b, and I, can be changed by design and,
furthermore, that the actual values are subject to size-related
fluctuations, Fig. 1, makes the simple model system rather rich
in the nature of the electronic states that can be probed. In
different types of experiments, these can be the ground and

low-lying excited states or higher excited states. Furthermore, by
using an STM setup, one can also add electrons to or withdraw
them from the system. We will consider experiments for both a
fixed and a variable number of electrons.

We allow random fluctuations, within a specified range, in
both the radius, R, of the dots and their packing distance D. The
fractional range, e.g., DR/R, will be specified. The fluctuations in
a, b, and I are given in terms of their functional dependence on
R and D. a is expected to scale as R22. I is inversely proportional
to the capacity of the dot, which scales with R. The coupling
energy b decreases, essentially exponentially, with D/2R (see Eq.
2 below).

The fluctuations in the energies, as shown in Fig. 1, mean that
defining a coupling regime is not that obvious. For example, as
discussed, a simple (Anderson-like) regime is where the dot–dot
coupling b is the dominant effect. But Fig. 1 suggests that even
a moderate (15%) size and packing disorder is enough to allow
b to reach large values on a lattice which, on the average, is not
closely packed.

For a compressed lattice, when the dot–dot coupling domi-
nates, a Hückel-type Hamiltonian

H 5 O
i, j

n

hi, jO
m

2

ai,m
† aj,m

with hi, j 5 Hai if i 5 j
bi, j Þ 0 for near neighbors only [1]

is a sufficient approximation. The Hamiltonian is written in
terms of creation and annihilation operators for electrons of a
given spin (m) on any one of the possible n sites. The site energies
ai are allowed to fluctuate by up to 6Da about a mean value a0.
In a computation, we draw values of the site energies within the
range specified by the size distribution of the dots. The transfer
integral b determines how facile it is to remove an electron from
site i and move it to a neighboring site j. This coupling is
governed by the extent of overlap of the orbital wave function of
the valence electron on two adjacent dots. We take it to saturate
at the value b0 when the dots contact and to exponentially
decrease when the lattice is expanded, as shown in Fig. 1.

b 5 ~b0y2!~1 1 tanh~~D0 2 D!y4RL!!

O¡

D . R
b0 exp~D0y2RL! exp ~ 2 Dy2RL! [2]

D0 is the separation between the dots when their wave functions
become significantly overlapping. L determines how fast the
dot–dot coupling decreases with D/2R. The magnitude of L,
1/5.5, which we obtain by a fit to the optical nonlinear response
experiment (8), is comparable to what we compute in terms of
how much the wave function of a dot leaks out (11). In other
words, the available evidence for metallic dots is that the
coupling is through space. It will be interesting to examine
whether one can choose such ligands that participate in the
dot–dot coupling, aiding or reducing the facility for electron
transfer. Unlike the dot energies, the transfer integral b can
fluctuate in its value because of both size and packing disorder.
As seen in Fig. 1, the fractional change, Db/b, can therefore be
higher than Da/a.

There are two effects that can be demonstrated easily in the
Hückel limit. One is the breaking of the symmetry of a lattice
because of the fluctuations. In a perfect array of identical atoms,
all the lattice sites are equivalent. It is then the case that the
energies of the molecular orbitals have a mirror symmetry about
the mean value, ao. In the ground state, for each occupied
molecular orbital with an energy below a0 there will be an orbital

Fig. 1. The three energies that determine the electronic structure and
response of an array of nanodots, plotted vs. Dy2R. D is the spacing of the dots
in the array and the variable of the abscissa, and 2R is the diameter of the dots.
Fluctuations in size and packing disorder, D(Dy2R)y(Dy2R) 5 DDyD 1 DRyR,
make the values of the energies fluctuate. The coupling, b, of adjacent dots
saturates when the dots nearly touch and then decreases exponentially with
Dy2R. The midpoint, D0, and the range of b have been previously determined
(11) from the measured nonlinear optical response (5) of an array. The
charging energy I is relatively small (hundreds to tens of meV), so it does not
fluctuate by much. (I scales as 1yR, so DI 5 (DRyR)I). The fluctuations, Da, in the
energy of the dots can cover a wider range. The result is that for a wider size
distribution, it can be the case that I # Da.
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with the same energy above a0. In the language of the Hückel
approximation, one can say that the lattice has ‘‘alternate
symmetry’’ (15). The fluctuation breaks this symmetry of the
excitation energies and also of the molecular orbitals themselves.
We have previously shown (11) how the breaking of the sym-
metry of the molecular orbitals makes otherwise forbidden
optical transitions allowed. Here we discuss the breaking of this
mirror symmetry, as seen in an experiment with a variable
number of electrons. The results shown in Fig. 2 are obtained by
computing, separately, the energies of the states of n 2 1, n, and
n 1 1 electrons in an n-site hexagonal array. A familiar approx-
imation (sometimes known as Koopman’s theorem and often
used in photoelectron spectroscopy) is that the ionization energy
of an electron is the energy of the occupied molecular orbital
from whence it came. Similarly, the energy cost of attaching an
extra electron is the energy of the unoccupied molecular orbital
it is to go into. If there is a mirror symmetry, the density of states
available to accept an electron should be equal to the density of
states available to donate an electron. As seen in Fig. 2, this is
the case when the dot–dot coupling is strong enough to over-
come the fluctuations in the site energies, but this is not the case
at a higher value of D/2R .

