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We present a method for determining structural properties of the
ensemble of folding transition states from protein simulations. This
method relies on thermodynamic quantities (free energies as a
function of global reaction coordinates, such as the percentage of
native contacts) and not on ‘‘kinetic’’ measurements (rates, trans-
mission coefficients, complete trajectories); consequently, it re-
quires fewer computational resources compared with other ap-
proaches, making it more suited to large and complex models. We
explain the theoretical framework that underlies this method and
use it to clarify the connection between the experimentally deter-
mined F value, a quantity determined by the ratio of rate and
stability changes due to point mutations, and the average structure
of the transition state ensemble. To determine the accuracy of this
thermodynamic approach, we apply it to minimalist protein models
and compare these results with the ones obtained by using the
standard experimental procedure for determining F values. We
show that the accuracy of both methods depends sensitively on the
amount of frustration. In particular, the results are similar when
applied to models with minimal amounts of frustration, charac-
teristic of rapid-folding, single-domain globular proteins.

protein folding u F values u folding funnels u folding landscapes

Energy landscape theory and the funnel concept have pro-
vided a theoretical framework for understanding protein

folding (1–7), which is an alternative to the earlier idea that there
is a single pathway for the folding event comprising uniquely
defined structural intermediates (8, 9). The connection between
the landscape theory and real proteins is best established in the
context of small fast folding proteins, which fold on millisecond
time scales and have a single folding domain; i.e., they are
two-state folders with a single, well defined funnel (10). In
addition to the theoretical literature describing this theory and
its applications (see, for example, the citations above, refs. 5 and
6, and references therein), a new generation of clever experi-
ments [NMR dynamic spectroscopy, protein engineering, laser
initiated folding, and ultrafast mixing (see, for example, refs.
11–27)] are providing the temporal and spatial detail needed to
extend and elaborate on it.

A central result of this theory is that proteins with funneled
landscapes have population dynamics that can be understood as
the diffusion of an ensemble of configurations over a low-
dimensional free energy surface (1, 3, 4). This energy surface
may be constructed by using many different order parameters.
The primary requirements are that they distinguish native-like
and non-native-like structures and that they group together
conformations with similar energies;¶ i.e., the dispersion in
energies of states with similar values of these parameters is small.
Many simple order parameters that are computationally conve-
nient, like the number of tertiary contacts Q, or experimentally
convenient, like the radius of gyration, satisfy these require-
ments. A successful description of the folding mechanism using
only a few of these parameters is possible because the funnel of
a protein landscape is deep compared with its energetic rugged-

ness, which is produced by frustration (1, 2). The rate of local
motion on the landscape is set by the reconfigurational diffusion
coefficient. Free energy barriers that separate the unfolded and
native state ensembles impede this population diffusion and set
crossing times that can be determined (for weak frustration)
from a Kramer’s-like equation.i When these crossing times are
rate-limiting, the free energy of activation for folding is set by the
height of these barriers on the landscape. The structural prop-
erties of the transition state ensemble can then be determined by
sampling the thermal distribution of states in the dominant free
energy barrier rather than by making ‘‘kinetic’’ measurements
(e.g., measuring folding rates and transmission coefficients, or
simulating complete folding pathways). The elimination of these
kinetic measurements allows the folding transition state to be
rapidly computed (compared with alternate methods), especially
in large and complex systems (31–35) that cannot be studied by
other means (29, 36–39).

Some kinetic methods have been used by others to compute
F values from atomically detailed simulations. In one method
(40, 41), strong unfolding biases are put to the native protein by
raising the temperature, and the subsequent unfolding trajectory
is interpreted as the reverse of a typical folding trajectory. The
trajectories found by this method do show interesting correlation
with the F values of experiments, but the unphysically high
temperatures needed to force this transition in a reasonable time
introduce large distortions into the landscape, creating difficul-
ties in quantitatively connecting these results with proteins at
physiological temperatures.

In this manuscript, we introduce the landscape-based method
and validate its use by using a minimalist lattice protein model.
By studying several different potentials, we determine the
amount of frustration for which this approach can be reliably
applied to determine transition state structure.
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¶These energies are actually free energies averaged over the degrees of freedom not
explicitly included in the structure of the landscape: e.g., solvent degrees of freedom (5).

iThe accuracy of this method in predicting folding rates is demonstrated in the context of
a simple lattice model in ref. 4. Equilibrium sampling with a simple order parameter is used
to determine the height of the free energy barrier, and the autocorrelation time in the
order parameter is used to estimate the reconfigurational diffusion constant. A Kramer’s
equation constructed from these two parameters provides an estimate of folding rates
around the folding temperature correct to within a factor of order unity. This is expected
because, although several recent studies have shown that a large fraction of free energy
barrier states are actual microscopic transition states in moderately designed systems
(28–30) and nearly all transition states lie in the barrier region, some of the configurations
in this region are not real microscopic transition states (due, for example, to topological
constraints).
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Methods and Simulations
Spatially localized transition state structure in proteins can be
inferred by measuring the effect that point mutations have on the
native stability and the folding (unfolding) rate. These effects
can be used to compute the F value (42), an approximate
measure of the protein structure around the site of the mutation:

F §
2 RT ln~kmutykwt!

DDG0 . [1]

kmut and kwt are the mutant and wild-type folding rates, and
DDG0 is the change in total stability of the folded state when the
mutation is made.

As we have discussed in the introduction, the crossing rate in
minimally frustrated systems can be described via a Kramer’s-
like equation,

k 5 k0exp@ 2 DG‡yRT #, [2]

where k0 depends on the reconfigurational diffusion coefficient
and the geometric shape of the barrier.** If this prefactor is
insensitive to the specific amino acid sequence [this is expected
in weakly frustrated systems and has been observed in some
simple models (10)], then

2 RTln~kmutykwt! 5 DGmut
‡ 2 DGwt

‡

5 DDG‡, [3]

and the F value is a measure of the ratio of the change in
activation free energy of the folding barrier to the change in total
stability upon making a particular mutation; i.e.,

F 5
DDG‡

DDG0
,

[4]

as illustrated in Fig. 1. If the amount of frustration is greatly
increased, the folding times become controlled by long lived

traps, and the assumption of a single k0 that depends only on the
average ruggedness of the landscape breaks down. When such
traps are dominant, the ensemble of states in the top of the free
energy barrier cannot be associated with transition states any-
more.

If the free energy change created by the mutation is related in
a simple way to some structural quantity, then the F value is a
measure of the average difference in that quantity between the
unfolded and transition state ensembles, expressed as a fraction
of the average unfolded to native difference—it is in this sense
that the F value tells us the ‘‘location’’ of the barrier via a number
that varies between 0 and 1 (44). [But because F values only
measure relative free energy changes, they cannot be directly
interpreted in terms of structure without knowledge of the
typical unfolded state structure (27).] Intermediate range F
values can arise as an average over a heterogeneous transition
state ensemble with different amounts of local structure (for
experimental support for this, see ref. 45). Comparisons of F
values from different point mutations at the same sequence
position have generally supported the simple interpretation of
the F value as an indication of local structure (46), although
exceptions have been observed in at least one small protein (13).

Unfortunately, an average transition state ensemble structure
cannot for most systems be practically determined from simu-
lations by computing changes in folding rates. A 3% error in the
folding rate requires .1,000 separate folding simulations, and it
is impossible to perform this many simulations except for the
simplest models. It will certainly remain an infeasible compu-
tation in all atom models for many decades because most protein
folding times are in the millisecond time range or greater, and
simulations are currently limited to a few tens or hundreds of
nanoseconds of real time. As discussed in the introduction, the
landscape framework provides an alternate computational
method for studying the transition state ensemble. By using a
small number of order parameters to define a landscape, we can
identify the dominant barrier separating the unfolded and native
basins. The change in the folding rate when a mutation is made
can then be computed by finding the change in the activation free
energy of this barrier; i.e., we assume that the transition states
are the thermally occupied states in the free energy barrier
region. In systems in which F values are accurate probes of the
average transition state structure, we show that this method is
equally valid as the experimental technique.