The other effect of disorder that can be demonstrated
already at the Hückel level is the transition from localized to
delocalized molecular orbitals. In a perfect array of identical
atoms, all the orbitals will be delocalized. This is why free
electron models (15) are so useful. A simple proof is to write
the Hückel Hamiltonian of the perfect array in matrix form,

HHückel 5 a0 I 1 bM. Here I is the identity matrix, and M is
the adjacency matrix; Mi,j 5 21 if i and j are near neighbor
sites, and it is zero otherwise. Because I commutes with M, the
molecular orbitals are the eigenvectors of M. They are deter-
mined by the geometry and are delocalized. Once the site
energies are allowed to f luctuate, the Hamiltonian is no longer
of that simple form. However, as long as Da is small compared
with b, the role of the f luctuations is only to break the
symmetry, but it remains the case that b can effectively couple
any two neighboring sites. The molecular orbitals will then
remain delocalized. When the dots have a wider size distri-
bution, andyor when the lattice is expanded so that b is smaller,
b can no longer bridge the gap in the site energies, and the
molecular orbitals are localized. This is an example of the
Anderson-like transition. Fig. 3 shows a computational exam-
ple, where it is evident that the distinction between a localized
state, where the wave function drops exponentially with dis-
tance away from its center, and a delocalized state, is quite
sharp. We emphasize, however, that the scenario becomes
richer when the role of charging energy is allowed for.

The simplest Hamiltonian that includes the Coulomb blocking
was derived by Hubbard (16).

Fig. 2. The density of states for externally adding (positive energy) or
removing an electron from the array, computed for a hexagonal lattice of
seven sites at two different compressions, as shown. There is a 5% fluctuation
in the size and another 5% fluctuation in packing. Coulombic effects are
included at the Parr–Pariser–Pople level (I 5 0.3 eV). This density of states is
determined from the tunneling current in an STM experiment (7, 12), and the
energy scale is shown in eV to conform to the experimental plots. For Dy2R 5
1.2, the dots are strongly coupled (cf. Fig. 1), the wave function is delocalized,
the lattice is ‘‘conducting,’’ and the density of states (DOS) is symmetric with
respect to electrons and holes. At a somewhat wider separation, shown is
Dy2R 5 1.4, the wave function is localized (cf. Fig. 3), and the density of states
is asymmetric. The symmetry of the DOS for a conducting lattice and the
appearance of an asymmetric DOS for an expanded lattice are as seen in the
experiments (7, 12). For even higher values of Dy2R, the Hückel level compu-
tation is not reliable because the charging energy I becomes comparable with
the dot–dot coupling. When Dy2R is larger and the Coulomb blocking plays a
more important role, the asymmetry is higher. This is understandable because
the finite charging energy means that adding an electron is energetically not
the mirror image of removing one, and it takes less energy to remove an
electron. Fig. 3. The weight (5 charge density) of the highest occupied molecular

orbital (HOMO) and lowest unoccupied one (LUMO) on the different sites of
a 91-dot array (computed for a closely packed and somewhat expanded
lattice). The weight is plotted on a logarithmic scale so as to show that when
the dot–dot coupling is no longer sufficient to overcome the effects of
disorder, the localized molecular orbitals decrease exponentially with dis-
tance from their center.
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H 5 O
i, j

n

hi, jO
m

2

ai,m
† aj,m

Ç

Hückel part

1 I O
i

n̂i~n̂i 2 1!
Ç

Coulomb blocking
[3]