To demonstrate the applicability of this computational ap-
proach, we use a model that retains only the most essential
characteristics of small globular proteins. We represent a protein
as a short chain of monomers that are constrained to the vertices
of a three-dimensional cubic lattice. The nonbonded interactions
between the monomers are contact interactions between neigh-
boring lattice sites with an AB type of potential. These models,
pioneered by Lau and Dill (47) and extensively characterized by
others (see refs. 5, 6, and 48 for relevant citations), capture many
of the general features of real proteins. The particular lattice
polymers used in this manuscript are 27 monomers long with
compact 3 3 3 3 3 native states. Details of this model and its
behavior can be found in refs. 4, 49, and 50.

The landscape theory has shown that energetic frustration can
have profound effects on folding dynamics and on the nature of
the transition state ensemble. To study these effects, we perform
the calculations for the three different sequences shown in Fig.
2. Although these sequences have the same native structure and
native energy, they have different levels of frustration, which is
reflected in their respective (TfyTg) ratios of folding to glass
transition temperatures. The first sequence is a Go# -like se-
quence, which is nearly maximally unfrustrated for a given native
structure. In this model, only native interactions are attractive;
all others are simply excluded volume interactions. TfyTg . 2 in
this system. The second system has a three-monomer type AB

**For real proteins, measurements of the rate of intrachain diffusion have put a lower
bound on the rate prefactor of '10 ms (43), although its exact value is unknown.

Fig. 1. Approximate schematic of a F value, which holds for proteins that are
weakly frustrated. The solid curve is a schematic free energy profile for a
wild-type protein; the dashed curve is for a suitable mutant. The free energy
profile is drawn against a single order parameter for folding. For many small
proteins, many simple global structural measures of nativeness may be used
for this free energy projection. DDG0 and DDG‡ are, respectively, the change
in native state stability and change in activation free energy upon mutation.
A F value near 1 suggests that the local environment of the mutated residue
is native-like in the transition state; a F value near 0 suggests that the local
environment of the mutated residue is unfolded-like in the transition state.
This interpretation of F values becomes less valid as the frustration increases.

Nymeyer et al. PNAS u January 18, 2000 u vol. 97 u no. 2 u 635

BI
O

PH
YS

IC
S



potential: i.e., there are three types of monomers (A, B, and C),
identical monomer types are strongly attractive (energy 5 23),
and nonidentical monomer types are weakly attractive (energy 5
21). We refer to this system as the three-letter code system
(3LC). The introduction of attractive non-native interactions
increases the frustration. TfyTg ' 1.6. Of the three systems, this
most resembles the frustration level and configurational entropy
of small, fast-folding proteins (51). The third system has a
two-monomer type AB potential: i.e., the same potential as
before, but with only two monomer types. We refer to this as the
two-letter code system (2LC). Additional frustration created by
the reduction in the number of monomer types reduces the TfyTg
ratio to '1.3. We observe that the amount of frustration in the
system can drastically change the nature of folding and the
effectiveness of using simple reaction coordinates and equilib-
rium sampling to probe folding transition state structure.

We begin by determining F values through the standard
experimental procedure: namely, by measuring the change in the
stability and folding rate created by different mutations. The F
values for these mutants are computed by using Eq. 1. We then
determine the F values by using the landscape approach (Eq. 4).
In this method, the free energy as a function of a folding order
parameter—in this instance, Q, the fraction of native (‘‘tertiary’’)
contacts formed in a state—is used (rather than changes in the
folding rate) to determined the change in activation free energy
of different mutations.

Equilibrium constants are not determined by exponential
fitting of the relaxation in Q of a population versus time and the
use of a two-state approximation as in the experimental manner.
Instead, a thermal ensemble at each value of Q is computed from
a long trajectory, and changes in free energy are computed by
using the well known free energy perturbation method (52),
which gives the change in free energy of a system as

DF 5 2RT^e2DHyRT&H0
, [5]

where ^. . . &H0
is a thermal average of the unperturbed (wild-

type) system (indexed by Q). Every equilibrium quantity we need

is then rapidly computed from a single wild-type simulation.
Representative examples of wild-type and perturbed free energy
profiles are shown in Fig. 2.

We produce mutants by weakening one of the native inter-
actions (from an energy of 23 to 21), so the F value is
measuring the amount of formation of the weakened bond. One
could refer to these F values as ‘‘bond’’ F values instead of
‘‘residue’’ F values like those in typical protein experiments.
Bond mutations are preferred over residue mutations because
they provide a more detailed structural picture of the transition
state ensemble. Similar values can be computed by measuring
the rate and stability changes of double and single mutants and
subtracting the one-body, single-mutant changes from the full
double-mutant changes (53). Because residue F values are (to
lowest order in perturbation theory) an average over bond F
values, the range of variation of residue F values with position
is much smaller than the range of variation of bond F values with
position; consequently, bond F values are more useful for
comparing various methods of calculation, even though these
methods can be used to calculate residue F values with equal
validity under identical conditions.

Results and Discussion
There are 28 possible bond mutants in our models. The F values
for these contacts are computed from folding simulations by
using Eq. 1 and from equilibrium sampling and free energy
perturbation by using Eq. 4. The values computed via the two
methods are compared in Fig. 3. To perform the free energy
perturbation calculation, we assume that the folding transition
state structures are the ensemble of thermally occupied mi-
crostates that have a value of Q with the highest free energy
between 5y28 and 23y28. (The upper cutoff is used because
lattice artifacts can produce sharp free energy peaks above Q 5
23y28 that are not actual folding barriers.) Taking the highest
free energy point rather than a fixed point allows the transition
state to shift along the Q coordinate. To compute changes in
stability, we take all states with Q , 16y28 as the unfolded
ensemble and Q 5 1 as the native state. The comparison of F
values from the two methods is shown for the different systems
with differing levels of frustration.

How well the F values computed via the two methods agree
depends strongly on the degree of frustration in the system. The
sequence with the least amount of frustration (Go# -like) has the
best agreement between the two F values (normalized correla-
tion coefficient 0.86 and a slope close to 1). The 3LC, a sequence
with greater frustration (TfyTg ' 1.6), shows a slightly larger
variation between the two sets of F values (normalized corre-
lation 0.84) and a slope around 1.6; namely, the F values
computed from changes in the free energy barrier seen with Q
are consistently overestimated by about a factor of 1.6. The 2LC,
the sequence with the greatest amount of frustration (TfyTg '
1.3), shows no agreement between the two sets of F values
(normalized correlation 20.49). Clearly, the effective use of a
small number of global order parameters as reaction coordinates
depends critically on the degree of frustration. This degree of
frustration in real proteins will clearly determine how effective
the use of simple order parameters is in interpreting real data or
studying more detailed protein models.

Different contacts (bonds) can have different F values not
only because of energetic heterogeneity but also because of
topological factors that arise from a combination of the poly-
meric nature of the chain and the structure of the native state.
In Fig. 4, we compare the F values computed for the same
structure with two different potentials (Go# -like and 3LC). The
strong correlation between these two different sequences indi-
cates the central role of topology in determining the folding
mechanism and F values as long as the energetic frustration is
not too large. However, already for the systems with energetic