In the second term, we introduced the number (operator) n̂i [
Smai,m

† ai,m of electrons on the site i. One can add a third term, g
Si, j n̂in̂j, to represent the polarization of a dot by an electron on
a neighboring site. One expects g to be smaller than I by at least
Dy2R, and it plays a more limited role. The Hamiltonian is then
of the form known in quantum chemistry as formulated by
Pariser, Parr, and Pople (17). To diagonalize exactly a Hamil-
tonian containing explicitly two electron operators we use the
Unitary group approach (18, 19), as thoroughly discussed by
Paldus (20). The one practical problem is the size of the basis set.
For the simplest hexagonal array, which has seven sites (see Eq.
4 below) with one electron per site, there are 784 doublet states.
The next completed hexagonal array has 19 sites, and for 19
electrons there are over two billion doublet states. One cannot
use the hexagonal symmetry to reduce this number, because the
whole point is that we do not have a hexagonal symmetry except
on the average. We are working on possible schemes to simplify
the handling of larger arrays.

The physics of the Coulomb blocking term in the Hamiltonian
(3) is that there is an energy cost, I, associated with placing two
electrons (of opposite spins) on the same site. To see the
implications, consider first the limit where the lattice is very
expanded so that the coupling, b, of adjacent dots can be
neglected. Then the Hamiltonian of the noninteracting dots has
the form Hsite 5 Si51

n ain̂i,i 1 I Si51
n n̂i,i (n̂i,i 2 1) and this

Hamiltonian can be diagonalized analytically. For the simplest
hexagonal array (seven sites), the states of the noninteracting
dots fall into four bands. For each band, one can count the states
using a unitary group formalism (20), and the numbers are given.
Shown is a typical state of each band where a bar denotes an
electron

14 states

E 5 7a0

210 states

E 5 7a0 1 I

420 states

E 5 7a0 1 2I

140 states

E 5 7a0 1 3I
[4]

Below each state is the energy in the absence of fluctuations
(and, of course, we neglected the dot–dot coupling b). The
physics of the system is governed by the question of whether the
bands overlap when we allow fluctuations. The first 14 states will
remain in place with a sharp energy of seven a0, because
variations of the individual site energies must average out to
zero. The next 210 states will fan out into a band, primarily
because of the variation in the site energies. The width of the
band is therefore Da, and, depending on whether the charging
energy I is larger than Da, the band will or will not overlap the
first band. The question of band overlap is so critical because it
determines whether there is energy penalty to charge migration.
If the first 14 states are quasidegenerate with the next 210 states,
then even a weak dot–dot coupling can induce charge reorga-
nization, and there is no barrier to conduction. Otherwise, it is
not until the array is compressed to the point where the dot–dot
coupling b is comparable to the charging energy I that the array
will become conducting.

The regime where the dot–dot coupling is not large is there-
fore split by disorder into two classes. One is that characteristic

of no or of limited disorder in the site energies. Then the ground
and low excited states are very localized, in that each electron is
assigned to its own dot, and no dot has more than one electron.
b cannot couple states of this band, because its action is to shift
an electron from one dot to a neighboring one, and there are no
states in this ground band where a dot is empty. For noninter-
acting dots, it takes a finite energy, I, to promote an electron to
a higher-energy band of ionic states. There is, however, an
energy shift of the covalent states, which by second-order
perturbation theory is of the order of b2yI. This is because b
couples a state of the ground band to a state of the next higher
band, at an energy I higher, and then this state is coupled by b
back to the ground band. Once b increases to the point where
b2yI is comparable to I, the gap between the two bands will be
closed. This is the Mott-type insulator (10) to metal transition on
increasing the site–site coupling.

The other possible scenario is when there is more spread in the
sizes of the dots and so more variations in their energies. Then,
no matter how weak the dot–dot coupling, the ground state need
not have a uniform charge distribution. A state with one empty
and one doubly occupied dot can well be lowest in energy if the
differences in the site energies of these two dots are larger than
I. In the high-disorder regime, where I , Da, there will not be
a lowest energy band of localized insulator-type states. On the
other hand, because by assumption we are in the range where b

Fig. 4. The weights of the ground electronic state on the states of the
noninteracting dots. These zero-order states have each electron assigned to a
particular site as, for example, in Eq. 4 above. Computed at large interdot
separation (Dy2r 5 1.8) for a moderate, Da , I (Upper), and a higher, Da . I
(Lower), disorder . I 5 0.3 eV for both Upper and Lower. In Upper, there is 5%
fluctuation in sizes and 5% in packing, whereas in Lower, we introduce 15%
fluctuation in size and 30% in packing. In Upper, the ground state at large
separation is a covalent state with one electron per site, whereas in Lower,
where the fluctuations in sizes and in packing overcome the effect of the
charging energy, the ground electronic state will be an ionic state. In this
example, it is an ionic state with two doubly occupied sites (see Inset).
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is weaker, the states will not be thoroughly mixed. If b is
comparable to the typical spacing, the wave function will be
delocalized over a limited domain. When b is even smaller, the
ground state will be localized with some dots empty and others
doubly occupied, as shown in Fig. 4.

The Different Electronic States
Fig. 3 showed the two regimes possible at higher compressions,
when the dominant role is that of the interdot coupling b so that
the charging energy can be neglected. There was a completely
delocalized state at high b and a domain localized state when b
is no longer larger than the range, Da, of f luctuations in the site
energies. Fig. 4 shows that at low compression, when the main
role is that of the charging energy, the electronic ground state
can be completely localized. It can be localized as a covalent
state, with a uniform charge distribution, or, when I , Da, it can
become an ionic state. As the lattice is expanded, the complete
sequence of transitions in the nature of the ground state is then
delocalized 3 domain localized 3 site localized. This is shown
in Fig. 5, which is obtained by diagonalizing the Hubbard
Hamiltonian, Eq. 3, which includes both the transfer and the
charging energies.

To conclude: The possible electronic ‘‘isomers’’ of a lattice of
quantum dots are shown in Fig. 6 as a function of reduced
variables. What are the possible variables? In the Hückel (strong-
coupling) limit, if we take the site energy a as the zero of energy,

then all energies are determined by b alone. When we allow
limited disorder, there will be two regions, a domain-localized
and a delocalized phase, and the boundary between them is
determined by the extent of disorder. Note, however, that in
principle there are at least two not quite independent ways where
the disorder comes in, namely in the size and in the spacing
distributions. Therefore, even in the strong coupling limit, there
really should be two axes of disorder. Once one allows for the
effect of charging energy, the effective dot–dot coupling is
determined by the dimensionless ratio, Iy(I 1 b), of the charging
energy to the strength of the dot–dot coupling. The strong
coupling limit is Iy(I 1 b)3 0. The weakly coupled lattice is at
Iy(I 1 b) 3 1. In the absence of disorder, the transition-
delocalized 3 site-localized will occur when I 5 b. Once there
is a finite amount of disorder, there will also be a domain-
localized phase, as shown in Fig. 5.

Should one speak of Fig. 6 as showing a transition between
phases or between isomers? We do not know a simple overall
answer. One can say that a transition is phase-transition like if the
ground state is not well separated from the excited states, but that
depends on the coupling range and on the extent of disorder. One
can say that a phase transition is a manifestation of a collective
behavior, but this criterion also is not useful throughout the
diagram. The transition to a fully delocalized state involves many
sites and, as such, it is possibly deserving of that label, which is why
we show it as a boundary in Fig. 6. The transition-site-localized3
domain-localized involves only a small subset of sites. Also, it is not
clear that the regions shown in Fig. 6 are exhaustive, and they
certainly are not once we allow, say, an external magnetic field.
There is clearly scope for much more work.

Fig. 5. A histogram of the weight, logarithmic scale, of the electronic
ground state of the Hubbard Hamiltonian on the states of the noninter-
acting dots. Computed for a hexagonal array of seven sites, which has 784
states (ten percent wide-size distribution). The results are shown for the
three electronic phases, delocalized, domain localized, and site localized,
which can be successively accessed by expanding the lattice. The typical
value of the weight is 1y(number of effectively participating states), and in
the three regimes, this number is quite different. The value 1y784 is shown
as a solid arrow in Top as it is a typical weight for the delocalized state,
when all states are equally participating. The domain-localized state can be
viewed as a linear combination of states of the noninteraction dots, with
the number of states that contribute significantly substantially lower than
the total number but somewhat larger than unity. A few weights are,
therefore, large (right end of the abscicca), and most other weights are
smaller than 1y784. The site-localized state can have a uniform charge
distribution or a nonuniform one (see Fig. 4), but it is essentially a single
state of the Hamiltonian of the noninteraction dots. One state has a weight
of near unity, and all other weights are negligible.

Fig. 6. The different possible coupling regimes for an array of quantum dots.
The abscissa is the dimensionless ratio 0 # Iy(I 1 b) # 1, and the ordinate is the
fractional disorder. For a very disordered array, the state is localized, because
b is far too small, and the variations in the site energies mean that an ionic
state, where some sites are doubly occupied and others are empty, is lowest in
energy. Reducing the disorder allows for a greater role of the dot–dot
coupling. For very low disorder, the behavior is Mott like with a transition from
a delocalized to a localized phase (shown as a solid line).
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