Fig. 2. The free energy profile G(Q) shown at Tf for the three models studied
in this paper and one of their mutants. The three models have the same
structure but different potentials: a Go# -like potential where every bead is a
different type, and only beads adjacent in the native structure are attractive;
a 3LC sequence ABABBBCBACBABABACACBACAACAB, where contacts of
identical type have energy of 23 units and contacts of different type have
energy of 21 units (arbitrary energy units are used to have a folding temper-
ature and glass temperature of order unity); and a 2LC sequence ABABBBB-
BABBABABAAABBAAAAAAB. The mutant (M11) is from the 3LC system, in
which the native interaction between beads 6 and 13 (numbered starting from
the lower left corner of the structure shown in the inset) is reduced in energy
from 23 to 21. All mutants show two-state behavior. (Inset) The native 3 3 3 3
3 structure for all of the different wild-type and mutant sequences studied in
this paper.
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frustration comparable to the 3LC, the impact of energetic
effects is noticeable in the sensitivity of the choice of barrier.
Recent theoretical (54, 55) and experimental (56, 57) work
supports this idea that much of the transition state ensemble
structure in real proteins is determined by the topology of the
particular protein under consideration. This agreement is an-
other indication that the amount of energetic frustration in real
single-domain fast-folding proteins is similar to or less than the
3LC sequence. A comparison of the F values of the Go# -like and
2LC model shows no significant correlation (data not shown).

Fig. 3 also shows that several F values for the 2LC sequence
computed by the experimental procedure lie well outside the
range of 0–1—values for which a simple explanation of F values
in terms of structural changes becomes problematic. The sudden
appearance of these large F values indicates that the conven-
tional interpretation is no longer valid for systems with this
higher level of frustration. In this regime, the experimental
method of using rate changes to infer the transition state
structure is not significantly more accurate than using a free
energy function of one- or two-order parameters. This suggests
that, in large, slow folding proteins—those that might contain a
significantly higher level of frustration than in the smaller single
domain proteins—F values may not be reliable probes of
transition state structures as in the smaller, faster folding pro-
teins.

Why does the agreement break down with increasing frustra-
tion? Clearly, one or more of the assumptions made are invalid.
Either folding cannot be described via a Kramer’s-like rate
equation in which the prefactor is identical for both mutant and
wild-type proteins, or the transition state ensemble cannot
accurately be approximated by using simple reaction coordinates
such as Q (that are effective in less frustrated models). We have
not precisely quantified the level of frustration at which these
two assumptions become invalid. The appearance of F values
outside the range of 0 and 1 and the sudden loss of correlation
between the F values of the Go# -like and 2LC sequences suggests
that the entire description of folding in terms of diffusion along
a macroscopic coordinate becomes invalid for sequences with
frustration levels comparable to the 2LC.

Although the F values computed from changes in folding rates
correlate well with F values computed from the free energy
surface, it is clear that the latter values are generally overesti-
mated. This is visible in the best fit line of the 3LC, where the
slope is '1.6 instead of near unity (Fig. 3B). This discrepancy can

Fig. 3. A comparison of the kinetic and free energy perturbation methods for inferring folding transition state structure. Each panel shows the comparison
for a different sequence (and Hamiltonian): A is the Go# -like sequence, B is the 3LC sequence, and C is the 2LC sequence. The Go# -like sequence has the least amount
of energetic frustration, and C the most. The native structure and potential for these sequences are shown in Fig. 2. Mutants are made by weakening specific
nonbonded interactions between beads that are adjacent in the native structure. The F values for these contacts are then computed by the standard
experimental procedure (ordinate) and by a free energy perturbation technique (abscissa). Agreement is good (normalized correlations 0.86 and 0.84) for the
models in A and B, which have energetic frustration less than or comparable to small, fast-folding globular proteins. Because the Go# sequence in A has no
energetic frustration, the heterogeneity of the F values is mostly determined by topological factors attributable to a combination of the polymeric nature of
the chain and the structure of the native state. More frustrated sequences, such as in C, show no agreement (normalized correlation 20.49) between the two
methods and out-of-range F values, which suggests that the assumption of a Kramer’s type of rate with a fixed rate prefactor is not valid. In the experimental
method (ordinate), the folding rate of the wild type (kwt) and the mutant (kmut) as well as the change in native stability under mutation are measured and used
to compute a F value as F' 2RT ln(kmutykwt)yDDG0. These F values should be similar to the measure of DDG0yDDG‡, the ratio of the change in the folding
activation free energy to the change in native stability, when the assumption that folding follows a Kramer’s type of equation with a fixed rate prefactor is valid.
In the free energy perturbation method, we determine the free energy as a function of a folding reaction coordinate—in this instance, Q, the fraction of formed
native nonbonded interactions. The barrier height is defined as the difference in free energy between the highest free energy point along Q between 5y28 and
23y28 and the free energy of states, with Q , 16y28. The F value is then computed directly from DDG0yDDG‡ by taking Q , 16y28 as the unfolded conformations.
For both methods, the unfolded state is defined as all conformations with Q , 16y28. Error bars show 68% confidence limits calculated from 1,000 bootstrapping
simulations.

Fig. 4. A comparison of the 28 bond F values—produced by mutating a
single native interaction, decreasing its energy from 23 to 21—from the
model with a Go# -like potential and a 3LC potential. (The sequence and native
structure are shown in Fig. 2.) The agreement shows that, for sequences with
reduced frustration, the native structure (topology) has a large role in deter-
mining the F values. Details of the potential interactions may not be as critical.
F values are determined here from the rates by using Eq. 1.
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be traced to inaccuracies in the method of computing the change
in the free energy barrier height DDG‡: i.e., uncertainties in the
choice of barrier location. The actual barrier location appears to
be closer to Q 5 16y28, as can be seen in Fig. 5—using a fixed
location of Q 5 16y28 to compute DDG‡ yields slightly more
dispersion in the F values but a better overall slope. The greater
sensitivity of the 3LC to the choice of barrier location is
attributable to the larger number of traps in the barrier region,
which are off-pathway as compared with the less frustrated
Go# -like model. Because the free energy barriers for folding are
quite broad, the inclusion of these off-pathway traps and the
existence of kinetic effects such as moves that make several steps
in Q and a positionally dependent configurational diffusion
coefficient can shift the average barrier location by an appre-
ciable amount—from the free energy maximum toward the
lower Q end of the barrier near Q 5 16y28.

Certainly, there are other methods that can be used to
determine transition state structures. Most of these methods
eschew the use of simple reaction coordinates like Q in favor of
more complicated coordinates, which in principle could better
identify the transition state ensemble. For example, in refs. 29
and 30, a transmission coefficient is used to identify putative
transition state structures. That is, a transition state structure is
identified as one for which approximately half of simulations
begun in that state reach the folded state before unfolding. These
approaches are much more computationally intensive, and the
proposed reaction coordinates cannot be associated with any

experimentally accessible measurement. More importantly,
these coordinates do not in practice provide more quantitative
information than simple coordinates like Q, which can be rapidly
computed for any structure. As we have discussed, no single
coordinate will determine an exact transition state ensemble, but
for sequences with reduced frustration, many coordinates pro-
vide reasonable answers. To demonstrate this assertion, we have
shown that F values computed with our method are similar to the
ones obtained with ‘‘transmission coefficient’’ reaction coordi-
nates for the minimally frustrated Go# sequence in Fig. 6. It
should be noted that this manuscript uses a slightly different
method for locating transition states than ref. 29: we generate a
proper thermal ensemble of states with transmission coefficients
near 0.5 rather than selecting one transition state from each of
several folding simulations.

Conclusion
Often it is difficult (or impossible) to use a fully molecular model
to interpret experimental measurements of protein properties.
For example, to understand the effects that mutations have on
the folding rate, and to use this information to determine the
structural details of the transition state ensemble, we cannot turn
to atomically detailed models. Thus, there is a need for a
theoreticalycomputational framework that is able to determine
this structural transition state ensemble without the need for
fully kinetic simulations of these models. In addition, such a
framework is necessary to relate the effects of local mutations
observed experimentally to structural details of the protein. In
this paper, we developed a landscape approach to computation-
ally determine these structural details (computing F values)
without the need for kinetic information, and we tested the
assumptions behind this approach on a minimalist protein
model.

We showed that the connection between the folding rate
(kinetics) and the free energy barrier (thermodynamics) de-
pends strongly on the degree of energetic frustration in the

Fig. 5. (Upper) A comparison of the F values computed for the Go# -like model
from the free energy perturbation formula (based on Eq. 4) by using two
different formulas for estimating the activation free energy DDG‡. The ab-
scissa shows the F values computed by assuming a fixed transition state
location at Q 5 16y28; the ordinate shows the F values computed by assuming
that the activation free energy is equal to the variation between the unfolded
free energy minimum and the maximum barrier point. The solid line is a least
squares fit constrained to pass through the origin with a slope of 1.07. (Lower)
The same plot but shown for the 3LC model. The solid line has a slope of 1.38.
These two plots demonstrate that the less frustrated models have less sensi-
tivity of their F values to the assumed position of the barrier. The overesti-
mation of the F values computed from free energy perturbation in the 3LC
model is apparent from the lower panel. Because the top of the free energy
barrier is very broad, variations in the reconfigurational diffusion coefficient
with Q and the existence of fundamental motions that allow jumps of several
units in Q can shift the actual barrier location. In this instance, the actual
location is close to Q 5 16y28, which is at the lower Q position of the barrier.

Fig. 6. A comparison of the F values computed by measuring changes in the
folding rates and by averaging over the thermally weighted population of
conformations with transmission coefficients between 0.4 and 0.6. Compari-
son is done for the minimally frustrated Go# sequence and structure shown in
Fig. 2. The two results have a normalized correlation coefficient of 0.73—
agreement is thus of comparable quality to using our method with a single
order parameter Q but at a much greater computational cost. Ten-thousand
states with Q values in the range 6y28 to 27y28 were sampled in equilibrium
at '100,000 step intervals. Three-hundred and ninety states from this sample
had transmission coefficients between 0.4 and 0.6, defined as the fraction of
folding simulations that, when started in a given conformation, find the
native conformation before any conformation with Q # 7 (as determined
from 100 independent folding simulations). This set of structures was then
used as a putative transition state ensemble for computing F values via the
free energy perturbation equation.
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protein. For good folders with sufficiently weak frustration, this
connection can be expressed via a Kramer’s-like equation, and
the folding rates can be clearly described as a diffusive process
on a low-dimensional free energy surface constructed by using
simple structural measures of native state similarity. For these
proteins, interpretation of the experimentally measured F values
as changes in free energy differences of a simple transition state
ensemble is accurate and useful. We also notice that, for
minimally frustrated systems, geometric reaction coordinates
like the percentage of native contacts Q work effectually and give
similar results to those of more complex coordinates. This
indicates that many features of the system are insensitive to the
microscopic details. Because real proteins need to fold reliably
and be robust to slight changes in environment and sequence,
their frustration level is usually low enough for this approach to
work.

However, the situation changes dramatically when the level
of frustration increases. The equivalence of the F values

determined from simple geometric reaction coordinates and
from changes in rates does not hold. In this increased frus-
tration regime, the folding rates are controlled by long lived
traps. The folding can no longer be described as diffusion over
a free energy barrier observed by using simple parameters
measuring structural overlap with the native state. No general
theoretical framework will be able to capture the features
critical to folding. Instead, many microscopic details are
relevant for understanding the folding mechanism and must be
modeled precisely, and the conventional experimental inter-
pretation of F values in terms of geometrical features breaks
down.
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